WO2017061593A1 - X線検査装置 - Google Patents

X線検査装置 Download PDF

Info

Publication number
WO2017061593A1
WO2017061593A1 PCT/JP2016/079926 JP2016079926W WO2017061593A1 WO 2017061593 A1 WO2017061593 A1 WO 2017061593A1 JP 2016079926 W JP2016079926 W JP 2016079926W WO 2017061593 A1 WO2017061593 A1 WO 2017061593A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
image
unit
transmission image
ray transmission
Prior art date
Application number
PCT/JP2016/079926
Other languages
English (en)
French (fr)
Inventor
祥憲 樽本
栖原 一浩
廣瀬 修
厚司 岩井
Original Assignee
株式会社イシダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イシダ filed Critical 株式会社イシダ
Priority to US15/766,714 priority Critical patent/US10788436B2/en
Priority to EP16853744.7A priority patent/EP3361240B1/en
Priority to CN201680057725.1A priority patent/CN108449979B/zh
Publication of WO2017061593A1 publication Critical patent/WO2017061593A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/16Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being a moving sheet or film
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/18Investigating the presence of flaws defects or foreign matter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2204Specimen supports therefor; Sample conveying means therefore
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection

Definitions

  • This disclosure relates to an X-ray inspection apparatus.
  • an apparatus including a direct conversion X-ray detection element array that converts X-rays into electric charges for example, , See Patent Document 1).
  • the direct conversion X-ray detection element array has a high sensitivity to soft X-rays, for example, and therefore is difficult to absorb hard X-rays and easily absorbs soft X-rays (for example, non-metal such as glass and rubber). It is effective when detecting foreign substances made of light metals such as aluminum.
  • the plurality of direct conversion X-ray detection element arrays are along a direction intersecting both the transport direction of the inspection object by the transport unit and the X-ray irradiation direction by the X-ray irradiation unit. May be installed side by side. In that case, there is a possibility that the sensitivity is lowered at the connection portion between the adjacent direct conversion X-ray detection element arrays. If the sensitivity is reduced at the connection portion between the adjacent direct conversion type X-ray detection element arrays, the region corresponding to the connection portion in the image of the inspection object in the X-ray transmission image corresponds to the transport direction. A line whose luminance decreases along the direction appears (hereinafter, the line is referred to as a “luminance decreasing line”).
  • the present disclosure provides an X-ray inspection apparatus capable of accurately detecting foreign matter using a plurality of direct conversion X-ray detection element arrays even when a thick inspection object is an inspection object. For the purpose.
  • An X-ray inspection apparatus is transported by a transport unit that transports an inspection object, an X-ray irradiation unit that irradiates the inspection object transported by the transport unit, and a transport unit.
  • An X-ray detection unit that detects X-rays irradiated on the inspection object, and an X-ray transmission image of the inspection object are generated based on a detection signal output from the X-ray detection unit, and image processing is performed on the X-ray transmission image
  • An X-ray detection unit arranged in parallel along a direction intersecting both the conveyance direction of the inspection object by the conveyance unit and the X-ray irradiation direction by the X-ray irradiation unit,
  • An edge detection unit that includes a plurality of direct conversion X-ray detection element arrays that convert X-rays in one energy band into electric charges, and the image processing unit generates an edge detection image by performing edge detection processing on the X-ray transmission image And horizontal blurring along the transport direction for
  • this X-ray inspection apparatus a plurality of direct-conversion X-ray detection element arrays that convert X-rays in the first energy band into electric charges are used, and the image processing unit performs edge detection processing on the X-ray transmission image and performs edge detection.
  • a detection image is generated, a horizontal blur process is performed on the edge detection image to generate a horizontal blur image, and an X-ray transmission image and a horizontal blur image are synthesized to generate a processed X-ray transmission image.
  • the X-ray in the first energy band may be a soft X-ray.
  • a foreign substance made of a material that hardly absorbs hard X-rays and easily absorbs soft X-rays for example, non-metal such as glass and rubber, light metal such as aluminum.
  • the X-ray detection unit is arranged in parallel along a direction intersecting both the conveyance direction of the inspection object by the conveyance unit and the X-ray irradiation direction by the X-ray irradiation unit.
  • an indirect conversion type X-ray detection element array that converts X-rays in a second energy band larger than the first energy band into light and converts the light into electric charges
  • the image processing unit includes a direct conversion type
  • a processed X-ray transmission image is generated by using the first X-ray transmission image of the inspection object generated based on the first detection signal output from the X-ray detection element array as an X-ray transmission image, and the processed X-ray transmission image is generated.
  • a second X-ray transmission image of the inspection object generated based on the second detection signal output from the indirect conversion type X-ray detection element array may be combined.
  • the X-ray detection unit is arranged in parallel along a direction intersecting both the conveyance direction of the inspection object by the conveyance unit and the X-ray irradiation direction by the X-ray irradiation unit.
  • an indirect conversion type X-ray detection element array that converts X-rays in a second energy band larger than the first energy band into light and converts the light into electric charges
  • the image processing unit includes a direct conversion type Generated based on the first X-ray transmission image of the inspection object generated based on the first detection signal output from the X-ray detection element array and the second detection signal output from the indirect conversion X-ray detection element array
  • the processed X-ray transmission image may be generated by combining the second X-ray transmission image of the inspection object to generate a combined X-ray transmission image and using the combined X-ray transmission image as the X-ray transmission image.
  • an indirect conversion type X-ray detection element array that converts X-rays in the second energy band larger than the first energy band into light and converts the light into electric charge is used together with the direct conversion type X-ray detection element array.
  • the foreign matter can be detected with higher accuracy.
  • the X-ray in the second energy band may be a hard X-ray.
  • Materials that are hard to absorb hard X-rays and easy to absorb soft X-rays by using X-ray transmission images of the object to be inspected by hard X-rays for example, nonmetals such as glass and rubber, light metals such as aluminum, etc. It is possible to detect the foreign matter consisting of more accurately.
  • an X-ray inspection apparatus capable of accurately detecting foreign matter using a plurality of direct conversion X-ray detection element arrays even when a thick inspection object is an inspection target. It becomes possible.
  • FIG. 1 is a configuration diagram of an X-ray inspection apparatus according to an embodiment.
  • A) of FIG. 2 is a figure which shows the relationship between a direct conversion type
  • B) of FIG. 2 is a figure which shows the relationship between an indirect conversion type
  • FIG. 3 is a block diagram of the X-ray inspection apparatus of FIG.
  • FIG. 4A shows a soft X-ray transmission image.
  • FIG. 4B is a diagram showing a hard X-ray transmission image.
  • FIG. 5 is a diagram illustrating a processing procedure for generating a processed soft X-ray transmission image.
  • FIG. 1 is a configuration diagram of an X-ray inspection apparatus according to an embodiment.
  • A) of FIG. 2 is a figure which shows the relationship between a direct conversion type
  • B) of FIG. 2 is a figure which shows the
  • FIG. 6 is a diagram illustrating an enlarged post-processing soft X-ray transmission image.
  • FIG. 7 is a diagram showing a processed post-process soft X-ray transmission image.
  • FIG. 8A is a diagram illustrating an image in which the post-processing soft X-ray transmission image and the hard X-ray transmission image are superimposed.
  • FIG. 8B is a diagram illustrating an image in which the post-processing soft X-ray transmission image and the hard X-ray transmission image are further aligned.
  • FIG. 9 is a diagram illustrating luminance histograms of the processed soft X-ray transmission image and the hard X-ray transmission image.
  • FIG. 10 is a diagram illustrating luminance histogram integration curves of the processed soft X-ray transmission image and hard X-ray transmission image.
  • FIG. 11 is a diagram showing luminance histogram integration curves of the processed soft X-ray transmission image and hard X-ray transmission image.
  • FIG. 12 shows a luminance conversion table.
  • FIG. 13 is a diagram illustrating a luminance conversion table, a post-complementation luminance conversion table, and a post-complementation smooth luminance conversion table.
  • (A) of FIG. 14 is a figure which shows a soft X-ray transmission image after a process.
  • FIG. 14B shows a soft X-ray transmission image after luminance conversion.
  • FIG. 14 shows a soft X-ray transmission image after luminance conversion.
  • FIG. 15 is a diagram showing luminance histograms of the processed soft X-ray transmission image, the hard X-ray transmission image, and the soft X-ray transmission image after luminance conversion.
  • A) of FIG. 16 is a figure which shows the soft X-ray transmission image after a process by which luminance conversion was carried out.
  • FIG. 16B shows a hard X-ray transmission image.
  • C) of FIG. 16 is a figure which shows a result image.
  • A) of FIG. 17 is a figure which shows a result image.
  • FIG. 17B shows a noise-removed image.
  • FIG. 17C shows a binarized image.
  • FIG. 17D shows a final image.
  • FIG. 18 is a diagram illustrating luminance histograms of the processed soft X-ray transmission image and the hard X-ray transmission image in the modified example.
  • the X-ray inspection apparatus 100 includes a transport unit 500, an X-ray irradiation unit 200, an X-ray detection unit 300, and an image processing unit 400.
  • the X-ray inspection apparatus 100 detects foreign matter contained in the inspection object A (for example, a plurality of sausages in a bag) using X-ray transparency.
  • the transport unit 500 transports the inspection object A.
  • Various transport mechanisms such as a belt conveyor, a top chain conveyor, and a rotary table can be applied to the transport unit 500.
  • the X-ray irradiation unit 200 irradiates the inspection object A conveyed by the conveyance unit 500 with X-rays.
  • the X-rays irradiated from the X-ray irradiation unit 200 include soft X-rays (first energy band X-rays) and hard X-rays (second energy band X-rays).
  • the X-ray detection unit 300 detects X-rays irradiated on the inspection object A conveyed by the conveyance unit 500.
  • the X-ray detection unit 300 includes a direct conversion X-ray detector 310, an indirect conversion X-ray detector 320, and a filter 350.
  • the direct conversion X-ray detector 310 is arranged to face the X-ray irradiation unit 200 with the transport unit 500 interposed therebetween, and detects soft X-rays.
  • the indirect conversion X-ray detector 320 is disposed so as to face the X-ray irradiation unit 200 with the conveyance unit 500 and the direct conversion X-ray detector 310 interposed therebetween, and detects hard X-rays.
  • the filter 350 is disposed between the direct conversion X-ray detector 310 and the indirect conversion X-ray detector 320 and absorbs X-rays in an energy band between soft X-rays and hard X-rays.
  • the direct conversion X-ray detector 310 has a plurality of direct conversion X-ray detection element arrays 311.
  • Each direct conversion X-ray detection element array 311 is a line sensor including a plurality of direct conversion X-ray detection elements 311a arranged in one dimension.
  • soft X-rays are converted into electric charges by each direct conversion type X-ray detection element 311a which is a photodiode.
  • the plurality of direct conversion X-ray detection element arrays 311 include a conveyance direction D1 of the inspection object A by the conveyance unit 500 and an X-ray irradiation direction D2 by the X-ray irradiation unit 200 (that is, the X-ray irradiation unit 200 and the X-ray detection).
