WO2017061229A1 - 研磨用組成物およびこれを用いた研磨方法、ならびにこれらを用いた研磨済研磨対象物の製造方法 - Google Patents

研磨用組成物およびこれを用いた研磨方法、ならびにこれらを用いた研磨済研磨対象物の製造方法 Download PDF

Info

Publication number
WO2017061229A1
WO2017061229A1 PCT/JP2016/076530 JP2016076530W WO2017061229A1 WO 2017061229 A1 WO2017061229 A1 WO 2017061229A1 JP 2016076530 W JP2016076530 W JP 2016076530W WO 2017061229 A1 WO2017061229 A1 WO 2017061229A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polishing composition
abrasive grains
hydrogen peroxide
acid
Prior art date
Application number
PCT/JP2016/076530
Other languages
English (en)
French (fr)
Inventor
敏男 篠田
剛宏 梅田
章太 鈴木
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Priority to JP2017513821A priority Critical patent/JP6189571B1/ja
Priority to US15/765,572 priority patent/US20190077991A1/en
Publication of WO2017061229A1 publication Critical patent/WO2017061229A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Definitions

  • the present invention relates to a polishing composition, a polishing method using the same, and a method for producing a polished polishing object using the same.
  • CMP slurry a polishing slurry which is a polishing composition containing fine particles of alumina or silica on the wafer surface in a semiconductor manufacturing process.
  • a CMP process is introduced for polishing using an abbreviation.
  • TSV technology
  • a CMP process is also used when manufacturing such an electrode, and the semiconductor substrate is thinned and flattened.
  • Polishing compositions used for such applications are various, such as improving the polishing rate, improving the flatness of the polished object, preventing clogging of the filter, improving the lifetime of the polishing composition, or suppressing the environmental load. In view of the above, studies have been made to realize excellent polishing characteristics.
  • a polishing composition for a silicon wafer containing colloidal silica sol or silica gel and a predetermined amount of piperazine can realize a high polishing rate and obtain an excellent polishing surface. Is disclosed.
  • International Publication No. 2008/004320 (corresponding to US Patent Application Publication No. 2009/31947) is composed of an alkaline compound which is a guanidine and water, or further added with these metal oxides. It is disclosed that excellent smoothness can be obtained by a polishing composition for silicon wafers.
  • polishing compositions such as JP-A-5-154760 and International Publication No. 2008/004320 cannot be said to have a sufficient polishing rate, and there are polishing compositions that can realize further improvement in the polishing rate. It was sought after.
  • an object of the present invention is to provide means capable of further improving the polishing rate in a polishing composition.
  • the present invention also provides a polishing method using such a polishing composition, and a method for producing a polished polishing object, comprising the steps of polishing the polishing object using such a polishing composition.
  • the purpose is to provide.
  • the present invention contains abrasive grains, hydrogen peroxide, and water, the average secondary particle diameter of the abrasive grains is 20 nm or more and 150 nm or less, and the molar concentration M (mmol / Kg) of the hydrogen peroxide. And the total surface area of the abrasive grains satisfy the relationship of the following formula 1 and the following formula 2 and have a pH of 10 or more and 14 or less.
  • S represents the total surface area (m 2 ) of abrasive grains present in 1 Kg of the polishing composition
  • Log (S) represents the natural logarithm of S
  • polishing composition of the present invention will be described in detail.
  • One embodiment of the present invention contains abrasive grains, hydrogen peroxide, and water, the average secondary particle diameter of the abrasive grains is 20 nm or more and 150 nm or less, and the molar concentration M (mmol) of the hydrogen peroxide. / Kg) and the total surface area of the abrasive grains satisfy the relationship of the following formula 1 and the following formula 2 and have a pH of 10 or more and 14 or less.
  • S represents the total surface area (m 2 ) of abrasive grains present in 1 Kg of the polishing composition
  • Log (S) represents the natural logarithm of S
  • the polishing rate can be improved.
  • the polishing rate is basic. It depends on the dissolving power of the polishing object due to the above, that is, the etching power.
  • the present inventors pay attention also to viewpoints other than the etching power, and for the purpose of finding conditions that can realize further improvement of the polishing rate, various factors that may affect the polishing rate. Was examined.
  • the present inventors surprisingly found that abrasive particles having a predetermined average secondary particle size in a polishing composition containing hydrogen peroxide, which has been conventionally considered to reduce the polishing rate, were used. It was confirmed that the polishing rate may be significantly improved when a predetermined amount is contained and the pH is 10 or more and 14 or less. As a result of further studies, the inventors have found that the amount of hydrogen peroxide added and the total surface area of the abrasive grains present in the polishing composition satisfy the relationship represented by Formula 1 and Formula 2 above. In some cases, the present invention was completed by finding that the polishing rate was significantly improved.
  • the present inventors presume the mechanism by which the polishing rate is improved by the invention according to one aspect of the present application as follows.
  • the mechanism will be described by taking as an example the case where the object to be polished is a silicon material (Si), but the present invention is not limited to this.
  • Addition of an oxidizing agent to a polishing object generally oxidizes the surface of the polishing object and lowers the solubility of the polishing object in the polishing composition, thereby reducing the polishing rate.
  • the hydrogen peroxide is dissociated in the polishing composition to generate H + and HO 2 ⁇ .
  • acts as a nucleophile in the oxidation reaction process of hydrogen peroxide and a silicon material, Si-O 2 H - this time, HO 2 for silicon material surface and near-surface Si to be polished thereof
  • a reaction intermediate having the structure represented is formed.
  • the surface of the silicon material in the state where such a reaction intermediate exists is more fragile than the state where Si atoms are firmly bonded to each other by Si—Si bonds. Therefore, the surface of the silicon material in the state where the reaction intermediate exists is easily broken by the stress generated by physical contact with the abrasive grains, and as a result, the polishing rate is improved.
  • the above formula 1 represents the upper limit of the molar concentration M of hydrogen peroxide having an effect of improving the polishing rate as a function of the total surface area S of the abrasive grains in the polishing composition. That is, the above formula 1 represents that the upper limit of the molar concentration M of hydrogen peroxide that exhibits the effect of improving the polishing rate is determined by the value of the total surface area S of the abrasive grains.
  • the reason is considered as follows. As described above, the presence of hydrogen peroxide in the polishing composition forms a reaction intermediate and improves the polishing rate. However, when hydrogen peroxide is excessively added to the polishing composition, the contact frequency of the abrasive grains becomes relatively small with respect to the amount of the reaction intermediate produced.
  • the portion that did not come into contact with the abrasive grains in the state of the reaction intermediate is oxidized after completion of the reaction, and the oxidized portion that was oxidized after completion of the reaction of the silicon material is basic polishing. Since the etching property by the composition for use also decreases, as a result, the polishing rate does not improve or the polishing rate decreases.
  • the contact frequency of the abrasive grains per unit time and unit area with the surface of the silicon material correlates with the surface area of the abrasive grains present in the polishing composition, depending on the value of the total surface area S of the abrasive grains.
  • the amount of reaction intermediate that can come into contact with the abrasive grains on the surface of the silicon material will be determined.
  • the amount of the reaction intermediate correlates with the molar concentration M of hydrogen peroxide. From this, the upper limit of the molar concentration M of hydrogen peroxide is determined to be smaller than the value on the left side of the above equation 1.
  • the above formula 1 expresses the upper limit of the molar concentration M of hydrogen peroxide as a logarithmic function of the total surface area S of the abrasive grains.
  • the upper limit of the molar concentration M of hydrogen peroxide that exhibits the effect of improving the polishing rate increases, and the increase in the total surface area S of the abrasive grains.
  • the reason why the upper limit of the molar concentration M of hydrogen peroxide at which the effect of improving the polishing rate is expressed increases as the total surface area S of the abrasive grains increases is as follows. This is because it is considered that the amount of the reaction intermediate that can come into contact with the abrasive grains on the surface of the silicon material increases with the increase.
  • the reason why the upper limit of the molar concentration M of hydrogen peroxide decreases as the total surface area S of the abrasive grains decreases is that when the average secondary particle diameter of the abrasive grains is decreased, the total surface area S of the abrasive grains decreases.
  • the above formula 1 and the above formula 2 represent that the effect of improving the polishing rate by adding hydrogen peroxide cannot be obtained unless the total surface area S of the abrasive grains in the polishing composition is not less than a certain value. .
  • the reason is considered as follows. As described above, the contact frequency of the abrasive grains per unit time and unit area with the silicon material surface correlates with the total surface area of the abrasive grains present in the polishing composition. Accordingly, when the total surface area S of the abrasive grains is small, the amount of the reaction intermediate that can come into contact with the abrasive grains on the surface of the silicon material is also reduced.
  • the polishing composition according to the present invention has a pH of 10 or more and 14 or less.
  • the pH of the polishing composition is related to the amount of hydrogen peroxide dissociated in the polishing composition and the etching power of the polishing composition.
  • the pH is preferably 11 or more from the viewpoint of further improving the polishing rate and obtaining a higher polishing rate. This is because the amount of hydrogen peroxide dissociated in the polishing composition is further increased, and it is considered that the etching power of the polishing composition can be further increased.
  • it is preferable that pH is 13 or less. This is because when the pH is 13 or less, it is considered that the amount of hydrogen peroxide dissociated in the polishing composition can be further increased. From the same viewpoint, the pH is more preferably 12 or less. As an example of the preferable form which concerns on this invention, polishing composition etc. whose pH is 10-12 are mentioned, for example.
  • the pH control method is not particularly limited, but for example, selection of the abrasive grains described later, a basic compound that can be optionally used, and other components that can be optionally used (for example, an acidic compound) or adjustment of the addition amount Etc. Among these, selection of the kind of basic compound or adjustment of the addition amount is preferable.
  • the pH value of the polishing composition can be confirmed with a pH meter. Detailed measurement methods are described in the examples.
  • the polishing composition of the present invention essentially contains abrasive grains.
  • the abrasive grains serve to mechanically polish the surface of the object to be polished.
  • the abrasive according to the present invention has an average secondary particle diameter of 20 nm or more and 150 nm or less.
  • the average secondary particle diameter is less than 20 nm, the effect of improving the polishing rate cannot be obtained. This is because, when the average secondary particle diameter of the abrasive grains is small, the energy of the abrasive grains when contacting the abrasive grains and the object to be polished is low, so it is difficult to mechanically destroy the surface of the object to be polished. It is because it is thought that it becomes.
  • the average secondary particle diameter is more than 150 nm, the effect of improving the polishing rate cannot be obtained.
  • the thickness is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 30 nm or less.
  • the polishing composition whose average secondary particle diameter of an abrasive grain is 20 nm or more and 100 nm or less is mentioned, for example.
  • the average secondary particle diameter of the abrasive grains can be the average secondary particle diameter obtained by measuring the volume average particle diameter by the dynamic light scattering method. Detailed measurement methods are described in the examples.
  • the average primary particle diameter of the abrasive grains is not particularly limited, but for example, the lower limit is preferably 5 nm or more, more preferably 7 nm or more, and further preferably 10 nm or more. Further, the upper limit of the average primary particle diameter of the abrasive grains is preferably 80 nm or less, more preferably 60 nm or less, and further preferably 20 nm or less. If it is such a range, the secondary particle which has the said average secondary particle diameter can be formed more easily. In addition, the average primary particle diameter of an abrasive grain is calculated based on the specific surface area of the abrasive grain measured by BET method, for example.
  • the addition amount of the abrasive grains in the polishing composition is 1.5 mass relative to the total mass of the polishing composition from the viewpoint of further enhancing the effect of improving the polishing rate and obtaining a higher polishing rate. % Or more is preferable.
  • the reason for this is that the total surface area of the abrasive grains can be easily set to a certain level or more, and the contact frequency between the abrasive grains and the reaction intermediate on the surface of the object to be polished is increased, thereby improving the polishing rate by hydrogen peroxide. This is because the effect is considered to be higher.
  • the addition amount of the abrasive grains in the polishing composition is more preferably 2% by mass or more, further preferably 5% by mass or more, particularly preferably 20% by mass or more, and most preferably 25% by mass or more.
  • the amount of abrasive grains added in the polishing composition is the total amount of the polishing composition from the viewpoints of further enhancing the effect of improving the polishing rate and obtaining a higher polishing rate, and further reducing costs. It is preferable that it is 50 mass% or less with respect to mass. The reason for this is that when the addition amount of abrasive grains in the polishing composition is 50% by mass or less, the fluidity of the polishing composition is improved, and the abrasive grains per unit time and unit area and the surface of the object to be polished. It is because it is thought that it is because the contact frequency increases.
  • the addition amount of the abrasive grains in the polishing composition is more preferably 40% by mass or less, further preferably 35% by mass or less, and particularly preferably 30% by mass or less. .
  • the total surface area S (m 2 ) of the abrasive grains present in 1 kg of the polishing composition is the molar concentration M (mmol / Kg) of hydrogen peroxide relative to 1 kg of the polishing composition that can satisfy the above formula 1 and formula 2.
  • M mmol / Kg
  • the total surface area S of the abrasive grains present in 1 kg of the polishing composition is 1900 m 2 or more from the viewpoint of further enhancing the effect of improving the polishing rate and obtaining a higher polishing rate.
  • the total surface area of the abrasive grains present in 1 kg of the polishing composition is more preferably 6400 m 2 or more, further preferably 10,000 m 2 or more, and further more preferably 12000 m 2 or more. preferably, particularly preferably at 25000 m 2 or more, and most preferably 32000M 2 or more.
