WO2017061481A1 - 材料供給装置および蒸着装置 - Google Patents

材料供給装置および蒸着装置 Download PDF

Info

Publication number
WO2017061481A1
WO2017061481A1 PCT/JP2016/079649 JP2016079649W WO2017061481A1 WO 2017061481 A1 WO2017061481 A1 WO 2017061481A1 JP 2016079649 W JP2016079649 W JP 2016079649W WO 2017061481 A1 WO2017061481 A1 WO 2017061481A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
vapor deposition
melting furnace
chamber
material supply
Prior art date
Application number
PCT/JP2016/079649
Other languages
English (en)
French (fr)
Inventor
元気 関根
瞬 三上
和彦 小泉
新悦 山田
伸二 柳沢
孝治 小清水
淳 樋口
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2017544534A priority Critical patent/JP6578367B2/ja
Priority to CN201680058441.4A priority patent/CN108138309B/zh
Priority to KR1020187009291A priority patent/KR102149172B1/ko
Publication of WO2017061481A1 publication Critical patent/WO2017061481A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/246Replenishment of source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks

Definitions

  • the present invention relates to a material supply apparatus for supplying an evaporation material to an evaporation source and a vapor deposition apparatus including the material supply apparatus.
  • a vacuum vapor deposition apparatus that deposits vapor of an evaporation material (also referred to as a vapor deposition material) on a substrate to form, for example, a metal film on the substrate.
  • evaporation material also referred to as a vapor deposition material
  • Various methods such as resistance heating type, induction heating type, and electron beam heating type are known as the evaporation source of the vacuum evaporation system, and the evaporation material contained in the crucible is melted by heating or electron beam irradiation. By evaporating, vapor of the evaporation material is generated.
  • Patent Document 1 discloses a technique for intermittently (every fixed time) supplying an evaporation material formed in a pellet shape to a crucible
  • Patent Document 2 discloses an evaporation material formed in a wire shape.
  • a technique for continuously supplying the water to the crucible is disclosed.
  • the method of supplying the pelletized evaporation material to the crucible since the supply is basically intermittent, the evaporation rate is likely to fluctuate, thus making it difficult to form a metal film with a uniform film thickness. is there.
  • the method of supplying the wire-like evaporation material to the crucible can suppress the fluctuation of the evaporation rate because continuous supply is possible, but it is expensive in the case of a material that is difficult to process into a wire shape. There is a problem of becoming.
  • an object of the present invention is to provide a material supply device that does not require shape processing of the evaporation material and can supply the evaporation material to the vapor deposition chamber without changing the evaporation rate, and the same.
  • Another object of the present invention is to provide an evaporation apparatus.
  • a material supply apparatus includes a material supply chamber, a melting furnace, at least one container, a supply unit, and a transfer unit.
  • the material supply chamber is installed outside the vapor deposition chamber and can be maintained in a reduced pressure atmosphere.
  • the melting furnace is installed in the material supply chamber and melts the evaporation material.
  • the said container accommodates the molten metal of the said evaporation material melt
  • the supply unit is attached to the melting furnace and supplies the molten metal from the melting furnace to the container.
  • the conveyance unit is configured to be able to convey the ingot of the evaporation material supplied from the supply unit and solidified in the container to the vapor deposition chamber together with the container.
  • the material supply apparatus can transport the evaporation material to the vapor deposition chamber without opening the vapor deposition chamber to the atmosphere.
  • the evaporation material transferred to the deposition chamber is an ingot that is supplied from the melting furnace to the container in a molten state and solidified in the container, and is transported to the deposition chamber together with the container, and is reheated in the deposition chamber in that state. Evaporated. Therefore, the shape processing of the evaporation material is not required, and even a relatively soft metal material can be stably supplied as the evaporation material.
  • the evaporation material since the evaporation material is transported in units of containers, the evaporation material can be supplied to the vapor deposition chamber without changing the evaporation rate. Then, from the dissolution of the evaporation material, the supply into the container and the conveyance to the vapor deposition chamber are performed in a consistent vacuum. For this reason, it is possible to prevent deterioration of the evaporation material due to oxidation or adhesion of moisture, and to stably supply a high quality evaporation material to the vapor deposition chamber.
  • the container may include a plurality of containers each capable of accommodating the evaporating material.
  • the material supply apparatus further includes a support base including an index table capable of sequentially moving the plurality of containers to a supply position of the evaporation material by the supply unit.
  • the supply unit may include a hot water discharge mechanism and a guide member.
  • the tapping mechanism has a shaft member that penetrates the bottom of the melting furnace in a liquid-tight manner and has at least one recess on the outer peripheral surface, and a drive source that reciprocates the shaft member along the axial direction thereof.
  • the hot water discharge mechanism is configured to be capable of discharging a predetermined amount of molten metal to the outside of the melting furnace by reciprocating along the axial direction of the shaft member.
  • the guide member is provided at the bottom of the melting furnace and guides the predetermined amount of molten metal discharged to the outside of the melting furnace to the container. Thereby, the dispersion
  • the hot-water supply mechanism may further include a storage part provided at the bottom of the melting furnace.
  • the storage portion is configured to be able to store the predetermined amount of molten metal, and the shaft member penetrates the storage portion in a liquid-tight manner.
  • the drive source includes a first position for supplying the molten metal from the melting furnace to the storage part via the concave part, and a first position for supplying the molten metal from the storage part to the guide member via the concave part.
  • the shaft member is configured to be movable between two positions.
  • the material supply apparatus may further include a transfer chamber that accommodates the transfer unit and can be maintained in a reduced pressure atmosphere. By allowing the material supply chamber and the transfer chamber to be shut off from the atmosphere, atmospheric contamination or contamination in the vapor deposition chamber can be prevented.
  • the vapor deposition apparatus which concerns on one form of this invention comprises a vapor deposition part, a material supply chamber, a melting furnace, a 1st support part, a supply unit, and a conveyance unit.
  • the said vapor deposition part has a vapor deposition chamber.
  • the material supply chamber is installed outside the vapor deposition chamber and can be maintained in a reduced pressure atmosphere.
  • the melting furnace is installed in the material supply chamber and melts the evaporation material.
  • the first support part includes at least one container capable of accommodating a molten metal of the evaporating material melted in the melting furnace.
  • the supply unit supplies the molten metal from the melting furnace to the container.
  • the said conveyance unit is comprised so that the ingot of the said evaporation material supplied from the said supply unit and solidified within the said container can be conveyed with the said container from the said 1st support part to the said vapor deposition chamber.
  • the vapor deposition section includes a support base that is installed in the vapor deposition chamber and supports the container, and an electron gun configured to irradiate the ingot accommodated in the container on the support base with an electron beam. Furthermore, you may have.
  • the container may include a plurality of containers each capable of storing the evaporation material.
  • the support table further includes an index table capable of sequentially moving the plurality of containers to the irradiation position of the electron beam from the electron gun.
  • the shape processing of the evaporation material is unnecessary, and the evaporation material can be supplied to the vapor deposition chamber without changing the evaporation rate.
  • FIGS. 4A and 4B are side cross-sectional views of main parts schematically showing the configurations of a melting furnace and a hot water mechanism in a steam material supply apparatus.
  • FIGS. It is a sectional side view which shows roughly the structure of the supply unit of the molten material of the evaporation material in the material supply mechanism which concerns on other embodiment of this invention.
  • FIG. 1 is a schematic sectional side view showing a configuration of a vapor deposition apparatus provided with a material supply apparatus according to an embodiment of the present invention.
  • an X axis, a Y axis, and a Z axis are triaxial directions orthogonal to each other, the X axis and the Y axis indicate a horizontal direction, and the Z axis indicates a height direction.
  • the vapor deposition device 100 includes a vapor deposition unit 10 and a material supply mechanism 20 (material supply device) that supplies an evaporation material to the vapor deposition unit 10.
  • the vapor deposition unit 10 includes a vapor deposition chamber 11, a substrate holding unit 12 that holds the substrate S, a support base 13 that supports the evaporation material M, and an electron gun 14 that irradiates the evaporation material M with an electron beam E.
  • the vapor deposition chamber 11 is connected to the first vacuum exhaust system 51 and is configured by a vacuum chamber that can be exhausted or maintained in a predetermined reduced pressure atmosphere.
  • the substrate holding unit 12 is installed above the inside of the vapor deposition chamber 11 and is configured to be supported with the film formation surface of the substrate S facing downward.
  • the substrate holding unit 12 is configured to be rotatable around the rotation axis A1 in the XY plane while holding the substrate S.
  • the substrate S is typically a rectangular or circular plate substrate such as a glass substrate or a semiconductor substrate, but is not limited thereto, and a flexible substrate such as a plastic film may be used.
  • the support table 13 is installed in the vicinity of the bottom of the vapor deposition chamber 11 and is configured to support the evaporation material M to be vapor deposited on the film formation surface of the substrate S together with the container H that accommodates the vaporized material M. .
  • the support base 13 includes a disk-shaped index table that can rotate around the rotation axis A2 in the XY plane while supporting a plurality of containers H.
  • the support base 13 has a built-in cooling mechanism through which a coolant such as cooling water can circulate, and the plurality of containers H are arranged on the same circumference on the same circumference on the upper surface of the support base 13.
  • the number of containers H that can be arranged on the support base 13 is not particularly limited, and may be one, but typically is a plurality.
  • the support base 13 sequentially supplies any one container H (evaporation material M) from the standby position P1 to the evaporation position P2.
  • the standby position P ⁇ b> 1 is one or more positions for temporarily waiting the container H that stores the used or unused evaporation material, and the evaporation material M is placed in the container H with the material supply mechanism 20.
  • the position to be handed over is included.
  • the evaporation position P2 is a position where the electron beam E from the electron gun 14 is applied to the evaporation material M.
  • the electron gun 14 is installed in the vicinity of the support base 13 and is configured to be able to irradiate the evaporation material M set at the evaporation position P2 with the electron beam E.