  • a plurality of direct conversion type X-ray detection elements 311a are one-dimensionally along a direction (direction orthogonal to both directions in the X-ray inspection apparatus 100) that intersects both directions (directions in which the section 300 faces each other) (see FIG. 1). Are arranged side by side.
  • the indirect conversion type X-ray detector 320 has a plurality of indirect conversion type X-ray detection element arrays 321. As shown in FIG. Each indirect conversion type X-ray detection element array 321 has a plurality of indirect conversion type X-ray detection elements 321a arranged in one dimension and a plurality of indirect conversion type X-ray detection elements 321a on the X-ray irradiation unit 200 side. And a scintillator layer 321b disposed. In each indirect conversion type X-ray detection element array 321, hard X-rays are converted into light by the scintillator layer 321b, and light is converted into electric charge by each indirect conversion type X-ray detection element 321a which is a photodiode.
  • the plurality of indirect conversion type X-ray detection element arrays 321 have a plurality of directions (see FIG. 1) along a direction intersecting both the transport direction D1 and the irradiation direction D2 (the X-ray inspection apparatus 100 is a direction orthogonal to both directions).
  • the indirect conversion type X-ray detection elements 321a are arranged side by side so as to be arranged one-dimensionally.
  • the sensitivity is relatively lowered in the direct conversion X-ray detection element 311 a located at both ends in manufacturing. Therefore, as shown in FIG. 2A, in the direct conversion X-ray detector 310, the sensitivity is relatively lowered particularly at the connecting portion between the adjacent direct conversion X-ray detection element arrays 311. Even in the indirect conversion type X-ray detection element array 321, the sensitivity is relatively lowered in the indirect conversion type X-ray detection elements 321a located at both ends in the manufacture. However, as shown in FIG.
  • the image processing unit 400 generates an X-ray transmission image of the inspection object A based on the detection signal output from the X-ray detection unit 300, and performs image processing on the X-ray transmission image. Apply.
  • the image processing unit 400 includes an image generation unit 401, an edge detection unit 402, a horizontal direction blur unit 403, a synthesis unit 404, an image enlargement / reduction unit 405, an image registration unit 406, a histogram creation unit 407, a histogram integration unit 408, and a luminance conversion table.
  • a creation unit 409, a data complementation unit 410, a smoothing unit 411, an image conversion unit 412, a virtual data adjustment unit 413, a division unit 414, a filter unit 415, and a binarization unit 416 are provided.
  • the image generation unit 401 generates a soft X-ray transmission image (first X-ray transmission image) of the inspection object A based on the soft X-ray detection signal (first detection signal) output from each direct conversion X-ray detection element array 311. ) P100 is generated, and a hard X-ray transmission image (second X-ray transmission) of the inspected object A based on the hard X-ray detection signal (second detection signal) output from each indirect conversion type X-ray detection element array 321 Image) P200 is generated. As shown in FIG. 4A, the soft X-ray transmission image P100 has a relatively high contrast and is generally dark. Also, as shown in FIG. 4B, the hard X-ray transmission image P200 has a relatively low contrast and is bright overall.
  • the contrast between the foreign matter S and the inspection object A is small. This is due to the difference in the X-ray absorption rate between the foreign matter S and the inspection object A.
  • the sensitivity is lowered particularly at the connection portion between the adjacent direct conversion X-ray detection element arrays 311. Therefore, as shown in FIG. 4A, the luminance of the image of the inspection object A in the soft X-ray transmission image P100 in the region corresponding to the connection portion along the direction corresponding to the conveyance direction D1.
  • a line with reduced brightness that is, a brightness reduction line L appears.
  • the image generation unit 401 equalizes the background luminance in the X-ray transmission image acquired in a state where the inspection object A is not conveyed in order to cancel the influence of the luminance reduction line L in the soft X-ray transmission image P100.
  • a linear correction process is performed.
  • the edge detection unit 402 the horizontal direction blurring unit 403, and the combining unit 404 described below cancel the influence of the luminance reduction line L in the soft X-ray transmission image P100.
  • the edge detection unit 402 performs edge detection processing on the soft X-ray transmission image P100 to generate an edge detection image P101. More specifically, the edge detection unit 402 performs linear correction processing on the soft X-ray transmission image P100 to equalize the luminance of the image of the inspection object A and the luminance of the background, and the soft X-ray transmission image P100. Is subjected to edge detection processing, and further, binarization processing and inversion processing are performed on the soft X-ray transmission image P100 to generate an edge detection image P101.
  • a Laplacian filter, a Sobel filter, or the like is used for the edge detection process.
  • the edge detection image P101 the edge of the inspection object A is removed, and the edge of the foreign object S and the luminance reduction line L that are reversed to white remain. [Horizontal blur]
  • the horizontal blurring unit 403 performs a horizontal blurring process along the transport direction D1 on the edge detection image P101 to generate a horizontal blurring image P102.
  • the horizontal blurring process along the transport direction D1 is, for example, the direction in which the luminance reduction line L extends for one pixel constituting the edge detection image P101 (that is, the direction corresponding to the transport direction D1). This is a process of setting a pixel region in the longitudinal direction so as to include the one pixel, and setting an average value of luminance values in the pixel region as a luminance value of the one pixel. This is performed on a pixel by pixel basis.
  • the horizontal blurring process is a step removal process.
  • a horizontal blur filter for example, a horizontal blur filter, a horizontal Gaussian filter, or the like is used.
  • a horizontal blur filter for example, a horizontal blur filter, a horizontal Gaussian filter, or the like is used.
  • the edge of the foreign matter S is removed, and a luminance reduction line L that is inverted to white remains.
  • the synthesis unit 404 synthesizes the soft X-ray transmission image P100 and the horizontal blurred image P102 to generate a processed soft X-ray transmission image (processed X-ray transmission image) P103. More specifically, the synthesis unit 404 adds the luminance values of all the pixels constituting the soft X-ray transmission image P100 and the luminance values of all the pixels constituting the horizontal blurred image P102 between corresponding pixels. In addition, a post-processing soft X-ray transmission image P103 is generated. Thereby, the post-processing soft X-ray transmission image P103 from which the luminance reduction line L is removed is obtained. [Image scaling part]
  • the image enlargement / reduction unit 405 matches the sizes of the inspection object A in the processed soft X-ray transmission image P103 and the inspection object A in the hard X-ray transmission image P200.
  • X-rays emitted from the X-ray irradiation unit 200 are radiated in a fan shape, and the distance from the X-ray irradiation unit 200 to the direct conversion X-ray detector 310 and the indirect conversion X-ray detection from the X-ray irradiation unit 200 are detected. Since the distance to the instrument 320 is different, the inspected object A in the processed soft X-ray transmission image P103 and the inspected object A in the hard X-ray transmission image P200 are different.
  • the inspection object A in the hard X-ray transmission image P200 is slightly larger than the inspection object A in the post-processing soft X-ray transmission image P103. Therefore, the image enlargement / reduction unit 405 enlarges the processed soft X-ray transmission image P103 by the conversion ratio R in the line sensor arrangement direction, as shown in FIG.
  • This conversion ratio R is calculated as follows: R1 is the distance from the X-ray irradiation unit 200 to the direct conversion X-ray detector 310, and L2 is the distance from the X-ray irradiation unit 200 to the indirect conversion X-ray detector 320. It is obtained by L2 / L1.
  • R1 is the distance from the X-ray irradiation unit 200 to the direct conversion X-ray detector 310
  • L2 is the distance from the X-ray irradiation unit 200 to the indirect conversion X-ray detector 320. It is obtained by L2 / L1.
  • the image alignment unit 406 aligns the position of the inspection object A in the processed soft X-ray transmission image P103 and the inspection object A in the hard X-ray transmission image P200. Specifically, as shown in FIG. 7, the processed soft X-ray transmission image P103 is moved up, down, left and right, and the difference between the processed soft X-ray transmission image P103 and the hard X-ray transmission image P200 is minimized. It is trying to become.
  • the image alignment unit 406 of the present embodiment superimposes both images, calculates the sum of absolute values of the difference in luminance values of both images at each pixel, and automatically aligns the sum so that the sum is minimized. I do. As shown in FIG.
  • a histogram creation unit 407 a histogram integration unit 408, a luminance conversion table creation unit 409, a data complementing unit 410, a smoothing unit 411, an image conversion unit 412, a virtual data adjustment unit 413, a division unit 414, and a filter unit described below.
  • the histogram creation unit 407 creates a soft X-ray luminance histogram H100 indicating the luminance distribution of the processed soft X-ray transmission image P103 and also generates a hard X-ray luminance histogram H200 indicating the luminance distribution of the hard X-ray transmission image P200. .
  • the post-processing soft X-ray transmission image P103 is darker as a whole as compared with the hard X-ray transmission image P200. Therefore, as shown in FIG. Compared to the X-ray luminance histogram H200, it is closer to the left side (pixel light and dark side) in the figure. [Histogram integration section]
  • the histogram integration unit 408 integrates the soft X-ray luminance histogram H100 described above to calculate a soft X-ray luminance histogram integration curve C100, and integrates the hard X-ray luminance histogram H200 to integrate the hard X-ray luminance histogram H200.
  • An X-ray luminance histogram integration curve C200 is calculated.
  • the luminance conversion table creation unit 409 compares the soft X-ray luminance histogram integrated curve C100 and the hard X-ray luminance histogram integrated curve C200, and matches the soft X-ray luminance histogram integrated curve C100 with the hard X-ray luminance histogram integrated curve C200.
  • the processing soft X-ray transmission image P103 and the hard X-ray transmission image P200 do not have a pixel with a low luminance value (dark pixel), the conversion ratio I of the luminance value cannot be obtained. For this reason, as shown in FIG. 12, there is no conversion data in the region S with a low luminance value of the luminance conversion table T100 created by the luminance conversion table creating unit 409 described above. In this case, luminance conversion cannot be performed for a pixel having a low luminance value. Therefore, the data complementing unit 410 complements the virtual conversion data D in the region S having a low luminance value in the luminance conversion table T100 described above.
  • the luminance conversion table supplemented with the virtual conversion data D is referred to as “post-complement luminance conversion table T101”.
  • the smoothing unit 411 smoothes the complemented luminance conversion table T101.
  • the post-complementation smooth luminance conversion table smoothed by the smoothing unit 411 is referred to as “post-complementation smooth luminance conversion table T102”.
  • the luminance conversion table T100 before smoothing may not be a non-smooth curve. is there.
  • the inspection object A having a luminance distribution different from that of the processed soft X-ray transmission image P103 and the hard X-ray transmission image P200 described above is targeted, appropriate luminance conversion cannot be performed.
  • the smoothing unit 411 smoothes the post-complementation luminance conversion table T101 to obtain a generalized luminance conversion table that can correspond to the inspected object A having various luminance distributions, and draws a smooth curve.
