WO2017063117A1 - 一种有机硅烷的应用以及聚烯烃釜内合金及其制备方法 - Google Patents

一种有机硅烷的应用以及聚烯烃釜内合金及其制备方法 Download PDF

Info

Publication number
WO2017063117A1
WO2017063117A1 PCT/CN2015/091734 CN2015091734W WO2017063117A1 WO 2017063117 A1 WO2017063117 A1 WO 2017063117A1 CN 2015091734 W CN2015091734 W CN 2015091734W WO 2017063117 A1 WO2017063117 A1 WO 2017063117A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyolefin
bis
dichlorosilane
olefin
Prior art date
Application number
PCT/CN2015/091734
Other languages
English (en)
French (fr)
Inventor
董金勇
秦亚伟
Original Assignee
中国科学院化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院化学研究所 filed Critical 中国科学院化学研究所
Priority to PCT/CN2015/091734 priority Critical patent/WO2017063117A1/zh
Priority to EP15906002.9A priority patent/EP3363825B1/en
Priority to US15/767,759 priority patent/US10717801B2/en
Priority to JP2018519828A priority patent/JP6745339B2/ja
Publication of WO2017063117A1 publication Critical patent/WO2017063117A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/646Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/658Pretreating with metals or metal-containing compounds with metals or metal-containing compounds, not provided for in a single group of groups C08F4/653 - C08F4/657
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds

