WO2017061120A1 - 波長変換装置及び照明装置 - Google Patents

波長変換装置及び照明装置 Download PDF

Info

Publication number
WO2017061120A1
WO2017061120A1 PCT/JP2016/004500 JP2016004500W WO2017061120A1 WO 2017061120 A1 WO2017061120 A1 WO 2017061120A1 JP 2016004500 W JP2016004500 W JP 2016004500W WO 2017061120 A1 WO2017061120 A1 WO 2017061120A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
light
transfer plate
phosphor layer
disposed
Prior art date
Application number
PCT/JP2016/004500
Other languages
English (en)
French (fr)
Inventor
正人 山名
昇 飯澤
平井 純
中野 貴之
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015201570A external-priority patent/JP6604473B2/ja
Priority claimed from JP2015201335A external-priority patent/JP6692032B2/ja
Priority claimed from JP2016043890A external-priority patent/JP6765051B2/ja
Priority claimed from JP2016043839A external-priority patent/JP6775177B2/ja
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201680058358.7A priority Critical patent/CN108139038B/zh
Priority to US15/765,258 priority patent/US10381532B2/en
Priority to EP16853276.0A priority patent/EP3361140B1/en
Publication of WO2017061120A1 publication Critical patent/WO2017061120A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/002Refractors for light sources using microoptical elements for redirecting or diffusing light
    • F21V5/005Refractors for light sources using microoptical elements for redirecting or diffusing light using microprisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3158Modulator illumination systems for controlling the spectrum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0653Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with wavelength conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the present invention relates to a wavelength conversion device and a lighting device.
  • white light is produced by irradiating the phosphor with blue light emitted by a solid state light source.
  • the phosphor scatters the yellow light excited by a part of the blue light and the other part of the transmitted blue light, so that the mixed white light can be generated.
  • solid light sources such as lasers have strong directivity and high energy density. Therefore, when the phosphor is directly irradiated with the blue light emitted from the solid light source, the phosphor generates a large amount of heat in the irradiated area and becomes high temperature. Since the phosphor has a temperature quenching property in which the wavelength conversion efficiency decreases as the temperature rises, it is necessary to suppress the temperature rise of the phosphor.
  • Patent Document 1 discloses an illumination device in which diffusion means for diffusing light from a solid state light source is formed on a phosphor layer. According to Patent Document 1, the diffusion means diffuses the energy distribution of light from the solid-state light source to prevent the concentration of energy on the phosphor layer (reduce the heat load) and suppress the temperature rise of the phosphor layer. can do.
  • the present invention has been made in view of the above-described problems, and it is an object of the present invention to provide a wavelength conversion device capable of achieving high output while reducing the heat load on a phosphor layer, and an illumination device using the same. To aim.
  • a wavelength conversion device comprising: a light source emitting light of a predetermined wavelength in a wavelength range from ultraviolet light to visible light; and the light source incident on an incident surface Optical member disposed between the light source and the phosphor layer for wavelength-converting the light of the light source, the light emitted from the light source being split and separated to be incident on the incident surface of the phosphor layer And
  • high output can be achieved while reducing the heat load on the phosphor layer.
  • FIG. 1 is a diagram showing an example of a lighting device in which the wavelength conversion device in the first embodiment is used.
  • FIG. 2 is a diagram showing an example of the configuration of the wavelength conversion device according to the first embodiment.
  • FIG. 3A is a view showing a perspective view of the configuration of the optical member in the first embodiment.
  • FIG. 3B is a top view of the diffractive lens array shown in FIG. 3A.
  • FIG. 3C is a view showing a cross-sectional view of the optical member in the Z-plane of FIG. 3A.
  • FIG. 4 is a diagram for explaining the operation of the wavelength converter in the first embodiment.
  • FIG. 5 is a diagram for explaining the operation of the comparative example.
  • FIG. 6 is a simulation model diagram of the wavelength conversion device in the first embodiment.
  • FIG. 1 is a diagram showing an example of a lighting device in which the wavelength conversion device in the first embodiment is used.
  • FIG. 2 is a diagram showing an example of the configuration of the wavelength conversion device according to
  • FIG. 7 is a diagram showing a simulation result of the relationship between the first-order diffraction efficiency and the grating height.
  • FIG. 8 is a diagram showing an example of the configuration of the wavelength conversion device in the modification.
  • FIG. 9 is a cross-sectional view of a microlens array in a modification.