  • a post-complementation smooth luminance conversion table T102 is acquired.
  • the smoothing unit 411 of this embodiment approximates the post-complementation luminance conversion table T101 with a quadratic function, and A post-complementation smooth luminance conversion table T102 is acquired.
  • the image conversion unit 412 performs luminance conversion of the processed soft X-ray transmission image P103 on the basis of the post-complementation smooth luminance conversion table T102, and after luminance conversion A soft X-ray transmission image P104 is acquired.
  • the virtual data adjustment unit 413 has a minimum sum of differences between the luminance values of the luminance distribution of the soft X-ray transmission image P104 after luminance conversion and the luminance values of the luminance distribution of the hard X-ray transmission image P200 ( The value of the virtual conversion data D used to obtain the post-complementation smooth luminance conversion table T102 is adjusted so that the least square method is obtained.
  • the optimized post-complementation smooth luminance conversion table T102 can be acquired, and the luminance of the post-luminance-converted soft X-ray transmission image P104 and the luminance of the hard X-ray transmission image P200 that have been subjected to luminance conversion by the table T102. Substantially coincides with each other, so that the inspection object A can be erased.
  • the optimized post-complementation smooth luminance conversion table T102 is stored in a storage unit (not shown) of the image processing unit 400. [Division part]
  • the division unit 414 obtains the luminance value of the post-luminance-converted soft X-ray transmission image P104 (see FIG. 16A) that has been subjected to luminance conversion using the optimized post-complementation smoothed luminance conversion table T102.
  • the luminance value of the hard X-ray transmission image P200 (see (b) of FIG. 16) is divided by each pixel to erase the inspection object A.
  • the inspection object A may be erased by calculating the difference between the luminance value of each pixel of the soft X-ray transmission image P104 after luminance conversion and the luminance value of each pixel of the hard X-ray transmission image P200.
  • the division unit 414 of the present embodiment performs the cancellation of the inspection object A by performing the division.
  • the image processing unit 400 can only hold an integer, and thus almost all the calculation results are 1.
  • the calculation result is a value such as 1.01, 1.11, 1.21. Therefore, the dividing unit 414 outputs the result image P300 (see FIG. 16C) in which the inspection object A is erased by multiplying the result obtained by dividing the luminance values of both images by 100 times.
  • the result image P300 is subjected to a process of offsetting the luminance value by 100 after the process by the filter unit 415 described later. As a result, it is possible to obtain a result image P300 in which the foreign matter S having a brightness value different from that of the region other than the foreign matter S appears.
  • the filter unit 415 is provided to remove random noise included in the result image P300.
  • the X-ray transmission image includes random noise
  • the result image P300 (see FIG. 17A) obtained by deleting the inspection object A also includes the random noise.
  • the filter unit 415 of the present embodiment uses a Gaussian filter.
  • the luminance value is offset by 100 as described above, thereby extracting a region where the foreign matter S is present. Since the number of digits of the integer value can be reduced, high-speed processing can be performed with a simple arithmetic processing device.
  • the noise-removed image P301 (see FIG. 17B) from which noise has been removed by the filter unit 415 is entirely dark (substantially black), but in reality, the region of the foreign matter S is A data value different from that of the region other than the foreign matter S (substantially black) is held. [Binarization part]
  • the noise-removed image P301 from which noise has been removed by the filter unit 415 is binarized by the binarizing unit 416 using a certain value as a threshold value. Thereby, the binarized image P302 (see FIG. 17C) from which only the foreign matter S is extracted can be acquired. Thereafter, the image processing unit 400 superimposes the binarized image P302 and the hard X-ray transmission image P200 to create a final image P400 (see FIG. 17D).
  • the binarized image P302 and the hard X-ray transmission image P200 are superimposed, but the binarization image P302 and the soft X-ray transmission image P100 may naturally be superimposed.
  • the image generation unit 401 generates a soft X-ray transmission image P100 of the inspection object A based on the soft X-ray detection signal output from each direct conversion X-ray detection element array 311 and each indirect conversion type.
  • a hard X-ray transmission image P200 of the inspection object A is generated based on the hard X-ray detection signal output from the X-ray detection element array 321.
  • the edge detection unit 402 performs edge detection processing on the soft X-ray transmission image P100 to generate an edge detection image P101.
  • the horizontal blur unit 403 performs a horizontal blur process on the edge detection image P101 to generate a horizontal blur image P102.
  • the synthesizing unit 404 synthesizes the soft X-ray transmission image and the horizontal blurred image P102 to generate a processed soft X-ray transmission image P103.
  • the image enlargement / reduction unit 405 matches the sizes of the inspection object A in the processed soft X-ray transmission image P103 and the inspection object A in the hard X-ray transmission image P200.
  • the image alignment unit 406 aligns the positions of the inspection object A in the processed soft X-ray transmission image P103 and the inspection object A in the hard X-ray transmission image P200. Note that enlargement and movement of these images can be realized by affine transformation.
  • the image conversion unit 412 performs luminance conversion of the post-processing soft X-ray transmission image P103 based on the post-complementation smooth luminance conversion table T102 stored in the storage unit, and the luminance conversion post-luminance conversion soft X-ray transmission image P104. Is generated.
  • the division unit 414 divides the luminance value of the soft X-ray transmission image P104 after luminance conversion and the luminance value of the hard X-ray transmission image P200 for each pixel, and the inspection object A is erased.
  • a result image P300 is generated.
  • the filter unit 415 removes random noise included in the result image P300 and generates a noise-removed image P301.
  • the binarization unit 416 binarizes the noise-removed image P301 to generate a binarized image P302.
  • the image processing unit 400 generates a final image P400 by superimposing the binarized image P302 and the hard X-ray transmission image P200, and detects the foreign matter S included in the inspection object A.
  • a plurality of direct conversion X-ray detection element arrays 311 that convert soft X-rays into electric charges are used, and the image processing unit 400 performs edge detection processing on the soft X-ray transmission image P100 and performs edge detection.
  • a detection image P101 is generated, the edge detection image P101 is subjected to a horizontal blurring process to generate a horizontal blurring image P102, and the soft X-ray transmission image P100 and the horizontal blurring image P102 are synthesized and processed soft X-rays.
  • a transparent image P103 is generated.
  • the luminance reduction line L that appears due to the decrease in sensitivity at the connection portion between the adjacent direct conversion X-ray detection element arrays 311 can be removed in the post-processing soft X-ray transmission image P103. Therefore, according to the X-ray inspection apparatus 100, the foreign matter S can be accurately detected using the plurality of direct conversion type X-ray detection element arrays 311 even when the thick inspection object A is an inspection target. it can.
  • the X-ray inspection apparatus 100 by acquiring the post-processing soft X-ray transmission image P103, a material that is difficult to absorb hard X-rays and easily absorbs soft X-rays (for example, glass, rubber, etc.). It is possible to detect the foreign matter S made of metal, light metal such as aluminum) with high accuracy.
  • the image processing unit 400 uses the soft X-ray transmission image P100 of the inspection object A generated based on the soft X-ray detection signal output from the direct conversion X-ray detection element array 311. Then, the processed soft X-ray transmission image P103 is generated. Then, the image processing unit 400 transmits the processed soft X-ray transmission image P103 and the hard X-ray transmission of the object A generated based on the hard X-ray detection signal output from the indirect conversion X-ray detection element array 321. The final image P400 is generated by combining the image P200, and the foreign matter S included in the inspection object A is detected. As described above, by using the indirect conversion X-ray detection element array 321 together with the direct conversion X-ray detection element array 311, the foreign matter S can be detected with higher accuracy.
  • the X-ray inspection apparatus 100 by using the hard X-ray transmission image P200 together with the processed soft X-ray transmission image P103, a material that hardly absorbs hard X-rays and easily absorbs soft X-rays (for example, It is possible to detect the foreign matter S made of a non-metal such as glass or rubber, or a light metal such as aluminum. [Modification]
  • the image processing unit 400 includes the soft X-ray transmission image P100 of the inspection object A generated based on the soft X-ray detection signal output from the direct conversion X-ray detection element array 311 and the indirect conversion X-ray detection.
  • the hard X-ray transmission image P200 of the inspection object A generated based on the hard X-ray detection signal output from the element array 321 is combined to generate a composite X-ray transmission image, and the combined X-ray transmission image is generated.
  • An edge detection process and a horizontal blurring process are performed to generate a horizontal blurring image, and the synthesized X-ray transmission image and the horizontal blurring image are combined to generate a processed X-ray transmission image as a final image P400.
  • the foreign matter S contained in the object A may be detected. Also in this case, the foreign substance S can be detected with higher accuracy by using the indirect conversion type X-ray detection element array 321 together with the direct conversion type X-ray detection element array 311.
  • the foreign matter S included in the inspection object A may be detected using one of the soft X-ray transmission image P100 and the hard X-ray transmission image P200, or the weight The foreign matter S included in the inspection object A may be detected using both the soft X-ray transmission image P100 and the hard X-ray transmission image P200 while making adjustments.
  • the X-ray inspection apparatus 100 may not include the indirect conversion X-ray detector 320 and may detect the foreign matter S included in the inspection object A using only the soft X-ray transmission image P100.
  • the direct conversion X-ray detection element array 311 detects X-rays in the first energy band
  • the indirect conversion X-ray detection element array 321 has a second energy band larger than the first energy band.
  • the direct conversion type X-ray detection element array 311 is not limited to detecting soft X-rays
  • the indirect conversion type X-ray detection element array 321 detects hard X-rays. It is not limited to things.
  • the image processing unit 400 may include the following image brightness adjustment unit. That is, as shown in FIG. 18, the soft X-ray luminance histogram H100a indicating the luminance distribution of the processed soft X-ray transmission image P103 is compared with the hard X-ray luminance histogram H200 indicating the luminance distribution of the hard X-ray transmission image P200. May become narrower.
  • the image luminance adjustment unit expands the luminance distribution of the post-processing soft X-ray transmission image P103 and performs soft X-ray luminance histogram H100a in order to accurately perform the subsequent adjustment (see FIG. 15). Is converted into a soft X-ray luminance histogram H100.
  • the histogram expansion process and the histogram flattening process disclosed in the Internet ⁇ http://codezine.jp/article/detail/214> [October 5, 2015 search] can be used.
  • SYMBOLS 100 ... X-ray inspection apparatus, 200 ... X-ray irradiation part, 300 ... X-ray detection part, 311 ... Direct conversion type