Definitions

  • the invention relates to the field of olefin polymerization, in particular to an application of an organosilane in preparing an alloy in a polyolefin kettle, a preparation method of an alloy in a polyolefin kettle, and a polyolefin in-cylinder alloy prepared by the method.
  • Polyolefin blending technology refers to a technique in which a compatible homopolymer/homopolymer, homopolymer/copolymer, copolymer/copolymer is directly melt-blended to form a polymer alloy.
  • the polyolefin in-cylinder alloy refers to a polyolefin alloy obtained directly from the reaction monomer by means of polymerization in a kettle, thereby replacing the conventional blending method in which the polymer component is previously melt-blended.
  • the most common alloy in the polyolefin autoclave is a polypropylene in-cylinder alloy, which is usually polymerized by propylene in the presence of an olefin polymerization catalyst to form porous polypropylene particles, and then a copolymer of ethylene and an ⁇ -olefin is introduced into the polymerization system.
  • the copolymerization reaction is carried out, and copolymerization of the two monomers is carried out in the above porous polypropylene particles, and the resulting elastic copolymer is filled in the voids of the porous polypropylene particles to form.
  • TPV thermoplastic elastomer
  • TPV products are mainly realized by a post-polymerization modification process (dynamic vulcanization cross-linking), and a method for preparing TPV by in-cylinder polymerization has not been reported.
  • the cross-linking of rubber phase by the polymerization method in the kettle has many advantages: First, the post-reform is omitted. The complex process and cost increase; Second, the cross-linking technology in the kettle has the characteristics of controllable cross-linking degree and more diversified products. By adjusting the type and amount of cross-linking monomer, it can realize the controllable series of polyolefin kettle. Inner alloy, such as high rubber content polyolefin in-cavity alloy (more than 50% by mass of rubber), high impact polyolefin in-cavity alloy, (rubber-based crosslinked structure) polypropylene-based thermoplastic elastomer (TPV); Third, the dependence on the polymerization catalyst and polymerization process is low.
  • Inner alloy such as high rubber content polyolefin in-cavity alloy (more than 50% by mass of rubber), high impact polyolefin in-cavity alloy, (rubber-based crosslinked structure) polypropylene-based thermoplastic elastomer (TPV
  • the object of the present invention is to provide an application of an organosilane in the preparation of an alloy in a polyolefin kettle, a method for preparing an alloy in a polyolefin kettle, and a polyolefin in-cylinder alloy prepared by the method.
  • the present invention also provides a method for preparing an alloy in a polyolefin kettle, which comprises subjecting a first olefin monomer to a first polymerization reaction in the presence of a catalyst, and then introducing a second olefin monomer into the polymerization reaction system.
  • the present invention provides a polyolefin in-cylinder alloy prepared by the above method.
  • the inventors of the present invention have found through intensive studies that the above organosilane of the formula R 1 m SiX n (OR 2 ) k has a general formula of Si(OR') 4 (wherein R' is C 1 -C 20 Hydrocarbyl) organosilanes and halogenated silanes of the formula SiX' 4 (where X' is a halogen) exhibit completely different behavior during the preparation of the alloy in the polyolefin kettle, during the preparation of the alloy in the polyolefin kettle
  • the first polymerization reaction and/or the second polymerization reaction which is required to be carried out is carried out in the presence of an organosilane of the general formula R 1 m SiX n (OR 2 ) k , and the obtained rubber phase of the alloy in the ingot is obtained.
  • the degree of bonding is higher, and the alloy in the polyolefin kettle has higher impact toughness and lower tensile strength at break.
  • R 1 in the organosilane is a C 2 - C 20 hydrocarbon group and the end of R 1 contains an ⁇ -olefin double bond, a norbornene group, a cycloolefin group or a dicyclopentadienyl group
  • X is a halogen
  • R 2 is a C 1 -C 10 linear, branched or isomerized alkyl group
  • m is 2 or 3
  • n is 1 or 2
  • k is 0, and
  • the invention provides an application of an organosilane in the preparation of an alloy in a polyolefin kettle, wherein the organosilane has the formula R 1 m SiX n (OR 2 ) k , wherein a plurality of R in the same formula 1 may be the same or different and may each independently be a C 2 -C 20 hydrocarbon group and the end of R 1 may contain an ⁇ -olefin double bond, a norbornene group, a cycloolefin group or a biscyclopentadienyl group.
  • a plurality of R 1 in the same formula may be the same or different, and each independently is a C 2 - C 20 hydrocarbon group and the terminal of R 1 contains an ⁇ -olefin double bond, norbornene a group, a cycloolefin group or a biscyclopentadienyl group;
  • a plurality of X in the same formula may be the same or different, and each independently is a halogen (including fluorine, chlorine, bromine, iodine);
  • the use of the preferred organosilane as a modifier is more advantageous for the improvement of the crosslinking degree of the rubber phase in the alloy in the polyolefin kettle, and is more advantageous for the improvement of the impact toughness of the alloy in the polyolefin kettle and the reduction of the tensile strength at break.
  • the structure of the intermediate portion of R 1 is not limited except for the removal of the ⁇ -olefin double bond, including a linear hydrocarbon group (including a double bond, three Keys, etc.) or isomers thereof.
  • organosilane examples include, but are not limited to, 7-octenyltrichlorosilane, 5-hexenyltrichlorosilane, allyltrichlorosilane, bis(7-octenyl)dichloro Silane, bis(allyl)dichlorosilane, 7-octenylallyldichlorosilane, 7-octenylvinyldichlorosilane, 5-hexenylallyldichlorosilane, 7-octyl At least one of alkenyl bis(allyl)chlorosilane, bis(7-octenyl)allylchlorosilane, triallylchlorosilane, and the like.
  • R 1 When the end of R 1 contains a norbornene group, the structure of R 1 is preferably as shown in formula (1):
  • R 3 , R 4 , or R 5 are each independently H or a C 1 -C 10 hydrocarbon group (including An olefin, an alkynyl group, a cycloalkenyl group, etc.), but not limited to a specific structure, including a linear hydrocarbon group or an isomer thereof.
  • R 3 , R 4 and R 5 are each independently H or a C 1 -C 10 hydrocarbon group (including An olefin, an alkynyl group, a cycloalkenyl group, etc.), but not limited to a specific structure, including a linear hydrocarbon group or an isomer thereof.
  • the cyclic olefin group may have a carbon number of 3 to 10, wherein the number of double bonds may be 1-3, and a hydrocarbyl chain linking a cycloolefin group to a silicon atom may be attached.
  • the number of carbon atoms may be from 1 to 10, which includes a linear hydrocarbon group or an isomer thereof.
  • the cycloolefin group may have a branch on the ring, and the branch is preferably a C 1 - C 5 alkyl group.
  • organosilane examples include, but are not limited to, 2-(3-cyclohexenyl)ethyltrichlorosilane, 4-(2,7-cyclooctadienyl)butyltrichlorosilane, and [(2-(3-cyclohexenyl)ethyl)]dichlorosilane, 2-(biscyclopentadienyl)ethyleneallyldichlorosilane and 2-(dicyclopentadienyl)ethylene At least one of a trichlorosilane or the like.
  • R 1 contains a biscyclopentadienyl group
  • the structure of R 1 is preferably as shown in formula (2):
  • R 6 , R 7 or R 8 are each independently H or a C 1 -C 10 hydrocarbon group, but The specific structure is not limited, and includes a linear hydrocarbon group or an isomer thereof.
  • the organosilane is 2-(biscyclopentadienyl)ethyleneallyldichlorosilane
  • R 6 and R 7 is a hydrogen atom
  • the organosilane is bis[2-(dicyclopentadiene). Base) ethylene]dichlorosilane.
  • organosilane examples include, but are not limited to, 7-octenyltrichlorosilane, 5-hexenyltrichlorosilane, allyltrichlorosilane, bis(7-octenyl)di Chlorosilane, bis(allyl)dichlorosilane, 7-octenylallyldichlorosilane, 7-octenylvinyldichlorosilane, 5-hexenylallyldichlorosilane, 7- Octenyl bis(allyl)chlorosilane, bis(7-octenyl)allylchlorosilane, Triallyl chlorosilane, 2-(5-ethylidene-2-norbornyl)ethylallyldichlorosilane, bis[2-(5-ethylidene-2-norbornyl) Ethyl]dichlorosilane,
  • the use of the preferred organosilane as a modifier is more advantageous for the improvement of the crosslinking degree of the rubber phase in the alloy in the polyolefin kettle, and is more advantageous for the improvement of the impact toughness of the alloy in the polyolefin kettle and the reduction of the tensile strength at break.
  • the preparation method of the polyolefin in-cylinder alloy provided by the invention comprises the first polymerization reaction of the first olefin monomer in the presence of a catalyst, and then the second olefin monomer is introduced into the polymerization reaction system for the second polymerization reaction.
  • the amount of the organosilane used in the present invention is not particularly limited, and preferably, relative to 100
  • the total amount of the first olefin monomer and the second olefin monomer is from 0.0001 to 20 parts by weight, more preferably from 0.0001 to 5 parts by weight, still more preferably from 0.0001 to 1 part by weight.
  • the portion is most preferably 0.001 to 0.5 part by weight, which can further improve the impact toughness of the obtained polyolefin in-cylinder alloy and lower the tensile breaking strength thereof.
  • the first polymerization reaction may be carried out in the presence of an organosilane, or the second polymerization reaction may be carried out in the presence of an organosilane, and the first may be carried out. Both the polymerization reaction and the second polymerization reaction are carried out in the presence of an organosilane.
  • the first polymerization reaction is not carried out in the presence of the organosilane, and the second polymerization reaction is carried out in the presence of the organosilane, which ensures that only the second The polymer obtained by the polymerization has a crosslinked structure or a branched structure.
  • the main improvement of the preparation method of the polyolefin in-cylinder alloy provided by the invention is that the organosilane of the formula R 1 m SiX n (OR 2 ) k is added during the preparation of the alloy in the polyolefin kettle, and the first olefin single
  • the kind of the body, the second olefin monomer and the catalyst, and the conditions of the first polymerization reaction and the second polymerization reaction, and the like can be conventionally selected in the art.
  • the first olefin monomer and the second olefin monomer may each be a conventional monomer capable of performing olefin polymerization, and specifically may be ethylene and/or an ⁇ -olefin.
  • the ⁇ -olefin may be a conventional monoolefin having various double bonds at the end of the molecular chain, and for example, may be propylene, 1-butene, 1-pentene, 1-hexene and 1-octene At least one of them.
  • the first olefin monomer is propylene
  • the second olefin monomer is a mixture of ethylene and an ⁇ -olefin
  • the polyolefin in-cylinder alloy obtained at this time is a polypropylene in-cylinder alloy.
  • the ethylene may be used in an amount of 1 to 99% by weight, preferably 20 to 50% by weight based on the total weight of the ethylene and the ⁇ -olefin