  • the electron gun 14 is configured by a magnetic field deflection type (transverse) electron gun, but is not limited thereto, and other types of electron guns such as a piercing electron gun may be employed.
  • the vapor deposition unit 10 includes a magnet that deflects the electron beam E toward the evaporation material M on the evaporation position P ⁇ b> 2, a substrate transfer chamber for putting the substrate S in and out of the vapor deposition chamber 11, and the vapor deposition chamber 11. It has a gas introduction line that introduces process gas into Moreover, the support stand 13 is not restricted to one, and two or more support stands 13 may be installed. In this case, a plurality of electron guns 14 may be installed corresponding to the number of support bases 13.
  • the material supply mechanism 20 includes a material supply unit 30 that supplies the evaporation material M, and a conveyance unit 40 that conveys the evaporation material M from the material supply unit 30 to the vapor deposition unit 10.
  • the material supply unit 30 includes a material supply chamber 31, a melting furnace 32 that melts the evaporation material, a support base 33 that supports the container H that can store the molten metal M ⁇ b> 1 of the evaporation material, and the container H from the melting furnace 32. And a supply unit 34 for supplying the molten metal M1.
  • the material supply chamber 31 is installed outside the vapor deposition chamber 11 and is composed of a vacuum chamber independent of the vapor deposition chamber 11. That is, the material supply chamber 31 is connected to the second evacuation system 52, and is configured to be evacuated or maintained in a predetermined reduced pressure atmosphere.
  • the melting furnace 32 is installed inside the material supply chamber 31, and has an internal space for storing a bulky evaporating material and a heater for heating and evaporating the evaporating material to a predetermined temperature, as will be described later.
  • the inside of the melting furnace 32 can be evacuated to a predetermined reduced pressure atmosphere together with the material supply chamber 31, whereby the melting furnace 32 functions as a vacuum melting furnace.
  • Each of the material supply chamber 31 and the melting furnace 32 has an openable / closable canopy (not shown), and a bulk evaporation material can be introduced into the internal space of the melting furnace 32 through these canopies. Configured.
  • the container H can accommodate the molten metal M1 of the evaporating material melted in the melting furnace 32.
  • the heat insulating material such as carbon or ceramics similar to the hearth or hearth liner used for the electron beam evaporation source is used. Consists of.
  • a flange portion Fh is integrally formed on the periphery of the upper end opening of the container H, and the container H is gripped by the transport unit 42 of the transport section 40 via the flange portion Fh.
  • capacitance of the container H is not specifically limited, It selects according to the specification of the evaporation material M and the vapor deposition part 10, and the container which has a capacity
  • the type of metal material used as the evaporation material is not particularly limited, and various metal materials capable of electron beam evaporation are used.
  • a bulk and relatively soft metal material such as tin (Sn), tantalum (Ta), aluminum (Al), lithium (Li), and indium (In) is used.
  • the supply unit 34 is attached to the melting furnace 32 and configured to supply the molten metal M1 from the melting furnace 32 to the container H.
  • the supply unit 34 includes a hot water discharge mechanism 35 and a guide member 36.
  • the hot water supply mechanism 35 is configured to be able to discharge a predetermined amount of the molten metal M2 from the molten material M1 of the evaporation material in the melting furnace 32 to the outside of the melting furnace 32.
  • the guide member 36 is provided at the bottom of the melting furnace 32 and is configured to be able to guide the predetermined amount of the molten metal M2 discharged to the outside of the melting furnace 32 to the container H.
  • FIGS. 2A and 2B are side cross-sectional views of main parts schematically showing the configurations of the melting furnace 32 and the hot water discharge mechanism 35.
  • the melting furnace 32 includes a furnace wall 322 containing a heater (heating wire) 321, a jacket part 324 containing a refrigerant circulation passage 323, and a lining material 325.
  • the jacket portion 324 is provided to prevent the heat of the furnace wall 322 from being transmitted to the outside of the melting furnace 321, and is provided on the outer surface of the furnace wall 322.
  • the lining material 325 is for reducing wettability (or affinity) between the inner surface of the furnace wall 322 and the molten metal M ⁇ b> 1 of the evaporation material, and is provided on the inner surface of the furnace wall 322.
  • the lining material 325 is made of a carbon-based material such as graphite, for example.
  • the hot water supply mechanism 35 includes a shaft portion 351 and a drive source 352.
  • the shaft portion 351 is disposed inside the guide member 36 and is made of a cylindrical refractory metal material that penetrates the bottom of the melting furnace 32 in a liquid-tight manner.
  • the inner peripheral surface of the bottom hole 326 of the melting furnace 32 through which the shaft portion 351 passes is covered with a lining material 325, and the shaft portion 351 slides in the axial direction (Z-axis direction) with respect to the surface of the lining material 325. It is inserted in a movable manner.
  • the outer peripheral surface of the shaft portion 351 is provided with an annular recess 35g centered on the shaft center.
  • Recess 35g has a volume that can accommodate a predetermined amount of molten metal M2. Accordingly, when the shaft portion 351 is lowered, the predetermined amount of the molten metal M2 can be discharged to the outside of the melting furnace 32 as schematically shown in FIG. 2B.
  • the predetermined amount is not particularly limited, and is typically an amount smaller than the capacity of the container H, and is about 10 cc in the present embodiment.
  • the melt easily reaches the entire recess 35g when the molten metal is accommodated from the melting furnace, and also when the melt is discharged from the recess 35g. Since it becomes easy to discharge the molten metal from the entire recess 35g, it becomes possible to reliably store and discharge a predetermined amount of the molten metal. Moreover, it is preferable that the cross-sectional shape of the recessed part 35g is a circular arc shape (round groove) so that the discharge property of the molten metal M2 from the recessed part 35g can be further improved.
  • the concave portion 35g provided on the outer peripheral portion of the shaft portion 351 is not necessarily provided in an annular shape on the outer peripheral surface with the shaft center as a center, and at least one concave portion is formed on the outer peripheral surface of the shaft portion 351. If the volume which can accommodate a predetermined amount of molten metal can be defined, the shape or form is not particularly limited.
  • the concave portion 35g may be constituted by a plurality of concave portions provided intermittently along the circumferential direction of the shaft portion 351, or may be constituted by a single partial annular groove that is discontinuous in the circumferential direction. Also good.
  • the drive source 352 is for reciprocating the shaft portion 351 along its axial direction, and is constituted by, for example, a cylinder mechanism, a ball screw mechanism, or the like. As shown in FIG. 2A, the drive source 352 is between a rising position where the concave portion 35g is located inside the melting furnace 32 and a lowering position where the concave portion 35g is located outside the melting furnace 32 as shown in FIG.
  • the shaft portion 351 can be moved up and down.
  • the inner wall surface of the guide member 36 is preferably covered with a lining material made of the same material as the lining material 325.
  • the support base 33 is installed near the bottom of the material supply chamber 31 and is configured to be able to support a plurality of containers H.
  • the support base 33 includes a disk-shaped index table that can rotate around the rotation axis A3 in the XY plane while supporting a plurality of containers H.
  • the support base 33 incorporates a cooling mechanism capable of circulating a coolant such as cooling water, and the plurality of containers H are arranged on the same circumference on the same circumference on the upper surface of the support base 33.
  • the number of containers H that can be arranged on the support base 33 is not particularly limited, and may be one, but is typically a plurality.
  • the support base 33 sequentially supplies an arbitrary one container H from the standby position P3 to the supply position P4.
  • the standby position P3 is one or two or more positions for temporarily waiting for the container H before or after pouring the evaporation material M, and the evaporation material M together with the container H together with the vapor deposition unit 10. Including the delivery position.
  • the supply position P4 is a position where a predetermined amount of molten metal M2 is supplied (poured) from the hot-water supply mechanism 35. In the present embodiment, as shown in FIG. 1, the position facing the outlet of the guide member 36 in the Z-axis direction.
  • the material supply unit 30 further includes a sensor 37 and a controller 38.
  • the sensor 37 is disposed outside a window made of a transparent plate provided in the upper part of the material supply chamber 31, and the remaining evaporation material M in the used container H transferred from the vapor deposition section 10 to the standby position P3. The amount is detected, and the detection signal is output to the controller 38. Based on the output of the sensor 37, the controller 38 determines the supply amount of the molten metal M ⁇ b> 1 supplied to the detection target container H at the supply position P ⁇ b> 4 (in this embodiment, the number of times the shaft portion 351 is moved up and down).
  • the type of the sensor 37 is not particularly limited, and for example, an image sensor such as a camera or a distance measuring sensor such as a laser displacement meter is used.
  • the controller 38 is typically composed of a computer incorporating a CPU, a memory, and the like, and controls the operations of the material supply unit 30 and the conveyance unit 40.
  • the controller 38 may be configured as a host controller that controls the operation of the entire vapor deposition apparatus 100 including the vapor deposition unit 10.
  • the transport unit 40 includes a transport chamber 41 and a transport unit 42.
  • the transfer chamber 41 is disposed between the vapor deposition chamber 11 and the material supply chamber 31, and is connected to the vapor deposition chamber 11 and the material supply chamber 31 via gate valves V1 and V2, respectively.
  • the transfer chamber 41 is connected to a third evacuation system 53 and is configured so that the inside can be evacuated or maintained in a predetermined reduced pressure atmosphere.
  • the transfer unit 42 is installed at the bottom of the transfer chamber 41.
  • the transport unit 42 includes a hand part 421 capable of scooping up the flange part Fh of the container H, and a multi-joint capable of transporting the hand part 421 in the X axis, Y axis and Z axis directions, and around the Z axis. Arm portion 422.
  • the transport unit 42 is configured by, for example, a SCARA type or frog leg type transport robot.
  • the vapor deposition chamber 11, the material supply chamber 31, and the transfer chamber 41 are depressurized and maintained at a predetermined pressure via the first to third vacuum exhaust systems 51 to 53.
  • the gate valves V1 and V2 are closed, and each chamber is shut off atmospherically. Since the gate valves V1 and V2 are for realizing the load lock function of the transfer chamber 41, the gate valves V1 and V2 are controlled not to be opened at the same time without being described in detail in the following description. .
  • the melting furnace 32 is decompressed together with the material supply chamber 31 in a state in which the bulk evaporation material M is accommodated therein, and the evaporation material M is dissolved in the decompressed atmosphere.
  • a plurality of empty containers H are set on the support table 33 at the standby position P3 and the supply position P4 on the support table 33, respectively. After the evaporation material M is melted, the molten metal M1 of the evaporation material M is supplied from the melting furnace 32 to the container H on the supply position P4 via the supply unit 34.