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

X線検査装置は、搬送部と、X線照射部と、X線検出部と、画像処理部と、を備える。X線検出部は、搬送部による被検査物の搬送方向及びX線照射部によるX線の照射方向の両方向に交差する方向に沿って並設された複数の直接変換型X線検出素子アレイを有する。画像処理部は、X線透過画像にエッジ検出処理を施してエッジ検出画像を生成するエッジ検出部と、エッジ検出画像に水平方向ぼかし処理を施して水平方向ぼかし画像を生成する水平方向ぼかし部と、X線透過画像と水平方向ぼかし画像とを合成して処理後X線透過画像を生成する合成部と、を有する。

Description

X線検査装置
 本開示は、X線検査装置に関する。
 X線の透過性を利用して被検査物に含まれる異物を検出するX線検査装置として、X線を電荷に変換する直接変換型X線検出素子アレイを備えるものが知られている(例えば、特許文献1参照)。直接変換型X線検出素子アレイは、例えば、軟X線に対して高い感度を有するため、硬X線を吸収し難く且つ軟X線を吸収し易い材料(例えば、ガラス、ゴム等の非金属、アルミニウム等の軽金属等)からなる異物を検出する場合に有効である。
特許第5626835号公報
 上述したようなX線検査装置では、複数の直接変換型X線検出素子アレイが、搬送部による被検査物の搬送方向及びX線照射部によるX線の照射方向の両方向に交差する方向に沿って並設される場合がある。その場合、隣り合う直接変換型X線検出素子アレイ同士の接続部において感度が低下するおそれがある。隣り合う直接変換型X線検出素子アレイ同士の接続部において感度が低下していると、X線透過画像中の被検査物の像のうち当該接続部に対応した領域に、搬送方向に相当する方向に沿って輝度が低下したラインが現れる(以下、当該ラインを「輝度低下ライン」という)。
 X線透過画像において輝度低下ラインの影響をキャンセルするための手段として、被検査物が搬送されていない状態で取得されたX線透過画像において背景の輝度を均一化する線形補正処理(キャリブレーション処理)がある。しかし、被検査物のX線吸収特性は厳密には線形でないため、食肉のような厚い被検査物を検査対象とする場合、線形補正処理を実施しただけでは、X線透過画像において輝度低下ラインの影響をキャンセルすることは困難である。
 そこで、本開示は、厚い被検査物を検査対象とする場合であっても、複数の直接変換型X線検出素子アレイを用いて異物を精度良く検出することができるX線検査装置を提供することを目的とする。
 本開示の一形態に係るX線検査装置は、被検査物を搬送する搬送部と、搬送部によって搬送される被検査物にX線を照射するX線照射部と、搬送部によって搬送される被検査物に照射されたX線を検出するX線検出部と、X線検出部から出力された検出信号に基づいて被検査物のX線透過画像を生成し、X線透過画像に画像処理を施す画像処理部と、を備え、X線検出部は、搬送部による被検査物の搬送方向及びX線照射部によるX線の照射方向の両方向に交差する方向に沿って並設され、第1エネルギー帯のX線を電荷に変換する複数の直接変換型X線検出素子アレイを有し、画像処理部は、X線透過画像にエッジ検出処理を施してエッジ検出画像を生成するエッジ検出部と、エッジ検出画像に、搬送方向に沿っての水平方向ぼかし処理を施して水平方向ぼかし画像を生成する水平方向ぼかし部と、X線透過画像と水平方向ぼかし画像とを合成して処理後X線透過画像を生成する合成部と、を有する。
 このX線検査装置では、第1エネルギー帯のX線を電荷に変換する複数の直接変換型X線検出素子アレイが用いられ、画像処理部が、X線透過画像にエッジ検出処理を施してエッジ検出画像を生成し、エッジ検出画像に水平方向ぼかし処理を施して水平方向ぼかし画像を生成し、X線透過画像と水平方向ぼかし画像とを合成して処理後X線透過画像を生成する。これにより、隣り合う直接変換型X線検出素子アレイ同士の接続部における感度の低下に起因して出現する輝度低下ラインを、処理後X線透過画像において除去することができる。よって、このX線検査装置によれば、厚い被検査物を検査対象とする場合であっても、複数の直接変換型X線検出素子アレイを用いて異物を精度良く検出することができる。
 本開示の一形態に係るX線検査装置では、第1エネルギー帯のX線は、軟X線であってもよい。これにより、硬X線を吸収し難く且つ軟X線を吸収し易い材料(例えば、ガラス、ゴム等の非金属、アルミニウム等の軽金属等)からなる異物を精度良く検出することができる。
 本開示の一形態に係るX線検査装置では、X線検出部は、搬送部による被検査物の搬送方向及びX線照射部によるX線の照射方向の両方向に交差する方向に沿って並設され、第1エネルギー帯よりも大きい第2エネルギー帯のX線を光に変換して当該光を電荷に変換する間接変換型X線検出素子アレイを更に有し、画像処理部は、直接変換型X線検出素子アレイから出力された第1検出信号に基づいて生成した被検査物の第1X線透過画像をX線透過画像として、処理後X線透過画像を生成し、処理後X線透過画像と、間接変換型X線検出素子アレイから出力された第2検出信号に基づいて生成した被検査物の第2X線透過画像と、を合成してもよい。
 本開示の一形態に係るX線検査装置では、X線検出部は、搬送部による被検査物の搬送方向及びX線照射部によるX線の照射方向の両方向に交差する方向に沿って並設され、第1エネルギー帯よりも大きい第2エネルギー帯のX線を光に変換して当該光を電荷に変換する間接変換型X線検出素子アレイを更に有し、画像処理部は、直接変換型X線検出素子アレイから出力された第1検出信号に基づいて生成した被検査物の第1X線透過画像と、間接変換型X線検出素子アレイから出力された第2検出信号に基づいて生成した被検査物の第2X線透過画像と、を合成して、合成X線透過画像を生成し、合成X線透過画像をX線透過画像として、処理後X線透過画像を生成してもよい。
 このように、第1エネルギー帯よりも大きい第2エネルギー帯のX線を光に変換して当該光を電荷に変換する間接変換型X線検出素子アレイを直接変換型X線検出素子アレイと共に用いることで、異物をより精度良く検出することができる。
 本開示の一形態に係るX線検査装置では、第2エネルギー帯のX線は、硬X線であってもよい。硬X線による被検査物のX線透過画像を用いることで、硬X線を吸収し難く且つ軟X線を吸収し易い材料(例えば、ガラス、ゴム等の非金属、アルミニウム等の軽金属等)からなる異物をより精度良く検出することができる。
 本開示によれば、厚い被検査物を検査対象とする場合であっても、複数の直接変換型X線検出素子アレイを用いて異物を精度良く検出することができるX線検査装置を提供することが可能となる。
図1は、一実施形態のX線検査装置の構成図である。 図2の(a)は、直接変換型X線検出部と感度との関係を示す図である。図2の(b)は、間接変換型X線検出部と感度との関係を示す図である。 図3は、図1のX線検査装置のブロック図である。 図4の(a)は、軟X線透過画像を示す図である。図4の(b)は、硬X線透過画像を示す図である。 図5は、処理後軟X線透過画像を生成するための処理手順を示す図である。 図6は、拡大された処理後軟X線透過画像を示す図である。 図7は、位置合わせされた処理後軟X線透過画像を示す図である。 図8の(a)は、処理後軟X線透過画像と硬X線透過画像とが重ね合わされた画像を示す図である。図8の(b)は、処理後軟X線透過画像と硬X線透過画像とが更に位置合わせされた画像を示す図である。 図9は、処理後軟X線透過画像及び硬X線透過画像の輝度ヒストグラムを示す図である。 図10は、処理後軟X線透過画像及び硬X線透過画像の輝度ヒストグラム積算曲線を示す図である。 図11は、処理後軟X線透過画像及び硬X線透過画像の輝度ヒストグラム積算曲線を示す図である。 図12は、輝度変換テーブルを示す図である。 図13は、輝度変換テーブル、補完後輝度変換テーブル及び補完後平滑輝度変換テーブルを示す図である。 図14の(a)は、処理後軟X線透過画像を示す図である。図14の(b)は、輝度変換後軟X線透過画像を示す図である。 図15は、処理後軟X線透過画像、硬X線透過画像及び輝度変換後軟X線透過画像の輝度ヒストグラムを示す図である。 図16の(a)は、輝度変換された処理後軟X線透過画像を示す図である。図16の(b)は、硬X線透過画像を示す図である。図16の(c)は、結果画像を示す図である。 図17の(a)は、結果画像を示す図である。図17の(b)は、ノイズ除去画像を示す図である。図17の(c)は、2値化画像を示す図である。図17の(d)は、最終画像を示す図である。 図18は、変形例における処理後軟X線透過画像及び硬X線透過画像の輝度ヒストグラムを示す図である。
 以下、本開示の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
 図1に示されるように、X線検査装置100は、搬送部500と、X線照射部200と、X線検出部300と、画像処理部400と、を備えている。X線検査装置100は、X線の透過性を利用して被検査物A(例えば、袋入りの複数のソーセージ等)に含まれる異物を検出する。
[搬送部]
 搬送部500は、被検査物Aを搬送する。搬送部500には、ベルトコンベア、トップチェーンコンベア、回転テーブル等、様々な搬送機構を適用することが可能である。
[X線照射部]
 X線照射部200は、搬送部500によって搬送される被検査物AにX線を照射する。X線照射部200から照射されるX線には、軟X線(第1エネルギー帯のX線)及び硬X線(第2エネルギー帯のX線)が含まれている。
[X線検出部]
 X線検出部300は、搬送部500によって搬送される被検査物Aに照射されたX線を検出する。X線検出部300は、直接変換型X線検出器310と、間接変換型X線検出器320と、フィルタ350と、を備えている。直接変換型X線検出器310は、搬送部500を挟んでX線照射部200と対向するように配置されており、軟X線を検出する。間接変換型X線検出器320は、搬送部500及び直接変換型X線検出器310を挟んでX線照射部200と対向するように配置されており、硬X線を検出する。フィルタ350は、直接変換型X線検出器310と間接変換型X線検出器320との間に配置されており、軟X線と硬X線との間のエネルギー帯のX線を吸収する。
 図2の(a)に示されるように、直接変換型X線検出器310は、複数の直接変換型X線検出素子アレイ311を有している。各直接変換型X線検出素子アレイ311は、1次元に配列された複数の直接変換型X線検出素子311aを含むラインセンサである。各直接変換型X線検出素子アレイ311では、フォトダイオードである各直接変換型X線検出素子311aによって軟X線が電荷に変換される。複数の直接変換型X線検出素子アレイ311は、搬送部500による被検査物Aの搬送方向D1及びX線照射部200によるX線の照射方向D2(すなわち、X線照射部200とX線検出部300とが互いに対向する方向)の両方向に交差する方向(X線検査装置100では、両方向に直交する方向)に沿って(図1参照)複数の直接変換型X線検出素子311aが1次元に配列されるように並設されている。
 図2の(b)に示されるように、間接変換型X線検出器320は、複数の間接変換型X線検出素子アレイ321を有している。各間接変換型X線検出素子アレイ321は、1次元に配列された複数の間接変換型X線検出素子321aと、複数の間接変換型X線検出素子321aに対してX線照射部200側に配置されたシンチレータ層321bと、を含むラインセンサである。各間接変換型X線検出素子アレイ321では、シンチレータ層321bによって硬X線が光に変換され、フォトダイオードである各間接変換型X線検出素子321aによって光が電荷に変換される。複数の間接変換型X線検出素子アレイ321は、搬送方向D1及び照射方向D2の両方向に交差する方向(X線検査装置100は、両方向に直交する方向)に沿って(図1参照)複数の間接変換型X線検出素子321aが1次元に配列されるように並設されている。