  • the olefin may be used in an amount of from 1 to 99% by weight, preferably from 50 to 80% by weight.
  • the weight ratio of the amount of propylene in the first polymerization reaction to the total amount of ethylene and the ⁇ -olefin in the second polymerization reaction may be from 0.2 to 100:1, preferably from 0.5 to 10:1.
  • the first olefin monomer is different from the second olefin monomer and refers to the type of the first olefin monomer and the second olefin.
  • the types of monomers are not identical and may be completely different or partially different.
  • the catalyst may be any of various materials which can be used for catalyzing the polymerization of an olefin monomer, and specific examples thereof include, but are not limited to, at least one of a Ziegler-Natta catalyst, a metallocene catalyst, and a non-metallocene catalyst. Among them, the specific composition of these catalysts is well known to those skilled in the art.
  • the Ziegler-Natta catalyst may be a MgCl 2 supported catalytic system, a VOCl 3 -AlEt 2 Cl catalytic system or the like.
  • the MgCl 2 supported catalytic system usually contains MgCl 2 , TiCl 4 , aluminum alkyl and/or aluminum alkoxide, and optionally contained internal electron donors and/or external electron donors, specifically in the art. The personnel are aware of this and will not repeat them here.
  • the conditions of the first polymerization reaction and the second polymerization reaction are not particularly limited in the present invention.
  • the conditions of the first polymerization reaction generally include a reaction temperature of 30 to 90 ° C, preferably 40 to 80 ° C, more preferably 60 to 75 ° C; and a reaction time of 0.05 to 10 hours, preferably 0.1 to 2 The hour is more preferably from 0.1 to 0.5 hours.
  • the conditions of the first polymerization reaction further include a reaction pressure of 0 to 40 atm, preferably 1 to 35 atm, more preferably It is 5-10 atmospheres.
  • the conditions of the second polymerization reaction generally include a reaction temperature of 60 to 120 ° C, preferably 75 to 95 ° C, more preferably 80 to 90 ° C; and a reaction time of 0.1 to 10 hours, preferably 0.1 to 2 hours. More preferably, it is 0.2-0.5 hours.
  • the conditions of the second polymerization reaction further include a reaction pressure of 0.1 to 15 atm, preferably 0.2 to 10 atm, more preferably It is 4-6 atmospheres. In the present invention, the pressure refers to gauge pressure.
  • the first polymerization reaction and/or the second polymerization reaction are preferably carried out in the presence of hydrogen.
  • the hydrogen may be used in an amount of 0.001 to 0.5 parts by weight, preferably 0.005 to 0.1 parts by weight, relative to 100 parts by weight of the first olefin monomer; in the second polymerization reaction, relative The hydrogen may be used in an amount of 0.001 to 5 parts by weight, preferably 0.02 to 0.15 parts by weight, per 100 parts by weight of the second olefin monomer.
  • the method further comprises After the completion of the second polymerization reaction, the obtained second polymerization reaction product is washed with water and/or alcohol at 20-120 ° C, which can further increase the degree of branching or crosslinking of the alloy in the polyolefin kettle. This is more conducive to the improvement of its impact toughness.
  • the kind of the alcohol may be a conventional choice in the art, and specific examples thereof include, but not limited to, at least one of methanol, ethanol, n-propanol, isopropanol, n-butanol and the like.
  • the present invention provides a polyolefin in-cylinder alloy prepared by the above method.
  • the gel content of the alloy in the polyolefin kettle was measured by the following method: the alloy in the polyolefin kettle was dried in a vacuum oven at 50 ° C to a constant weight, weighed, and recorded as W 1 , and then The dried polyolefin in the autoclave was dissolved in xylene, fully dissolved by shaking at 135 ° C, filtered through a 200-mesh stainless steel mesh, and the polymer remaining in the stainless steel mesh was collected, and the undissolved polymer on the stainless steel mesh was vacuum dried. The box was dried at 100 ° C for 4 hours, weighed, and recorded as W 2 .
  • the formula for calculating the gel content of the alloy in the polyolefin kettle was as follows:
  • This embodiment is for explaining the preparation method of the polyolefin in-cylinder alloy provided by the present invention.
  • the residual propylene monomer in the reaction vessel was evacuated and the temperature was lowered to 50 ° C, 0.10 mL of bis(7-octenyl)dichlorosilane was added, and then a mixture of 20 g of ethylene and 60 g of propylene was introduced into the reaction vessel.
  • the reaction temperature was controlled at 90 ° C to continue the reaction for 0.2 hours.
  • the polymerization reaction was terminated by adding acidified ethanol, and then washed with deionized water at a temperature of 50 ° C and ethanol at a temperature of 50 ° C for 3 times, respectively. Drying at 60 ° C under vacuum gave an alloy in a polypropylene kettle.
  • the concentration of bis(7-octenyl)dichlorosilane in the alloy in the polypropylene kettle was determined to be 278 ppm, and the rubber phase in the alloy in the polypropylene kettle had a crosslinked structure and a gel content of 50% by weight.
  • This comparative example is used to illustrate the preparation of the alloy in the reference polyolefin kettle.
  • a polyolefin in-cylinder alloy was prepared according to the method of Example 1, except that bis(7-octenyl)dichlorosilane was not added to obtain a reference polypropylene in-cylinder alloy.
  • This comparative example is used to illustrate the preparation of the alloy in the reference polyolefin kettle.
  • a polyolefin in-cylinder alloy was prepared according to the method of Example 1, except that bis(7-octenyl)dichlorosilane was replaced with the same volume of tetrachlorosilane to obtain a reference polypropylene in-cylinder alloy.
  • This comparative example is used to illustrate the preparation of the alloy in the reference polyolefin kettle.
  • a polyolefin in-cylinder alloy was prepared according to the method of Example 1, except that bis(7-octenyl)dichlorosilane was replaced with the same volume of tetramethoxysilane to obtain a reference polypropylene in-cavity alloy.
  • This embodiment is for explaining the preparation method of the polyolefin in-cylinder alloy provided by the present invention.
  • the residual propylene monomer in the reaction vessel was evacuated and the temperature was lowered to 50 ° C, and 0.05 mL of bis[2-(5-ethylidene-2-norbornene)ethyl]dichlorosilane was added, and then A reaction mixture of 20 g of ethylene and 60 g of propylene was introduced into the reaction vessel, and the reaction temperature was controlled at 90 ° C to continue the reaction for 0.5 hour. After the reaction was completed, the polymerization reaction was terminated by adding acidified ethanol, and then deionized water at a temperature of 90 ° C was respectively used.
  • the ethanol was washed three times with each of the ethanol at a temperature of 80 ° C, and finally vacuum dried at 60 ° C to obtain an alloy in a polypropylene kettle. It is detected that the concentration of bis[2-(5-ethylidene-2-norbornyl)ethyl]dichlorosilane in the alloy in the polypropylene kettle is 125 ppm, and the rubber phase in the alloy in the polypropylene kettle has The crosslinked structure had a gel content of 70% by weight.
  • This embodiment is for explaining the preparation method of the polyolefin in-cylinder alloy provided by the present invention.
  • the residual propylene monomer in the reaction vessel was evacuated and the temperature was lowered to 50 ° C, 0.1 mL of bis[2-(3-cyclohexenyl)ethyl]dichlorosilane was added, and then introduced into the reaction vessel.
  • a mixture of 20 g of ethylene and 60 g of propylene was continuously reacted at 90 ° C for 0.5 hour, and after completion of the reaction, an alloy in a polypropylene kettle was obtained.
  • the concentration of bis[2-(3-cyclohexenyl)ethyl]dichlorosilane in the alloy in the polypropylene kettle is 210 ppm, and the rubber phase in the alloy in the polypropylene kettle has a crosslinked structure, which is condensed
  • the gum content was 65% by weight.
  • This embodiment is for explaining the preparation method of the polyolefin in-cylinder alloy provided by the present invention.
  • a polyolefin in-cell alloy was prepared according to the method of Example 1, except that bis(7-octenyl) group was used.
  • Dichlorosilane was replaced with the same volume of 2-(biscyclopentadienyl)ethylenetrichlorosilane to give a polypropylene in-cab alloy.
  • the concentration of 2-(biscyclopentadienyl)ethylenetrichlorosilane in the alloy in the polypropylene kettle was 142 ppm, and the rubber phase of the alloy in the polypropylene kettle had a crosslinked structure, and the gel content thereof was 45% by weight.
  • This embodiment is for explaining the preparation method of the polyolefin in-cylinder alloy provided by the present invention.
  • a polyolefin in-cylinder alloy was prepared according to the method of Example 1, except that bis(7-octenyl)dichlorosilane was replaced with the same volume of 7-octenyldimethoxychlorosilane to obtain a polypropylene kettle. Inner alloy. It is detected that the concentration of 7-octenyldimethoxychlorosilane in the alloy in the polypropylene kettle is 856 ppm, and the rubber phase in the alloy in the polypropylene kettle has a branched or crosslinked structure, and the gel content is 20 weight%.
  • This embodiment is for explaining the preparation method of the polyolefin in-cylinder alloy provided by the present invention.
  • Ind is a fluorenyl group
  • the mass ratio of MgCl 2 , TiCl 4 , BMMF, rac-Me 2 Si(2-Me-4-PhInd) 2 ZrCl 2 to trimethoxy aluminum is 60:8:5:1:16)
  • the reaction temperature was controlled at 70 ° C, and the polymerization was carried out for 30 minutes. After the completion of the polymerization, the residual propylene monomer in the reaction vessel was evacuated and the temperature was lowered to 50 ° C, 1.0 mL of allyltrichlorosilane was added, and then into the reaction vessel.
  • test examples are used to test the mechanical properties of the alloy in the polyolefin kettle.
  • the tensile strength was measured in accordance with the method specified in ISO 527-2-5 A, and the results are shown in Table 1.
  • Example 1 Numbering Gel content, mass% Impact strength, kJ/m 2 Tensile strength, MPa
  • Example 1 50 55.0 13.0 Comparative example 1 0 22.4 22.5 Comparative example 2 0 18.6 25.4 Comparative example 3 0 19.5 26.5
  • Example 2 70 59.0 10.1
  • Example 3 65 56.8 11.2
  • Example 4 45 50.0 14.5
  • Example 6 75 50.6 9.8
  • R 1 in the organosilane is a C 2 - C 20 hydrocarbon group and the end of R 1 contains an ⁇ -olefin double bond, a norbornene group a cycloolefin group or a biscyclopentadienyl group
  • X is a halogen
  • R 2 is a C 1 -C 10 linear, branched or isomerized alkyl group
  • m is 2 or 3
  • n is 1 or 2
  • Example 1 Stretching strength. It can be seen from the comparison between Example 1 and Comparative Example 2-3 that the organosilane provided by the present invention exhibits different behaviors in the polymerization process of olefins with tetrahalogenated silicon and tetraalkoxysilane, and is provided by the present invention.
  • the organoketone-derived polyolefin in-cylinder alloy has higher impact toughness and lower tensile strength at break.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