  • a predetermined amount (about 10 cc) of molten metal M2 accommodated in the recess 35g is guided by the shaft portion 351 of the hot water discharge mechanism 35 moving from the raised position shown in FIG. 2A to the lowered position shown in FIG. 2B. It is supplied to the container H via the member 36.
  • the raising / lowering operation of the shaft portion 351 is repeated until the evaporation material supplied to the container H reaches the maximum filling amount. For example, if the maximum filling amount of the evaporation material supplied to the container H is 100 cc, the lifting / lowering operation of the shaft portion 351 is repeated 10 times.
  • the support base 33 rotates by a predetermined angle, and the container H on the standby position P3 sequentially moves to the supply position P4, and the evaporation material M1 described above.
  • Each of the hot water operations is performed.
  • the container H that has been supplied with the molten metal M1 at the supply position P4 moves to the standby position P3, and the molten metal M1 in the container H is cooled on the support 33 and solidifies. Therefore, the container H holds the ingot (lumps) of the evaporation material M.
  • the hand portion 421 of the transfer unit 42 enters the material supply chamber 31 from the transfer chamber 41, and the evaporated material M waiting at the standby position P ⁇ b> 3 on the support base 33 is transferred to the vapor deposition chamber 11 together with the container H that accommodates it. Thereafter, the container H that stores the evaporating material M is transported to the standby position P ⁇ b> 1 of the support 13 in the vapor deposition chamber 11.
  • the transport unit 42 returns to the material supply chamber 31, holds the second container H containing the evaporation material M (ingot) waiting at the standby position P ⁇ b> 3 on the support base 33, and again returns to the inside of the vapor deposition chamber 11.
  • the container H is placed at the standby position P1 on the support base 13. Thereafter, this operation is repeated until the number of containers H that can be supported by the support base 13 is reached.
  • the substrate S is held by the substrate holding unit 12 with the film formation surface facing downward.
  • the electron gun 14 irradiates the electron beam E from the electron gun 14 toward the evaporation material M in the container H.
  • the evaporation material M irradiated with the electron beam E is remelted, and vapor (evaporation particles) M3 of the evaporation material M is generated.
  • the substrate holder 12 rotates around the rotation axis A1 at a predetermined speed, and the vapor M3 is deposited on the film forming surface of the substrate S that rotates together with the substrate holder 12. Thereby, a vapor deposition film of the evaporation material M is formed on the film formation surface of the substrate S.
  • the evaporation material M in the container H on the evaporation position P2 is consumed. If the remaining amount of the evaporation material M is less than or equal to a predetermined value, it is difficult to perform a stable film formation process due to fluctuations in the evaporation rate. Therefore, when the remaining amount of the evaporation material M becomes equal to or less than a predetermined value, the used evaporation material M on the evaporation position P2 and the unused evaporation material M on the standby position P1 are exchanged by the rotation of the support base 13. . Thereafter, the deposition process of the substrate S is resumed using the evaporation material M newly moved to the evaporation position P2. Note that the replacement work of the evaporation material M is typically performed when the substrate S is replaced.
  • each container H is carried out from the vapor deposition chamber 11 to the material supply chamber 31 as described later. Instead, a container containing new unused evaporation material M is carried into the vapor deposition chamber 11 from the material supply chamber 31.
  • the transport unit 42 transports the used evaporation material M waiting at the standby position P1 on the support base 13 to the material supply chamber 31 together with the container H that accommodates it.
  • the container H transported to the standby position of the support base 33 in the material supply chamber 31 by the transport unit 42 is moved to the supply position P4 by the rotation of the support base 33 after the remaining amount of the evaporation material M is measured by the sensor 37. Is done. Instead, the container H in which the evaporation material M has been supplied up to the maximum filling amount moves to the standby position P3, and the container H is transported to the vapor deposition chamber 11 via the transport unit 42.
  • the container H moved to the supply position P4 is supplied with a predetermined amount of the molten metal M1 of the evaporation material M by the hot water discharge mechanism 35 until the maximum filling amount of the container H is reached. At this time, based on the remaining amount data of the evaporating material in the container H measured by the sensor 37, the operation of the hot water discharge mechanism 35 (the number of times the shaft portion 351 is moved up and down) is determined.
  • the container H that contains the used evaporation material M is newly refilled with the evaporation material M.
  • the container H filled with the evaporation material M is transported to the vapor deposition chamber 11 by the transport unit 42 at a predetermined timing (when the substrate S is replaced in the vapor deposition section 10).
  • the evaporation material M can be transferred to the evaporation chamber 11 without opening the evaporation chamber 11 to the atmosphere.
  • the evaporation material M conveyed to the vapor deposition chamber 11 is an ingot that is supplied from the melting furnace 32 to the container H in a molten state and solidified in the container H, and is conveyed to the vapor deposition chamber 11 together with the container H. In the state, it is reheated in the vapor deposition chamber 11 and evaporated. Therefore, the shape processing of the evaporation material M is not necessary, and even a relatively soft metal material can be stably supplied as the evaporation material M.
  • the evaporation material M since the evaporation material M is transported in units of containers H, the evaporation material M can be supplied to the vapor deposition chamber 11 without changing the evaporation rate. Then, since the evaporation material M is melted, supplied into the container H, and transported to the vapor deposition chamber 11 in a consistent vacuum, deterioration of the evaporation material M due to oxidation and adhesion of moisture is prevented, and high quality. It becomes possible to supply the evaporation material M to the vapor deposition chamber 11 stably.
  • the support base 33 in the material supply chamber 31 includes an index table that can move the plurality of containers H to the supply position P4 in order.
  • the support table 13 in the vapor deposition chamber 11 includes an index table that can sequentially move the plurality of containers H to the irradiation position of the electron beam E from the electron gun 14, so that evaporation necessary for the vapor deposition process is performed.
  • the material M can be secured and the productivity can be improved.
  • the hot water discharge mechanism 35 is configured to supply the molten metal of the evaporating material to the container H by a predetermined amount, so that variation in the supply amount of the evaporating material M for each container H can be suppressed. Therefore, it is possible to prevent variations in the evaporation rate for each container due to variations in the amount of the evaporation material M.
  • the transfer unit 42 is installed inside the transfer chamber 41 capable of maintaining a vacuum atmosphere separately from the vapor deposition chamber 11 and the material supply chamber 31. For this reason, the material supply chamber 31 and the transfer chamber 41 can be shut off atmospherically, and atmospheric contamination or contamination in the vapor deposition chamber 11 can be prevented.
  • FIG. 3 is a side cross-sectional view schematically showing a configuration of a molten metal supply unit in a material supply mechanism according to another embodiment of the present invention.
  • configurations different from those of the first embodiment will be mainly described, and configurations similar to those of the above-described embodiment will be denoted by the same reference numerals, and description thereof will be omitted or simplified.
  • the supply unit 64 of the present embodiment includes a hot water discharge mechanism 65 and a guide member 66 having a hot water outlet 662.
  • the hot water mechanism 65 includes a shaft portion 651, a storage portion 652, and a drive source 653.
  • the storage unit 652 is provided at the bottom of the melting furnace 32 and configured to store a predetermined amount of the molten metal M1 of the evaporation material M.
  • the storage portion 652 has through holes 652a and 652b through which the shaft portion 651 penetrates at the upper end portion and the lower end portion, respectively.
  • the shaft portion 651 penetrates the bottom of the melting furnace 32, the guide member 66, and the storage portion 652 in a liquid-tight manner, and is configured to be slidable in the axial direction.
  • the shaft portion 651 has an annular recess 65g centered on the shaft center on the outer peripheral surface thereof.
  • the opening width z1 along the Z-axis direction of the recess 65g is set to be smaller than the height dimension z2 along the Z-axis direction of the reservoir 652.
  • the through-hole 652b is shielded by the outer peripheral surface of the shaft portion 651 while the melting furnace 32 and the storage portion 652 communicate with each other via the recess 65g and the through-hole 652a.
  • the through hole 652a is shielded by the outer peripheral surface of the shaft 651.
  • the drive source 653 is configured in the same manner as in the first embodiment, and is configured to be movable up and down with respect to the bottom of the melting furnace 32, the guide member 66, and the storage unit 652.
  • the drive source 653 has a first position for supplying the molten metal M1 from the melting furnace 32 to the reservoir 652 via the recess 65g as shown by a solid line in the drawing, and a recess 65g as shown by a two-dot chain line in the drawing.
  • the shaft portion 651 is configured to be movable between the storage portion 652 and the second position where the molten metal M1 is supplied to the inside of the guide member 66.
  • the inner wall surfaces of the storage portion 652 and the guide member 66 are covered with a lining material for reducing the affinity with the molten metal M1 in the same manner as the melting furnace 32. Thereby, since the predetermined amount of molten metal M2 discharged from the hot water mechanism 65 can be stably guided to the container H, variation in the amount of the molten metal reaching the container H can be suppressed.
  • a heating source 661 capable of maintaining the guide member 66 at a predetermined temperature or higher is provided.
  • a predetermined amount is transferred from the inside of the melting furnace 32 to the container H by one raising / lowering operation of the shaft portion 651 as in the first embodiment. It becomes possible to supply the molten metal with high accuracy and stability. Since the predetermined amount can be arbitrarily designed according to the internal volume of the storage unit 652, it is possible to sufficiently meet the demand for supplying a relatively large volume of molten metal to the container H at a time. .
  • the evaporation source in the vapor deposition unit 10 is configured by an electron beam evaporation source has been described as an example.
  • the present invention is not limited to this, and is configured by a resistance heating type or induction heating type evaporation source. Also good.
  • the present invention can be applied as a supply device for the evaporation material supplied to these evaporation sources.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本発明の一形態に係る材料供給装置は、材料供給室と、溶解炉と、少なくとも1つの容器と、供給ユニットと、搬送ユニットとを具備する。上記材料供給室は、蒸着室の外部に設置され、減圧雰囲気に維持されることが可能に構成される。上記溶解炉は、上記材料供給室に設置され、蒸発材料を溶解する。上記容器は、上記溶解炉で溶解された上記蒸発材料の溶湯を収容する。上記供給ユニットは、上記溶解炉に取り付けられ、上記溶解炉から上記容器へ上記溶湯を供給する。上記搬送ユニットは、上記供給ユニットから供給され上記容器内で凝固した上記蒸発材料のインゴットを、上記容器とともに上記蒸着室へ搬送することが可能に構成される。