  • the total surface area S of the abrasive grains present in 1 kg of the polishing composition is preferably 65000 m 2 or less from the viewpoint of further enhancing the effect of improving the polishing rate and obtaining a higher polishing rate.
  • the reason for this is that, as described above, by reducing the total surface area S of the abrasive grains to a certain value or less, it is possible to prevent a reduction in the mechanical polishing ability of the abrasive grains due to a decrease in the average secondary particle diameter. Because it is considered. Moreover, it is because it is thought that the area of the part which an abrasive grain and a grinding
  • the total surface area S of the abrasive grains present in 1 kg of the polishing composition is calculated from the average secondary particle diameter and added amount of the abrasive grains, and the specific gravity of the abrasive grains. Detailed measurement methods are described in the examples.
  • the kind of abrasive grains is not particularly limited, and inorganic particles, organic particles, organic-inorganic composite particles, and the like can be used.
  • the inorganic particles include particles made of metal oxides such as silica, alumina, ceria and titania, silicon nitride particles, silicon carbide particles, and boron nitride particles.
  • Specific examples of the organic particles include latex particles, polystyrene particles, polymethyl methacrylate (PMMA) particles, and the like.
  • Abrasive grains may be used singly or as a composite thereof or as a mixture of two or more thereof. Moreover, a commercial item may be used for an abrasive grain and a synthetic product may be used.
  • silica particles are preferably used. Although it does not restrict
  • colloidal silica that can be used is not particularly limited, and for example, surface-modified colloidal silica can also be used.
  • Surface modification of colloidal silica (supported colloidal silica) can be performed, for example, by mixing a metal such as aluminum, titanium or zirconium, or an oxide thereof with colloidal silica and doping the surface of silica particles.
  • the surface modification of colloidal silica can also be performed by chemically bonding the functional group of the organic acid to the surface of the silica particle, that is, by immobilizing the organic acid.
  • the polishing composition of the present invention essentially contains hydrogen peroxide. Hydrogen peroxide is contained in the polishing composition having a predetermined pH range, thereby improving the polishing rate of the polishing composition.
  • the molar concentration M (mmol / Kg) of hydrogen peroxide with respect to 1 kg of the polishing composition is related to the above formula 1 and the above in relation to the total surface area S (m 2 ) of the abrasive grains present in the polishing composition 1 kg. There is no particular limitation as long as the value can have a range that can satisfy Formula 2.
  • the molar concentration M of hydrogen peroxide with respect to 1 Kg of the polishing composition is preferably 25 mmol / Kg or more from the viewpoint of enhancing the effect of improving the polishing rate and obtaining a higher polishing rate.
  • the molar concentration M of hydrogen peroxide with respect to 1 kg of the polishing composition is 25 mmol / Kg or more, more reaction intermediates are formed, the surface of the object to be polished is brittle, and mechanically by the abrasive grains. This is because the portion that can be easily destroyed is considered to increase.
  • the molar concentration M of hydrogen peroxide with respect to 1 kg of the polishing composition is more preferably 45 mmol / Kg or more, further preferably 50 mmol / Kg or more, and 90 mmol / Kg or more. Even more preferred is 100 mmol / Kg or more, and most preferred is 140 mmol / Kg or more.
  • the upper limit of the preferable range is preferably 300 mmol / Kg or less from the same viewpoint. This is because it is presumed as follows. First, since the molar concentration of hydrogen peroxide is not an excessively high concentration, the formation of an oxidized portion that completes the reaction without contacting the abrasive grains in the state of the reaction intermediate is further suppressed, and etching due to an increase in the oxidized portion The decline in sex can also be reduced. As a result, the effect of improving the polishing rate is further increased, and a higher polishing rate can be realized.
  • the molar concentration M of hydrogen peroxide with respect to 1 kg of the polishing composition is more preferably 250 mmol / Kg or less, further preferably 200 mmol / Kg or less, and 160 mmol / Kg or less. Particularly preferred is 150 mmol / Kg or less.
  • the polishing composition of the present invention essentially contains water. Water serves as a solvent for dissolving or dispersing each component of the polishing composition.
  • water containing as little impurities as possible is preferable.
  • water which does not contain impurities as much as possible for example, water having a total content of transition metal ions of 100 ppb or less is preferable.
  • the purity of water can be increased by operations such as removal of impurity ions using an ion exchange resin, removal of foreign matters by a filter, distillation, and the like.
  • ion exchange water pure water, ultrapure water, distilled water, or the like is preferably used.
  • the polishing composition according to one embodiment of the present invention may contain other components other than abrasive grains, hydrogen peroxide, and water as necessary.
  • other components include, but are not limited to, basic compounds, acidic compounds, water-soluble polymers, oxidizing agents other than hydrogen peroxide, reducing agents, surfactants, fungicides, and chelating agents. Not.
  • the polishing composition according to one embodiment of the present invention preferably further contains a basic compound.
  • the basic compound has a function of chemically polishing the surface of the object to be polished by etching and a function of improving the dispersion stability of the abrasive grains.
  • a basic compound can be used as a pH adjuster.
  • basic compounds include hydroxides or salts of Group 2 elements or alkali metals, quaternary ammonium compounds, ammonia, amines, and the like.
  • group 2 element is not particularly limited, but an alkaline earth metal can be preferably used.
  • the Group 2 element or alkali metal hydroxide or salt the Group 2 element includes calcium, and the alkali metal includes potassium, sodium, and the like.
  • the salt include carbonate, hydrogen carbonate, sulfate, acetate and the like.
  • the hydroxide or salt of the Group 2 element or alkali metal for example, calcium hydroxide, potassium hydroxide, potassium carbonate, potassium hydrogen carbonate, potassium sulfate, potassium acetate, potassium chloride, hydroxide Sodium, ammonium hydrogen carbonate, ammonium carbonate, sodium hydrogen carbonate, sodium carbonate, etc. are mentioned.
  • Examples of the quaternary ammonium compound include hydroxides such as tetramethylammonium, tetraethylammonium, and tetrabutylammonium, and salts such as chlorides, carbonates, sulfates, and phosphates.
  • Specific examples include tetraalkylammonium hydroxide such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, and tetrabutylammonium hydroxide, and tetraalkylammonium hydroxide salts such as tetramethylammonium carbonate and tetramethylammonium chloride. .
  • amines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N- ( ⁇ -aminoethyl) ethanolamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, anhydrous piperazine , Piperazine hexahydrate, 1- (2-aminoethyl) piperazine, N-methylpiperazine, guanidine and the like.
  • the basic compound a preferable compound can be selected according to its expected function.
  • the basic compound preferably contains a quaternary ammonium hydroxide compound such as tetramethylammonium hydroxide, a carbonate or a bicarbonate.
  • the basic compound is preferably a mixture of a quaternary ammonium hydroxide compound and a carbonate or bicarbonate.
  • quaternary ammonium hydroxide, amine, ammonia and the like are preferable.
  • the polishing composition according to one embodiment of the present invention is more preferably a Group 2 element or an alkali metal hydroxide or salt, and more preferably an alkali metal hydroxide or salt. More preferred is an alkali metal carbonate or hydrogen carbonate, still more preferred is an alkali metal carbonate.
  • the alkali metal hydroxide potassium hydroxide or potassium hydroxide is preferable, and potassium hydroxide is more preferable.
  • the alkali metal carbonate is preferably potassium carbonate or sodium carbonate, more preferably potassium carbonate. That is, in the polishing composition according to one embodiment of the present invention, the basic compound is most preferably potassium carbonate.
  • content (when using 2 or more types) of the basic compound in polishing composition is 0.01 mass% or more with respect to the gross mass of polishing composition. This is because the etching power can be further improved. Further, it is considered that dissociation of hydrogen peroxide can be further promoted. From the same viewpoint, the content of the basic compound in the polishing composition is more preferably 0.03% by mass or more, and further preferably 0.05% by mass or more. On the other hand, the content of the basic compound in the polishing composition is preferably 10% by mass or less with respect to the total mass of the polishing composition. This is because it is considered that it is easier to adjust the dissociation amount of hydrogen peroxide to a more appropriate range. From the same viewpoint, the content of the basic compound in the polishing composition is more preferably 5% by mass or less, and further preferably 3% by mass or less.
  • the polishing composition according to one embodiment of the present invention may further contain an acidic compound.
  • the acidic compound can be used as a pH adjuster.
  • the acidic compound is not particularly limited and includes known acids.
  • the acid include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, boric acid, carbonic acid, hypophosphorous acid, phosphorous acid, and phosphoric acid; formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2- Methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n-heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid , Glycolic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, phthalic acid, malic acid
  • the pH adjuster is preferably sulfuric acid, nitric acid, phosphoric acid, glycolic acid, succinic acid, maleic acid, citric acid, tartaric acid, malic acid, gluconic acid, and itaconic acid.
  • These acidic compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the addition amount of the acidic compound is not particularly limited, and can be appropriately set so that the polishing composition has a desired pH.
  • the polishing composition according to one embodiment of the present invention may further contain a water-soluble polymer.
  • the water-soluble polymer has a function of improving the wettability of the surface to be polished.
  • One type of water-soluble polymer may be used, or two or more types may be used in combination.
  • water-soluble polymer those having at least one functional group selected from a cationic group, an anionic group and a nonionic group in the molecule can be used.
  • Specific examples of the water-soluble polymer include those containing a hydroxyl group, carboxyl group, acyloxy group, sulfo group, quaternary ammonium structure, heterocyclic structure, vinyl structure, polyoxyalkylene structure and the like in the molecule.
  • Nonionic water-soluble polymers are preferred from the standpoint of reducing aggregates and improving detergency.
  • Preferable examples include polymers containing oxyalkylene units, polymers containing nitrogen atoms (nitrogen-containing water-soluble polymers), polyvinyl alcohol, cellulose derivatives, starch derivatives and the like.
  • it is at least one selected from a polymer containing an oxyalkylene unit, a polymer containing a nitrogen atom, polyvinyl alcohol and a cellulose derivative. More preferred are polymers containing nitrogen atoms and cellulose derivatives.
  • the weight average molecular weight of the water-soluble polymer is preferably 2,000,000 or less, preferably 1,000,000 or less in terms of polyethylene oxide, from the viewpoint of the dispersion stability of the polishing composition and the detergency of the silicon material. Is more preferably 500,000 or less, and particularly preferably 300,000 or less. Further, the weight average molecular weight of the water-soluble polymer in the polishing composition is preferably 10,000 or more, more preferably 20,000 or more, and further preferably 30,000 or more.
  • These water-soluble polymers may be used alone or in combination of two or more.
  • the content of the water-soluble polymer in the polishing composition is preferably 0.0001% by mass or more with respect to the total mass of the polishing composition from the viewpoint of improving the wettability of the polishing surface. More preferably, the content is 0.001% by mass or more, and further preferably 0.005% by mass or more. On the other hand, from the viewpoint of improving the polishing rate, it is preferably 5% by mass or less, more preferably 1% by mass or less, and 0.02% by mass or less with respect to the total mass of the polishing composition. More preferably.
  • the polishing composition according to one embodiment of the present invention may further contain an oxidizing agent other than hydrogen peroxide.
  • Oxidizing agents other than hydrogen peroxide have the function of further improving the polishing efficiency when polishing a specific polishing object whose polishing efficiency is improved by adding it.
  • oxidizing agents other than hydrogen peroxide include peracetic acid, percarbonate, urea peroxide, perchloric acid; sodium persulfate, potassium persulfate, ammonium persulfate, potassium monopersulfate, oxone (2KHSO 5 , KHSO 4 , persulfates such as double salts with peroxides such as K 2 SO 4 ); hypochlorite, chlorite, chlorate, perchlorate, hypobromite, bromine Acid, bromate, perbromate, hypoiodite, iodate, iodate, periodate, and other halogen-based oxidants; ceric ammonium nitrate, potassium permanganate, potassium chromate And compounds of metal elements that can take a wide range of oxidation numbers.
  • One of these oxidizing agents other than hydrogen peroxide may be used alone, or two or more thereof may be used in combination.
  • the content of the oxidizing agent other than hydrogen peroxide in the polishing composition is such that when polishing an object to be polished such that the polishing efficiency is improved by adding the oxidizing agent, the polishing efficiency is further improved. It is preferable that it is 0.001 mass% or more with respect to the gross mass of polishing composition, and it is more preferable that it is 0.01 mass% or more.
  • the upper limit of the content of oxidizing agents other than hydrogen peroxide in the polishing composition is to further suppress material costs, further reduce the burden of waste liquid treatment, and suppress excessive oxidation of the surface of the object to be polished by the oxidizing agent. From this viewpoint, the content is preferably 30% by mass or less, more preferably 10% by mass or less, with respect to the total mass of the polishing composition.
  • the polishing composition according to one embodiment of the present invention may further contain a reducing agent.
  • the reducing agent suppresses the oxidation of an arbitrary metal, thereby suppressing the corrosion of the metal or controlling the polishing efficiency.
  • reducing agent a conventionally known reducing agent used in the polishing composition can be contained.
  • organic substances include hydrazine, formic acid, oxalic acid, formaldehyde aqueous solution, ascorbic acid, reducing sugars such as glucose, and the like.
  • inorganic substance include lithium aluminum hydride, sodium borohydride, a plurality of stable valence metals and compounds thereof. These reducing agents may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the lower limit of the content of the reducing agent in the polishing composition is preferably 0.001% by mass or more from the viewpoint of further improving the polishing efficiency without increasing the abrasive concentration. More preferably.
  • the amount is 30% by mass or less with respect to the total mass of the polishing composition. It is preferable that it is 10% by mass or less.