本发明提供了一种有机硅烷的应用以及聚烯烃釜内合金及其制备方法。所述聚烯烃釜内合金的制备方法包括使第一烯烃单体在催化剂的存在下进行第一聚合反应,然后往聚合反应体系中通入第二烯烃单体进行第二聚合反应,所述第一烯烃单体不同于第二烯烃单体,其中,第一聚合反应和/或第二聚合反应在通式为R1 mSiXn(OR2)k的有机硅烷的存在下进行,R1为C2-C20的烃基且R1的末端含有α-烯烃双键、降冰片烯基团、环烯烃基团或双环戊二烯基团,X为卤素,R2为C1-C20的直链、支链或异构化的烷基,m为1-3的整数,n为1-3的整数,k为0-2的整数,且m+n+k=4。采用该方法得到的聚烯烃釜内合金中橡胶相的交联程度较高,并且该聚烯烃釜内合金具有较高的冲击韧性和较低的拉伸断裂强度。

Description

一种有机硅烷的应用以及聚烯烃釜内合金及其制备方法 技术领域
本发明涉及烯烃聚合领域,具体涉及一种有机硅烷在制备聚烯烃釜内合金中的应用、一种聚烯烃釜内合金的制备方法以及由该方法制备得到的聚烯烃釜内合金。
背景技术
聚烯烃共混技术是指将具有相容性的均聚物/均聚物、均聚物/共聚物、共聚物/共聚物直接熔融共混而制成聚合物合金的技术。而聚烯烃釜内合金是指通过釜内聚合的方式,直接由反应单体得到聚烯烃合金,从而替代了之前将聚合物组分熔融共混的传统共混方法。聚烯烃釜内合金中最常见的就是聚丙烯釜内合金,其通常是由丙烯在烯烃聚合催化剂的存在下聚合形成多孔聚丙烯颗粒,之后再往聚合体系中通入乙烯与α-烯烃共聚单体进行共聚反应,这两种单体的共聚反应在上述多孔聚丙烯颗粒内进行,生成的弹性共聚物填充在多孔聚丙烯颗粒的空隙内而形成。
近年来,尽管具有新结构和新性能的烯烃聚合改性剂不断被发现并应用于聚烯烃釜内合金高性能化研究中,但是一些具有广泛应用前景的高性能聚烯烃釜内合金仍缺乏有效的催化聚合制备手段。例如,橡胶相具有交联结构的聚丙烯基热塑性弹性体(动态硫化橡胶,TPV)具有优异的力学性能和较高的附加值,在高端应用领域具有广阔的应用前景。但是,目前TPV产品主要通过聚合后改性过程实现(动态硫化交联),通过釜内聚合法制备TPV的方法未见报道。
通过釜内聚合法实现橡胶相的交联具有多方面的优势:一、省去了后改 性的复杂工艺和成本增加;二、釜内交联技术具有交联度可控、产品更加多样化的特点,通过调节交联单体的种类和加入量,能够实现可控制备系列聚烯烃釜内合金,如高橡胶含量聚烯烃釜内合金(橡胶质量百分比50%以上)、高抗冲聚烯烃釜内合金、(橡胶相为交联结构的)聚丙烯基热塑性弹性体(TPV)等;三、对聚合催化剂和聚合工艺的依赖性较低。
发明内容
本发明的目的是为了提供一种有机硅烷在制备聚烯烃釜内合金中的应用、一种聚烯烃釜内合金的制备方法以及由该方法制备得到的聚烯烃釜内合金。
具体地,本发明提供了一种有机硅烷在制备聚烯烃釜内合金中的应用,其中,所述有机硅烷的通式为R1 mSiXn(OR2)k,其中,R1为C2-C20的烃基且R1的末端含有α-烯烃双键、降冰片烯基团、环烯烃基团或双环戊二烯基团,X为卤素,R2为C1-C20的直链、支链或异构化的烷基,m为1-3的整数,n为1-3的整数,k为0-2的整数,且m+n+k=4。
本发明还提供了一种聚烯烃釜内合金的制备方法,该方法包括使第一烯烃单体在催化剂的存在下进行第一聚合反应,然后往聚合反应体系中通入第二烯烃单体进行第二聚合反应,所述第一烯烃单体不同于第二烯烃单体,其中,所述第一聚合反应和/或第二聚合反应在有机硅烷的存在下进行,所述有机硅烷的通式为R1 mSiXn(OR2)k,其中,R1为C2-C20的烃基且R1的末端含有α-烯烃双键、降冰片烯基团、环烯烃基团或双环戊二烯基团,X为卤素,R2为C1-C20的直链、支链或异构化的烷基,m为1-3的整数,n为1-3的整数,k为0-2的整数,且m+n+k=4。
此外,本发明还提供了由上述方法制备得到的聚烯烃釜内合金。
本发明的发明人经过深入研究后发现,上述通式为R1 mSiXn(OR2)k的有 机硅烷与通式为Si(OR’)4(其中,R’为C1-C20的烃基)的有机硅烷以及通式为SiX’4(其中,X’为卤素)的卤化硅烷在聚烯烃釜内合金的制备过程中表现出了完全不同的行为,将聚烯烃釜内合金制备过程中所需经历的第一聚合反应和/或第二聚合反应置于通式为R1 mSiXn(OR2)k的有机硅烷的存在下进行,得到的聚烯烃釜内合金中橡胶相的交联程度较高,并且该聚烯烃釜内合金具有较高的冲击韧性和较低的拉伸断裂强度。
根据本发明的一种优选实施方式,当所述有机硅烷中的R1为C2-C20的烃基且R1的末端含有α-烯烃双键、降冰片烯基团、环烯烃基团或双环戊二烯基团,X为卤素,R2为C1-C10的直链、支链或异构化的烷基,m为2或3,n为1或2,k为0,且m+n+k=4时,得到的聚烯烃釜内合金中橡胶相的交联程度更高,并且该聚烯烃釜内合金具有更高的冲击韧性和更低的拉伸断裂强度。
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
本发明提供了一种有机硅烷在制备聚烯烃釜内合金中的应用,其中,所述有机硅烷的通式为R1 mSiXn(OR2)k,其中,同一通式中的多个R1可以相同,也可以不同,并可以各自独立地为C2-C20的烃基且R1的末端含有α-烯烃双键、降冰片烯基团、环烯烃基团或双环戊二烯基团;同一通式中的多个X可以相同,也可以不同,并可以各自独立地为卤素(包括氟、氯、溴、碘);同一通式中的多个R2可以相同,也可以不同,并可以各自独立地为C1-C20的直链、支链或异构化的烷基;m为1-3的整数,n为1-3的整数,k为0-2的整数,且m+n+k=4。
根据本发明,优选地,同一通式中的多个R1可以相同,也可以不同,并各自独立地为C2-C20的烃基且R1的末端含有α-烯烃双键、降冰片烯基团、环烯烃基团或双环戊二烯基团;同一通式中的多个X可以相同,也可以不同,并各自独立地为卤素(包括氟、氯、溴、碘);同一通式中的多个R2可以相同,也可以不同,并各自独立地为C1-C10的直链、支链或异构化的烷基;m为2或3,n为1或2,k为0,且m+n+k=4。采用该优选的有机硅烷作为改性剂更有利于聚烯烃釜内合金中橡胶相的交联程度的提高,并更有利于聚烯烃釜内合金冲击韧性的提高以及拉伸断裂强度的降低。
当所述R1的末端含有α-烯烃双键(CH2=CH-)时,除去α-烯烃双键之外,R1中间部分的结构不限,包括直链烃基(含双键、三键等)或其异构体。此时,所述有机硅烷的具体实例包括但不限于:7-辛烯基三氯硅烷、5-己烯基三氯硅烷、烯丙基三氯硅烷、二(7-辛烯基)二氯硅烷、二(烯丙基)二氯硅烷、7-辛烯基烯丙基二氯硅烷、7-辛烯基乙烯基二氯硅烷、5-己烯基烯丙基二氯硅烷、7-辛烯基二(烯丙基)氯硅烷、二(7-辛烯基)烯丙基氯硅烷、三烯丙基氯硅烷等中的至少一种。
当R1的末端含有降冰片烯基团时,R1的结构优选如式(1)所示:
Figure PCTCN2015091734-appb-000001
其中,与硅原子相连的基团可以为R3,也可以为R4,还可以为R5,且R3、R4和R5各自独立地为H或C1-C10的烃基(包括烯烃、炔基、环烯烃基等),但不限定具体结构,包括直链烃基或其异构体。例如,当R1具有式(1)所示的结构,且R3为H,R4为=CH-CH3,R5为亚乙基并与硅原子相连,m=2,n=2,k=0,X为氯时,所述有机硅烷为2-(5-亚乙基-2-降冰片烯基)乙基烯丙 基二氯硅烷;当R1具有式(1)所示的结构,且R3为氢原子,R4为亚乙基并硅原子相连,R5为乙基,m=2,n=2,k=0,X为氯时,所述有机硅烷为二[2-(5-亚乙基-2-降冰片烯基)乙基]二氯硅烷。