Description

材料供給装置および蒸着装置
 本発明は、蒸発源へ蒸発材料を供給するための材料供給装置およびこれを備えた蒸着装置に関する。
 蒸発材料(蒸着材料とも称される)の蒸気を基板上に堆積させて、基板上に例えば金属膜を形成する真空蒸着装置が知られている。真空蒸着装置の蒸発源には、抵抗加熱式、誘導加熱式、電子ビーム加熱式などの種々の方式が知られており、ルツボ内に収容された蒸発材料を加熱あるいは電子ビームの照射により溶融し蒸発させることで、蒸発材料の蒸気が生成される。
 蒸着装置においては、生産性の観点から、蒸着室内を所定の減圧雰囲気に維持した状態で、蒸発材料を間欠的にあるいは連続的にルツボへ供給することが可能に構成された蒸着装置が知られている。例えば特許文献1には、ペレット状に成形された蒸発材料をルツボへ間欠的に(一定時間おきに)供給する技術が開示されており、特許文献2には、ワイヤ状に形成された蒸発材料をルツボへ連続的に供給する技術が開示されている。
特開平5-128518号公報 特開平7-286266号公報
 しかしながら、ペレット状の蒸発材料をルツボへ供給する方法では、基本的に間欠供給であるため、蒸発レートが変動しやすく、したがって均一な膜厚の金属膜を形成することが困難になるという問題がある。また、ワイヤ状の蒸発材料をルツボへ供給する方法では、連続供給が可能であるため蒸発レートの変動を抑えることはできるものの、ワイヤ状に加工することが困難な材料の場合にはコスト高になるという問題がある。
 以上のような事情に鑑み、本発明の目的は、蒸発材料の形状加工が不要であり、蒸発レートを変動させることなく蒸発材料を蒸着室へ供給することが可能な材料供給装置およびこれを備えた蒸着装置を提供することにある。
 上記目的を達成するため、本発明の一形態に係る材料供給装置は、材料供給室と、溶解炉と、少なくとも1つの容器と、供給ユニットと、搬送ユニットとを具備する。
 上記材料供給室は、蒸着室の外部に設置され、減圧雰囲気に維持されることが可能に構成される。
 上記溶解炉は、上記材料供給室に設置され、蒸発材料を溶解する。
 上記容器は、上記溶解炉で溶解された上記蒸発材料の溶湯を収容する。
 上記供給ユニットは、上記溶解炉に取り付けられ、上記溶解炉から上記容器へ上記溶湯を供給する。
 上記搬送ユニットは、上記供給ユニットから供給され上記容器内で凝固した上記蒸発材料のインゴットを、上記容器とともに上記蒸着室へ搬送することが可能に構成される。
 上記材料供給装置は、材料供給室が減圧雰囲気に維持可能に構成されているため、蒸着室を大気に開放することなく、蒸発材料を蒸着室へ搬送することができる。
 また、蒸着室へ搬送される蒸発材料は、溶解炉から溶湯状態で容器へ供給されて容器内で凝固したインゴットであり、容器とともに蒸着室へ搬送され、その状態で蒸着室にて再加熱されて蒸発させられる。したがって、蒸発材料の形状加工が不要となり、比較的軟らかい金属材料でも蒸発材料として安定に供給することが可能となる。
 さらに、蒸発材料は容器単位で搬送されるため、蒸発レートを変動させることなく、蒸発材料を蒸着室へ供給することが可能となる。
 そして、蒸発材料の溶解から、容器内への供給、蒸着室への搬送が真空一貫で行われる。このため、蒸発材料の酸化や水分の付着による劣化等が防止されて、高品質の蒸発材料を蒸着室へ安定に供給することが可能となる。
 上記容器は、上記蒸発材料をそれぞれ収容することが可能な複数の容器を含んでもよい。この場合、上記材料供給装置は、上記複数の容器を順に、上記供給ユニットによる上記蒸発材料の供給位置へ移動させることが可能なインデックステーブルを含む支持台をさらに具備する。
 これにより、蒸着室へ供される蒸発材料を効率よく準備することができるため、蒸着室への蒸発材料の補給に要する時間の短縮を図ることができる。
 上記供給ユニットは、出湯機構と、ガイド部材とを有してもよい。
 上記出湯機構は、上記溶解炉の底部を液密に貫通し外周面に少なくとも一つの凹部を有する軸部材と、上記軸部材をその軸方向に沿って往復移動させる駆動源とを有する。上記出湯機構は、上記軸部材の軸方向に沿った往復移動で所定量の溶湯を上記溶解炉の外部へ排出することが可能に構成される。
 上記ガイド部材は、上記溶解炉の底部に設けられ、上記溶解炉の外部へ排出された上記所定量の溶湯を上記容器へ誘導する。
 これにより、容器ごとの蒸発材料の量のばらつきを抑えることができる。
 上記出湯機構は、前記溶解炉の底部に設けられた貯留部をさらに有してもよい。上記貯留部は、上記所定量の溶湯を貯留可能に構成され、上記軸部材は、上記貯留部を液密に貫通する。そして、上記駆動源は、上記凹部を介して上記溶解炉から上記貯留部へ上記溶湯を供給する第1の位置と、上記凹部を介して上記貯留部から上記ガイド部材へ上記溶湯を供給する第2の位置との間にわたって、上記軸部材を移動可能に構成される。
 上記材料供給装置は、上記搬送ユニットを収容し減圧雰囲気に維持されることが可能な搬送室をさらに具備してもよい。
 材料供給室と搬送室とを雰囲気的に遮断可能とすることで、蒸着室内の雰囲気汚染あるいはコンタミネーションを防止することができる。
 本発明の一形態に係る蒸着装置は、蒸着部と、材料供給室と、溶解炉と、第1の支持部と、供給ユニットと、搬送ユニットとを具備する。
 上記蒸着部は、蒸着室を有する。
 上記材料供給室は、上記蒸着室の外部に設置され、減圧雰囲気に維持されることが可能に構成される。
 上記溶解炉は、上記材料供給室に設置され、蒸発材料を溶解する。
 上記第1の支持部は、上記溶解炉で溶解された上記蒸発材料の溶湯を収容することが可能な少なくとも1つの容器を含む。
 上記供給ユニットは、上記溶解炉から上記容器へ上記溶湯を供給する。
 上記搬送ユニットは、上記供給ユニットから供給され上記容器内で凝固した上記蒸発材料のインゴットを、上記容器とともに上記第1の支持部から上記蒸着室へ搬送することが可能に構成される。
 上記蒸着部は、上記蒸着室に設置され上記容器を支持する支持台と、上記支持台上の上記容器に収容された上記インゴットに電子ビームを照射することが可能に構成された電子銃とをさらに有してもよい。
 上記容器は、上記蒸発材料をそれぞれ収容することが可能な複数の容器を含んでもよい。この場合、上記支持台は、上記複数の容器を順に、上記電子銃からの上記電子ビームの照射位置へ移動させることが可能なインデックステーブルをさらに含む。
 以上述べたように、本発明によれば、蒸発材料の形状加工が不要であり、蒸発レートを変動させることなく蒸発材料を蒸着室へ供給することができる。
本発明の一実施形態に係る材料供給装置を備えた蒸着装置の構成を示す概略側断面図である。 A,Bは、蒸気材料供給装置における溶解炉および出湯機構の構成を概略的に示す要部の側断面図である。 本発明の他の実施形態に係る材料供給機構における蒸発材料の溶湯の供給ユニットの構成を概略的に示す側断面図である。
 以下、図面を参照しながら、本発明の実施形態を説明する。
<第1の実施形態>
 図1は、本発明の一実施形態に係る材料供給装置を備えた蒸着装置の構成を示す概略側断面図である。なお、図においてX軸、Y軸およびZ軸は、相互に直交する3軸方向であって、X軸およびY軸は水平方向を、Z軸は高さ方向をそれぞれ示している。
[蒸着装置の全体構成]
 図1に示すように、蒸着装置100は、蒸着部10と、蒸着部10へ蒸発材料を供給する材料供給機構20(材料供給装置)とを備える。
(蒸着部)
 蒸着部10は、蒸着室11と、基板Sを保持する基板保持部12と、蒸発材料Mを支持する支持台13と、蒸発材料Mへ電子ビームEを照射する電子銃14とを有する。