 なお、直接変換型X線検出素子アレイ311では、その製造上、両端に位置する直接変換型X線検出素子311aにおいて相対的に感度が低下する。そのため、図2の(a)に示されるように、直接変換型X線検出器310では、特に、隣り合う直接変換型X線検出素子アレイ311同士の接続部において相対的に感度が低下する。間接変換型X線検出素子アレイ321でも、その製造上、両端に位置する間接変換型X線検出素子321aにおいて相対的に感度が低下する。しかし、図2の(b)に示されるように、間接変換型X線検出器320では、隣り合うシンチレータ層321b間において光が行き来すること等により、隣り合う間接変換型X線検出素子アレイ321同士の接続部における相対的な感度の低下は、殆ど問題にならない。
[画像処理部]
 図3に示されるように、画像処理部400は、X線検出部300から出力された検出信号に基づいて被検査物AのX線透過画像を生成し、そのX線透過画像に画像処理を施す。画像処理部400は、画像生成部401、エッジ検出部402、水平方向ぼかし部403、合成部404、画像拡縮部405、画像位置合わせ部406、ヒストグラム作成部407、ヒストグラム積算部408、輝度変換テーブル作成部409、データ補完部410、平滑化部411、画像変換部412、仮想データ調整部413、除算部414、フィルタ部415及び2値化部416、を有している。
[画像生成部]
 画像生成部401は、各直接変換型X線検出素子アレイ311から出力された軟X線検出信号(第1検出信号)に基づいて被検査物Aの軟X線透過画像(第1X線透過画像)P100を生成すると共に、各間接変換型X線検出素子アレイ321から出力された硬X線検出信号(第2検出信号)に基づいて被検査物Aの硬X線透過画像(第2X線透過画像)P200を生成する。図4の(a)に示されるように、軟X線透過画像P100は、相対的にコントラストが高く、全体的に暗くなっている。また、図4の(b)に示されるように、硬X線透過画像P200は、相対的にコントラストが低く、全体的に明るくなっている。更に、図4の(a)及び(b)に示されるように、軟X線透過画像P100における異物Sと被検査物A(被検査物Aの重なりの無い領域)とのコントラストに比べて、硬X線透過画像P200における異物Sと被検査物A(被検査物Aの重なりの無い領域)とのコントラストが、小さくなっている。これは、異物Sと被検査物Aとに、X線吸収率の違いがあることに起因する。
 上述したように、直接変換型X線検出器310では、特に、隣り合う直接変換型X線検出素子アレイ311同士の接続部において感度が低下している。そのため、図4の(a)に示されるように、軟X線透過画像P100中の被検査物Aの像のうち当該接続部に対応した領域に、搬送方向D1に相当する方向に沿って輝度が低下したライン、すなわち、輝度低下ラインLが現れる。画像生成部401は、軟X線透過画像P100において輝度低下ラインLの影響をキャンセルするために、被検査物Aが搬送されていない状態で取得されたX線透過画像において背景の輝度を均一化する線形補正処理を実施している。しかし、被検査物AのX線吸収特性は厳密には線形でないため、食肉のような厚い被検査物Aを検査対象とすると、画像生成部401が線形補正処理を実施しただけでは、軟X線透過画像P100において輝度低下ラインLの影響をキャンセルすることができない。そこで、以下で説明するエッジ検出部402、水平方向ぼかし部403及び合成部404によって、軟X線透過画像P100において輝度低下ラインLの影響がキャンセルされる。
[エッジ検出部]
 図5に示されるように、エッジ検出部402は、軟X線透過画像P100にエッジ検出処理を施してエッジ検出画像P101を生成する。より具体的には、エッジ検出部402は、軟X線透過画像P100に、被検査物Aの像の輝度と背景の輝度とを均一化する線形補正処理を施し、当該軟X線透過画像P100にエッジ検出処理を施し、更に、当該軟X線透過画像P100に2値化処理及び反転処理を施して、エッジ検出画像P101を生成する。エッジ検出処理には、例えば、ラプラシアンフィルタ、ソーベルフィルタ等が用いられる。これにより、エッジ検出画像P101では、被検査物Aのエッジが除去され、白に反転させられた異物Sのエッジ及び輝度低下ラインLが残る。
[水平方向ぼかし部]
 図5に示されるように、水平方向ぼかし部403は、エッジ検出画像P101に、搬送方向D1に沿っての水平方向ぼかし処理を施して水平方向ぼかし画像P102を生成する。搬送方向D1に沿っての水平方向ぼかし処理とは、例えば、エッジ検出画像P101を構成する1つの画素に対し、輝度低下ラインLが延在する方向(すなわち、搬送方向D1に相当する方向)を長手方向とする画素領域を当該1つの画素を含むように設定し、当該画素領域における輝度値の平均値を当該1つの画素の輝度値とする処理であり、エッジ検出画像P101を構成する全ての画素に対して画素ごとに実施される。水平方向ぼかし処理は、段差除去処理である。水平方向ぼかし処理には、例えば、水平方向ブラーフィルタ、水平方向ガウシアンフィルタ等が用いられる。これにより、水平方向ぼかし画像P102では、異物Sのエッジが除去され、白に反転させられた輝度低下ラインLが残る。
[合成部]
 図5に示されるように、合成部404は、軟X線透過画像P100と水平方向ぼかし画像P102とを合成して処理後軟X線透過画像(処理後X線透過画像)P103を生成する。より具体的には、合成部404は、軟X線透過画像P100を構成する全ての画素の輝度値と水平方向ぼかし画像P102を構成する全ての画素の輝度値とを、対応する画素間において足し合わせて、処理後軟X線透過画像P103を生成する。これにより、輝度低下ラインLが除去された処理後軟X線透過画像P103が得られる。
[画像拡縮部]
 画像拡縮部405は、処理後軟X線透過画像P103における被検査物Aと硬X線透過画像P200における被検査物Aとの大きさを合わせる。X線照射部200から照射されるX線は、扇状に放射されると共に、X線照射部200から直接変換型X線検出器310までの距離とX線照射部200から間接変換型X線検出器320までの距離とが異なるので、処理後軟X線透過画像P103における被検査物Aと硬X線透過画像P200における被検査物Aとの大きさが異なる。すなわち、硬X線透過画像P200における被検査物Aが、処理後軟X線透過画像P103における被検査物Aより僅かに大きくなる。そこで、画像拡縮部405は、図6に示されるように、処理後軟X線透過画像P103を変換比Rだけラインセンサの配列方向に拡大する。この変換比Rは、X線照射部200から直接変換型X線検出器310までの距離をL1、X線照射部200から間接変換型X線検出器320までの距離をL2とすると、R=L2/L1で得られる。ここでは、処理後軟X線透過画像P103を拡大する例について説明したが、当然、硬X線透過画像P200をRの逆数(1/R)の比率で縮小してもよい。
[画像位置合わせ部]
 画像位置合わせ部406は、処理後軟X線透過画像P103における被検査物Aと硬X線透過画像P200における被検査物Aとの位置を合わせる。具体的には、図7に示されるように、処理後軟X線透過画像P103を上下左右に移動させて、処理後軟X線透過画像P103と硬X線透過画像P200との差異が最小になるようにしている。本実施形態の画像位置合わせ部406は、両画像を重ね合わせて、各画素において両画像の輝度値の差の絶対値の総和を算出し、その総和が最小となるように自動的に位置合わせを行う。図8の(a)に示されるように、画像位置合わせ部406による位置合わせ前では、被検査物Aのエッジ部分E1及び異物Sのエッジ部分E2が現れる。なお、画像上のエッジ部分が、被検査物Aのエッジ部分E1か、異物Sのエッジ部分E2かは、判別不可能である。そして、図8の(b)に示されるように、画像位置合わせ部406による位置合わせ後では、被検査物A及び異物Sの位置ズレが解消されて、ほぼ黒一色の状態の画像となる。
 なお、この図8の(b)の位置合わせ後の画像に示されるように、単に処理後軟X線透過画像P103の拡大及び位置合わせだけでは、異物Sの領域についてもほぼ黒一色になり、異物Sの判別が不可能である。そこで、以下で説明するヒストグラム作成部407、ヒストグラム積算部408、輝度変換テーブル作成部409、データ補完部410、平滑化部411、画像変換部412、仮想データ調整部413、除算部414、フィルタ部415及び2値化部416により、軟X線透過画像P100の画像処理を施すことによって、異物Sの判別を可能にする。
[ヒストグラム作成部]
 ヒストグラム作成部407は、処理後軟X線透過画像P103の輝度分布を示す軟X線輝度ヒストグラムH100を作成すると共に、硬X線透過画像P200の輝度分布を示す硬X線輝度ヒストグラムH200を作成する。上述したように、処理後軟X線透過画像P103は、硬X線透過画像P200に比べて全体的に暗くなっているので、図9に示されるように、軟X線輝度ヒストグラムH100は、硬X線輝度ヒストグラムH200に比べて、図中の左側(画素明暗が明るい側)に寄っている。
[ヒストグラム積算部]
 ヒストグラム積算部408は、図10に示されるように、上述した軟X線輝度ヒストグラムH100を積分して軟X線輝度ヒストグラム積算曲線C100を算出すると共に、硬X線輝度ヒストグラムH200を積分して硬X線輝度ヒストグラム積算曲線C200を算出する。
[輝度変換テーブル作成部]
 輝度変換テーブル作成部409は、軟X線輝度ヒストグラム積算曲線C100と硬X線輝度ヒストグラム積算曲線C200とを比較して、軟X線輝度ヒストグラム積算曲線C100を硬X線輝度ヒストグラム積算曲線C200に一致又は近似させる輝度変換テーブルT100を作成する。具体的には、図11に示されるように、軟X線輝度ヒストグラム積算曲線C100の積算値I1と、硬X線輝度ヒストグラム積算曲線の積算値I2とが一致する輝度の変換比I=I1/I2を各輝度で求めることにより、図12に示される輝度変換テーブルT100を得る。
[データ補完部]
 処理後軟X線透過画像P103及び硬X線透過画像P200に輝度値の低い画素(暗い画素)が無い場合には、当該輝度値の変換比Iを求めることができない。そのため、図12に示されるように、上述した輝度変換テーブル作成部409により作成された輝度変換テーブルT100の輝度値の低い領域Sには、変換データが存在しない。この場合、輝度値の低い画素については、輝度変換を行うことができない。そこで、データ補完部410は、上述した輝度変換テーブルT100に、輝度値の低い領域Sにおいて仮想の変換データDを補完する。以下、仮想の変換データDが補完された輝度変換テーブルを、「補完後輝度変換テーブルT101」とする。
[平滑化部]
 平滑化部411は、図13に示されるように、補完後輝度変換テーブルT101を平滑化する。以下、この平滑化部411により平滑化された補完後平滑輝度変換テーブルを、「補完後平滑輝度変換テーブルT102」とする。上述した画像生成部401により生成された処理後軟X線透過画像P103及び硬X線透過画像P200の輝度分布が狭い場合等には、平滑化前の輝度変換テーブルT100が滑らかでない曲線でない場合がある。この場合、上述した処理後軟X線透過画像P103及び硬X線透過画像P200とは異なる輝度分布を有する被検査物Aを対象にした場合、妥当な輝度変換が行えない。そのため、平滑化部411は、種々の輝度分布を有する被検査物Aに対応可能な一般化された輝度変換テーブルを取得すべく、補完後輝度変換テーブルT101を平滑化して、滑らかな曲線を描く補完後平滑輝度変換テーブルT102を取得する。実験の結果から、2次関数で近似すれば十分実用的なテーブルを取得し得たことから、本実施形態の平滑化部411は、補完後輝度変換テーブルT101を2次関数で近似して、補完後平滑輝度変換テーブルT102を取得する。