  • FIG. 10 is a top view of the microlens array shown in FIG.
  • FIG. 11 is an external view of a lighting device in the second embodiment.
  • FIG. 12 is a cross-sectional view showing an internal configuration of a lighting fixture included in the lighting device in the second embodiment.
  • FIG. 13 is an exploded perspective view of a holder and a fluorescent member provided in the lighting fixture in Embodiment 2.
  • FIG. 14 is a cross-sectional view of a holder and a fluorescent member provided in the lighting fixture in Embodiment 2.
  • FIG. 15 is a perspective view showing a substrate in the second embodiment.
  • FIG. 16 is a perspective view showing the heat transfer plate in the second embodiment.
  • FIG. 17 is a cross-sectional view of the lighting fixture in the second embodiment.
  • FIG. 18 is an explanatory view showing the temperature distribution of the cross section of the lighting fixture in the related art 1.
  • FIG. 19 is an explanatory view showing the temperature distribution of the cross section of the luminaire in the related art 2.
  • FIG. 20 is an explanatory view showing the temperature distribution of the cross section of the lighting fixture in Related Art 3.
  • FIG. 21 is an explanatory view showing a temperature distribution of a cross section of the lighting fixture in the second embodiment.
  • FIG. 22 is a perspective view showing a specific configuration of the lens of the lighting fixture in the second embodiment.
  • FIG. 23 is a top view showing the configuration of a diffractive lens array according to Embodiment 2.
  • FIG. 24 is a cross-sectional view taken along line XIV-XIV of FIG.
  • FIG. 25 is a perspective view showing an optical path of light passing through the diffractive lens array in the second embodiment.
  • FIG. 26 is a perspective view showing a substrate in a first modification of the second embodiment.
  • FIG. 27 is a perspective view showing the heat transfer plate in the first modification of the second embodiment.
  • FIG. 28 is a perspective view showing a substrate in the second modification of the second embodiment.
  • FIG. 29 is a perspective view showing the heat transfer plate in the second modification of the second embodiment.
  • FIG. 30 is an external view of a lighting device in the third embodiment.
  • FIG. 31 is a cross-sectional view showing an internal configuration of a lighting fixture included in the lighting device in the third embodiment.
  • FIG. 32 is an exploded perspective view of a holder and a fluorescent member provided in the lighting fixture in Embodiment 3.
  • FIG. 33 is a cross-sectional view of a holder and a fluorescent member provided in the lighting fixture in Embodiment 3.
  • FIG. 34 is a schematic view showing specific shapes of a heat transfer plate and a substrate and an optical path of light in the third embodiment.
  • FIG. 35 is a cross-sectional view of the lighting fixture in the third embodiment.
  • FIG. 36 is an explanatory view showing the temperature distribution of the cross section of the lighting fixture in the related art 1A.
  • FIG. 37 is an explanatory view showing the temperature distribution of the cross section of the lighting fixture in the related art 2A.
  • FIG. 38 is an explanatory view showing the temperature distribution of the cross section of the lighting fixture in the third embodiment.
  • FIG. 39 is a cross-sectional view showing a first example of another shape of the heat transfer plate of the lighting fixture in the third embodiment.
  • FIG. 40 is a cross-sectional view showing a second example of another shape of the heat transfer plate of the lighting fixture in the third embodiment.
  • FIG. 41 is a perspective view showing a specific configuration of the lens of the lighting fixture in the third embodiment.
  • FIG. 42 is a top view showing the configuration of the diffractive lens array according to the third embodiment.
  • FIG. 43 is a cross-sectional view taken along line XIV-XIV of FIG. FIG.
  • FIG. 44 is a perspective view showing an optical path of light passing through the diffractive lens array in the third embodiment.
  • FIG. 45 is a schematic view showing specific shapes of a heat transfer plate and a substrate and a light path of light in the first modification of the third embodiment.
  • FIG. 46 is an exploded perspective view of a holder and a fluorescent member provided in the lighting fixture in the fourth embodiment.
  • FIG. 47 is a cross-sectional view of a holder and a fluorescent member provided in the lighting fixture in Embodiment 4.
  • FIG. 48 is a schematic view showing specific shapes of a heat transfer plate and a substrate and an optical path of light in the fourth embodiment.
  • FIG. 49 is an explanatory drawing showing the temperature distribution of the cross section of the lighting fixture in Embodiment 4 and the temperature distribution of the phosphor layer.