当R1的末端含有环烯烃基团时,所述环烯烃基团的碳原子数可以为3-10,其中双键数量可以为1-3,连接环烯烃基团与硅原子的烃基链上的碳原子数可以为1-10,其包括直链烃基或其异构体。此外,所述环烯烃基团的环上可以带有支链,该支链优选为C1-C5的烷基。此时,所述有机硅烷的具体实例包括但不限于2-(3-环己烯基)乙基三氯硅烷、4-(2,7-环辛二烯基)丁基三氯硅烷、二[(2-(3-环己烯基)乙基)]二氯硅烷、2-(双环戊二烯基)亚乙基烯丙基二氯硅烷和2-(双环戊二烯基)亚乙基三氯硅烷等中的至少一种。
当R1的末端含有双环戊二烯基团时,R1的结构优选如式(2)所示:
Figure PCTCN2015091734-appb-000002
其中,与硅原子相连的基团可以为R6,也可以为R7,还可以为R8,且R6、R7和R8各自独立地为H或C1-C10的烃基,但不限定具体结构,包括直链烃基或其异构体。例如,当R1具有式(2)所示的结构,且R6为H,R7为H,R8为1,2-亚乙基并与硅原子相连,m=2,n=2,k=0,X为氯时,所述有机硅烷为2-(双环戊二烯基)亚乙基烯丙基二氯硅烷;当R1具有式(2)所示的结构,且R6和R7均为氢原子,R8为亚乙基并与硅原子相连,m=2,n=2,k=0,X为氯时,所述有机硅烷为二[2-(双环戊二烯基)亚乙基]二氯硅烷。
如上所述,所述有机硅烷的具体实例包括但不限于:7-辛烯基三氯硅烷、5-己烯基三氯硅烷、烯丙基三氯硅烷、二(7-辛烯基)二氯硅烷、二(烯丙基)二氯硅烷、7-辛烯基烯丙基二氯硅烷、7-辛烯基乙烯基二氯硅烷、5-己烯基烯丙基二氯硅烷、7-辛烯基二(烯丙基)氯硅烷、二(7-辛烯基)烯丙基氯硅烷、 三烯丙基氯硅烷、2-(5-亚乙基-2-降冰片烯基)乙基烯丙基二氯硅烷、二[2-(5-亚乙基-2-降冰片烯基)乙基]二氯硅烷、2-(5-亚乙基-2-降冰片烯基)-乙基烯丙基二氯硅烷、2-(5-亚乙基-2-降冰片烯基)乙基三氯硅烷、2-(3-环己烯基)乙基三氯硅烷、4-(2,7-环辛二烯基)丁基三氯硅烷、二[(2-(3-环己烯基)乙基)]二氯硅烷)、2-(双环戊二烯基)亚乙基烯丙基二氯硅烷、2-(双环戊二烯基)亚乙基三氯硅烷、2-(双环戊二烯基)亚乙基烯丙基二氯硅烷和二[2-(双环戊二烯基)亚乙基]二氯硅烷中的至少一种,优选为7-辛烯基烯丙基二氯硅烷、7-辛烯基乙烯基二氯硅烷、5-己烯基烯丙基二氯硅烷、7-辛烯基二(烯丙基)氯硅烷、二(7-辛烯基)烯丙基氯硅烷、二(7-辛烯基)二氯硅烷、三烯丙基氯硅烷、二(烯丙基)二氯硅烷、2-(5-亚乙基-2-降冰片烯基)乙基烯丙基二氯硅烷、二[2-(5-亚乙基-2-降冰片烯基)乙基]二氯硅烷、二[2-(3-环己烯基)乙基]二氯硅烷、2-(双环戊二烯基)亚乙基烯丙基二氯硅烷和二[2-(双环戊二烯基)亚乙基]二氯硅烷中的至少一种。采用该优选的有机硅烷作为改性剂更有利于聚烯烃釜内合金中橡胶相的交联程度的提高,并更有利于聚烯烃釜内合金冲击韧性的提高以及拉伸断裂强度的降低。
本发明提供的聚烯烃釜内合金的制备方法包括使第一烯烃单体在催化剂的存在下进行第一聚合反应,然后往聚合反应体系中通入第二烯烃单体进行第二聚合反应,所述第一烯烃单体不同于第二烯烃单体,其中,所述第一聚合反应和/或第二聚合反应在有机硅烷的存在下进行,所述有机硅烷的通式为R1 mSiXn(OR2)k,其中,R1为C2-C20的烃基且R1的末端含有α-烯烃双键、降冰片烯基团、环烯烃基团或双环戊二烯基团,X为卤素,R2为C1-C20的直链、支链或异构化的烷基,m为1-3的整数,n为1-3的整数,k为0-2的整数,且m+n+k=4。
此外,所述有机硅烷的具体选择已经在上文中有所描述,在此不作赘述。
本发明对所述有机硅烷的用量没有特别地限定,优选地,相对于100重 量份的所述第一烯烃单体和第二烯烃单体的总用量,所述有机硅烷的总用量为0.0001-20重量份,进一步优选为0.0001-5重量份,更优选为0.0005-1重量份,最优选为0.001-0.5重量份,这样能够进一步提高得到的聚烯烃釜内合金的冲击韧性并降低其拉伸断裂强度。
根据本发明提供的聚烯烃釜内合金的制备方法,可以将第一聚合反应置于有机硅烷的存在下进行,也可以将第二聚合反应置于有机硅烷的存在下进行,还可以将第一聚合反应和第二聚合反应均置于有机硅烷的存在下进行。根据本发明的一种优选实施方式,所述第一聚合反应未在所述有机硅烷的存在下进行,而所述第二聚合反应在所述有机硅烷的存在下进行,这样能够保证只有第二聚合反应得到的聚合物具有交联结构或支化结构。
本发明提供的聚烯烃釜内合金的制备方法的主要改进之处为在聚烯烃釜内合金制备过程中加入通式为R1 mSiXn(OR2)k的有机硅烷,而第一烯烃单体、第二烯烃单体和催化剂的种类以及第一聚合反应和第二聚合反应的条件等均可以为本领域的常规选择。
例如,所述第一烯烃单体和第二烯烃单体均可以为现有的各种能够进行烯烃聚合反应的单体,具体可以为乙烯和/或α-烯烃。其中,所述α-烯烃可以为现有的各种双键在分子链端部的单烯烃,例如,可以为丙烯、1-丁烯、1-戊烯、1-己烯和1-辛烯中的至少一种。特别优选地,所述第一烯烃单体为丙烯,且所述第二烯烃单体为乙烯与α-烯烃的混合物,此时获得的聚烯烃釜内合金为聚丙烯釜内合金。此时,在第二聚合反应过程中,以所述乙烯与α-烯烃的总重量为基准,所述乙烯的用量可以为1-99重量%,优选为20-50重量%;所述α-烯烃的用量可以为1-99重量%,优选为50-80重量%。所述第一聚合反应过程中丙烯的用量与第二聚合反应过程中乙烯与α-烯烃的总用量的重量比可以为0.2-100:1,优选为0.5-10:1。此外,需要说明的是,所述第一烯烃单体不同于第二烯烃单体是指第一烯烃单体的种类与第二烯烃 单体的种类不完全相同,可以完全不同,也可以有部分不同。
所述催化剂可以为现有的各种能够用于催化烯烃单体进行聚合反应的物质,其具体实例包括但不限于:Ziegler-Natta催化剂、茂金属催化剂和非茂金属催化剂中的至少一种。其中,这些催化剂的具体组成为本领域技术人员公知,例如,所述Ziegler-Natta催化剂可以为MgCl2负载型催化体系、VOCl3-AlEt2Cl催化体系等。具体地,MgCl2负载型催化体系中通常含有MgCl2、TiCl4、烷基铝和/或烷氧基铝以及选择性含有的内给电子体和/或外给电子体,具体为本领域技术人员所知悉,在此不作赘述。
本发明对所述第一聚合反应和第二聚合反应的条件没有特别地限定。例如,所述第一聚合反应的条件通常包括反应温度可以为30-90℃,优选为40-80℃,更优选为60-75℃;反应时间可以为0.05-10小时,优选为0.1-2小时,更优选为0.1-0.5小时。此外,当第一聚合反应中通入的第一烯烃单体为气态时,所述第一聚合反应的条件还包括反应压力可以为0-40个大气压,优选为1-35个大气压,更优选为5-10个大气压。所述第二聚合反应的条件通常包括反应温度可以为60-120℃,优选为75-95℃,更优选为80-90℃;反应时间可以为0.1-10小时,优选为0.1-2小时,更优选为0.2-0.5小时。此外,当第二聚合反应中通入的第二烯烃单体为气态时,所述第二聚合反应的条件还包括反应压力可以为0.1-15个大气压,优选为0.2-10个大气压,更优选为4-6个大气压。在本发明中,所述压力均指表压。此外,所述第一聚合反应和/或第二聚合反应优选在氢气的存在下进行。在第一聚合反应过程中,相对于100重量份的第一烯烃单体,所述氢气的用量可以为0.001-0.5重量份,优选为0.005-0.1重量份;在第二聚合反应过程中,相对于100重量份的所述第二烯烃单体,所述氢气的用量可以为0.001-5重量份,优选为0.02-0.15重量份。
根据本发明提供的聚烯烃釜内合金的制备方法,优选地,该方法还包括 在所述第二聚合反应完成之后,将得到的第二聚合反应产物在20-120℃下采用水和/或醇进行洗涤,这样能够进一步提高聚烯烃釜内合金的支化或交联程度,从而更有利于其冲击韧性的提高。其中,所述醇的种类可以为本领域的常规选择,其具体实例包括但不限于:甲醇、乙醇、正丙醇、异丙醇、正丁醇等中的至少一种。