 蒸着室11は、第1の真空排気系51に接続されており、内部が所定の減圧雰囲気に排気または維持されることが可能な真空チャンバで構成されている。
 基板保持部12は、蒸着室11の内部の上方に設置されており、基板Sの成膜面を下向きにして支持することが可能に構成されている。本実施形態において、基板保持部12は、基板Sを保持した状態で、XY平面内において回転軸A1のまわりに回転可能に構成されている。
 基板Sとしては、典型的には、ガラス基板、半導体基板等の矩形又は円形の板状基板が用いられるが、これに限られず、プラスチックフィルム等の可撓性基板が用いられてもよい。
 支持台13は、蒸着室11の底部近傍に設置されており、基板Sの成膜面に蒸着されるべき蒸発材料Mを、それを収容する容器Hとともに支持することが可能に構成されている。本実施形態において、支持台13は、複数の容器Hを支持した状態で、XY平面内において回転軸A2のまわりに回転可能な円盤状のインデックステーブルを含む。支持台13は、冷却水等の冷媒が循環可能な冷却機構を内蔵しており、複数の容器Hは、支持台13の上面において同一円周上に所定の間隔をおいて配置される。支持台13上に配置可能な容器Hの数は特に限定されず、1個でもよいが、典型的には複数個である。
 支持台13は、任意の1つの容器H(蒸発材料M)を待機位置P1から蒸発位置P2へ順次供給する。待機位置P1は、使用済または使用前の蒸発材料を収容する容器Hを一時的に待機させる1つ又は2つ以上の位置であって、材料供給機構20との間で蒸発材料Mを容器Hとともに受け渡す位置を含む。蒸発位置P2は、電子銃14からの電子ビームEが蒸発材料Mへ照射される位置であり、本実施形態では図1に示すように、基板保持部12上の基板Sの中心とZ軸方向に対向する位置に設定される。
 電子銃14は、支持台13の近傍に設置され、電子ビームEを蒸発位置P2にセットされた蒸発材料Mへ照射することが可能に構成されている。電子銃14は、磁場偏向型(トランバース)の電子銃で構成されるが、これに限られず、例えばピアス式電子銃等の他の形式の電子銃が採用されてもよい。
 なお図示せずとも、蒸着部10は、電子ビームEを蒸発位置P2上の蒸発材料Mに向けて偏向させる磁石、蒸着室11に対して基板Sを出し入れするための基板搬送室、蒸着室11へプロセスガスを導入するガス導入ライン等を備えている。また、支持台13は1つに限られず、2つ以上設置されてもよい。この場合、電子銃14も、支持台13の数に対応して複数台設置されてもよい。
 材料供給機構20は、蒸発材料Mを供給する材料供給部30と、材料供給部30から蒸着部10へ蒸発材料Mを搬送する搬送部40とを有する。
(材料供給部)
 材料供給部30は、材料供給室31と、蒸発材料を溶解する溶解炉32と、蒸発材料の溶湯M1を収容することが可能な容器Hを支持する支持台33と、溶解炉32から容器Hへ溶湯M1を供給する供給ユニット34とを有する。
 材料供給室31は、蒸着室11の外部に設置されており、蒸着室11と独立して真空チャンバで構成される。すなわち、材料供給室31は、第2の真空排気系52に接続されており、内部が所定の減圧雰囲気に排気または維持されることが可能に構成されている。
 溶解炉32は、材料供給室31の内部に設置され、後述するように、バルク状の蒸発材料を収容する内部空間と上記蒸発材料を所定温度に加熱して溶解するヒータ等を有する。溶解炉32の内部は材料供給室31とともに所定の減圧雰囲気にまで排気されることが可能となっており、これにより溶解炉32は真空溶解炉として機能する。
 材料供給室31および溶解炉32はいずれも、開閉可能な天蓋(図示略)を有しており、これら天蓋を介して、溶解炉32の内部空間にバルク状の蒸発材料を投入することが可能に構成される。
 容器Hは、溶解炉32で溶解された蒸発材料の溶湯M1を収容することが可能であり、本実施形態では電子ビーム蒸発源に用いられるハースあるいはハースライナと同様なカーボン、セラミックス等の断熱性材料で構成される。容器Hの上端開口部周縁にはフランジ部Fhが一体形成されており、このフランジ部Fhを介して容器Hが搬送部40の搬送ユニット42に把持される。容器Hの容量は特に限定されず、蒸発材料Mや蒸着部10の仕様に応じて選択され、本実施形態では例えば約110ccの容量を有する容器が用いられる。
 また、蒸発材料として用いられる金属材料の種類も特に限定されず、電子ビーム蒸着が可能な種々の金属材料が用いられる。本実施形態では、例えば、錫(Sn)、タンタル(Ta)、アルミニウム(Al)、リチウム(Li)、インジウム(In)等のバルク状で比較的軟らかい金属材料が用いられる。
 供給ユニット34は、溶解炉32に取り付けられ、溶解炉32から容器Hへ溶湯M1を供給するように構成される。供給ユニット34は、出湯機構35と、ガイド部材36とを有する。
 出湯機構35は、溶解炉32内の蒸発材料の溶湯M1から所定量の溶湯M2を溶解炉32の外部へ排出することが可能に構成される。ガイド部材36は、溶解炉32の底部に設けられ、溶解炉32の外部へ排出された上記所定量の溶湯M2を容器Hへ誘導することが可能に構成される。
 図2A,Bは、溶解炉32および出湯機構35の構成を概略的に示す要部の側断面図である。
 図2Aに示すように、溶解炉32は、ヒータ(加熱線)321を内蔵する炉壁322と、冷媒循環通路323を内蔵するジャケット部324と、ライニング材325とを有する。ジャケット部324は、炉壁322の熱が溶解炉321の外部へ伝わることを阻止するためのもので、炉壁322の外面に設けられている。ライニング材325は、炉壁322の内面と蒸発材料の溶湯M1との濡れ性(あるいは親和性)を低下させるためのもので、炉壁322の内面に設けられている。ライニング材325は、例えばグラファイト等の炭素系材料で構成される。
 出湯機構35は、軸部351と、駆動源352とを有する。
 軸部351は、ガイド部材36の内部に配置され、溶解炉32の底部を液密に貫通する円柱形の高融点金属材料で構成される。軸部351が貫通する溶解炉32の底孔326の内周面は、ライニング材325で被覆されており、軸部351はそのライニング材325の表面に対して軸方向(Z軸方向)に摺動可能に挿通されている。
 本実施形態では、軸部351の外周面には、その軸心を中心とする環状の凹部35gが設けられている。凹部35gは、所定量の溶湯M2を収容できる大きさの容積を有する。これにより、軸部351が下降した際、図2Bに模式的に示すように上記所定量の溶湯M2を溶解炉32の外側へ排出することが可能となる。上記所定量は特に限定されず、典型的には、容器Hの容量よりも少ない量であり、本実施形態では、約10ccである。本実施形態のように、凹部35gが環状に設けられていると、溶解炉からの溶湯の収容の際に凹部35g全体に溶湯が行き渡り易くなり、また凹部35gからの溶湯の排出の際にも、凹部35g全体から溶湯が排出しやすくなるため、所定量の溶湯の収容、排出を確実に行うことが可能となる。また、凹部35gの断面形状は、図示するように円弧形状(丸溝)であることが好ましく、これにより、さらに凹部35gからの溶湯M2の排出性が高められる。
 なお、軸部351の外周部に設けられる凹部35gは、必ずしも、その軸心を中心として外周面に環状に設けられる必要はなく、軸部351の外周面に少なくとも一つの凹部が形成されることで所定量の溶湯が収容できる容積を画定できれば、その形状あるいは形態は特に限定されない。例えば、凹部35gは、軸部351の周方向に沿って間欠的に設けられた複数の凹部で構成されてもよいし、その周方向に非連続な単一の部分環状溝などで構成されてもよい。