  • the polishing composition according to one embodiment of the present invention may further contain a chelating agent.
  • the chelating agent captures the metal impurities originally contained in the polishing composition and the metal impurities generated from the polishing object or polishing apparatus during polishing or mixed from the outside to form a complex, thereby forming a polishing object. It has a function of suppressing the residual of metal impurities.
  • the chelating agent prevents the metal contamination of the semiconductor by suppressing the remaining metal impurities and suppresses the deterioration of the quality of the semiconductor.
  • chelating agents examples include aminocarboxylic acid chelating agents and organic phosphonic acid chelating agents.
  • organic phosphonic acid chelates are preferable, and ethylenediaminetetrakis (methylenephosphonic acid) is more preferable.
  • These chelating agents may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the chelating agent in the polishing composition is 0.0001% by mass or more based on the total mass of the polishing composition from the viewpoint of further enhancing the effect of suppressing metal impurities remaining in the polishing object. It is preferable that it is 0.0005 mass% or more, and it is further more preferable that it is 0.005 mass% or more.
  • the content of the chelating agent in the polishing composition is preferably less than 0.5% by mass and less than 0.3% by mass from the viewpoint of further improving the storage stability of the polishing composition. More preferably, it is more preferably less than 0.1% by mass, and particularly preferably less than 0.05% by mass.
  • the polishing composition according to one embodiment of the present invention may further contain a surfactant.
  • the surfactant has a function of improving the cleaning efficiency after polishing by imparting hydrophilicity to the polished surface after polishing, and preventing adhesion of dirt and the like. Further, the surfactant not only improves the cleanability but also has a function of improving the step performance such as dishing by selecting an appropriate surfactant.
  • the surfactant may be any of an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant.
  • One of these surfactants may be used alone, or two or more thereof may be used in combination.
  • the content of the surfactant in the polishing composition is from the viewpoint of further improving the cleaning efficiency after polishing and further improving the step performance such as dishing by selecting an appropriate surfactant. It is preferably 001 g / L or more, and more preferably 0.005 g / L or more.
  • the polishing composition according to one embodiment of the present invention may further contain an antiseptic / antifungal agent.
  • antiseptics and fungicides examples include isothiazoline preservatives such as 2-methyl-4-isothiazolin-3-one and 5-chloro-2-methyl-4-isothiazolin-3-one, and paraoxybenzoic acid esters. , And phenoxyethanol. These preservatives and fungicides may be used alone or in combination of two or more.
  • the polishing object to be polished using the polishing composition according to one embodiment of the present invention is not particularly limited, but is preferably a silicon-based material.
  • the silicon-based material include a silicon material, a silicon oxide material, a silicon nitride material, and a silicon oxynitride material.
  • the silicon oxide material may be a cured product such as TEOS (tetraethoxysilane).
  • the polishing composition according to one embodiment of the present invention is preferably used for polishing a silicon material.
  • the silicon material preferably includes at least one material selected from the group consisting of silicon single crystal, amorphous silicon, and polysilicon.
  • the silicon material is preferably a silicon single crystal or polysilicon, and more preferably a silicon single crystal, from the viewpoint that the effects of the present invention can be obtained more remarkably.
  • the object to be polished is not particularly limited, but is preferably a semiconductor substrate.
  • the average secondary particle diameter of the abrasive grains is 20 nm or more and 150 nm or less
  • the molar concentration M (mmol / Kg) of hydrogen peroxide and the total surface area of the abrasive grains satisfy the relationship of the following formula 1 and the following formula 2. And so that pH may be 10 or more and 14 or less
  • a method for producing a polishing composition comprising mixing abrasive grains, hydrogen peroxide, and water;
  • S represents the total surface area (m 2 ) of abrasive grains present in 1 Kg of the polishing composition
  • Log (S) represents the natural logarithm of S
  • Polishing composition can be manufactured by mixing each component which comprises polishing composition, and another component as needed.
  • the manufacturing method of the polishing composition is not particularly limited.
  • each component is mixed in the slurry line for supplying the polishing composition to the polishing pad, before mixing the components with each other before being applied to the polishing apparatus.
  • a method of mixing each component on the polishing pad it is preferable to use a method of mixing each component before applying to the polishing apparatus.
  • each component it is preferable to perform stirring and mixing.
  • the temperature at the time of mixing each component is not particularly limited, but is preferably 0 ° C. or higher and 60 ° C. or lower, and more preferably 10 ° C. or higher and 40 ° C. or lower.
  • mixing each component it may be heated to increase the dissolution rate.
  • the mixing time is not particularly limited, but is preferably 1 second or more and 180 minutes or less.
  • the polishing object is a polishing composition according to one mode of the present invention or a polishing composition manufactured by the manufacturing method according to another mode of the present invention.
  • a polishing method for polishing is provided.
  • a polishing apparatus As a polishing apparatus, a general holder having a polishing surface plate on which a holder for holding a substrate having a polishing object and a motor capable of changing the number of rotations are attached and a polishing pad (polishing cloth) can be attached.
  • a polishing apparatus can be used. Specifically, for example, EPO113D (manufactured by Ebara Corporation) can be used as the polishing apparatus.
  • polishing pad a general nonwoven fabric, polyurethane, porous fluororesin, or the like can be used without particular limitation. It is preferable that the polishing pad is grooved so that the polishing composition accumulates. Specifically, for example, IC1000 (manufactured by Nitta Haas Co., Ltd.) can be used as the polishing pad.
  • the polishing conditions are not particularly limited.
  • the rotation speed of the polishing platen is preferably 10 rpm or more and 500 rpm or less
  • the pressure (polishing pressure) applied to the substrate having the object to be polished is preferably 300 hPa or more and 400 hPa or less.
  • the method of supplying the polishing composition to the polishing pad is not particularly limited, and for example, a method of continuously supplying with a pump or the like is employed. Although the supply amount is not limited, it is preferable that the surface of the polishing pad is always covered with the polishing composition according to one embodiment of the present invention, for example, 10 ml / min to 1000 ml / min.
  • the polishing temperature is not particularly limited, but is preferably 0 ° C.
  • polishing time is not particularly limited, but is preferably 1 second to 180 minutes, for example. Polishing may be either single-side polishing or double-side polishing. Moreover, it is preferable to perform washing and drying after polishing.
  • Still another embodiment of the present invention includes a step of polishing a polishing object using the polishing composition according to one embodiment of the present invention or using the polishing method according to one embodiment of the present invention.
  • a method for producing a polished object is provided.
  • the method for producing a polished object to be polished preferably includes a step of washing and drying the object to be polished after the polishing step.
  • polishing composition [Examples 1 to 13 and Comparative Examples 1 to 12] ⁇ Colloidal silica (abrasive grains) Select from hydrogen peroxide to have a composition as shown in Table 2, and add potassium carbonate to 3% by mass with respect to the total mass of the polishing composition, and mix these in pure water
  • polishing compositions of Examples 1 to 13 and Comparative Examples 1 to 12 having a pH of 11 were prepared (mixing temperature: about 25 ° C., mixing time: about 10 minutes).
  • Examples 14 and 15 and Comparative Examples 13 to 18 ⁇ Colloidal silica (abrasive grains) Select from hydrogen peroxide to have a composition as shown in Table 3, and then add potassium hydroxide (KOH) in an amount such that the polishing composition has a pH as shown in Table 3, and add pure
  • KOH potassium hydroxide
  • the polishing compositions of Examples 14 and 15 and Comparative Examples 13 to 18 were prepared by mixing in water (mixing temperature: about 25 ° C., mixing time: about 10 minutes).
  • the average secondary particle size of the abrasive grains was measured using a dynamic light scattering type particle size / particle size distribution measuring device (model number: UPA UT-151 manufactured by Nikkiso Co., Ltd.). First, abrasive grains were dispersed in pure water to prepare a dispersion having a loading index (laser scattering intensity) of 0.01. Next, using this dispersion, the value of the volume average particle diameter Mv (value of D50) in the UT mode was measured, and the obtained value was defined as the average secondary particle diameter. These results are shown in Table 1.
  • the abrasive grains A, B, C and E represent colloidal silicas each having only an average secondary particle diameter.
  • the radius r (m) of the secondary particles of the abrasive grains is calculated from the average secondary particle diameter R (nm) of the abrasive grains obtained from the above measurement according to the following formula. did.
  • the mass M (Kg) per secondary particle of the abrasive grains was calculated according to the following formula.
  • the specific gravity ⁇ of the abrasive grains used was 2.3 ⁇ 10 3 (Kg / m 3 ) which is the specific gravity of colloidal silica.
  • the number of abrasive grains N (number), which is the number of secondary particles of abrasive grains present in 1 kg of the polishing composition, was calculated according to the following formula.
  • polishing compositions obtained above an 8-inch silicon single crystal substrate that can be used as a semiconductor substrate was polished under the following polishing conditions.
  • the thickness change ⁇ d Si (m) of the object to be polished before and after polishing was divided by the polishing time t (min), and the unit was further converted to ( ⁇ / min). This value was defined as the polishing rate v Si ( ⁇ / min).
  • S represents the total surface area (m 2 ) of abrasive grains present in 1 Kg of the polishing composition
  • Log (S) represents the natural logarithm of S
  • the polishing rate ratio is compared with Comparative Example 1 for Comparative Example 2, Comparative Example 3 for Comparative Example 4, Comparative Examples 3, Comparative Examples 1 to 3, and Comparative Examples 6 and 19. Comparative Example 7 for Example 5, Example 4 and Comparative Example 8, Comparative Example 9 for Examples 5-8 and Comparative Example 10, Comparative Example for Examples 9-13 and Comparative Example 12 11. Comparative Example 13 for Comparative Example 14, Comparative Example 15 for Comparative Example 16, Comparative Example 17 for Example 14, and Comparative Example 18 for Example 15 A polishing composition not containing hydrogen or ammonium persulfate was selected, and the polishing rate ratio (%) was calculated when the polishing rate was 100%.
  • the polishing composition of the example has an excellent effect of improving the polishing rate as compared with the polishing composition of the comparative example.
  • Comparative Example 5 Comparative Example 19 and Example 1
  • the effect of the present invention can be obtained in a system containing an oxidizing agent and the oxidizing agent is hydrogen peroxide.
  • Comparative Example 7 Comparative Example 8 and Example 4 are different polishing compositions in which the addition amount of abrasive grains is 2 mass% and the hydrogen peroxide concentration is in the range of 0 mmol / Kg to 50 mmol / Kg. It is. Further, Comparative Example 9, Comparative Example 10 and Examples 5 to 8 each have an abrasive addition amount of 20 mass% and have different polishing compositions in a range of hydrogen peroxide concentration of 0 mmol / Kg or more and 275 mmol / Kg or less. It is a thing.
  • Comparative Example 11, Comparative Example 12, and Examples 9 to 13 each have an abrasive addition amount of 30% by mass, and different polishing compositions in the hydrogen peroxide concentration range of 0 mmol / Kg to 350 mmol / Kg. It is a thing.
  • the highest polishing speed and the most excellent polishing speed improvement effect Is a polishing composition having a hydrogen peroxide concentration of 25 mmol / Kg (Example 4) when the content is 2% by mass, and polishing with a hydrogen peroxide concentration of 100 mmol / Kg when the added amount of abrasive grains is 20% by mass.
  • the composition for polishing was a polishing composition (Example 10) having a hydrogen peroxide concentration of 150 mmol / Kg when the addition amount of abrasive grains was 30% by mass. And from the comparison of Example 4, Example 6 and Example 10, it is confirmed that when the added amount of abrasive grains is 20% by mass and 30% by mass, a more excellent polishing rate improvement effect can be obtained. It was. Further, it was confirmed that when the addition amount of the abrasive grains was 20% by mass or 30% by mass, a more excellent polishing rate was obtained, and when it was 30% by mass, a further excellent polishing rate was obtained.
  • Comparative Example 5 Comparative Example 6 and Examples 1 to 3, the additive amount of the abrasive grains was 24 mass%, the average secondary particle diameter of the abrasive grains was 80.1 nm, and the hydrogen peroxide concentration was 0 mmol / Kg.
  • the polishing compositions are different from each other in the range of 180 mmol / Kg or less.
  • Comparative Example 9 Comparative Example 10, and Examples 5 to 8, the additive amount of abrasive grains was 20% by mass, the average secondary particle diameter of abrasive grains was 20.5 nm, and the hydrogen peroxide concentration was 0 mmol / Kg.
  • the polishing compositions are different from each other in the range of 275 mmol / Kg or less.
  • Comparative Example 11 Comparative Example 12, and Examples 9 to 13 the average addition amount of the abrasive grains was 30% by mass, the average secondary particle diameter of the abrasive grains was 20.5 nm, and the hydrogen peroxide concentration was 0 mmol /
  • the polishing compositions are different from each other in the range of Kg to 350 mmol / Kg.
  • polishing rate ratio is a polishing composition (Example 2) having a hydrogen peroxide concentration of 90 mmol / Kg in a system in which the average secondary particle diameter of the abrasive grains is 80.1 nm.
  • a polishing composition having an average secondary particle diameter of 20.5 nm
  • a polishing composition having a hydrogen peroxide concentration of 100 mmol / Kg
  • a polishing composition having a hydrogen peroxide concentration of 150 mmol / Kg )Met.
  • Example 6 and Example 10 when the average secondary particle diameter of the abrasive grains was 20.5 nm, it was confirmed that a better polishing rate improvement effect was obtained. .
  • Comparative Examples 14 and 16 and Examples 14 and 15 are polishing compositions that differ in pH within a range of 7 or more and 11 or less. From these comparisons, it was confirmed that the effect of the present invention was obtained in a system having a pH of 10 or more. Further, from a comparison between Example 14 and Example 15, the system having a pH of 11 has a better polishing rate improvement effect than the system having a pH of 10, and a higher polishing rate is obtained. It was confirmed that
  • Example 6 and Example 15 are polishing compositions in which different basic compounds are used. From these comparisons, it is confirmed that the system using potassium carbonate as the basic composition has a better polishing rate improvement effect and a higher polishing rate than the system using KOH. It was done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