[画像変換部]
 画像変換部412は、図14の(a)及び(b)に示されるように、補完後平滑輝度変換テーブルT102に基づいて、処理後軟X線透過画像P103の輝度変換を行い、輝度変換後軟X線透過画像P104を取得する。
[仮想データ調整部]
 図15に示されるように、輝度変換後軟X線透過画像P104の輝度ヒストグラムH101と、硬X線透過画像P200の硬X線輝度ヒストグラムH200とを比較すると、厳密には一致していない。そこで、この仮想データ調整部413は、輝度変換後軟X線透過画像P104の輝度分布の各輝度値と、硬X線透過画像P200の輝度分布の各輝度値と、の差の総和が最小(最小2乗法)になるように、当該補完後平滑輝度変換テーブルT102を取得するのに用いた仮想の変換データDの値を調整する。これにより、最適化された補完後平滑輝度変換テーブルT102を取得することができ、当該テーブルT102により輝度変換された輝度変換後軟X線透過画像P104の輝度と、硬X線透過画像P200の輝度とが略一致するので、被検査物Aの消し込みが可能となる。なお、この最適化された補完後平滑輝度変換テーブルT102は、画像処理部400の記憶部(図示省略)に格納されている。
[除算部]
 図16に示されるように、除算部414は、最適化された補完後平滑輝度変換テーブルT102により輝度変換された輝度変換後軟X線透過画像P104(図16の(a)参照)の輝度値と、硬X線透過画像P200(図16の(b)参照)の輝度値とを各画素で除算することによって、被検査物Aの消し込みを行う。輝度変換後軟X線透過画像P104の各画素の輝度値と、硬X線透過画像P200の各画素の輝度値との差を求めることによって、被検査物Aの消し込みを行ってもよいが、実験の結果から、除算する方が被検査物Aの消し込み精度が良いことが分かったので、本実施形態の除算部414は、除算を行うことにより、被検査物Aの消し込みを行う。ただし、単純に除算すると、画像処理部400が整数しか保持できない構成となっているので、殆どの演算結果が1となってしまう。例えば、その演算結果は、1.01、1.11、1.21等の値となる。そのため、除算部414は、両画像の輝度値を除算した結果を100倍にして、被検査物Aの消し込みがなされた結果画像P300(図16の(c)参照)を出力する。なお、当該結果画像P300は、後述するフィルタ部415による処理の後に、輝度値を100だけオフセットする処理が行われる。これにより、異物S以外の領域とは異なる輝度値を保持する異物Sが現れた結果画像P300を取得することができる。
[フィルタ部]
 フィルタ部415は、当該結果画像P300に含まれるランダムノイズを除去するために設けられている。通常、X線透過画像には、ランダムノイズが含まれており、被検査物Aの消し込みを行った結果画像P300(図17の(a)参照)にも当該ランダムノイズが含まれている。被検査物Aに異物Sが含まれている場合、X線透過画像の異物Sがある領域は、ノイズより大きな値となっているので、本実施形態のフィルタ部415は、ガウシアンフィルタを用いて、細かいノイズを除去すると共に、上述したように輝度値を100だけオフセットすることによって、異物Sがある領域を抽出する。なお、整数値の桁数を減らすことができるので、簡易な演算処理装置で高速処理することができる。また、フィルタ部415によってノイズが除去されたノイズ除去画像P301(図17の(b)参照)は、全体が暗く(ほぼ黒一色に)なっているが、実際には、異物Sの領域は、異物S以外の領域(ほぼ黒一色の)とは異なるデータ値を保持している。
[2値化部]
 フィルタ部415によってノイズが除去されたノイズ除去画像P301は、2値化部416により、一定の値を閾値として、2値化される。これにより、異物Sのみが抽出された2値化画像P302(図17の(c)参照)を取得することができる。この後、画像処理部400は、当該2値化画像P302と硬X線透過画像P200とを重ね合わせて、最終画像P400(図17の(d)参照)を作成する。なお、ここでは、2値化画像P302と硬X線透過画像P200とを重ね合わせたが、当然、2値化画像P302と軟X線透過画像P100とを重ね合わせてもよい。
[画像処理部による画像処理方法]
 まず、画像生成部401が、各直接変換型X線検出素子アレイ311から出力された軟X線検出信号に基づいて被検査物Aの軟X線透過画像P100を生成すると共に、各間接変換型X線検出素子アレイ321から出力された硬X線検出信号に基づいて被検査物Aの硬X線透過画像P200を生成する。続いて、エッジ検出部402が、軟X線透過画像P100にエッジ検出処理を施してエッジ検出画像P101を生成する。続いて、水平方向ぼかし部403が、エッジ検出画像P101に水平方向ぼかし処理を施して水平方向ぼかし画像P102を生成する。続いて、合成部404が、軟X線透過画像と水平方向ぼかし画像P102とを合成して処理後軟X線透過画像P103を生成する。
 続いて、画像拡縮部405が、処理後軟X線透過画像P103における被検査物Aと硬X線透過画像P200における被検査物Aとの大きさを合わせる。続いて、画像位置合わせ部406が、処理後軟X線透過画像P103における被検査物Aと硬X線透過画像P200における被検査物Aとの位置を合わせる。なお、これらの画像の拡大及び画像の移動は、アフィン変換により実現することができる。続いて、画像変換部412が、記憶部に記憶されていた補完後平滑輝度変換テーブルT102に基づいて処理後軟X線透過画像P103の輝度変換を行って、輝度変換後軟X線透過画像P104を生成する。
 続いて、除算部414が、輝度変換後軟X線透過画像P104の輝度値と硬X線透過画像P200の輝度値とを画素ごとに除算して、被検査物Aの消し込みが行われた結果画像P300を生成する。続いて、フィルタ部415が、結果画像P300に含まれるランダムノイズを除去してノイズ除去画像P301を生成する。続いて、2値化部416が、ノイズ除去画像P301を2値化して2値化画像P302を生成する。続いて、画像処理部400が、2値化画像P302と硬X線透過画像P200とを重ね合わせて最終画像P400を生成し、被検査物Aに含まれる異物Sを検出する。
[作用及び効果]
 X線検査装置100では、軟X線を電荷に変換する複数の直接変換型X線検出素子アレイ311が用いられ、画像処理部400が、軟X線透過画像P100にエッジ検出処理を施してエッジ検出画像P101を生成し、エッジ検出画像P101に水平方向ぼかし処理を施して水平方向ぼかし画像P102を生成し、軟X線透過画像P100と水平方向ぼかし画像P102とを合成して処理後軟X線透過画像P103を生成する。これにより、隣り合う直接変換型X線検出素子アレイ311同士の接続部における感度の低下に起因して出現する輝度低下ラインLを、処理後軟X線透過画像P103において除去することができる。よって、X線検査装置100によれば、厚い被検査物Aを検査対象とする場合であっても、複数の直接変換型X線検出素子アレイ311を用いて異物Sを精度良く検出することができる。
 特に、X線検査装置100によれば、処理後軟X線透過画像P103を取得することにより、硬X線を吸収し難く且つ軟X線を吸収し易い材料(例えば、ガラス、ゴム等の非金属、アルミニウム等の軽金属等)からなる異物Sを精度良く検出することができる。
 また、X線検査装置100では、画像処理部400が、直接変換型X線検出素子アレイ311から出力された軟X線検出信号に基づいて生成した被検査物Aの軟X線透過画像P100から、処理後軟X線透過画像P103を生成する。そして、画像処理部400が、処理後軟X線透過画像P103と、間接変換型X線検出素子アレイ321から出力された硬X線検出信号に基づいて生成した被検査物Aの硬X線透過画像P200と、を合成して最終画像P400を生成し、被検査物Aに含まれる異物Sを検出する。このように、間接変換型X線検出素子アレイ321を直接変換型X線検出素子アレイ311と共に用いることで、異物Sをより精度良く検出することができる。
 特に、X線検査装置100によれば、処理後軟X線透過画像P103と共に硬X線透過画像P200を用いることで、硬X線を吸収し難く且つ軟X線を吸収し易い材料(例えば、ガラス、ゴム等の非金属、アルミニウム等の軽金属等)からなる異物Sをより精度良く検出することができる。
[変形例]
 以上、本開示の一実施形態について説明したが、本開示の一形態は、上記実施形態に限定されるものではない。
 例えば、画像処理部400は、直接変換型X線検出素子アレイ311から出力された軟X線検出信号に基づいて生成した被検査物Aの軟X線透過画像P100と、間接変換型X線検出素子アレイ321から出力された硬X線検出信号に基づいて生成した被検査物Aの硬X線透過画像P200と、を合成して、合成X線透過画像を生成し、合成X線透過画像にエッジ検出処理及び水平方向ぼかし処理を施して水平方向ぼかし画像を生成し、合成X線透過画像と水平方向ぼかし画像とを合成して処理後X線透過画像を最終画像P400として生成し、被検査物Aに含まれる異物Sを検出してもよい。この場合にも、間接変換型X線検出素子アレイ321を直接変換型X線検出素子アレイ311と共に用いることで、異物Sをより精度良く検出することができる。
 X線検査装置100では、軟X線透過画像P100又は硬X線透過画像P200のいずれかを1つを用いて、被検査物Aに含まれる異物Sを検出してもよいし、或いは、重み調整をしつつ軟X線透過画像P100及び硬X線透過画像P200の両方を用いて、被検査物Aに含まれる異物Sを検出してもよい。また、X線検査装置100は、間接変換型X線検出器320を備えず、軟X線透過画像P100のみを用いて、被検査物Aに含まれる異物Sを検出してもよい。
 また、直接変換型X線検出素子アレイ311が、第1エネルギー帯のX線を検出するものであり、間接変換型X線検出素子アレイ321が、第1エネルギー帯よりも大きい第2エネルギー帯のX線を検出するものであれば、直接変換型X線検出素子アレイ311は、軟X線を検出するものに限定されないし、間接変換型X線検出素子アレイ321は、硬X線を検出するものに限定されない。
 また、画像処理部400は、次のような画像輝度調整部を有していてもよい。すなわち、図18に示されるように、処理後軟X線透過画像P103の輝度分布を示す軟X線輝度ヒストグラムH100aは、硬X線透過画像P200の輝度分布を示す硬X線輝度ヒストグラムH200に比べて狭くなる場合がある。そのような場合に、画像輝度調整部は、後段の合わせ込み(図15参照)を精度良く実施するために、処理後軟X線透過画像P103の輝度分布を拡げて、軟X線輝度ヒストグラムH100aを軟X線輝度ヒストグラムH100に変換する。これにより、被検査物Aの厚さにむらがあるような場合であっても、自動で同等の輝度を得ることができる。一例として、インターネット<http://codezine.jp/article/detail/214>[平成27年10月5日検索]に開示されたヒストグラム拡張処理及びヒストグラム平坦化処理を用いることができる。
 100…X線検査装置、200…X線照射部、300…X線検出部、311…直接変換型X線検出素子アレイ、321…間接変換型X線検出素子アレイ、400…画像処理部、402…エッジ検出部、403…水平方向ぼかし部、404…合成部、500…搬送部、A…被検査物、D1…搬送方向、D2…照射方向、P100…軟X線透過画像(第1X線透過画像)、P101…エッジ検出画像、P102…水平方向ぼかし画像、P103…処理後軟X線透過画像(処理後X線透過画像)、P200…硬X線透過画像(第2X線透過画像)。