 駆動源352は、軸部351をその軸方向に沿って往復移動させるためのもので、例えば、シリンダ機構、ボールねじ機構等で構成される。駆動源352は、図2Aに示すように凹部35gが溶解炉32の内部に位置する上昇位置と、図2Bに示すように凹部35gが溶解炉32の外部に位置する下降位置との間で、軸部351を昇降させることが可能に構成される。
 なお、ガイド部材36の内壁面にもライニング材325と同様な材料からなるライニング材で被覆されるのが好ましい。これにより、出湯機構35で出湯された所定量の溶湯M2を安定に容器Hへ導くことができるため、容器Hに到達する溶湯の量のバラツキを抑えることができる。また、ガイド部材36との接触による蒸発材料Mの冷却を防止するため、ガイド部材36を所定温度以上に維持することが可能な加熱源が設けられてもよい。
 次に、支持台33は、図1に示すように、材料供給室31の底部近傍に設置されており、複数の容器Hを支持することが可能に構成される。本実施形態において支持台33は、複数の容器Hを支持した状態で、XY平面内において回転軸A3のまわりに回転可能な円盤状のインデックステーブルを含む。支持台33は、冷却水等の冷媒が循環可能な冷却機構を内蔵しており、複数の容器Hは、支持台33の上面において同一円周上に所定の間隔をおいて配置される。支持台33上に配置可能な容器Hの数は特に限定されず、1個でもよいが、典型的には複数個である。
 支持台33は、任意の1つの容器Hを待機位置P3から供給位置P4へ順次供給する。待機位置P3は、蒸発材料Mの注湯前又は注湯後の容器Hを一時的に待機させる1つ又は2つ以上の位置であって、蒸着部10との間で蒸発材料Mを容器Hとともに受け渡す位置を含む。供給位置P4は、出湯機構35から所定量の溶湯M2が供給(注湯)される位置であり、本実施形態では図1に示すように、ガイド部材36の出口とZ軸方向に対向する位置に設定される。
 材料供給部30はさらに、センサ37と、コントローラ38とを有する。
 センサ37は、材料供給室31の上部に設けられた透明板からなる窓の外側に配置されており、蒸着部10から待機位置P3へ搬送された使用済みの容器H内の蒸発材料Mの残量を検出し、その検出信号をコントローラ38へ出力する。コントローラ38は、センサ37の出力に基づき、供給位置P4において当該検出対象の容器Hへ供給される溶湯M1の供給量(本実施形態では軸部351の昇降回数)を決定する。センサ37の種類は特に限定されず、例えば、カメラ等の画像センサ、レーザ変位計等の測距センサが用いられる。
 コントローラ38は、典型的には、CPUやメモリ等を内蔵するコンピュータで構成され、材料供給部30および搬送部40の動作を制御する。なお、コントローラ38は、蒸着部10を含む蒸着装置100全体の動作を制御する上位コントローラとして構成されてもよい。
(搬送部)
 搬送部40は、搬送室41と、搬送ユニット42とを有する。
 搬送室41は、蒸着室11と材料供給室31との間に配置されており、ゲートバルブV1,V2を介して蒸着室11および材料供給室31にそれぞれ接続されている。搬送室41は、第3の真空排気系53に接続されており、内部が所定の減圧雰囲気に排気または維持されることが可能に構成されている。
 搬送ユニット42は、搬送室41の底部に設置される。搬送ユニット42は、容器Hのフランジ部Fhを掬い上げることが可能なハンド部421と、ハンド部421をX軸、Y軸およびZ軸の3軸方向、ならびにZ軸まわりに搬送可能な多関節アーム部422とを有する。搬送ユニット42は、例えば、SCARA型、フログレグ型等の搬送ロボットで構成される。
[蒸着装置の動作]
 次に、以上のように構成される蒸着装置100の典型的な動作について説明する。
 蒸着室11、材料供給室31および搬送室41は、第1~第3の真空排気系51~53を介して所定の圧力に減圧、維持されている。ゲートバルブV1,V2は閉じられており、各室は雰囲気的に遮断されている。なお、ゲートバルブV1,V2は搬送室41のロードロック機能を実現するためのものであるため、以下の説明では詳述せずとも、両ゲートバルブV1,V2は同時に開放しないように制御される。
(材料供給工程)
 材料供給部30において、溶解炉32は、内部にバルク状の蒸発材料Mを収容した状態で、材料供給室31とともに減圧されており、その減圧雰囲気内で、蒸発材料Mが溶解される。支持台33上には、複数の空の容器Hが支持台33上の待機位置P3および供給位置P4にそれぞれセットされる。蒸発材料Mの溶解後、供給位置P4上の容器Hには、供給ユニット34を介して溶解炉32から蒸発材料Mの溶湯M1が供給される。
 具体的には、出湯機構35の軸部351が図2Aに示す上昇位置から図2Bに示す下降位置へ移動することで、凹部35g内に収容された所定量(約10cc)の溶湯M2がガイド部材36を介して容器Hへ供給される。軸部351の昇降動作は、容器Hへ供給される蒸発材料が最大充填量に達するまで繰り返される。例えば、容器Hへ供給される蒸発材料の最大充填量を100ccとすると、軸部351の昇降動作は10回繰り返されることになる。
 供給位置P4上の容器Hへ蒸発材料の溶湯M1が供給された後、支持台33が所定角度回転し、待機位置P3上の容器Hが供給位置P4へ順次移動して、上述した蒸発材料M1の出湯動作がそれぞれ行われる。供給位置P4で溶湯M1の供給を受けた容器Hは、待機位置P3へ移動し、その容器H内の溶湯M1は支持台33上で冷却されて凝固する。したがって当該容器Hには、蒸発材料Mのインゴット(塊状物)が保持されることになる。
 搬送室41から搬送ユニット42のハンド部421が材料供給室31内へ進入し、支持台33上の待機位置P3で待機する蒸発材料Mがそれぞれ収容する容器Hとともに蒸着室11へ搬送される。その後、当該蒸発材料Mを収容する容器Hが蒸着室11の支持台13の待機位置P1へ搬送される。
 容器Hが支持台13の待機位置P1へ搬送されると、当該容器H1は支持台13の回転により蒸発位置P2へ移動する。一方、搬送ユニット42は材料供給室31内へ戻り、支持台33上の待機位置P3で待機する蒸発材料M(インゴット)を収容した2つ目の容器Hを把持して、再び蒸着室11内へ進入し、支持台13上の待機位置P1へ当該容器Hを載置する。以後この動作が、支持台13が支持できる容器Hの数に達するまで繰り返される。
(蒸着工程)
 蒸着室11においては、基板保持部12に基板Sが成膜面を下向きにして保持されている。蒸発材料Mを収容した容器Hが蒸発位置P2へ移動した後、電子銃14から電子ビームEが当該容器H内の蒸発材料Mへ向けて照射される。電子ビームEが照射された蒸発材料Mは再溶融し、蒸発材料Mの蒸気(蒸発粒子)M3が生成される。基板保持部12は回転軸A1のまわりに所定速度で回転し、蒸気M3は、基板保持部12とともに回転する基板Sの成膜面に堆積する。これにより、基板Sの成膜面に蒸発材料Mの蒸着膜が形成される。
 蒸着処理の継続により、蒸発位置P2上の容器H内の蒸発材料Mが消費される。蒸発材料Mの残量が所定以下になると、蒸発レートの変動を招いて安定した成膜処理を行うことが困難となる。そこで、蒸発材料Mの残量が所定以下となると、支持台13の回転により、蒸発位置P2上の使用済の蒸発材料Mと、待機位置P1上の未使用の蒸発材料Mとが交換される。その後、新しく蒸発位置P2へ移動した蒸発材料Mを用いて、基板Sの成膜処理が再開される。なお、この蒸発材料Mの交換作業は、典型的には、基板Sの入れ替え時に行われる。