  • Embodiment 1 Lighting device
  • a lighting device will be described as an example of an applied product in which the wavelength conversion device in the present embodiment is used.
  • FIG. 1 is a view showing an example of a lighting device 4 in which the wavelength conversion device 1 in the present embodiment is used.
  • the illumination device 4 illustrated in FIG. 1 is, for example, an endoscope or a fiberscope, and includes a wavelength conversion device 1, an optical fiber 2, and a lamp 3.
  • the optical fiber 2 is a transmission path that transmits light to a distant place.
  • the optical fiber 2 has a double structure in which a high refractive index core is surrounded by a cladding layer having a lower refractive index than the core.
  • the core and cladding layers are both made of quartz glass or plastic, which has a very high transmittance to light.
  • the lamp 3 is used to irradiate the light from the wavelength conversion device 1 transmitted through the optical fiber 2 to the observation target.
  • the lamp 3 is constituted of, for example, a stainless steel fiber coupling, a stainless steel ferrule, a glass lens, an aluminum holder, and an aluminum outer shell.
  • the wavelength conversion device 1 corresponds to a light source means using a laser in the illumination device 4 and makes light enter the optical fiber 2. Hereinafter, the details of the wavelength conversion device 1 will be described.
  • FIG. 2 is a diagram showing an example of the configuration of the wavelength conversion device 1 in the present embodiment.
  • the wavelength conversion device 1 includes a light source 11, an optical member 12, and a phosphor layer 13 as shown in FIG.
  • the light source 11 emits light of a predetermined wavelength in a wavelength range from ultraviolet light to visible light.
  • the light source 11 is a laser that emits blue light.
  • FIG. 3A is a view showing a perspective view of the configuration of the optical member 12 in the present embodiment.
  • FIG. 3B is a diagram showing a top view of the diffractive lens array 122 shown in FIG. 3A.
  • FIG. 3C is a view showing a cross-sectional view of the optical member 12 in the Z plane of FIG. 3A.
  • the optical member 12 is disposed between the light source 11 and the phosphor layer 13, and splits and separates the light emitted by the light source 11 so as to be incident on the incident surface of the phosphor layer 13.
  • the optical member 12 weights the light emitted from the divided and separated light source 11 in a region larger than the diameter of the light emitted from the light source 11 centered on the optical axis of the light source 11 and in the region of the incident surface of the phosphor layer 13. It is incident without.
  • the optical member 12 is an example of, for example, a microlens array, and includes, for example, a substrate 121 and a diffractive lens array 122 as shown in FIG. 3A.
  • the substrate 121 is a substrate of a microlens array.
  • a diffractive lens array 122 is formed on the substrate 121.
  • the base material 121 As a material which forms the base material 121, arbitrary materials, such as glass and a plastics, can be used, for example.
  • glass for example, soda glass, non-alkali glass and the like can be used.
  • plastic for example, acrylic resin, polycarbonate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN) or the like can be used.
  • the material of the base material 121 needs to be selected in consideration of heat resistance.
  • the substrate 121 is preferably transparent without light absorption, and is preferably formed of a material having an extinction coefficient of substantially zero.
  • the diffractive lens array 122 divides and separates the light emitted from the light source 11 and emits the light toward the incident surface of the phosphor layer 13.
  • the cross-sectional shape of the diffractive lens array 122 in a plane perpendicular to the incident surface of the phosphor layer 13 is sawtooth-like. Further, the diffractive lens array 122 has a plurality of areas in which the arrangement direction of the saw teeth is the same in the same area, and the arrangement directions of the saw teeth are different in different areas.
  • the diffractive lens array 122 has three regions (regions 121a, 121b, and 122c) whose alignment directions are different as shown in, for example, FIGS. 3A and 3B is shown.
  • FIGS. 3A and 3B in the same area of each of the three areas (areas 121a, 121b, and 122c), there are a plurality of lens arrays linearly arranged, and the arrangement direction of each of the plurality of lens arrays is the same.
  • the wavelength of the blue light of the light source 11 is, for example, 460 nm
  • the grating pitch of the plurality of lens arrays is, for example, 5 ⁇ m
  • the grating height is 1 ⁇ m.
  • the cross-sectional shape of the diffractive lens array 122 at the Z plane of FIG. 3A or Z1 of FIG. 3B is sawtooth-shaped as shown in FIG. 3C.
  • the Z plane corresponds to a plane perpendicular to the incident plane of the phosphor layer 13 described above.