Claims (5)

  1.  被検査物を搬送する搬送部と、
     前記搬送部によって搬送される前記被検査物にX線を照射するX線照射部と、
     前記搬送部によって搬送される前記被検査物に照射された前記X線を検出するX線検出部と、
     前記X線検出部から出力された検出信号に基づいて前記被検査物のX線透過画像を生成し、前記X線透過画像に画像処理を施す画像処理部と、を備え、
     前記X線検出部は、
     前記搬送部による前記被検査物の搬送方向及び前記X線照射部による前記X線の照射方向の両方向に交差する方向に沿って並設され、第1エネルギー帯のX線を電荷に変換する複数の直接変換型X線検出素子アレイを有し、
     前記画像処理部は、
     前記X線透過画像にエッジ検出処理を施してエッジ検出画像を生成するエッジ検出部と、
     前記エッジ検出画像に、前記搬送方向に沿っての水平方向ぼかし処理を施して水平方向ぼかし画像を生成する水平方向ぼかし部と、
     前記X線透過画像と前記水平方向ぼかし画像とを合成して処理後X線透過画像を生成する合成部と、を有する、X線検査装置。
  2.  前記第1エネルギー帯のX線は、軟X線である、請求項1記載のX線検査装置。
  3.  前記X線検出部は、
     前記搬送部による前記被検査物の搬送方向及び前記X線照射部による前記X線の照射方向の両方向に交差する方向に沿って並設され、前記第1エネルギー帯よりも大きい第2エネルギー帯のX線を光に変換して当該光を電荷に変換する間接変換型X線検出素子アレイを更に有し、
     前記画像処理部は、
     前記直接変換型X線検出素子アレイから出力された第1検出信号に基づいて生成した前記被検査物の第1X線透過画像を前記X線透過画像として、前記処理後X線透過画像を生成し、
     前記処理後X線透過画像と、前記間接変換型X線検出素子アレイから出力された第2検出信号に基づいて生成した前記被検査物の第2X線透過画像と、を合成する、請求項1又は2記載のX線検査装置。
  4.  前記X線検出部は、
     前記搬送部による前記被検査物の搬送方向及び前記X線照射部による前記X線の照射方向の両方向に交差する方向に沿って並設され、前記第1エネルギー帯よりも大きい第2エネルギー帯のX線を光に変換して当該光を電荷に変換する間接変換型X線検出素子アレイを更に有し、
     前記画像処理部は、
     前記直接変換型X線検出素子アレイから出力された第1検出信号に基づいて生成した前記被検査物の第1X線透過画像と、前記間接変換型X線検出素子アレイから出力された第2検出信号に基づいて生成した前記被検査物の第2X線透過画像と、を合成して、合成X線透過画像を生成し、
     前記合成X線透過画像を前記X線透過画像として、前記処理後X線透過画像を生成する、請求項1又は2記載のX線検査装置。
  5.  前記第2エネルギー帯のX線は、硬X線である、請求項3又は4記載のX線検査装置。
PCT/JP2016/079926 2015-10-09 2016-10-07 X線検査装置 WO2017061593A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/766,714 US10788436B2 (en) 2015-10-09 2016-10-07 X-ray examination device
EP16853744.7A EP3361240B1 (en) 2015-10-09 2016-10-07 X-ray examination device
CN201680057725.1A CN108449979B (zh) 2015-10-09 2016-10-07 X射线检查装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-201349 2015-10-09
JP2015201349A JP6654397B2 (ja) 2015-10-09 2015-10-09 X線検査装置