(材料再供給工程)
 支持台13上の蒸発材料Mがすべて使用済になると、あるいは未使用の蒸発材料Mの数が所定以下になると、後述するように、各容器Hが蒸着室11から材料供給室31へ搬出され、代わりに、未使用の新しい蒸発材料Mを収容する容器が材料供給室31から蒸着室11へ搬入される。
 搬送ユニット42は、支持台13上の待機位置P1で待機している使用済みの蒸発材料Mを、それを収容する容器Hとともに材料供給室31へ搬送する。搬送ユニット42により材料供給室31内の支持台33の待機位置へ搬送された容器Hは、センサ37によって蒸発材料Mの残量が測定された後、支持台33の回転により供給位置P4へ移動される。代わって待機位置P3には、あらかじめ蒸発材料Mが最大充填量まで供給された容器Hが移動し、当該容器Hが搬送ユニット42を介して蒸着室11へ搬送される。
 供給位置P4へ移動した容器Hには、蒸発材料Mの溶湯M1が容器Hの最大充填量に達するまで出湯機構35により所定量ずつ供給される。このとき、センサ37で計測された当該容器Hにおける蒸発材料の残量データを基に、出湯機構35の動作(軸部351の昇降動作回数)が決定される。
 以後、上述の動作が繰り返されることで、使用済みの蒸発材料Mを収容する容器Hに対して、新しく蒸発材料Mが最充填される。蒸発材料Mが最充填された容器Hは、搬送ユニット42により、所定のタイミングで(蒸着部10における基板Sの入れ替え時に)、蒸着室11へ搬送される。
 以上のように、本実施形態においては、例えば、以下のような作用効果を得ることができる。
 材料供給室31が減圧雰囲気に維持可能に構成されているため、蒸着室11を大気に開放することなく、蒸発材料Mを蒸着室11へ搬送することができる。
 また、蒸着室11へ搬送される蒸発材料Mは、溶解炉32から溶湯状態で容器Hへ供給され、かつ当該容器H内で凝固したインゴットであり、容器Hとともに蒸着室11へ搬送され、その状態で蒸着室11にて再加熱されて蒸発させられる。したがって、蒸発材料Mの形状加工が不要となり、比較的軟らかい金属材料でも蒸発材料Mとして安定に供給することが可能となる。
 さらに、蒸発材料Mは容器H単位で搬送されるため、蒸発レートを変動させることなく、蒸発材料Mを蒸着室11へ供給することが可能となる。
 そして、蒸発材料Mの溶解から、容器H内への供給、蒸着室11への搬送が真空一貫で行われるため、蒸発材料Mの酸化や水分の付着による劣化等が防止されて、高品質の蒸発材料Mを蒸着室11へ安定に供給することが可能となる。
 本実施形態においては、材料供給室31内の支持台33が、複数の容器Hを順に、供給位置P4へ移動させることが可能なインデックステーブルを含む。これにより、蒸着室11へ供される蒸発材料Mを効率よく準備することができるため、蒸着室11への蒸発材料Mの補給に要する時間の短縮を図ることができる。
 蒸着室11内の支持台13についても同様に、複数の容器Hを順に、電子銃14からの電子ビームEの照射位置へ移動させることが可能なインデックステーブルを含むため、蒸着処理に必要な蒸発材料Mを確保でき、生産性の向上を図ることが可能となる。
 本実施形態において、出湯機構35は、蒸発材料の溶湯を所定量ずつ容器Hへ供給するように構成されているため、容器Hごとの蒸発材料Mの供給量のばらつきを抑えることができる。したがって、蒸発材料Mの量のバラツキに起因する容器ごとの蒸発レートのばらつきも防止することが可能となる。
 さらに以上の実施形態では、搬送ユニット42が、蒸着室11および材料供給室31とは別途独立して真空雰囲気を維持可能な搬送室41の内部に設置されている。このため、材料供給室31と搬送室41とが雰囲気的に遮断可能となり、蒸着室11内の雰囲気汚染あるいはコンタミネーションを防止することができる。
<第2の実施形態>
 図3は、本発明の他の実施形態に係る材料供給機構における蒸発材料の溶湯の供給ユニットの構成を概略的に示す側断面図である。
 以下、第1の実施形態と異なる構成について主に説明し、上述の実施形態と同様の構成については同様の符号を付しその説明を省略または簡略化する。
 本実施形態の供給ユニット64は、出湯機構65と、出湯口662を有するガイド部材66とを有する。出湯機構65は、軸部651と、貯留部652と、駆動源653とを有する。
 貯留部652は、溶解炉32の底部に設けられ、蒸発材料Mの溶湯M1を所定の量だけ貯留可能に構成される。貯留部652は、上端部および下端部に軸部651が貫通する貫通孔652a,652bをそれぞれ有する
 軸部651は、溶解炉32の底部、ガイド部材66および貯留部652に対して液密に貫通し、これらに対して軸方向に摺動可能に構成される。軸部651は、第1の実施形態と同様に、その外周面に軸心を中心とする環状の凹部65gを有する。凹部65gのZ軸方向に沿った開口幅z1は、貯留部652のZ軸方向に沿った高さ寸法z2よりも小さく設定される。このため、凹部65gおよび貫通孔652aを介して溶解炉32と貯留部652とが相互に連通している間は、貫通孔652bは軸部651の外周面で遮蔽される。一方、凹部65gおよび貫通孔652bを介して貯留部652とガイド部材66とが相互に連通している間は、貫通孔652aは軸部651の外周面で遮蔽される。
 駆動源653は、第1の実施形態と同様に構成され、溶解炉32の底部、ガイド部材66および貯留部652に対して昇降移動させることが可能に構成される。駆動源653は、図中実線で示すように、凹部65gを介して溶解炉32から貯留部652へ溶湯M1を供給する第1の位置と、図中二点鎖線で示すように、凹部65gを介して貯留部652からガイド部材66の内部へ溶湯M1を供給する第2の位置との間にわたって、軸部651を移動可能に構成される。
 なお、貯留部652およびガイド部材66の内壁面は、溶解炉32と同様に、溶湯M1との親和性を低下させるためのライニング材で被覆される。これにより、出湯機構65で出湯された所定量の溶湯M2を安定に容器Hへ導くことができるため、容器Hに到達する溶湯の量のバラツキを抑えることができる。また、ガイド部材66との接触による蒸発材料Mの冷却を防止するため、ガイド部材66を所定温度以上に維持することが可能な加熱源661が設けられている。
 以上のように構成される本実施形態の供給ユニット64においても、上述の第1の実施形態と同様に、軸部651の1回の昇降動作によって、溶解炉32内から容器Hへ所定量の溶湯を高精度かつ安定に供給することが可能となる。上記所定量は、貯留部652の内部容積に応じて任意に設計することができるため、比較的大容量の溶湯を一度に容器Hへ供給したいという要求にも十分に対応することが可能となる。
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。
 例えば以上の実施形態では、蒸着部10における蒸発源が電子ビーム蒸発源で構成される場合を例に挙げて説明したが、これに限られず、抵抗加熱式あるいは誘導加熱式蒸発源で構成されてもよい。この場合、本発明は、これらの蒸発源に供給される蒸発材料の供給装置として適用可能である。
 10…蒸着部
 11…蒸着室
 13…支持台
 20…材料供給機構
 30…材料供給部
 31…材料供給室
 32…溶解炉
 33…支持台
 34…供給ユニット
 35,65…出湯機構
 36,66…ガイド部材
 40…搬送部
 41…搬送室
 42…搬送ユニット
 100…蒸着装置
 H…容器
 M…蒸発材料
 M1,M2…溶湯
 M3…蒸気