  • FIG. 3C the cross-sectional shape of the diffractive lens array 122 in the area 122a is shown, but the other areas 122b and 122c are also sawtooth shaped. That is, the diffractive lens array 122 corresponds to a so-called blazed diffraction grating.
  • the diffractive lens array 122 can increase the first-order diffraction efficiency, and can reduce the loss (optical loss) of the light emitted by the light source 11.
  • the diffractive lens array 122 in the diffractive lens array 122, the arrangement direction of the saw teeth in each of the three regions (the regions 122a, 122b, and 122c) is different.
  • the diffractive lens array 122 splits and separates the light emitted from the light source 11 and makes the light incident on the incident surface of the phosphor layer 13
  • the diffractive lens array 122 on the incident surface of the phosphor layer 13 It can prevent energy concentration.
  • the material of the diffractive lens array 122 is selected depending on the method of forming the diffractive lens array 122, the heat resistance, and the refractive index. Examples of the method of forming the diffractive lens array 122 include nanoimprinting, printing, photolithography, EB lithography, and particle orientation. When the diffractive lens array 122 is formed by, for example, nanoimprinting or printing, the material of the diffractive lens array 122 is selected from epoxy resin and acrylic resin as UV curing resin, and polymethyl methacrylate (PMMA) as thermoplastic resin. do it.
  • the material of the diffractive lens array 122 may be glass or quartz in consideration of heat resistance, and the diffractive lens array 122 may be formed by photolithography or EB lithography.
  • the diffractive lens array 122 is preferably formed of a material having a refractive index similar to that of the base 121 so that light from the base 121 can easily enter. Further, like the base material 121, the diffractive lens array 122 preferably has no absorption of light and is transparent, and is preferably formed of a material having an extinction coefficient of substantially zero.
  • the phosphor layer 13 produces white light from the blue light emitted by the light source 11 and enters the produced white light into the optical fiber 2.
  • the phosphor layer 13 has a function of wavelength converting a part of light incident from the lower surface (incident surface) shown in FIG.
  • the phosphor layer 13 receives the blue light from the light source 11 and emits yellow light excited by a part of the incident blue light.
  • the phosphor layer 13 emits (transmits) the other part of the incident blue light.
  • the blue light and the yellow light are mixed and emitted, so that the phosphor layer 13 emits white light.
  • the phosphor layer 13 is formed in, for example, a flat plate shape as shown in FIG.
  • the phosphor layer 13 includes a phosphor, and is formed by covering the phosphor with a resin such as silicon or epoxy.
  • a resin such as silicon or epoxy.
  • the heat dissipation of the phosphor layer 13 is very important because the phosphor layer 13 has temperature quenching characteristics in which the wavelength conversion efficiency decreases as the temperature rises.
  • the heat dissipation may be enhanced by mixing a material having a high thermal conductivity, such as an inorganic oxide such as ZnO, with the resin forming the phosphor layer 13.
  • a minute structure may be provided on the incident surface of the phosphor layer 13 so that light may be easily incident on the phosphor layer 13 or may be easily dissipated from the incident surface.
  • FIG. 4 is a diagram for explaining the operation of the wavelength conversion device 1 in the present embodiment.
  • FIG. 5 is a diagram for explaining the operation of the comparative example.
  • the wavelength conversion device 1 in the present embodiment includes the optical member 12 disposed between the light source 11 and the phosphor layer 13 so that three light beams 11 a emitted by the light source 11 ( The light 12a, the light 12b, and the light 12c can be split and separated and emitted toward the incident surface of the phosphor layer 13. In this manner, the light 12a, the light 12b, and the light 12c can be split and separated and incident on the phosphor layer 13 without largely changing the spot diameter of the light 11a of the light source 11.
  • the split and separated light (light 12 a, light 12 b, light 12 c) is incident on different regions of the incident surface, so energy concentration on the incident surface of the phosphor layer 13 can be reduced. We can see that we can prevent it. Then, the phosphor layer 13 can generate white light 13e from the light (light 12a, light 12b, light 12c) incident on different regions of the incident surface.
  • the wavelength conversion device 1 in the present embodiment can prevent the concentration of energy on the incident surface of the phosphor layer 13 and can suppress the temperature rise of the phosphor layer 13, so that the light emitted by the light source 11 is lost.