此外,本发明还提供了由上述方法制备得到的聚烯烃釜内合金。
以下将通过实施例对本发明进行详细描述。
以下实施例和对比例中,聚烯烃釜内合金的凝胶含量按照以下方法测定:将聚烯烃釜内合金在真空干燥箱中于50℃干燥至恒重,称重,记为W1,然后用二甲苯溶解干燥后的聚烯烃釜内合金,在135℃振荡充分溶解,用200目的不锈钢网进行过滤,收集残留在不锈钢网上不溶解的聚合物,将不锈钢网上不溶解的聚合物在真空干燥箱中于100℃干燥4小时,称重,记为W2,聚烯烃釜内合金的凝胶含量的计算公式如下:
凝胶含量(重量%)=(W2/W1)×100(重量%)。
实施例1
该实施例用于说明本发明提供的聚烯烃釜内合金的制备方法。
在真空状态下,将500克液态丙烯单体加入反应釜中,然后在30℃下依次加入0.25mol三乙基铝、20毫克烯烃聚合催化剂(MgCl2/TiCl4/BMMF,其中,BMMF为内给电子体9,9-二甲氧基芴,MgCl2、TiCl4与BMMF的质量比为80:12:8)以及0.2g氢气,然后将反应温度升至70℃反应0.2小时。接着将反应釜内残余的丙烯单体排空并将温度降至50℃,加入0.10mL二(7-辛烯基)二氯硅烷,然后向反应釜中通入20g乙烯和60g丙烯的混合气,将反应温度控制在90℃下继续反应0.2小时,反应完成后,加入酸化乙醇终止聚合反应,然后分别用温度为50℃的去离子水和温度为50℃的乙醇各洗涤3 次,最后在60℃下真空干燥,得到聚丙烯釜内合金。经检测,该聚丙烯釜内合金中二(7-辛烯基)二氯硅烷的浓度为278ppm,所述聚丙烯釜内合金中橡胶相具有交联结构,其凝胶含量为50重量%。
对比例1
该对比例用于说明参比的聚烯烃釜内合金的制备方法。
按照实施例1的方法制备聚烯烃釜内合金,不同的是,未加入二(7-辛烯基)二氯硅烷,得到参比聚丙烯釜内合金。
对比例2
该对比例用于说明参比的聚烯烃釜内合金的制备方法。
按照实施例1的方法制备聚烯烃釜内合金,不同的是,将二(7-辛烯基)二氯硅烷用相同体积的四氯硅烷替代,得到参比聚丙烯釜内合金。
对比例3
该对比例用于说明参比的聚烯烃釜内合金的制备方法。
按照实施例1的方法制备聚烯烃釜内合金,不同的是,将二(7-辛烯基)二氯硅烷用相同体积的四甲氧基硅烷替代,得到参比聚丙烯釜内合金。
实施例2
该实施例用于说明本发明提供的聚烯烃釜内合金的制备方法。
在真空状态下,将500克液态丙烯单体加入反应釜中,然后在30℃下依次加入0.25mol三乙基铝、20毫克烯烃聚合催化剂(MgCl2/TiCl4/BMMF,其中,BMMF为内给电子体9,9-二甲氧基芴,MgCl2、TiCl4与BMMF的质量比为80:15:5)以及0.2g氢气,然后将反应温度升至70℃反应0.2小时。 接着将反应釜内残余的丙烯单体排空并将温度降至50℃,加入0.05mL的二[2-(5-亚乙基-2-降冰片烯基)乙基]二氯硅烷,然后向反应釜中通入20g乙烯和60g丙烯的混合气,将反应温度控制在90℃下继续反应0.5小时,反应完成后,加入酸化乙醇终止聚合反应,然后分别用温度为90℃的去离子水和温度为80℃的乙醇各洗涤3次,最后在60℃下真空干燥,得到聚丙烯釜内合金。经检测,该聚丙烯釜内合金中二[2-(5-亚乙基-2-降冰片烯基)乙基]二氯硅烷的浓度为125ppm,所述聚丙烯釜内合金中橡胶相具有交联结构,其凝胶含量为70重量%。
实施例3
该实施例用于说明本发明提供的聚烯烃釜内合金的制备方法。
在真空状态下,将500克液态丙烯单体加入反应釜中,然后在30℃下依次加入0.25mol三乙基铝、20毫克烯烃聚合催化剂(MgCl2/TiCl4/BMMF,其中,BMMF为内给电子体9,9-二甲氧基芴,MgCl2、TiCl4与BMMF的质量比为78:12:10)以及0.2g氢气,然后将反应温度升至70℃反应0.2小时。接着将反应釜内残余的丙烯单体排空并将温度降至50℃,加入0.1mL的二[2-(3-环己烯基)乙基]二氯硅烷,然后向反应釜中通入20g乙烯和60g丙烯的混合气,将反应温度控制在90℃下继续反应0.5小时,反应完成后,得到聚丙烯釜内合金。经检测,该聚丙烯釜内合金中二[2-(3-环己烯基)乙基]二氯硅烷的浓度为210ppm,所述聚丙烯釜内合金中橡胶相具有交联结构,其凝胶含量为65重量%。
实施例4
该实施例用于说明本发明提供的聚烯烃釜内合金的制备方法。
按照实施例1的方法制备聚烯烃釜内合金,不同的是,将二(7-辛烯基) 二氯硅烷用相同体积的2-(双环戊二烯基)亚乙基三氯硅烷替代,得到聚丙烯釜内合金。经检测,该聚丙烯釜内合金中2-(双环戊二烯基)亚乙基三氯硅烷的浓度为142ppm,所述聚丙烯釜内合金中橡胶相具有交联结构,其凝胶含量为45重量%。
实施例5
该实施例用于说明本发明提供的聚烯烃釜内合金的制备方法。
按照实施例1的方法制备聚烯烃釜内合金,不同的是,将二(7-辛烯基)二氯硅烷用相同体积的7-辛烯基二甲氧基氯硅烷替代,得到聚丙烯釜内合金。经检测,该聚丙烯釜内合金中7-辛烯基二甲氧基氯硅烷的浓度为856ppm,所述聚丙烯釜内合金中橡胶相具有支化或交联结构,其凝胶含量为20重量%。
实施例6
该实施例用于说明本发明提供的聚烯烃釜内合金的制备方法。
真空状态下,将450克液态丙烯单体加入反应釜中,然后在30℃下依次加入0.25mol三乙基铝和18毫克烯烃聚合催化剂(MgCl2/TiCl4/BMMF/rac-Me2Si(2-Me-4-PhInd)2ZrCl2/三甲氧基铝,其中,BMMF为内给电子体9,9-二甲氧基芴,rac-表示消旋,Me为甲基,Ph为苯基,Ind为茚基,MgCl2、TiCl4、BMMF、rac-Me2Si(2-Me-4-PhInd)2ZrCl2与三甲氧基铝的质量比为60:8:5:1:16),反应温度控制在70℃,聚合反应30分钟,聚合完成后将反应釜内残余的丙烯单体排空并将温度降至50℃,加入1.0mL烯丙基三氯硅烷,然后向反应釜中通入20g乙烯和60g丙烯的混合气和0.05克氢气,将反应温度控制在90℃下继续反应0.5小时,反应完成后,得到聚丙烯釜内合金。经检测,该聚丙烯釜内合金中烯丙基三氯硅烷的浓度 为590ppm,所述聚丙烯釜内合金中橡胶相具有交联结构,其凝胶含量为75%。
测试例
测试例用于说明聚烯烃釜内合金力学性能的测试。
冲击强度按照ASTM D256A中规定的方法进行测定,结果如表1所示。
拉伸强度按照ISO527-2-5A中规定的方法进行测定,结果如表1所示。
表1
编号 凝胶含量,质量% 冲击强度,kJ/m2 拉伸断裂强度,MPa
实施例1 50 55.0 13.0
对比例1 0 22.4 22.5
对比例2 0 18.6 25.4
对比例3 0 19.5 26.5
实施例2 70 59.0 10.1
实施例3 65 56.8 11.2
实施例4 45 50.0 14.5
实施例5 20 32.5 18.4
实施例6 75 50.6 9.8
从以上结果可以看出,采用本发明提供的方法制备得到的聚烯烃釜内合金中橡胶相的交联程度较高,且该聚烯烃釜内合金树脂具有较高冲击韧性和较低的拉伸断裂强度。从实施例1与实施例4-5的对比可以看出,当所述有机硅烷中的R1为C2-C20的烃基且R1的末端含有α-烯烃双键、降冰片烯基团、环烯烃基团或双环戊二烯基团,X为卤素,R2为C1-C10的直链、支链或异构化的烷基,m为2或3,n为1或2,k为0,且m+n+k=4时,得到的聚烯烃釜内合金中橡胶相的交联程度更高,并且该聚烯烃釜内合金具有更高的冲击韧性和更低的拉伸断裂强度。从实施例1与对比例2-3的对比可以看出,本发明提供的有机硅烷与四卤化硅和四烷氧基硅烷在烯烃聚合反应过程中表 现出了不同的行为,采用本发明提供的有机硅烷得到的聚烯烃釜内合金具有更高的冲击韧性和更低的拉伸断裂强度。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (11)