Claims (8)

  1.  蒸着室の外部に設置され減圧雰囲気に維持されることが可能な材料供給室と、
     前記材料供給室に設置され蒸発材料を溶解する溶解炉と、
     前記溶解炉で溶解された前記蒸発材料の溶湯を収容することが可能な少なくとも1つの容器と、
     前記溶解炉に取り付けられ、前記溶解炉から前記容器へ前記溶湯を供給する供給ユニットと、
     前記供給ユニットから供給され前記容器内で凝固した前記蒸発材料のインゴットを、前記容器とともに前記蒸着室へ搬送することが可能な搬送ユニットと
     を具備する材料供給装置。
  2.  請求項1に記載の材料供給装置であって、
     前記容器は、前記蒸発材料をそれぞれ収容することが可能な複数の容器を含み、
     前記材料供給装置は、前記複数の容器を順に、前記供給ユニットによる前記蒸発材料の供給位置へ移動させることが可能なインデックステーブルを含む支持台をさらに具備する
     材料供給装置。
  3.  請求項1又は2に記載の材料供給装置であって、
     前記供給ユニットは、
     前記溶解炉の底部を液密に貫通し外周面に少なくとも一つの凹部を有する軸部材と、前記軸部材をその軸方向に沿って往復移動させる駆動源とを有し、前記軸部材の軸方向に沿った往復移動で所定量の溶湯を前記溶解炉の外部へ排出することが可能に構成された出湯機構と、
     前記溶解炉の底部に設けられ、前記溶解炉の外部へ排出された前記所定量の溶湯を前記容器へ誘導するガイド部材と
     を有する
     材料供給装置。
  4.  請求項3に記載の材料供給装置であって、
     前記出湯機構は、
     前記溶解炉の底部に設けられ、前記所定量の溶湯を貯留可能な貯留部をさらに有し、
     前記軸部材は、前記貯留部を液密に貫通し、
     前記駆動源は、前記凹部を介して前記溶解炉から前記貯留部へ前記溶湯を供給する第1の位置と、前記凹部を介して前記貯留部から前記ガイド部材へ前記溶湯を供給する第2の位置との間にわたって、前記軸部材を移動可能に構成される
     材料供給装置。
  5.  請求項1~4のいずれか1つに記載の材料供給装置であって、
     前記搬送ユニットを収容し減圧雰囲気に維持されることが可能な搬送室をさらに具備する
     材料供給装置。
  6.  蒸着室を有する蒸着部と、
     前記蒸着室の外部に設置され減圧雰囲気に維持されることが可能な材料供給室と、
     前記材料供給室に設置され蒸発材料を溶解する溶解炉と、
     前記溶解炉で溶解された前記蒸発材料の溶湯を収容することが可能な少なくとも1つの容器と、
     前記溶解炉から前記容器へ前記溶湯を供給する供給ユニットと、
     前記供給ユニットから供給され前記容器内で凝固した前記蒸発材料のインゴットを、前記容器とともに前記第1の支持部から前記蒸着室へ搬送することが可能な搬送ユニットと
     を具備する蒸着装置。
  7.  請求項6に記載の蒸着装置であって、
     前記蒸着部は、
     前記蒸着室に設置され前記容器を支持する支持台と、
     前記支持台上の前記容器に収容された前記インゴットに電子ビームを照射することが可能な電子銃と
     をさらに有する
     蒸着装置。
  8.  請求項7に記載の蒸着装置であって、
     前記容器は、前記蒸発材料をそれぞれ収容することが可能な複数の容器を含み、
     前記支持台は、前記複数の容器を順に、前記電子銃からの前記電子ビームの照射位置へ移動させることが可能なインデックステーブルを含む
     蒸着装置。
PCT/JP2016/079649 2015-10-06 2016-10-05 材料供給装置および蒸着装置 WO2017061481A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017544534A JP6578367B2 (ja) 2015-10-06 2016-10-05 材料供給装置および蒸着装置
CN201680058441.4A CN108138309B (zh) 2015-10-06 2016-10-05 材料供给装置及蒸镀装置
KR1020187009291A KR102149172B1 (ko) 2015-10-06 2016-10-05 재료 공급 장치 및 증착 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-198404 2015-10-06
JP2015198404 2015-10-06

Publications (1)

Publication Number Publication Date
WO2017061481A1 true WO2017061481A1 (ja) 2017-04-13

Family

ID=58487769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079649 WO2017061481A1 (ja) 2015-10-06 2016-10-05 材料供給装置および蒸着装置

Country Status (5)

Country Link
JP (1) JP6578367B2 (ja)
KR (1) KR102149172B1 (ja)
CN (1) CN108138309B (ja)
TW (1) TWI711711B (ja)
WO (1) WO2017061481A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6959680B1 (ja) * 2020-11-13 2021-11-05 株式会社シンクロン 成膜装置
JP7430961B1 (ja) 2023-05-18 2024-02-14 株式会社シンクロン 成膜装置及びこれに用いられる材料供給装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110218977B (zh) * 2019-07-03 2021-04-27 Tcl华星光电技术有限公司 蒸镀装置
CN113564534B (zh) * 2020-04-28 2023-05-09 宝山钢铁股份有限公司 一种真空镀机组镀液连续供给装置及其供给方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173767A (ja) * 1989-11-30 1991-07-29 Mitsubishi Electric Corp 薄膜形成装置
JP2002097566A (ja) * 2000-09-18 2002-04-02 Toyo Commun Equip Co Ltd 電子ビーム蒸着用電子銃
JP2013127086A (ja) * 2011-12-16 2013-06-27 Ulvac Japan Ltd 蒸着装置及び蒸着方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05128518A (ja) 1991-10-31 1993-05-25 Sony Corp 磁気記録媒体の製造方法
JPH07286266A (ja) 1994-04-18 1995-10-31 Fuji Photo Film Co Ltd 蒸着装置および蒸着方法
JP4312289B2 (ja) * 1999-01-28 2009-08-12 キヤノンアネルバ株式会社 有機薄膜形成装置
CN1210435C (zh) * 2003-06-04 2005-07-13 深圳市创欧科技有限公司 用于制作有机电致发光显示器的蒸镀装置
EP2025774B1 (en) * 2006-05-19 2014-03-05 Ulvac, Inc. Vapor deposition apparatus for organic vapor deposition material and process for producing organic thin film
DE112008000669T5 (de) * 2007-03-26 2010-03-25 ULVAC, Inc., Chigasaki-shi Dampfabscheidungsquelle, Dampfabscheidungsvorrichtung, Filmbildungsverfahren
EP2190264A4 (en) * 2007-09-10 2011-11-23 Ulvac Inc EXPANSION UNIT
WO2009047879A1 (ja) * 2007-10-09 2009-04-16 Panasonic Corporation 成膜方法および成膜装置
KR101205752B1 (ko) * 2008-02-26 2012-11-28 가부시키가이샤 알박 성막원, 증착 장치, 유기 el 소자의 제조 장치
JP2010106357A (ja) * 2008-09-30 2010-05-13 Canon Inc 成膜方法及び成膜装置
JP2014136827A (ja) * 2013-01-18 2014-07-28 Hitachi High-Technologies Corp 蒸着装置およびこれに用いる蒸発源

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173767A (ja) * 1989-11-30 1991-07-29 Mitsubishi Electric Corp 薄膜形成装置
JP2002097566A (ja) * 2000-09-18 2002-04-02 Toyo Commun Equip Co Ltd 電子ビーム蒸着用電子銃
JP2013127086A (ja) * 2011-12-16 2013-06-27 Ulvac Japan Ltd 蒸着装置及び蒸着方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6959680B1 (ja) * 2020-11-13 2021-11-05 株式会社シンクロン 成膜装置
WO2022102355A1 (ja) * 2020-11-13 2022-05-19 株式会社シンクロン 成膜装置
JP2022078588A (ja) * 2020-11-13 2022-05-25 株式会社シンクロン 成膜装置
JP7430961B1 (ja) 2023-05-18 2024-02-14 株式会社シンクロン 成膜装置及びこれに用いられる材料供給装置

Also Published As

Publication number Publication date
KR102149172B1 (ko) 2020-08-28
CN108138309A (zh) 2018-06-08
TWI711711B (zh) 2020-12-01
TW201732061A (zh) 2017-09-16
CN108138309B (zh) 2020-08-14
JPWO2017061481A1 (ja) 2018-04-05
KR20180048975A (ko) 2018-05-10
JP6578367B2 (ja) 2019-09-18

Similar Documents

Publication Publication Date Title
JP6578367B2 (ja) 材料供給装置および蒸着装置
JP4871833B2 (ja) 蒸着源、蒸着装置
KR100926437B1 (ko) 증착 물질 공급 장치 및 이를 구비한 기판 처리 장치
JP5114288B2 (ja) 成膜装置、有機薄膜形成方法
US20130276706A1 (en) Deposition apparatus
JP2011256427A (ja) 真空蒸着装置における蒸着材料の蒸発、昇華方法および真空蒸着用るつぼ装置
JP2003113466A (ja) 真空蒸着装置
JP4806109B2 (ja) 薄膜の製造装置および製造方法
WO2022102355A1 (ja) 成膜装置
JP2013127086A (ja) 蒸着装置及び蒸着方法
JP5569756B2 (ja) 連続薄膜蒸着装置
JP5674431B2 (ja) 薄膜形成装置
JP6526389B2 (ja) 成膜装置
US20190111468A1 (en) Apparatus for casting a mold
CN111621749B (zh) 供应装置、方法和处理装置
KR101539624B1 (ko) 증착 물질 연속 공급장치 및 이를 이용한 하향식 내지문 코팅 증착 장치와 인라인 설비
JPH03274264A (ja) 溶融材料あるいは昇華性材料の重量監視装置及びその重量制御装置
JP4712677B2 (ja) 薄板製造方法および薄板製造装置
JP2014221717A (ja) 窒化物結晶製造方法および窒化物結晶製造装置
JP2021181606A (ja) 蒸発源装置、蒸着装置、及び蒸発源装置の制御方法
JP2004250282A (ja) 析出板製造装置
JP2006231381A (ja) 金属溶湯供給装置
JP2004076113A (ja) イオンプレーティング方法およびその装置
JP2004293760A (ja) 駆動機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853635

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017544534

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187009291

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853635

Country of ref document: EP

Kind code of ref document: A1