  • the entire amount can be emitted to the phosphor layer 13 without having to That is, according to the wavelength conversion device 1 in the present embodiment, the temperature rise of the phosphor layer 13 can be suppressed even if the energy of the light emitted by the light source 11 is increased, so that high output can be achieved.
  • the wavelength conversion device 50 not provided with the optical member 12 of the present embodiment is shown.
  • the light 11a emitted by the light source 11 is not split and separated but is emitted as it is toward one area 52a of the incident surface of the phosphor layer 13 and white light is generated in the area 52a. Create 52b.
  • the temperature rise of the region 52a can not be suppressed. That is, as the wavelength conversion device 50 in the comparative example is used, the temperature of the region 52a increases and the wavelength conversion efficiency decreases. Therefore, it is necessary to narrow the output of the light source 11 in order to reduce the energy of the light 11a. Occurs.
  • FIG. 6 is a simulation model diagram of the wavelength conversion device 1 in the present embodiment.
  • FIG. 7 is a diagram showing a simulation result of the relationship between the first-order diffraction efficiency and the grating height.
  • FIG. 6 shows a simulation model of a cross section in the z plane shown in FIG. 4 of the wavelength conversion device 1 of the present embodiment.
  • the distance between the light source 11 and the phosphor layer 13 is 5.5 mm
  • the grating pitch of the diffractive lens array 122 in the region 122a is 5 ⁇ m
  • the light 12a from which the light 11a of the light source 11 is diffracted is The angle ⁇ (diffraction angle) with the light 11a is 5.2 deg.
  • the relationship between the first-order diffraction efficiency and the grating height was simulated using the simulation model shown in FIG. The results are shown in FIG.
  • the wavelength of the blue light of the light source 11 is 460 nm.
  • the first-order diffraction efficiency is a value indicating how much energy can be taken out as diffracted light among the energy of the light 12 a of the light source 11 which is incident light.
  • the first-order diffraction efficiency is 80% or more, and in the vicinity of 1.0 ⁇ m, the first-order diffraction efficiency is 88%.
  • the diffraction type lens array 122 can increase the first-order diffraction efficiency by forming a sawtooth lens array with a grating pitch of 5 ⁇ m and a grating height of 1.0 ⁇ m, and loss of light emitted by the light source 11 ( It can be seen that the optical loss can be reduced.
  • the optical member is provided between the light source 11 and the phosphor layer 13 for separating and dividing the light incident from the light source 11 by diffraction. As a result, while the heat load on the phosphor layer 13 is reduced, high output can be achieved.
  • the light source 11 emits light of a predetermined wavelength in the wavelength range from ultraviolet light to visible light, and the light source 11 incident on the incident surface Optical member disposed between the light source 11 and the phosphor layer 13 for wavelength-converting the light from the light source 11 to split and separate the light emitted from the light source 11 and to make the light incident on the incident surface of the phosphor layer 13 And 12.
  • the light emitted from the light source 11 divided and separated by the optical member 12 is heavy in an area of the incident surface and larger than the diameter of the light emitted from the light source 11 centered on the optical axis of the light source 11. It is not incident.
  • the optical member 12 is a microlens array.
  • the optical loss can be reduced and the output can be increased by the microlens array that diffracts the incident light.
  • the cross-sectional shape in a plane perpendicular to the incident surface of the microlens array is a sawtooth shape.
  • the diffractive lens array 122 corresponds to a so-called blazed diffraction grating, the first-order diffraction efficiency can be increased, loss of light emitted from the light source 11 (optical loss) can be reduced, and the wavelength conversion device 1 Output can be achieved.
  • the microlens array (the diffractive lens array 122) has a plurality of areas in which the arrangement direction of the saw teeth is the same in the same area, and the arrangement directions of the saw teeth are different in different areas.
  • the plurality of regions are three regions.
  • the configuration of the wavelength conversion device 1 of the present invention is not limited to that described in the first embodiment. It is also possible to further include a microlens array having a diffractive lens array different from the above-described diffractive lens array 122 on the phosphor layer 13. Hereinafter, an example in this case will be described as a modified example.
  • FIG. 8 is a diagram showing an example of the configuration of the wavelength converter in the present modification.
  • FIG. 9 is a cross-sectional view of the microlens array 14 in the present modification.
  • FIG. 10 is a top view of the microlens array 14 shown in FIG.
  • the same components as those in FIG. 2 are denoted by the same reference numerals, and the detailed description will be omitted.
  • the microlens array 14 comprises a substrate 141 and a diffractive lens array 142.