Publications (1)

Publication Number Publication Date
WO2017061593A1 true WO2017061593A1 (ja) 2017-04-13

Family

ID=58487897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079926 WO2017061593A1 (ja) 2015-10-09 2016-10-07 X線検査装置

Country Status (5)

Country Link
US (1) US10788436B2 (ja)
EP (1) EP3361240B1 (ja)
JP (1) JP6654397B2 (ja)
CN (1) CN108449979B (ja)
WO (1) WO2017061593A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6537008B1 (ja) * 2018-02-14 2019-07-03 株式会社イシダ 検査装置
WO2019159440A1 (ja) * 2018-02-14 2019-08-22 株式会社イシダ 検査装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7001252B2 (ja) * 2017-07-05 2022-01-19 株式会社イシダ X線検査装置
JPWO2019235022A1 (ja) * 2018-06-08 2021-06-17 株式会社イシダ 検査装置
JP7328667B2 (ja) * 2019-03-19 2023-08-17 株式会社イシダ 検査装置
JP7250331B2 (ja) * 2019-07-05 2023-04-03 株式会社イシダ 画像生成装置、検査装置及び学習装置
JP7250330B2 (ja) * 2019-07-05 2023-04-03 株式会社イシダ 検査装置及び学習装置
JP7180566B2 (ja) * 2019-07-25 2022-11-30 株式会社島津製作所 X線イメージング装置およびx線イメージング方法
CN111180472A (zh) * 2019-12-23 2020-05-19 德润特医疗科技(武汉)有限公司 一种多层复式x射线探测器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1184011A (ja) * 1997-09-09 1999-03-26 Aloka Co Ltd 体表面モニタ
JP2009192519A (ja) * 2008-01-17 2009-08-27 Anritsu Sanki System Co Ltd X線異物検出装置
JP2011028588A (ja) * 2009-07-27 2011-02-10 Canon Inc 情報処理装置、ライン状ノイズ低減処理方法、及びプログラム
JP2012073056A (ja) * 2010-09-28 2012-04-12 Ishida Co Ltd X線検査装置
JP5626835B2 (ja) * 2010-01-12 2014-11-19 株式会社イシダ X線検査装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0525593D0 (en) * 2005-12-16 2006-01-25 Cxr Ltd X-ray tomography inspection systems
GB0309374D0 (en) 2003-04-25 2003-06-04 Cxr Ltd X-ray sources
US7664326B2 (en) * 2004-07-09 2010-02-16 Aloka Co., Ltd Method and apparatus of image processing to detect and enhance edges
KR100987335B1 (ko) * 2005-11-16 2010-10-12 가부시끼가이샤 이시다 X선 검사 장치 및 x선 검사 프로그램을 기록한 컴퓨터로 읽을 수 있는 매체
WO2007094439A1 (ja) * 2006-02-17 2007-08-23 Hitachi High-Technologies Corporation 試料寸法検査・測定方法、及び試料寸法検査・測定装置
JP4844271B2 (ja) * 2006-07-24 2011-12-28 コニカミノルタビジネステクノロジーズ株式会社 画像処理装置及び画像処理方法
WO2008105268A1 (ja) * 2007-02-28 2008-09-04 Nikon Corporation 画像処理方法
JP5071721B2 (ja) * 2008-02-27 2012-11-14 ソニー株式会社 画像処理装置および方法、並びにプログラム
US8126278B2 (en) * 2008-04-24 2012-02-28 Silicon Integrated Systems Corp. Image processing method using a crest line diagram as a basis
CN101639936A (zh) 2009-04-28 2010-02-03 北京捷科惠康科技有限公司 一种x射线图像增强方法及系统
JP5457118B2 (ja) * 2009-09-18 2014-04-02 浜松ホトニクス株式会社 放射線検出装置
JP5610761B2 (ja) * 2009-12-16 2014-10-22 キヤノン株式会社 X線画像処理装置、x線画像処理システム、x線画像処理方法、及びコンピュータプログラム
US8989474B2 (en) * 2010-03-18 2015-03-24 Konica Minolta Medical & Graphic, Inc. X-ray image capturing system
DE102010024626B4 (de) * 2010-06-22 2018-12-13 Siemens Healthcare Gmbh Zählender Detektor und Computertomographiesystem
US8629408B2 (en) * 2011-01-28 2014-01-14 Analogic Corporation Overlapping detector elements of a detector array for a radiation system
JP5672147B2 (ja) * 2011-05-24 2015-02-18 コニカミノルタ株式会社 胸部診断支援情報生成システム
JP5852415B2 (ja) * 2011-11-08 2016-02-03 浜松ホトニクス株式会社 非破壊検査装置及び当該装置での輝度データの補正方法
JP5912427B2 (ja) * 2011-11-08 2016-04-27 浜松ホトニクス株式会社 非破壊検査装置及び当該装置での位置ずれ検出方法
JP6176821B2 (ja) * 2012-02-01 2017-08-09 東芝メディカルシステムズ株式会社 医用画像診断装置
US9057788B2 (en) * 2012-02-03 2015-06-16 Analogic Corporatiom Photon counting-based virtual detector
JP5587926B2 (ja) * 2012-02-10 2014-09-10 富士フイルム株式会社 放射線撮影システム及びその制御方法
US9700277B2 (en) * 2012-10-02 2017-07-11 Shimadzu Corporation X-ray apparatus
JP5596820B2 (ja) * 2013-06-12 2014-09-24 浜松ホトニクス株式会社 放射線検出装置
US10048391B2 (en) * 2013-12-04 2018-08-14 Koninklijke Philips N.V. Imaging detector self-diagnosis circuitry
WO2015111728A1 (ja) 2014-01-23 2015-07-30 株式会社ジョブ X線検査装置及びx線検査方法
KR102165610B1 (ko) * 2014-04-23 2020-10-14 삼성전자주식회사 엑스선 영상 장치 및 엑스선 영상 장치의 영상 처리 방법
US9833210B2 (en) * 2015-07-27 2017-12-05 Toshiba Medical Systems Corporation Medical image diagnostic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1184011A (ja) * 1997-09-09 1999-03-26 Aloka Co Ltd 体表面モニタ
JP2009192519A (ja) * 2008-01-17 2009-08-27 Anritsu Sanki System Co Ltd X線異物検出装置
JP2011028588A (ja) * 2009-07-27 2011-02-10 Canon Inc 情報処理装置、ライン状ノイズ低減処理方法、及びプログラム
JP5626835B2 (ja) * 2010-01-12 2014-11-19 株式会社イシダ X線検査装置
JP2012073056A (ja) * 2010-09-28 2012-04-12 Ishida Co Ltd X線検査装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6537008B1 (ja) * 2018-02-14 2019-07-03 株式会社イシダ 検査装置
WO2019159440A1 (ja) * 2018-02-14 2019-08-22 株式会社イシダ 検査装置
KR20200097344A (ko) * 2018-02-14 2020-08-18 가부시끼가이샤 이시다 검사 장치
KR102387529B1 (ko) 2018-02-14 2022-04-15 가부시끼가이샤 이시다 검사 장치
US11977036B2 (en) 2018-02-14 2024-05-07 Ishida Co., Ltd. Inspection device

Also Published As

Publication number Publication date
CN108449979B (zh) 2021-07-09
US20180321167A1 (en) 2018-11-08
EP3361240A4 (en) 2019-06-26
JP2017072554A (ja) 2017-04-13
EP3361240B1 (en) 2020-07-15
US10788436B2 (en) 2020-09-29
JP6654397B2 (ja) 2020-02-26
CN108449979A (zh) 2018-08-24
EP3361240A1 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
WO2017061593A1 (ja) X線検査装置
JP5616182B2 (ja) X線検査装置
US8064676B2 (en) Virtual grid imaging method and system for eliminating scattered radiation effect
JP5297142B2 (ja) 異物検出方法および装置
CN107847198B (zh) 辐射图像处理方法及射线照相系统
CN108292429B (zh) 检查图像的去噪和/或缩放
CN106910172B (zh) 一种图像处理方法及装置
US10755389B2 (en) Image processing apparatus, image processing method, and medium
JP6355598B2 (ja) X線データ処理装置、その方法およびプログラム
US20230147681A1 (en) Methods and Systems for Performing On-The-Fly Automatic Calibration Adjustments of X-Ray Inspection Systems
JP2010281648A (ja) 放射線検査装置、放射線検査方法および放射線検査プログラム
WO2024026152A9 (en) Methods and systems for performing on-the-fly automatic calibration adjustments of x-ray inspection systems
JP2020176893A (ja) X線検査装置
JP5884351B2 (ja) X線検査装置、x線検査装置の制御方法、x線検査装置を制御するためのプログラム、および、当該プログラムを格納したコンピュータ読み取り可能な記録媒体
JP5557272B2 (ja) 放射線検査装置、放射線検査方法および放射線検査プログラム
JP2013244189A5 (ja)
JP3898144B2 (ja) 異物検出方法、異物検出プログラムを記録した記録媒体及び異物検出装置
JP6238303B2 (ja) X線投影像補正装置及びx線投影像補正方法
JP6179151B2 (ja) X線検査システム及びx線検査方法
Schumacher et al. Scatter and beam hardening reduction in industrial computed tomography using photon counting detectors
CN106910165B (zh) 修复原始ct投影数据的方法及装置、ct成像系统
WO2024157532A1 (ja) 画像処理方法、訓練方法、訓練済みモデル、放射線画像処理モジュール、放射線画像処理プログラム、及び放射線画像処理システム
JP2006064662A (ja) 異物検出方法、異物検出プログラム及び異物検出装置
EP3353739B1 (en) Denoising and/or zooming of inspection images
JP2024133814A (ja) X線検査装置及びx線検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853744

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15766714

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016853744

Country of ref document: EP