【課題】本発明は、研磨用組成物において、さらなる研磨速度の向上を実現しうる手段を提供する。 【解決手段】砥粒と、過酸化水素と、水と、を含有し、前記砥粒の平均二次粒子径が20nm以上150nm以下であり、前記過酸化水素のモル濃度M(mmol/Kg)と前記砥粒の総表面積とが、下記式1および下記式2の関係を満たし、かつ、pHが10以上14以下である、研磨用組成物;M<Log(S)×100-750 (式1) M>0 (式2)(ここで、Sは、研磨用組成物1Kg中に存在する砥粒の総表面積(m)を表し、Log(S)は、Sの自然対数を表す)。

Description

研磨用組成物およびこれを用いた研磨方法、ならびにこれらを用いた研磨済研磨対象物の製造方法
 本発明は、研磨用組成物およびこれを用いた研磨方法、ならびにこれらを用いた研磨済研磨対象物の製造方法に関する。
 シリコン半導体に代表される半導体素子は、高性能化、小型化等の市場ニーズに対応して微細化、高集積化が進んでいる。これに伴い微細な配線パターンを作製するための高度な平坦化技術が必須となり、半導体の製造工程において、ウェハ表面をアルミナやシリカの微粒子を含む研磨用組成物である研磨スラリー(以下、CMPスラリーと略記する。)を用いて研磨するCMP工程が導入されている。
 また近年では、例えば、高集積化技術の一つとしてシリコンなどの半導体基板を貫通している細いビアを作成し、銅やタングステン等の導電体を充填し電極を作製する技術(TSV)の開発が進んでいる。かかる電極を作製する際にもCMP工程が用いられ、半導体基板の薄膜化、平坦化が行われる。
 かような用途に使用する研磨用組成物は、研磨速度向上、研磨済研磨対象物の平坦性向上、フィルタの目詰まり防止、研磨用組成物のライフタイムの向上または環境負荷の抑制等、種々の観点から優れた研磨特性を実現すべく、検討がなされている。
 たとえば特開平5-154760号公報には、コロイダルシリカゾルまたはシリカゲルと、所定量のピペラジンとを含むシリコンウェハ用の研磨用組成物によって、高い研磨速度を実現し、優れた研磨面を得ることができることが開示されている。
 また、たとえば国際公開第2008/004320号(米国特許出願公開第2009/311947号明細書に相当)には、グアニジン類であるアルカリ性化合物および水からなる、またはこれら金属酸化物をさらに加えてなる、シリコンウェハ用の研磨用組成物によって、優れた平滑性を得ることができることが開示されている
 しかしながら、特開平5-154760号公報および国際公開第2008/004320号などの従来の研磨用組成物は、研磨速度が十分とはいえず、さらなる研磨速度の向上を実現しうる研磨用組成物が求められていた。
 そこで本発明は、上記課題に鑑みてなされたものであり、研磨用組成物において、さらなる研磨速度の向上を実現しうる手段を提供することを目的とする。
 また、本発明は、かような研磨用組成物を用いた研磨方法の提供、およびかような研磨用組成物を用いて研磨対象物を研磨する工程を含む、研磨済研磨対象物の製造方法の提供も目的とする。
 本発明は、砥粒と、過酸化水素と、水と、を含有し、前記砥粒の平均二次粒子径が20nm以上150nm以下であり、前記過酸化水素のモル濃度M(mmol/Kg)と前記砥粒の総表面積とが、下記式1および下記式2の関係を満たし、かつ、pHが10以上14以下である、研磨用組成物に関するものである。
Figure JPOXMLDOC01-appb-M000002
(ここで、Sは、研磨用組成物1Kg中に存在する砥粒の総表面積(m)を表し、Log(S)は、Sの自然対数を表す)。
 以下、本発明の実施の形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。また、特記しない限り、操作および物性等の測定は室温(20℃~25℃)/相対湿度40~50%RHの条件で測定する。
 以下、本発明の研磨用組成物につき、詳細を説明する。
 〔研磨用組成物〕
 本発明の一形態は、砥粒と、過酸化水素と、水と、を含有し、前記砥粒の平均二次粒子径が20nm以上150nm以下であり、前記過酸化水素のモル濃度M(mmol/Kg)と前記砥粒の総表面積とが、下記式1および下記式2の関係を満たし、かつ、pHが10以上14以下である、研磨用組成物に関するものである。
Figure JPOXMLDOC01-appb-M000003
(ここで、Sは、研磨用組成物1Kg中に存在する砥粒の総表面積(m)を表し、Log(S)は、Sの自然対数を表す)。
 かような構成を有する本発明の一形態に係る研磨用組成物によれば、研磨速度を向上することができる。
 従来技術である特開平5-154760号公報や国際公開第2008/004320号に記載の研磨用組成物は、ピペラジンやグアジニン類等の強塩基を使用していることから、その研磨速度は塩基性に起因する研磨対象物に対する溶解力、すなわちエッチング力に依存していた。
 そこで本発明者らは、エッチング力以外の観点にも着目し、さらなる研磨速度の向上を実現しうる条件を見出すことを目的として、研磨速度に影響を与える可能性があると考えられる種々の要素について検討を行った。
 その結果、本発明者らは、驚くべきことに、従来は研磨速度を低下させると考えられてきた過酸化水素を含有する研磨用組成物において、所定の平均二次粒子径を有する砥粒を所定量含有させ、かつpHが10以上14以下とした際に、研磨速度が顕著に向上する場合があることを確認した。そして、本発明者らは、さらなる検討の結果、過酸化水素の添加量と、研磨用組成物中に存在する砥粒の総表面積とが上記式1および上記式2で表される関係を満たす場合に研磨速度が顕著に向上することを見出すことで、本発明を完成させた。
 本発明者らは、本願の一形態に係る発明により研磨速度が向上することのメカニズムを以下のように推測している。ここでは、当該メカニズムは、研磨対象物がシリコン材料(Si)である場合を例に挙げて説明するが、本発明はこれに限定されない。
 研磨対象物への酸化剤の添加は、一般的には、研磨対象物の表面を酸化させ、研磨対象物の研磨用組成物に対する溶解性が低下することから、研磨速度を低下させる。
 しかしながら、酸化剤として過酸化水素を使用し、かつpHを10以上14以下とすることで、過酸化水素は、研磨用組成物中で解離して、HおよびHO を生成する。このとき、研磨対象物であるシリコン材料表面および表面近くのSiに対してHO が求核剤として作用して、過酸化水素とシリコン材料との酸化反応過程において、Si-OHで表される構造を有する反応中間体を形成する。かような反応中間体が存在する状態のシリコン材料の表面は、Si原子同士がSi-Si結合により強固に結合された状態よりも脆い。したがって、上記反応中間体が存在する状態のシリコン材料の表面は砥粒との物理的な接触で生じる応力によって容易に破壊されることとなり、その結果、研磨速度が向上することとなる。
 ここで、上記式1は、研磨速度の向上効果を有する過酸化水素のモル濃度Mの上限を、研磨用組成物中の砥粒の総表面積Sの関数として表している。すなわち、上記式1は、砥粒の総表面積Sの値によって、研磨速度の向上効果が発現される過酸化水素のモル濃度Mの上限が決定されることを表している。この理由は以下のように考えられる。前述のように、研磨用組成物中に過酸化水素が存在することで、反応中間体が形成され、研磨速度は向上する。しかしながら、研磨用組成物中に過酸化水素を過剰に添加した場合、生成される反応中間体の量に対して砥粒の接触頻度が相対的に少なくなる。このとき、反応中間体の状態で砥粒と接触しなかった部分は、反応が完了して酸化されることとなり、シリコン材料の反応が完了して酸化された酸化部分は、塩基性である研磨用組成物によるエッチング性も低下することから、その結果、研磨速度が向上しないか、または研磨速度が低下することとなる。ここで、単位時間、単位面積あたりの砥粒のシリコン材料表面との接触頻度は、研磨用組成物中に存在する砥粒の表面積と相関することから、砥粒の総表面積Sの値によって、シリコン材料表面において砥粒と接触できる反応中間体の量が決定されることとなる。また、反応中間体の量は過酸化水素のモル濃度Mと相関する。このことから、過酸化水素のモル濃度Mの上限が上記式1の左辺の値より小さくなるよう決定される。
 また、上記式1は、過酸化水素のモル濃度Mの上限を砥粒の総表面積Sの対数関数で表現している。ここで、式1は、砥粒の総表面積Sの増加に従い、研磨速度の向上効果が発現される過酸化水素のモル濃度Mの上限も増加すること、および砥粒の総表面積Sの増加に従い、過酸化水素のモル濃度Mの上限の増加度合い(砥粒の総表面積Sの単位増加量当りの過酸化水素のモル濃度Mの上限の増加量の変化率)が減少することを表している。ここで、砥粒の総表面積Sの増加に従い、研磨速度の向上効果が発現される過酸化水素のモル濃度Mの上限が増加する理由は、上記で説明したように、砥粒の総表面積の増加に従って、シリコン材料表面において砥粒と接触できる反応中間体の量が増加すると考えられるからである。また、砥粒の総表面積Sの増加に従い、過酸化水素のモル濃度Mの上限の増加の度合いが減少する理由は、砥粒の平均二次粒子径を減少させると砥粒の総表面積Sが増加するが、このとき砥粒と研磨対象物との接触時に砥粒が有するエネルギーが低くなり、研磨対象物の表面を機械的に破壊する能力が低下すると考えられるからである。
 さらに、上記式1および上記式2は、研磨用組成物中の砥粒の総表面積Sが一定以上でなければ、過酸化水素の添加による研磨速度の向上効果が得られないことを表している。この理由は以下のように考えられる。前述のように、単位時間、単位面積あたりの砥粒のシリコン材料表面との接触頻度は、研磨用組成物中に存在する砥粒の総表面積と相関する。これより、砥粒の総表面積Sが小さいときは、シリコン材料表面において砥粒と接触できる反応中間体の量も少なくなる。このとき、研磨速度の向上が有意に確認される衝突頻度で衝突が生じず、反応中間体による研磨速度の向上効果がほとんど得られないか、または過酸化水素による酸化の影響の方が強く表れることで、研磨速度が向上しないか、または研磨速度が低下することとなる。
 なお、上記メカニズムは推測に基づくものであり、その正誤が本願の技術的範囲に影響を及ぼすものではない。
 (pH)
 本発明に係る研磨用組成物のpHは10以上14以下である。研磨用組成物のpHは、研磨用組成物中における過酸化水素の解離量および研磨用組成物の有するエッチング力に関係する。
 pHが10未満であると、過酸化水素が研磨用組成物中で解離することが困難となり、また研磨用組成物のエッチング力も低下するため、研磨速度の向上効果を得られない。研磨速度の向上効果をより高め、かつより高い研磨速度を得るとの観点から、pHが11以上であることが好ましい。かかる理由は、研磨用組成物中で解離する過酸化水素の量がより増加し、また研磨用組成物のエッチング力をより高めることができると考えられるからである。また、pHが13以下であることが好ましい。かかる理由は、pHが13以下であると、研磨用組成物中で解離する過酸化水素の量をより増加することができると考えられるからである。同様の観点から、pHが12以下であることがより好ましい。本発明に係る好ましい形態の一例としては、たとえば、pHが10以上12以下である研磨用組成物等が挙げられる。
 pHの制御方法は、特に制限されないが、たとえば、後述する砥粒、任意に使用されうる塩基性化合物、および任意に使用されうる他の成分(たとえば、酸性化合物等)の選択または添加量の調整等が挙げられる。これらの中でも、塩基性化合物の種類の選択または添加量の調整が好ましい。研磨用組成物のpHの値は、pHメータにより確認することができる。なお、詳細な測定方法は実施例に記載する。
 (砥粒)
 本発明の研磨用組成物は、砥粒を必須に含む。砥粒は、研磨対象物の表面を機械的に研磨する働きをする。
 本発明に係る砥粒は、平均二次粒子径が20nm以上150nm以下である。平均二次粒子径が20nm未満であると、研磨速度の向上効果が得られない。かかる理由は、砥粒の平均二次粒子径が小さい場合は、砥粒と研磨対象物との接触時に砥粒が有するエネルギーが低いため、研磨対象物の表面を機械的に破壊することが困難となると考えられるからである。一方、平均二次粒子径が150nm超であると、研磨速度の向上効果が得られない。かかる理由は、研磨用組成物中の砥粒の総表面積を一定以上とすることが困難となるとともに、砥粒と研磨対象物とが接触しない部分の面積が大きくなるからであると考えられるからである。研磨速度の向上効果をより高め、かつより高い研磨速度を得るとの観点から、100nm以下であることが好ましく、50nm以下であることがより好ましく、30nm以下であることがさらに好ましい。本発明に係る好ましい形態の一例としては、たとえば、砥粒の平均二次粒子径が20nm以上100nm以下である研磨用組成物が挙げられる。
 砥粒の平均二次粒子径は、動的光散乱法による体積平均粒子径の測定結果を平均二次粒子径とすることができる。なお、詳細な測定方法は実施例に記載する。