  • the substrate 141 is a substrate of the microlens array 14 and is formed in a flat plate shape. In the present modification, the substrate 141 is formed on the phosphor layer 13. A diffractive lens array 142 is formed on the substrate 141.
  • the material for forming the base material 141 is the same as the base material 121 and thus the detailed description is omitted.
  • the base material 141 is the same as the phosphor layer 13 so that the light from the phosphor layer 13 is easily incident. It is preferable to be formed of a material of a certain degree of refractive index.
  • the same degree of refractive index means that the difference in refractive index between them is ⁇ 0.2 or less.
  • An acrylic resin, an epoxy resin, etc. are mentioned as a material of a contact bonding layer.
  • the base material 141 and the adhesive layer are preferably transparent without light absorption, and are preferably formed of a material having an extinction coefficient of substantially zero.
  • the diffractive lens array 142 emits a part of the light whose wavelength is converted by the phosphor layer 13 and the other part of the light transmitted through the phosphor layer 13 from the exit surface.
  • a plurality of diffractive lenses are provided to diffract and emit a part of the wavelength-converted light and the other part of the transmitted light.
  • the plurality of diffractive lenses are provided concentrically at the exit surface.
  • the cross section of the diffractive lens in the plane perpendicular to the light emitting surface is described as being sawtooth-shaped, but is not limited thereto and may be rectangular, triangular or hemispherical.
  • the plurality of diffraction lenses diffract a portion of the blue light wavelength-converted to yellow light by the phosphor layer 13 and the blue light transmitted through the phosphor layer 13 to form a predetermined area of the optical fiber 2. It is provided to collect light at the opening. Therefore, the pitches of the plurality of diffractive lenses are different for each predetermined zone. The pitches of the plurality of diffractive lenses are narrowed from the center to the periphery of the diffractive lens array 142.
  • the material of the diffractive lens array 142 is the same as that of the diffractive lens array 122, the detailed description is omitted.
  • the diffractive lens array 142 is configured to easily receive light from the substrate 141 and the like. It is preferable to be formed of a material having a similar refractive index.
  • the diffractive lens array 142 preferably has no absorption of light and is transparent, and is preferably formed of a material having an extinction coefficient of substantially zero.
  • the microlens array 14 may be formed directly (integrally formed) on the phosphor layer 13 so that light can easily enter the diffraction type lens array 142 from the phosphor layer 13.
  • the microlens array 14 may be formed of a resin constituting the phosphor layer 13 or may be formed of a material having a refractive index similar to that of the phosphor layer 13.
  • Embodiment 1 described above is only an example, and various changes, additions, omissions, and the like can be made.
  • Embodiment 1 an embodiment realized by arbitrarily combining the components and the functions shown in the above-mentioned Embodiment 1 is also included in the scope of the present invention.
  • the forms to be included are also included in the present invention.
  • a lighting device using the wavelength conversion device 1 in the first embodiment is also included in the present invention.
  • the use of the wavelength conversion device 1 according to the above-described first embodiment for a lighting device makes it possible to miniaturize the lighting device using an LED light source.
  • the diffractive lens array 122 is described as having three regions (regions 121a, 121b, and 122c) having different alignment directions. But it is not limited to this. Even if the light emitted from the light source 11 is split and separated and emitted toward the incident surface of the phosphor layer 13, energy concentration on the incident surface of the phosphor layer 13 can be prevented, even in two regions. It goes without saying that any number of regions may be used.
  • the size of the diffractive lens array 122 may be larger than the spot diameter of the light of the light source 11, and any value can be taken on condition that the light flux of the light emitted by the light source 11 is not changed.
  • FIG. 11 is an external view of a lighting device 1001 according to the second embodiment.
  • the lighting apparatus 1001 includes a light source S, an optical fiber F, and a lighting fixture 1010.
  • the light source S is a light source that emits light, and is, for example, a laser diode (LD) or a light emitting diode (LED). More specifically, the light source S is an LD or an LED that emits blue light, but the color of the light emitted by the light source S is not limited to the above.
  • LD laser diode
  • LED light emitting diode
  • the optical fiber F has a double structure in which a low refractive index cladding layer wraps a high refractive index core.
  • the optical fiber F functions as a light transmission path for guiding the light emitted by the light source S to the luminaire 1010.
  • the core and cladding layers are both quartz glass or plastic, which has a very high transmission to light.