  1. 一种有机硅烷在制备聚烯烃釜内合金中的应用,其特征在于,所述有机硅烷的通式为R1 mSiXn(OR2)k,其中,R1为C2-C20的烃基且R1的末端含有α-烯烃双键、降冰片烯基团、环烯烃基团或双环戊二烯基团,X为卤素,R2为C1-C20的直链、支链或异构化的烷基,m为1-3的整数,n为1-3的整数,k为0-2的整数,且m+n+k=4。
  2. 根据权利要求1所述的应用,其中,R1为C2-C20的烃基且R1的末端含有α-烯烃双键、降冰片烯基团、环烯烃基团或双环戊二烯基团,X为卤素,R2为C1-C10的直链、支链或异构化的烷基,m为2或3,n为1或2,k为0,且m+n+k=4。
  3. 根据权利要求2所述的应用,其中,所述有机硅烷为7-辛烯基烯丙基二氯硅烷、7-辛烯基乙烯基二氯硅烷、5-己烯基烯丙基二氯硅烷、7-辛烯基二(烯丙基)氯硅烷、二(7-辛烯基)烯丙基氯硅烷、二(7-辛烯基)二氯硅烷、三烯丙基氯硅烷、二(烯丙基)二氯硅烷、2-(5-亚乙基-2-降冰片烯基)乙基烯丙基二氯硅烷、二[2-(5-亚乙基-2-降冰片烯基)乙基]二氯硅烷、二[2-(3-环己烯基)乙基]二氯硅烷、2-(双环戊二烯基)亚乙基烯丙基二氯硅烷和二[2-(双环戊二烯基)亚乙基]二氯硅烷中的至少一种。
  4. 一种聚烯烃釜内合金的制备方法,该方法包括使第一烯烃单体在催化剂的存在下进行第一聚合反应,然后往聚合反应体系中通入第二烯烃单体进行第二聚合反应,所述第一烯烃单体不同于第二烯烃单体,其特征在于,所述第一聚合反应和/或第二聚合反应在有机硅烷的存在下进行,所述有机硅烷的通式为R1 mSiXn(OR2)k,其中,R1为C2-C20的烃基且R1的末端含有α-烯 烃双键、降冰片烯基团、环烯烃基团或双环戊二烯基团,X为卤素,R2为C1-C20的直链、支链或异构化的烷基,m为1-3的整数,n为1-3的整数,k为0-2的整数,且m+n+k=4。
  5. 根据权利要求4所述的方法,其中,R1为C2-C20的烃基且R1的末端含有α-烯烃双键、降冰片烯基团、环烯烃基团或双环戊二烯基团,X为卤素,R2为C1-C10的直链、支链或异构化的烷基,m为2或3,n为1或2,k为0,且m+n+k=4。
  6. 根据权利要求5所述的方法,其中,所述有机硅烷为7-辛烯基烯丙基二氯硅烷、7-辛烯基乙烯基二氯硅烷、5-己烯基烯丙基二氯硅烷、7-辛烯基二(烯丙基)氯硅烷、二(7-辛烯基)烯丙基氯硅烷、二(7-辛烯基)二氯硅烷、三烯丙基氯硅烷、二(烯丙基)二氯硅烷、2-(5-亚乙基-2-降冰片烯基)乙基烯丙基二氯硅烷、二[2-(5-亚乙基-2-降冰片烯基)乙基]二氯硅烷、二[2-(3-环己烯基)乙基]二氯硅烷、2-(双环戊二烯基)亚乙基烯丙基二氯硅烷和二[2-(双环戊二烯基)亚乙基]二氯硅烷中的至少一种。
  7. 根据权利要求4-6中任意一项所述的方法,其中,相对于100重量份的所述第一烯烃单体和第二烯烃单体的总用量,所述有机硅烷的总用量为0.0001-20重量份。
  8. 根据权利要求4-7中任意一项所述的方法,其中,所述第一聚合反应未在所述有机硅烷的存在下进行,而所述第二聚合反应在所述有机硅烷的存在下进行。
  9. 根据权利要求4-8中任意一项所述的方法,其中,所述催化剂为 Ziegler-Natta催化剂、茂金属催化剂和非茂金属催化剂中的至少一种;
    优选地,所述第一烯烃单体为丙烯,且所述第二烯烃单体为乙烯与α-烯烃的混合物;
    优选地,所述第一聚合反应的条件包括反应温度为30-90℃,反应时间为0.05-10小时;所述第二聚合反应的条件包括反应温度为60-120℃,反应时间为0.1-10小时。
  10. 根据权利要求4-9中任意一项所述的方法,其中,该方法还包括在所述第二聚合反应完成之后,将得到的第二聚合反应产物在20-120℃下采用水和/或醇进行洗涤。
  11. 由权利要求4-10中任意一项所述的方法制备得到的聚烯烃釜内合金。
PCT/CN2015/091734 2015-10-12 2015-10-12 一种有机硅烷的应用以及聚烯烃釜内合金及其制备方法 WO2017063117A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2015/091734 WO2017063117A1 (zh) 2015-10-12 2015-10-12 一种有机硅烷的应用以及聚烯烃釜内合金及其制备方法
EP15906002.9A EP3363825B1 (en) 2015-10-12 2015-10-12 Use of organic siloxane, and polyolefin in-reactor alloy and preparation method thereof
US15/767,759 US10717801B2 (en) 2015-10-12 2015-10-12 Use of organosilane, in-reactor polyolefin alloy and preparation method thereof
JP2018519828A JP6745339B2 (ja) 2015-10-12 2015-10-12 有機シランの使用、並びにポリオレフィン釜内アロイ及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/091734 WO2017063117A1 (zh) 2015-10-12 2015-10-12 一种有机硅烷的应用以及聚烯烃釜内合金及其制备方法