 また、砥粒の平均一次粒子径は、特に制限されないが、たとえば下限は、5nm以上であることが好ましく、7nm以上であることがより好ましく、10nm以上であることがさらに好ましい。また、砥粒の平均一次粒子径の上限は、80nm以下であることが好ましく、60nm以下であることがより好ましく、20nm以下であることがさらに好ましい。このような範囲であれば、前記平均二次粒子径を有する二次粒子をより容易に形成することができる。なお、砥粒の平均一次粒子径は、例えば、BET法で測定される砥粒の比表面積に基づいて算出される。
 また、研磨用組成物における砥粒の添加量は、研磨速度の向上効果をより高め、かつより高い研磨速度を得るとの観点から、研磨用組成物の総質量に対して、1.5質量%以上であることが好ましい。かかる理由は、砥粒の総表面積を一定以上とすることが容易となり、研磨対象物の表面における砥粒と反応中間体との接触頻度がより高くなることで、過酸化水素による研磨速度の向上効果がより高くなると考えられるからである。また、研磨用組成物中に存在する砥粒自体の数が多いことから、単位時間、単位面積あたりの砥粒と研磨対象物の表面との接触頻度がより高くなり、研磨速度の向上効果がより高くなると考えられるからである。同様の観点から、研磨用組成物における砥粒の添加量は、2質量%以上がより好ましく、5質量%以上がさらに好ましく、20質量%以上が特に好ましく、25質量%以上が最も好ましい。一方、研磨用組成物における砥粒の添加量は、研磨速度の向上効果をより高め、かつより高い研磨速度を得るとの観点、およびコストをより抑制するとの観点から、研磨用組成物の総質量に対して、50質量%以下であることが好ましい。かかる理由は、研磨用組成物中における砥粒の添加量が50質量%以下であると、研磨用組成物の流動性が向上し、単位時間、単位面積あたりの砥粒と研磨対象物の表面との接触頻度が増加するからであると考えられるからである。また、研磨用組成物中に存在する砥粒の中で、および研磨処理中に研磨対象物の表面と接触しない成分が減少するからであると考えられるからである。同様の観点から、研磨用組成物中における砥粒の添加量は、40質量%以下であることがより好ましく、35質量%以下であることがさらに好ましく、30質量%以下であることが特に好ましい。
 研磨用組成物1Kg中に存在する砥粒の総表面積S(m)は、上記式1および上記式2を満たしうる研磨用組成物1Kgに対する過酸化水素のモル濃度M(mmol/Kg)の範囲が、正の実数として存在することができる値であれば、特に制限されない。ここで、研磨用組成物1Kg中に存在する砥粒の総表面積Sは、研磨速度の向上効果をより高め、かつより高い研磨速度を得るとの観点から、1900m以上であることが好ましい。かかる理由は、研磨対象物の表面における砥粒と反応中間体との接触頻度がより高くなることで、過酸化水素による研磨速度の向上効果がより高くなると考えられるからである。同様の観点から、研磨用組成物1Kg中に存在する砥粒の総表面積は、6400m以上であることがより好ましく、10000m以上であることがさらに好ましく、12000m以上であることがよりさらに好ましく、25000m以上であることが特に好ましく、32000m以上であることが最も好ましい。また、研磨用組成物1Kg中に存在する砥粒の総表面積Sは、研磨速度の向上効果をより高め、かつより高い研磨速度を得るとの観点から、65000m以下であることが好ましい。かかる理由は、前述のように、砥粒の総表面積Sを一定の値以下とすることで、平均二次粒子径の減少に起因する砥粒の機械的な研磨能力の低下を防ぐことができると考えられるからである。また、砥粒と研磨対象物とが接触しない部分の面積を減少させることができると考えられるからである。同様の観点から、研磨用組成物1Kg中に存在する砥粒の総表面積Sは、52000m以下であることがより好ましく、46000m以下であることがさらに好ましい。
 本願明細書において、研磨用組成物1Kg中に存在する砥粒の総表面積Sは、砥粒の平均二次粒子径および添加量、ならびに砥粒の比重より算出するものとする。なお、詳細な測定方法は実施例に記載する。
 砥粒の種類は、特に制限されず、無機粒子、有機粒子、および有機無機複合粒子等を用いることができる。無機粒子の具体例としては、たとえば、シリカ、アルミナ、セリア、チタニア等の金属酸化物からなる粒子、窒化ケイ素粒子、炭化ケイ素粒子、窒化ホウ素粒子等が挙げられる。有機粒子の具体例としては、たとえば、ラテックス粒子、ポリスチレン粒子、ポリメタクリル酸メチル(PMMA)粒子等が挙げられる。砥粒は、単独でもまたはこれらの複合物でもまたは2種以上混合して用いてもよい。また、砥粒は、市販品を用いてもよいし合成品を用いてもよい。
 砥粒としては、シリカ粒子を用いることが好ましい。シリカ粒子としては、特に制限されないが、たとえば、コロイダルシリカまたはヒュームドシリカを用いることがより好ましい。これらの中でも、研磨工程における研磨対象物の表面に発生するスクラッチをより低減するとの観点から、コロイダルシリカを用いることがさらに好ましい。
 使用しうるコロイダルシリカの種類は特に限定されないが、例えば、表面修飾したコロイダルシリカの使用も可能である。コロイダルシリカの表面修飾(担持コロイダルシリカ)は、例えば、アルミニウム、チタンまたはジルコニウムなどの金属、あるいはそれらの酸化物をコロイダルシリカと混合してシリカ粒子の表面にドープさせることにより行うことができる。また、コロイダルシリカの表面修飾は、シリカ粒子の表面に有機酸の官能基を化学的に結合させること、すなわち有機酸の固定化によって行うこともできる。
 (過酸化水素)
 本発明の研磨用組成物は、過酸化水素を必須に含む。過酸化水素は、所定のpH範囲を有する研磨用組成物中に含まれることで、研磨用組成物の研磨速度を向上させる。
 かかる理由は以下のように推測している。過酸化水素は、研磨用組成物中で解離してHおよびHO を生成し、研磨対象物と反応して反応中間体を形成する。そして、反応中間体が存在する状態の研磨対象物の表面は、研磨対象物そのものの状態よりも脆いことから、砥粒との接触による物理的な接触による応力によって容易に破壊されることとなり、研磨速度が向上する。
 なお、種々の酸化剤の中でも、過酸化水素が研磨速度の顕著な向上効果を示すことのこの理由は、詳細には不明であるが、本発明者らは、過酸化水素が所定のpH範囲とすることで解離してHO を発生することに関係すると考えている。より詳細には、過酸化水素の解離のし易さ、対イオンの種類およびこれらの化合物が研磨用組成物や研磨対象物へと与える影響などが関係すると考えている。
 研磨用組成物1Kgに対する過酸化水素のモル濃度M(mmol/Kg)は、前記研磨用組成物1Kg中に存在する砥粒の総表面積S(m)との関係において、上記式1および上記式2を満たしうる範囲が存在することができる値であれば、特に制限されない。ここで、研磨用組成物1Kgに対する過酸化水素のモル濃度Mは、研磨速度の向上効果をより高め、かつより高い研磨速度を得るとの観点から、25mmol/Kg以上であることが好ましい。かかる理由は、研磨用組成物1Kgに対する過酸化水素のモル濃度Mが25mmol/Kg以上であると、反応中間体をより多く形成することで、研磨対象物表面の脆く、砥粒により機械的に容易に破壊されうる部分がより増加すると考えられるからである。同様の観点から、研磨用組成物1Kgに対する過酸化水素のモル濃度Mは、45mmol/Kg以上であることがより好ましく、50mmol/Kg以上であることがさらに好ましく、90mmol/Kg以上であることがよりさらに好ましく、100mmol/Kg以上であることが特に好ましく、140mmol/Kg以上であることが最も好ましい。一方、好ましい範囲の上限値についても、同様の観点から、300mmol/Kg以下であることが好ましい。かかる理由は、以下のように推察されるからである。まず、過酸化水素のモル濃度が過度に高い濃度ではないことから、反応中間体の状態で砥粒と接触せずに反応が完了する酸化部分の形成がより抑制され、酸化部分の増加によるエッチング性の低下もより低減されうる。そして、その結果、研磨速度の向上効果がより高まり、かつより高い研磨速度が実現されうる。同様の観点から、研磨用組成物1Kgに対する過酸化水素のモル濃度Mは、250mmol/Kg以下であることがより好ましく、200mmol/Kg以下であることがさらに好ましく、160mmol/Kg以下であることが特に好ましく、150mmol/Kg以下であることが最も好ましい。
 (水)
 本発明の研磨用組成物は、水を必須に含む。水は、研磨用組成物の各成分を溶解させる溶媒または分散させる分散媒としての働きを有する。
 研磨対象物の汚染や他の成分の作用を阻害するという観点から、不純物をできる限り含有しない水が好ましい。不純物をできる限り含有しない水としては、たとえば、遷移金属イオンの合計含有量が100ppb以下である水が好ましい。ここで、水の純度は、たとえば、イオン交換樹脂を用いる不純物イオンの除去、フィルタによる異物の除去、蒸留等の操作によって高めることができる。具体的には、水としては、たとえば、イオン交換水、純水、超純水、蒸留水などを用いることが好ましい。
 (他の成分)
 本発明の一形態に係る研磨用組成物は、必要に応じて、砥粒、過酸化水素および水以外の他の成分を含有してもよい。他の成分としては、たとえば、塩基性化合物、酸性化合物、水溶性高分子、過酸化水素以外の酸化剤、還元剤、界面活性剤、防カビ剤およびキレート剤等が挙げられるが、これらに限定されない。
 以下では、塩基性化合物、酸性化合物、水溶性高分子、過酸化水素以外の酸化剤、還元剤、界面活性剤、防カビ剤について説明する。
 (塩基性化合物)
 本発明の一形態に係る研磨用組成物は、塩基性化合物をさらに含むことが好ましい。塩基性化合物は、研磨対象物の面をエッチングにより化学的に研磨する働き、および砥粒の分散安定性を向上させる働きを有する。また、塩基性化合物は、pH調整剤として用いることができる。
 塩基性化合物の具体例としては、第2族元素またはアルカリ金属の水酸化物または塩、第四級アンモニウム化合物、アンモニア、アミンなどが挙げられる。ここで、第2族元素としては、特に制限されないが、アルカリ土類金属を好ましく用いることができる。
 第2族元素またはアルカリ金属の水酸化物または塩において、第2族元素としては、カルシウム、アルカリ金属としては、カリウム、ナトリウムなどが挙げられる。塩としては、炭酸塩、炭酸水素塩、硫酸塩、酢酸塩などが挙げられる。第2族元素またはアルカリ金属の水酸化物または塩としては、より具体的には、たとえば、水酸化カルシウム、水酸化カリウム、炭酸カリウム、炭酸水素カリウム、硫酸カリウム、酢酸カリウム、塩化カリウム、水酸化ナトリウム、炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素ナトリウム、および炭酸ナトリウム等が挙げられる。
 第四級アンモニウム化合物としては、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウムなどの水酸化物または、塩化物、炭酸塩、硫酸塩、リン酸塩などの塩などが挙げられる。具体例としては、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウムなどの水酸化テトラアルキルアンモニウム、炭酸テトラメチルアンモニウム、塩化テトラメチルアンモニウムなどの水酸化テトラアルキルアンモニウム塩等が挙げられる。
 アミンの具体例としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、モノエタノールアミン、N-(β-アミノエチル)エタノールアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、無水ピペラジン、ピペラジン六水和物、1-(2-アミノエチル)ピペラジン、N-メチルピペラジン、グアニジンなどが挙げられる。
 ここで、塩基性化合物は、その期待される機能に応じて好ましい化合物を選択することができる。研磨速度向上の観点では、塩基性化合物は、水酸化テトラメチルアンモニウムなどの水酸化第四級アンモニウム化合物、炭酸塩または炭酸水素塩を含むことが好ましい。また、研磨用組成物に緩衝作用を付与し、pHの安定を図るとの観点では、塩基性化合物は、水酸化第四級アンモニウム化合物と、炭酸塩または炭酸水素塩との混合物が好ましい。そして、研磨後の研磨対象物に付着して残らないという観点では、たとえば水酸化第四級アンモニウム、アミン、アンモニア等が好ましい。
 本発明の一形態に係る研磨用組成物においては、これらの中でも、第2族元素またはアルカリ金属の水酸化物または塩であることがより好ましく、アルカリ金属の水酸化物または塩であることがさらに好ましく、アルカリ金属の炭酸塩または炭酸水素塩であることがよりさらに好ましく、アルカリ金属の炭酸塩であることが特に好ましい。ここで、アルカリ金属の水酸化物としては、水酸化カリウムまたは水酸化カリウムが好ましく、水酸化カリウムがより好ましい。また、アルカリ金属の炭酸塩としては、炭酸カリウムまたは炭酸ナトリウムであることが好ましく、炭酸カリウムであることがより好ましい。すなわち、本発明の一形態に係る研磨用組成物においては、塩基性化合物は、炭酸カリウムが最も好ましい。
 これらの塩基性化合物は、一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 研磨用組成物中の塩基性化合物の含有量(二種以上用いる場合はその合計量)は、研磨用組成物の総質量に対して、0.01質量%以上であることが好ましい。かかる理由は、エッチング力をより向上させることができるからである。また、過酸化水素の解離をより促進させることができると考えられるからである。同様の観点から、研磨用組成物中の塩基性化合物の含有量が0.03質量%以上であることがより好ましく、0.05質量%以上であることがさらに好ましい。一方、研磨用組成物中の塩基性化合物の含有量は、研磨用組成物の総質量に対して、10質量%以下であることが好ましい。かかる理由は、過酸化水素の解離量をより適切な範囲へと調整することがより容易とすることができると考えられるからである。同様の観点から、研磨用組成物中の塩基性化合物の含有量が5質量%以下であることがより好ましく、3質量%以下であることがさらに好ましい。
 (酸性化合物)
 本発明の一形態に係る研磨用組成物は、酸性化合物をさらに含んでいてもよい。酸性化合物は、pH調整剤として用いることができる。
 酸性化合物としては、特に制限されず、公知の酸が挙げられる。前記酸としては、塩酸、硫酸、硝酸、フッ酸、ホウ酸、炭酸、次亜リン酸、亜リン酸、およびリン酸等の無機酸;ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2-メチル酪酸、n-ヘキサン酸、3,3-ジメチル酪酸、2-エチル酪酸、4-メチルペンタン酸、n-ヘプタン酸、2-メチルヘキサン酸、n-オクタン酸、2-エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸、乳酸、ジグリコール酸、2-フランカルボン酸、2,5-フランジカルボン酸、3-フランカルボン酸、2-テトラヒドロフランカルボン酸、メトキシ酢酸、メトキシフェニル酢酸、フェノキシ酢酸等の有機酸が挙げられる。これらのうち、pH調整剤としては、硫酸、硝酸、リン酸、グリコール酸、コハク酸、マレイン酸、クエン酸、酒石酸、リンゴ酸、グルコン酸、イタコン酸であることが好ましい。これらの酸性化合物は、一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 酸性化合物の添加量は、特に制限されず、研磨用組成物が所望のpHとなるように適宜設定されうる。
 (水溶性高分子)
 本発明の一形態に係る研磨用組成物は、水溶性高分子をさらに含んでいてもよい。水溶性高分子は、研磨される面の濡れ性を高める働きを有する。水溶性高分子は、1種であっても、2種以上を組み合わせて使用してもよい。
 水溶性高分子としては、分子中に、カチオン基、アニオン基およびノニオン基から選ばれる少なくとも一種の官能基を有するものを使用することができる。具体的な水溶性高分子としては、分子中に水酸基、カルボキシル基、アシルオキシ基、スルホ基、第四級アンモニウム構造、複素環構造、ビニル構造、ポリオキシアルキレン構造などを含むものが挙げられる。凝集物の低減や洗浄性向上などの観点から、ノニオン性の水溶性高分子が好ましい。好適例として、オキシアルキレン単位を含むポリマー、窒素原子を含有するポリマー(含窒素水溶性高分子)、ポリビニルアルコール、セルロース誘導体、デンプン誘導体などが例示される。より好ましくは、オキシアルキレン単位を含むポリマー、窒素原子を含有するポリマー、ポリビニルアルコールおよびセルロース誘導体から選ばれる少なくとも1種である。さらに好ましくは、窒素原子を含有するポリマーおよびセルロース誘導体である。
 水溶性高分子の重量平均分子量は、研磨用組成物の分散安定性およびシリコン材料の洗浄性の観点から、ポリエチレンオキサイド換算で2,000,000以下であることが好ましく、1,000,000以下であることがより好ましく、500,000以下であることがさらに好ましく、300,000以下であることが特に好ましい。また、研磨用組成物中の水溶性高分子の重量平均分子量は10,000以上であることが好ましく、20,000以上であることがより好ましく、30,000以上であることがさらに好ましい。
 これらの水溶性高分子は、一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 なお、研磨用組成物中の水溶性高分子の含有量は、研磨面の濡れ性を向上させる観点から、研磨用組成物の総質量に対して、0.0001質量%以上であることが好ましく、0.001質量%以上であることがより好ましく、0.005質量%以上であることがさらに好ましい。一方、研磨速度を向上させる観点から、研磨用組成物の総質量に対して、5質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.02質量%以下であることがさらに好ましい。
 (過酸化水素以外の酸化剤)
 本発明の一形態に係る研磨用組成物は、過酸化水素以外の酸化剤をさらに含んでいてもよい。過酸化水素以外の酸化剤は、これを添加することによって研磨効率が向上するような特定の研磨対象物を研磨する際に、研磨効率をより向上させる働きを有する。
 過酸化水素以外の酸化剤の具体例としては、過酢酸、過炭酸塩、過酸化尿素、過塩素酸;過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、一過硫酸カリウム、オキソン(2KHSO、KHSO、KSO)等の過酸化物との複塩などの過硫酸塩;次亜塩素酸塩、亜塩素酸塩、塩素酸塩、過塩素酸塩、次亜臭素酸塩、亜臭素酸塩、臭素酸塩、過臭素酸塩、次亜ヨウ素酸塩、亜ヨウ素酸塩、ヨウ素酸塩、過ヨウ素酸塩等のハロゲン系酸化剤;硝酸セリウムアンモニウム、過マンガン酸カリウム、クロム酸カリウム等の幅広い酸化数を取りうる金属元素の化合物などが挙げられる。これらの過酸化水素以外の酸化剤は、一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 研磨用組成物中の過酸化水素以外の酸化剤の含有量は、酸化剤を添加すると研磨効率が向上するような研磨対象物を研磨する際に、研磨効率をより向上させるとの観点から、研磨用組成物の総質量に対して、0.001質量%以上であることが好ましく、0.01質量%以上であることがより好ましい。一方、研磨用組成物中の過酸化水素以外の酸化剤の含有量の上限は、材料コストのさらなる抑制、廃液処理のさらなる負荷軽減、および酸化剤による研磨対象物表面の過剰な酸化の抑制との観点から、研磨用組成物の総質量に対して、30質量%以下であることが好ましく、10質量%以下であることがより好ましい。
 (還元剤)
 本発明の一形態に係る研磨用組成物は、還元剤をさらに含んでいてもよい。還元剤は、任意の金属の酸化を抑制することで、その金属の腐食を抑制する働き、または研磨効率を制御する働きを有する。
 還元剤としては、研磨用組成物に使用されている従来公知のものを含有させることができる。有機物としては、例えば、ヒドラジン、ギ酸、シュウ酸、ホルムアルデヒド水溶液、アスコルビン酸、グルコース等の還元糖類等が挙げられる。無機物としては、例えば、水素化アルミニウムリチウム、水素化ホウ素ナトリウム、複数の安定な価数をとる金属とその化合物等が挙げられる。これらの還元剤は、一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 研磨用組成物中の還元剤の含有量の下限は、砥粒濃度を上げることなく研磨効率をより向上させるとの観点から、0.001質量%以上であることが好ましく、0.01質量%以上であることがより好ましい。一方、材料コストのさらなる抑制、廃液処理のさらなる負荷軽減、および酸化剤による研磨対象物表面の過剰な酸化の抑制との観点から、研磨用組成物の総質量に対して、30質量%以下であることが好ましく、10質量%以下であることがより好ましい。
 (キレート剤)
 本発明の一形態に係る研磨用組成物にはキレート剤をさらに含んでいてもよい。キレート剤は、研磨用組成物中に元々含まれている金属不純物や研磨中に研磨対象物や研磨装置から生じる、あるいは外部から混入する金属不純物を捕捉して錯体を作ることで、研磨対象物への金属不純物の残留を抑制する働きを有する。キレート剤は、特に、研磨対象物が半導体の場合、金属不純物の残留を抑制することで半導体の金属汚染を防止し、半導体の品質低下を抑制する。
 キレート剤としては、たとえば、アミノカルボン酸系キレート剤および有機ホスホン酸系キレート剤等が挙げられる。キレート剤の中でも、有機ホスホン酸系キレートが好ましく、エチレンジアミンテトラキス(メチレンホスホン酸)がより好ましい。これらのキレート剤は、一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 研磨用組成物中のキレート剤の含有量は、研磨対象物に残留する金属不純物を抑制する効果をより高めるとの観点から、研磨用組成物の総質量に対して、0.0001質量%以上であることが好ましく、0.0005質量%以上であることがより好ましく、0.005質量%以上であることがさらに好ましい。一方、研磨用組成物中のキレート剤の含有量は、研磨用組成物の保存安定性をより高めるとの観点から、0.5質量%未満であることが好ましく、0.3質量%未満であることがより好ましく、0.1質量%未満であることがさらに好ましく、0.05質量%未満であることが特に好ましい。
 (界面活性剤)
 本発明の一形態に係る研磨用組成物は、界面活性剤をさらに含んでいてもよい。界面活性剤は、研磨後の研磨面に親水性を付与することにより研磨後の洗浄効率を良くし、汚れの付着等を防ぐ働きを有する。また、界面活性剤は、洗浄性を良くするだけでなく、適切な界面活性剤を選択することで、ディッシング等の段差性能を向上させる働きを有する。
 界面活性剤は、陰イオン性界面活性剤、陽イオン性界面活性剤、両性界面活性剤、および非イオン性界面活性剤のいずれであってもよい。これらの界面活性剤は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 研磨用組成物中の界面活性剤の含有量は、研磨後の洗浄効率をより向上させ、適切な界面活性剤を選択することで、ディッシング等の段差性能をより向上するとの観点から、0.001g/L以上であることが好ましく、0.005g/L以上であることがより好ましい。
 (防腐剤・防カビ剤)
 本発明の一形態に係る研磨用組成物は、防腐剤・防カビ剤をさらに含んでいてもよい。
 防腐剤・防カビ剤としては、例えば、2-メチル-4-イソチアゾリン-3-オンや5-クロロ-2-メチル-4-イソチアゾリン-3-オン等のイソチアゾリン系防腐剤、パラオキシ安息香酸エステル類、およびフェノキシエタノール等が挙げられる。これら防腐剤・防カビ剤は、単独でもまたは2種以上混合して用いてもよい。
 [研磨対象物]
 本発明の一形態に係る研磨用組成物を用いて研磨する研磨対象物は、特に制限されないが、ケイ素系材料であることが好ましい。ケイ素系材料としては、たとえば、シリコン材料、酸化ケイ素材料、窒化珪素材料、および酸窒化ケイ素材料等が挙げられる。ここで、酸化ケイ素材料は、TEOS(テトラエトキシシラン)等の硬化物であってもよい。
 これらの中でも、本発明の一形態に係る研磨用組成物の効果がより顕著に得られることから、シリコン材料であることが好ましい。すなわち、本発明の一形態に係る研磨用組成物が、シリコン材料の研磨に用いられることが好ましい。シリコン材料は、シリコン単結晶、アモルファスシリコンおよびポリシリコンからなる群より選択される少なくとも一種の材料を含むことが好ましい。シリコン材料としては、本発明の効果をより顕著に得ることができるとの観点から、シリコン単結晶またはポリシリコンであることがより好ましく、シリコン単結晶であることがさらに好ましい。
 また、研磨対象物は、特に制限されないが、半導体基板であることが好ましい。
 〔研磨用組成物の製造方法〕
 本発明の他の一形態としては、
 砥粒の平均二次粒子径が20nm以上150nm以下であり、
 過酸化水素のモル濃度M(mmol/Kg)と砥粒の総表面積とが、下記式1および下記式2の関係を満たし、
 かつ、pHが10以上14以下となるよう、
 砥粒と、過酸化水素と、水とを混合する、研磨用組成物の製造方法をも提供する;
Figure JPOXMLDOC01-appb-M000004
(ここで、Sは、研磨用組成物1Kg中に存在する砥粒の総表面積(m)を表し、Log(S)は、Sの自然対数を表す)。
 研磨用組成物は、研磨用組成物を構成する各成分、および必要に応じて他の成分を、混合することにより製造することができる。ここで、研磨用組成物の製造方法は、特に制限されないが、たとえば、研磨装置へ適用する前に、各成分を混合する方法、研磨パッドに研磨用組成物を供給するスラリーライン中で各成分を混合する方法、および研磨パッド上で各成分を混合する方法等が挙げられる。これらのなかでも、研磨装置へ適用する前に、各成分を混合する方法を用いることが好ましい。
 各成分の混合の際は、攪拌混合を行うことが好ましい。また、各成分を混合する際の温度は特に制限されないが、0℃以上60℃以下であることが好ましく、10℃以上40℃以下であることがより好ましい。各成分を混合する際には、溶解速度を上げるために加熱してもよい。混合時間は特に制限されないが、1秒以上180分以下であることが好ましい。