Publications (1)

Publication Number Publication Date
WO2017063117A1 true WO2017063117A1 (zh) 2017-04-20

Family

ID=58517028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091734 WO2017063117A1 (zh) 2015-10-12 2015-10-12 一种有机硅烷的应用以及聚烯烃釜内合金及其制备方法

Country Status (4)

Country Link
US (1) US10717801B2 (zh)
EP (1) EP3363825B1 (zh)
JP (1) JP6745339B2 (zh)
WO (1) WO2017063117A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112142896A (zh) * 2019-07-15 2020-12-29 中国科学院化学研究所 有机硅烷的应用以及聚丙烯釜内合金及其制备方法
CN113683837A (zh) * 2020-05-19 2021-11-23 中国石油天然气股份有限公司 一种抗冲共聚聚丙烯及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207406A (ja) * 1985-03-11 1986-09-13 Mitsubishi Chem Ind Ltd プロピレンの重合法
CN1057467A (zh) * 1990-06-22 1992-01-01 蒙特代普公司 制备乙烯(共)聚合用固体催化剂组分的方法
CN103665203A (zh) * 2012-09-07 2014-03-26 中国石油化工股份有限公司 一种烯烃聚合用固体催化剂组分及催化剂
CN103665204A (zh) * 2012-09-07 2014-03-26 中国石油化工股份有限公司 一种烯烃聚合用固体催化剂组分及催化剂

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373279A (en) 1976-12-13 1978-06-29 Mitsubishi Chem Ind Ltd Preparation of olefin polymer
JPS63502285A (ja) * 1985-12-16 1988-09-01 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− オレフィンクロロシランおよびオレフィンハライド官能基含有ポリマ−およびその製法
JPH0725820B2 (ja) 1987-03-26 1995-03-22 三井東圧化学株式会社 プロピレンの重合方法
JP2695227B2 (ja) * 1988-03-01 1997-12-24 三井東圧化学株式会社 プロピレンのブロック共重合体、ブロック共重合体組成物及びその製造方法
EP0331364B1 (en) * 1988-03-01 1996-01-24 MITSUI TOATSU CHEMICALS, Inc. Block copolymer of propylene and a process for the production thereof
KR950002860B1 (ko) * 1992-06-13 1995-03-27 한국과학기술연구원 클로로알켄닐실란들과그제조방법
US5550194A (en) * 1995-01-31 1996-08-27 Shell Oil Company Process for making graft block copolymers by grafting anionic polymer chains onto functionalized polyolefins
CA2294798A1 (en) 1997-07-04 1999-01-14 Ignatius Hendrik Potgieter Gas-phase polymerization process for producing propylene/1-pentene copolymers
US6605679B1 (en) * 1997-07-23 2003-08-12 E. I. Du Pont De Nemours And Company Polymerization of olefins
US7550528B2 (en) 2002-10-15 2009-06-23 Exxonmobil Chemical Patents Inc. Functionalized olefin polymers
GB0501102D0 (en) 2005-01-19 2005-02-23 Bp Chem Int Ltd Process
EP2470574B1 (en) 2009-08-24 2014-09-17 Bridgestone Corporation Process and catalyst system for polydiene production
JP2012214556A (ja) * 2011-03-31 2012-11-08 Japan Polypropylene Corp プロピレンエチレンブロック共重合用触媒およびプロピレンエチレンブロック共重合体の製造方法
JP2013214556A (ja) * 2012-03-30 2013-10-17 Olympus Corp ウェハ積層体、半導体装置およびその製造方法
CN104448063A (zh) 2014-11-14 2015-03-25 中国科学院化学研究所 一种烯烃聚合催化剂组分及其制备方法和烯烃聚合催化剂及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207406A (ja) * 1985-03-11 1986-09-13 Mitsubishi Chem Ind Ltd プロピレンの重合法
CN1057467A (zh) * 1990-06-22 1992-01-01 蒙特代普公司 制备乙烯(共)聚合用固体催化剂组分的方法
CN103665203A (zh) * 2012-09-07 2014-03-26 中国石油化工股份有限公司 一种烯烃聚合用固体催化剂组分及催化剂
CN103665204A (zh) * 2012-09-07 2014-03-26 中国石油化工股份有限公司 一种烯烃聚合用固体催化剂组分及催化剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3363825A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112142896A (zh) * 2019-07-15 2020-12-29 中国科学院化学研究所 有机硅烷的应用以及聚丙烯釜内合金及其制备方法
CN112142896B (zh) * 2019-07-15 2021-06-29 中国科学院化学研究所 有机硅烷的应用以及聚丙烯釜内合金及其制备方法
CN113683837A (zh) * 2020-05-19 2021-11-23 中国石油天然气股份有限公司 一种抗冲共聚聚丙烯及其制备方法
CN113683837B (zh) * 2020-05-19 2023-11-28 中国石油天然气股份有限公司 一种抗冲共聚聚丙烯及其制备方法

Also Published As

Publication number Publication date
EP3363825B1 (en) 2021-04-14
JP2018532026A (ja) 2018-11-01
US10717801B2 (en) 2020-07-21
US20180298123A1 (en) 2018-10-18
EP3363825A4 (en) 2019-04-17
JP6745339B2 (ja) 2020-08-26
EP3363825A1 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
CN106566065B (zh) 一种有机硅烷的应用以及聚烯烃釜内合金及其制备方法
US9068034B2 (en) In-reactor polymer blends
JP2017048402A (ja) ポリオレフィン触媒のための電子供与体としての複素環式有機化合物
JP6017089B2 (ja) オレフィン系樹脂、その製造方法およびプロピレン系樹脂組成物
WO2010075107A2 (en) In-reactor polymer blends
JPWO2006011334A1 (ja) オレフィン重合用触媒及び該触媒を用いる重合方法
CN106565883B (zh) 一种有机硅烷的应用以及聚烯烃树脂及其制备方法
JP2016510835A (ja) 1−オレフィン重合触媒のための混合内部供与体構造
JP4694369B2 (ja) ポリプロピレン樹脂組成物
JP5766185B2 (ja) オレフィン重合触媒のための内部供与体
WO2017063118A1 (zh) 烯烃聚合催化剂及其制备方法和烯烃聚合催化剂体系及其应用以及聚烯烃树脂的制备方法
WO2017063117A1 (zh) 一种有机硅烷的应用以及聚烯烃釜内合金及其制备方法
WO2017063116A1 (zh) 一种有机硅烷的应用以及聚烯烃树脂及其制备方法
JP2002030128A (ja) プロピレン系ブロック共重合体粒子およびその製造方法
EP4172247A1 (en) Olefin/siloxane interpolymers and olefin/cyclic silane interpolymers
JP5404632B2 (ja) 改良された引張特性を有するヘテロ相ポリオレフィン組成物
JP2018188504A (ja) 中空成形用ポリプロピレン系樹脂組成物、その製造方法及び中空成形品
CN112142896B (zh) 有机硅烷的应用以及聚丙烯釜内合金及其制备方法
JPH10219045A (ja) 樹脂成形体
JP2019157084A (ja) ポリプロピレン組成物および成形品
CN111138575B (zh) 有机硅烷化合物、聚烯烃树脂及其制备方法和应用
KR20140012488A (ko) 가교 구조를 갖는 올레핀 블록 공중합체 및 이의 제조 방법
JP2002030127A (ja) プロピレン系ブロック共重合体およびその製造方法
JPH07292021A (ja) 超高分子量ポリプロピレンの製造方法
JPH11181025A (ja) プロピレン系樹脂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906002

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15767759

Country of ref document: US

Ref document number: 2018519828

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015906002

Country of ref document: EP