 なお、製造される研磨用組成物の詳細は、本発明の一形態に係る研磨用組成物の説明で述べたものと同様である。
 〔研磨方法〕
 本発明のその他の一形態としては、研磨対象物を、本発明の一形態に係る研磨用組成物、または本発明の他の一形態に係る製造方法によって製造された研磨用組成物を用いて研磨する、研磨方法が提供される。
 研磨装置としては、研磨対象物を有する基板等を保持するホルダーと回転数を変更可能なモータ等とが取り付けてあり、研磨パッド(研磨布)を貼り付け可能な研磨定盤を有する一般的な研磨装置を用いることができる。研磨装置としては、具体的には、たとえば、EPO113D(株式会社荏原製作所製)等を用いることができる。
 前記研磨パッドとしては、一般的な不織布、ポリウレタン、および多孔質フッ素樹脂等を特に制限なく使用することができる。研磨パッドには、研磨用組成物が溜まるような溝加工が施されていることが好ましい。研磨パッドとしては、具体的には、たとえば、IC1000(ニッタ・ハース株式会社製)等を用いることができる。
 研磨条件にも特に制限はなく、例えば、研磨定盤の回転速度は、10rpm以上500rpm以下が好ましく、研磨対象物を有する基板にかける圧力(研磨圧力)は、300hPa以上400hPa以下が好ましい。研磨パッドに研磨用組成物を供給する方法も特に制限されず、例えば、ポンプ等で連続的に供給する方法が採用される。この供給量に制限はないが、研磨パッドの表面が常に本発明の一形態に係る研磨用組成物で覆われていることが好ましく、たとえば10ml/min以上1000ml/min以下であることが好ましい。また、研磨温度は特に制限されないが、たとえば0℃以上60℃以下であることが好ましい。そして研磨時間も特に制限されないが、たとえば1秒以上180分以下であることが好ましい。研磨は、片面研磨であっても両面研磨のいずれであってもよい。また、研磨後に洗浄・乾燥を行うことが好ましい。
 ここで、研磨対象物の詳細は、上記の説明で述べたものと同様である。
 〔研磨済研磨対象物の製造方法〕
 本発明のさらなる他の一形態としては、本発明の一形態に係る研磨用組成物を用いて、または本発明の一形態に係る研磨方法を用いて、研磨対象物を研磨する工程を含む、研磨済研磨対象物の製造方法が提供される。研磨済研磨対象物の製造方法は、研磨工程の後に、研磨対象物を洗浄・乾燥する工程を有することが好ましい。
 なお、研磨対象物の詳細は、上記の説明で述べたものと同様である。
 本発明を、以下の実施例および比較例を用いてさらに詳細に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。
 (1)研磨用組成物の調製
 [実施例1~13および比較例1~12]
 ・コロイダルシリカ(砥粒)
 ・過酸化水素
から表2に示されるような組成となるように選択し、さらに炭酸カリウムを研磨用組成物の総質量に対して3質量%となるように加え、これらを純水中で混合することによって、pHが11である実施例1~13および比較例1~12の研磨用組成物を調製した(混合温度:約25℃、混合時間:約10分)。
 [実施例14および15ならびに比較例13~18]
 ・コロイダルシリカ(砥粒)
 ・過酸化水素
から表3に示されるような組成となるように選択し、さらに研磨用組成物のpHが表3に記載の値となる量の水酸化カリウム(KOH)を加え、これらを純水中で混合することによって、実施例14および15ならびに比較例13~18の研磨用組成物を調製した(混合温度:約25℃、混合時間:約10分)。
 [比較例19]
 ・コロイダルシリカ(砥粒)
 ・APS(過硫酸アンモニウム)
から表4に示されるような組成となるように選択し、さらに炭酸カリウムを研磨用組成物の総質量に対して3質量%となるよう加え、これらを純水中で混合することによって、pHが11である比較例19の研磨用組成物を調製した(混合温度:約25℃、混合時間:約10分)。
 各研磨用組成物の特徴を表2~4にまとめる。
 (研磨用組成物のpHの測定)
 研磨用組成物(液温:25℃)のpHは、pHメータ(株式会社堀場製作所製 型番:LAQUA(登録商標))により確認した。
 (砥粒の平均二次粒子径の測定)
 なお、砥粒の平均二次粒子径は、動的光散乱式 粒子径・粒度分布測定装置(日機装株式会社製 型番:UPA UT-151)を用いて測定した。まず、砥粒を純水中へ分散させ、ローディングインデックス(レーザーの散乱強度)が0.01である分散液を調製した。次いで、この分散液を用いて、UTモードでの体積平均粒子径Mvの値(D50の値)を測定し、得られた値を平均二次粒子径とした。これらの結果を表1に示す。
 ここで、表1~4中において、砥粒A、B、CおよびEは、それぞれ平均二次粒子径のみが異なるコロイダルシリカを表す。
Figure JPOXMLDOC01-appb-T000005
 (研磨用組成物中の砥粒の総表面積の算出)
 ここで、研磨用組成物中の砥粒の総表面積は、以下のように求めた。
 1.砥粒の二次粒子が球形であると仮定し、前記測定から求めた砥粒の平均二次粒子径R(nm)より、下記式に従い砥粒の二次粒子の半径r(m)を算出した。
Figure JPOXMLDOC01-appb-M000006
 2.砥粒の二次粒子の半径r(m)、および砥粒の比重ρ(Kg/m)を用いて、下記式に従い砥粒の二次粒子1個当たりの質量M(Kg)を算出した。ここで、砥粒の比重ρはコロイダルシリカの比重である2.3×10(Kg/m)を用いた。
Figure JPOXMLDOC01-appb-M000007
 3.研磨用組成物1Kg中に存在する砥粒の二次粒子の数である砥粒個数N(個)を、下記式に従い算出した。
Figure JPOXMLDOC01-appb-M000008
 4.砥粒の二次粒子の半径r(m)、および砥粒個数N(個)を用いて、下記式に従い研磨用組成物1Kg中に存在する砥粒の二次粒子の総表面積S(m)を算出した。
Figure JPOXMLDOC01-appb-M000009
 これらの結果を表2~4に示す。
 (2)研磨
 上記で得られた各研磨用組成物を用い、半導体基板として用いられうる8インチシリコン単結晶基板を以下の研磨条件で研磨した。
 <研磨条件>
 片面研磨機:EPO113D(株式会社荏原製作所製)
 研磨パッド:硬質ポリウレタンパッド(IC1000(ニッタ・ハース株式会社製))
 圧力:380hPa
 プラテン(定盤)回転数:90rpm
 ヘッド(キャリア)回転数:87rpm
 研磨用組成物の流量:200ml/min
 研磨時間:1min
 研磨用組成物の保持温度(研磨温度):25℃
 (3)研磨速度の測定
 1.ウェーハ測定用電子天秤TFT-300(株式会社島津製作所製)を用いて、研磨前後の研磨対象物(シリコン単結晶基板)の質量を測定して、これらの差分から、研磨前後の研磨対象物の質量変化量ΔMSi(Kg)を算出した。
 2.研磨前後の研磨対象物の質量変化量ΔMSi(Kg)をシリコンの比重2.33×10(Kg/m)で除することで、研磨前後の研磨対象物の体積変化量ΔVSi(m)を算出した。
 3.研磨前後の研磨対象物の体積変化量ΔVSi(m)を研磨対象物の研磨面の面積SSi(m)で除することで、研磨前後の研磨対象物の厚み変化量ΔdSi(m)を算出した。
 4.研磨前後の研磨対象物の厚み変化量ΔdSi(m)を研磨時間t(min)で除し、さらに単位を(Å/min)へと換算した。この値を研磨速度vSi(Å/min)とした。
 これらの結果を表2~4に示す。
 なお、表中における「式1における右辺の値」とは、下記式1の右辺の計算結果を表す。
Figure JPOXMLDOC01-appb-M000010
(ここで、Sは、研磨用組成物1Kg中に存在する砥粒の総表面積(m)を表し、Log(S)は、Sの自然対数を表す)。
 (4)酸化剤なしの系に対する研磨速度比の算出
 上記(3)で測定した各研磨用組成物を用いた際の研磨速度について、過酸化水素または過硫酸アンモニウム(APS)を含む各研磨用組成物の、過酸化水素またはAPSを含まない以外はこれらと同様に製造した研磨用組成物に対する研磨速度比(%)を算出した。
 より詳細には、研磨速度比は、比較例2に対しては比較例1、比較例4に対しては比較例3、実施例1~3ならびに比較例6および比較例19に対しては比較例5、実施例4および比較例8に対しては比較例7、実施例5~8および比較例10に対しては比較例9、実施例9~13および比較例12に対しては比較例11、比較例14に対しては比較例13、比較例16に対しては比較例15、実施例14に対しては比較例17、そして実施例15に対して比較例18を、それぞれ過酸化水素または過硫酸アンモニウムを含まない研磨用組成物として選択し、これらの研磨速度を100%とした際の研磨速度比(%)を算出した。
 なお、研磨速度比が101%以上である場合に、研磨速度向上効果が有意に確認できるものとする。結果は表2~4に示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 上記の結果から、実施例の研磨用組成物は、比較例の研磨用組成物と比較して、優れた研磨速度の向上効果が得られることが確認された。ここで、比較例5、比較例19および実施例1の比較から、酸化剤を含有し、かつ酸化剤が過酸化水素である系で本発明の効果が得られることが確認できる。
 ここで、比較例7、比較例8および実施例4は、砥粒の添加量が2質量%であり、過酸化水素濃度が0mmol/Kg以上50mmol/Kg以下の範囲でそれぞれ異なる研磨用組成物である。また、比較例9、比較例10および実施例5~8は、砥粒の添加量が20質量%であり、過酸化水素濃度が0mmol/Kg以上275mmol/Kg以下の範囲でそれぞれ異なる研磨用組成物である。そして、比較例11、比較例12および実施例9~13は、砥粒の添加量が30質量%であり、過酸化水素濃度が0mmol/Kg以上350mmol/Kg以下の範囲でそれぞれ異なる研磨用組成物である。ここで、砥粒の添加量が同じである研磨用組成物の比較において、最も高い研磨速度、および最も優れた研磨速度の向上効果(研磨速度比)を示したものは、砥粒の添加量が2質量%のときは過酸化水素濃度が25mmol/Kgの研磨用組成物(実施例4)であり、砥粒の添加量が20質量%のときは過酸化水素濃度が100mmol/Kgの研磨用組成物(実施例6)であり、砥粒の添加量が30質量%のときは過酸化水素濃度が150mmol/Kgの研磨用組成物(実施例10)であった。そして、実施例4、実施例6および実施例10の比較から、砥粒の添加量が20質量%および30質量%であるときは、より優れた研磨速度の向上効果が得られることが確認された。また、砥粒の添加量が20質量%または30質量%であるときは、より優れた研磨速度が得られ、30質量であるときはさらに優れた研磨速度が得られることが確認された。
 また、比較例5、比較例6および実施例1~3は、砥粒の添加量が24質量%、砥粒の平均二次粒子径が80.1nmであり、過酸化水素濃度が0mmol/Kg以上180mmol/Kg以下の範囲でそれぞれ異なる研磨用組成物である。また、比較例9、比較例10および実施例5~8は、砥粒の添加量が20質量%、砥粒の平均二次粒子径が20.5nmであり、過酸化水素濃度が0mmol/Kg以上275mmol/Kg以下の範囲でそれぞれ異なる研磨用組成物である。そして、比較例11、比較例12および実施例9~13は、砥粒の平均添加量が30質量%、砥粒の平均二次粒子径が20.5nmであり、過酸化水素濃度が0mmol/Kg以上350mmol/Kg以下の範囲でそれぞれ異なる研磨用組成物である。ここで、砥粒の添加量が20質量%以上30質量%以下であり、平均二次粒子径が同じである研磨用組成物の比較において、高い研磨速度、および優れた研磨速度の向上効果(研磨速度比)を示したものは、砥粒の平均二次粒子径が80.1nmの系においては過酸化水素濃度が90mmol/Kgの研磨用組成物(実施例2)であり、砥粒の平均二次粒子径が20.5nmの研磨用組成物においては過酸化水素が100mmol/Kgの研磨用組成物(実施例6)および過酸化水素が150mmol/Kgの研磨用組成物(実施例10)であった。そして、実施例2、実施例6および実施例10の比較から、砥粒の平均二次粒子径が20.5nmであるときは、より優れた研磨速度の向上効果が得られることが確認された。
 さらに、比較例14および16ならびに実施例14および実施例15は、pHが7以上11以下の範囲でそれぞれ異なる研磨用組成物である。これらの比較から、本発明の効果は、pHが10以上の系において得られることが確認された。さらに、実施例14と実施例15との比較から、pHが10の系のよりもpHが11の系の方が、より優れた研磨速度の向上効果が得られ、かつより高い研磨速度が得られることが確認された。
 また、実施例6および実施例15は、使用する塩基性化合物がそれぞれ異なる研磨用組成物である。これらの比較から、塩基性組成物として炭酸カリウムを使用した系のほうが、KOHを使用した系よりも、より優れた研磨速度の向上効果が得られ、かつより高い研磨速度が得られることが確認された。
 本出願は、2015年10月9日に出願された日本特許出願番号2015-201340号に基づいており、その開示内容は、参照により全体として組み入れられている。
 

Claims (8)

  1.  砥粒と、
     過酸化水素と、
     水と、
    を含有し、
     前記砥粒の平均二次粒子径が20nm以上150nm以下であり、
     前記過酸化水素のモル濃度M(mmol/Kg)と前記砥粒の総表面積とが、下記式1および下記式2の関係を満たし、かつ、
     pHが10以上14以下である、研磨用組成物;
    Figure JPOXMLDOC01-appb-M000001
    (ここで、Sは、研磨用組成物1Kg中に存在する砥粒の総表面積(m)を表し、Log(S)は、Sの自然対数を表す)。
  2.  シリコン材料の研磨に用いられる、請求項1に記載の研磨用組成物。
  3.  さらに塩基性化合物を含有する、請求項1または2に記載の研磨用組成物。
  4.  前記砥粒がコロイダルシリカである、請求項1~3のいずれか1項に記載の研磨用組成物。
  5.  前記砥粒の平均二次粒子径が20nm以上100nm以下である、請求項1~4のいずれか1項に記載の研磨用組成物。
  6.  pHが10以上12以下である、請求項1~5のいずれか1項に記載の研磨用組成物。
  7.  研磨対象物を、請求項1~6のいずれか1項に記載の研磨用組成物を用いて研磨する、研磨方法。
  8.  請求項1~6のいずれか1項に記載の研磨用組成物を用いて、または請求項7に記載の研磨方法を用いて、研磨対象物を研磨する工程を含む、研磨済研磨対象物の製造方法。
PCT/JP2016/076530 2015-10-09 2016-09-08 研磨用組成物およびこれを用いた研磨方法、ならびにこれらを用いた研磨済研磨対象物の製造方法 WO2017061229A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017513821A JP6189571B1 (ja) 2015-10-09 2016-09-08 研磨用組成物およびこれを用いた研磨方法、ならびにこれらを用いた研磨済研磨対象物の製造方法
US15/765,572 US20190077991A1 (en) 2015-10-09 2016-09-08 Polishing composition and polishing method using same, and method for producing polishing-completed object to be polished using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-201340 2015-10-09
JP2015201340 2015-10-09

Publications (1)

Publication Number Publication Date
WO2017061229A1 true WO2017061229A1 (ja) 2017-04-13

Family

ID=58487399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076530 WO2017061229A1 (ja) 2015-10-09 2016-09-08 研磨用組成物およびこれを用いた研磨方法、ならびにこれらを用いた研磨済研磨対象物の製造方法

Country Status (4)

Country Link
US (1) US20190077991A1 (ja)
JP (1) JP6189571B1 (ja)
TW (1) TW201726883A (ja)
WO (1) WO2017061229A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019127511A (ja) * 2018-01-23 2019-08-01 ニッタ・ハース株式会社 研磨用組成物
JP2020025066A (ja) * 2018-03-15 2020-02-13 株式会社フジミインコーポレーテッド 研磨用組成物、研磨用組成物の製造方法、研磨方法、および半導体基板の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019101555A1 (en) * 2017-11-22 2019-05-31 Basf Se Chemical mechanical polishing composition
CN113122147B (zh) * 2019-12-31 2024-03-12 安集微电子科技(上海)股份有限公司 一种化学机械抛光液及其使用方法
CN113502128B (zh) * 2021-06-01 2022-07-12 上海大学 原位形成微纳气泡抛光液、其制备方法及其应用
CN115895451A (zh) * 2021-09-30 2023-04-04 昆山欣谷微电子材料有限公司 一种用于制备亲水性表面硅片的碱性抛光液组合物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003155471A (ja) * 2001-08-21 2003-05-30 Kao Corp 研磨液組成物
JP2004299018A (ja) * 2003-03-31 2004-10-28 Japan Science & Technology Agency SiC単結晶基板等の研磨による超平滑結晶面形成方法
JP2007092064A (ja) * 2005-09-29 2007-04-12 Fujimi Inc 研磨用組成物
WO2008004579A1 (fr) * 2006-07-05 2008-01-10 Hitachi Chemical Co., Ltd. Liquide de polissage pour cmp et procédé de polissage
WO2014175397A1 (ja) * 2013-04-25 2014-10-30 日立化成株式会社 Cmp用研磨液及びこれを用いた研磨方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3892846B2 (ja) * 2003-11-27 2007-03-14 株式会社東芝 Cmp用スラリー、研磨方法、および半導体装置の製造方法
JP2009094430A (ja) * 2007-10-12 2009-04-30 Adeka Corp Cmp用研磨組成物
US20100159807A1 (en) * 2008-12-22 2010-06-24 Jinru Bian Polymeric barrier removal polishing slurry
JP5187536B2 (ja) * 2010-06-22 2013-04-24 Jsr株式会社 化学機械研磨用水系分散体
JP5773170B2 (ja) * 2010-06-23 2015-09-02 日産化学工業株式会社 炭化珪素基板研磨用組成物及び炭化珪素基板の研磨方法
JP2013084876A (ja) * 2011-09-30 2013-05-09 Fujimi Inc 研磨用組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003155471A (ja) * 2001-08-21 2003-05-30 Kao Corp 研磨液組成物
JP2004299018A (ja) * 2003-03-31 2004-10-28 Japan Science & Technology Agency SiC単結晶基板等の研磨による超平滑結晶面形成方法
JP2007092064A (ja) * 2005-09-29 2007-04-12 Fujimi Inc 研磨用組成物
WO2008004579A1 (fr) * 2006-07-05 2008-01-10 Hitachi Chemical Co., Ltd. Liquide de polissage pour cmp et procédé de polissage
WO2014175397A1 (ja) * 2013-04-25 2014-10-30 日立化成株式会社 Cmp用研磨液及びこれを用いた研磨方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019127511A (ja) * 2018-01-23 2019-08-01 ニッタ・ハース株式会社 研磨用組成物
JP2020025066A (ja) * 2018-03-15 2020-02-13 株式会社フジミインコーポレーテッド 研磨用組成物、研磨用組成物の製造方法、研磨方法、および半導体基板の製造方法
JP7250530B2 (ja) 2018-03-15 2023-04-03 株式会社フジミインコーポレーテッド 研磨用組成物、研磨用組成物の製造方法、研磨方法、および半導体基板の製造方法

Also Published As

Publication number Publication date
JPWO2017061229A1 (ja) 2017-10-05
JP6189571B1 (ja) 2017-08-30
US20190077991A1 (en) 2019-03-14
TW201726883A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
JP6189571B1 (ja) 研磨用組成物およびこれを用いた研磨方法、ならびにこれらを用いた研磨済研磨対象物の製造方法
JP6023125B2 (ja) 化学的機械的研磨スラリー組成物およびそれを使用した銅のための方法およびシリコン貫通ビア適用
JP5986146B2 (ja) 基板を化学機械的に研磨加工する方法
TWI453272B (zh) 研磨液
JP5554121B2 (ja) 研磨液及び研磨方法
JP5313885B2 (ja) 窒化シリコン材料を研磨するための組成物および方法
KR101325333B1 (ko) 유전체 필름을 위한 속도 개선 cmp 조성물
KR20070079055A (ko) 배리어층용 연마액
TWI388638B (zh) 釕化學機械研磨組合物及方法
JP2009004748A (ja) アルカリ性バリヤ研磨スラリー
TW200807533A (en) Silicon oxide polishing method utilizing colloidal silica
WO2016038995A1 (ja) 研磨用組成物
TW201621024A (zh) 組成物
JP4657408B2 (ja) 金属膜用研磨剤
TWI646182B (zh) Metal film polishing slurry composition and method for reducing scratches generated when metal film is polished
JP2015532005A (ja) 白金及びルテニウム材料を選択的に研磨するための組成物及び方法
TWI839468B (zh) 研磨用組成物
JP5094112B2 (ja) 研磨液
JP2010103409A (ja) 金属用研磨液及びこの金属用研磨液を用いた研磨方法
JP7259953B2 (ja) 研磨液、分散体、研磨液の製造方法及び研磨方法
JP4231950B2 (ja) 金属膜用研磨剤
JP2009206316A (ja) 研磨液
JP2020076062A (ja) 研磨用組成物、研磨方法および基板の製造方法
JP2007207785A (ja) 金属研磨用組成物
JP7329035B2 (ja) 半導体工程用研磨組成物及び研磨組成物を適用した基板の研磨方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017513821

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853383

Country of ref document: EP

Kind code of ref document: A1