  • the luminaire 1010 is a luminaire that illuminates the periphery of the luminaire 1010 by emitting the light transmitted from the light source S through the optical fiber F to the outside of the luminaire 1010.
  • the luminaire 1010 has a phosphor layer that converts the color (wavelength) of all or part of the light received from the optical fiber F.
  • the phosphor layer is obtained by sealing a yellow phosphor that converts blue light into yellow light with a resin or the like.
  • the lighting fixture 1010 generates white light by converting a part of the blue light transmitted from the light source S into yellow light with a yellow phosphor, and emits white light around the lighting fixture 1010.
  • FIG. 12 is a cross-sectional view showing an internal configuration of a lighting fixture 1010 included in the lighting apparatus 1001 according to the second embodiment.
  • FIG. 12 is a view showing a cross section of lighting fixture 1010 taken along line II-II in FIG.
  • the luminaire 1010 comprises a fiber coupling 1012, lenses 1014 and 30, a lens array 1015, a holder 1016, and a fluorescent member 1020.
  • the fiber coupling 1012 is an optical member which is connected to the optical fiber F and guides the light transmitted from the light source S in the Z-axis plus direction through the optical fiber F into the luminaire 1010.
  • the lens 1014 is an optical member that changes the optical path of light introduced through the fiber coupling 1012.
  • the lens array 1015 is an optical member that changes the optical path of the light emitted from the lens 1014. Specifically, the lens array 1015 divides the introduced light into light traveling through each of a plurality of (for example, three) light paths, and the divided light reaches each of a plurality of positions on the fluorescent member 1020. , Change (split) the light path of the light.
  • the specific configuration of the lens array 1015 will be described later with specific examples.
  • the lens array 1015 may be disposed at any position between the fiber coupling 1012 and the fluorescent member 1020. In particular, it may be arranged to be in contact with the lens 1014 or be formed as part of the lens 1014 (ie integrally molded with the lens 1014).
  • the holder 1016 is a housing that houses the components of the lighting fixture 1010 inside.
  • the fluorescent member 1020 is a member including a phosphor that receives the light passing through the lens array 1015, converts the color of the received light, and emits the converted light.
  • the fluorescent member 1020 has a heat transfer plate and a heat dissipation plate as a heat dissipation mechanism that dissipates the heat generated by the phosphor to the outside of the lighting apparatus 1010 in addition to the phosphor.
  • the lens 1030 is an optical member that adjusts the light distribution characteristic when the light emitted from the fluorescent member 1020 is emitted to the outside (Z-axis plus direction) of the lighting fixture 1010.
  • the lens 1030 makes the light distribution characteristic narrow-angle light distribution or wide-angle light distribution based on the shape of the lens 1030.
  • the lens 1030 may be one having appropriate light distribution characteristics depending on the application of the luminaire 1010.
  • FIG. 13 is an exploded perspective view of the holder 1016 and the fluorescent member 1020 provided in the lighting fixture 1010 in the present embodiment.
  • FIG. 14 is a cross-sectional view of a holder 1016 and a fluorescent member 1020 provided in the lighting fixture 1010 in the present embodiment.
  • the cross-sectional view shown in FIG. 14 is an enlarged view of the vicinity of the holder 1016 and the fluorescent member 1020 in the cross-sectional view shown in FIG.
  • the fluorescent member 1020 includes a substrate 1022, a phosphor layer 1024, a heat transfer plate 1026, and a heat dissipation plate 1028.
  • the substrate 1022 is a light-transmitting substrate.
  • the light from the light source S is irradiated to the substrate 1022 through the optical fiber F.
  • the substrate 1022 has a portion provided with a phosphor layer 1024 for converting the color of light received from the light source S through the optical fiber F.
  • the phosphor layer 1024 is provided on the substrate 1022 by being applied to the substrate 1022
  • the method for providing the phosphor layer 1024 on the substrate 1022 is not limited to the above.
  • the surface having the portion to which the phosphor layer 1024 is applied is also referred to as a first surface, and the surface opposite to the first surface is also referred to as a second surface.
  • the case where light from the optical fiber F is irradiated from the second surface side will be described as an example.
  • the substrate 1022 is, for example, a sapphire substrate.
  • any material such as glass and plastic can be used.
  • glass for example, soda glass, non-alkali glass and the like can be used.
  • plastic for example, acrylic resin, polycarbonate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN) or the like can be used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the substrate 1022 is transparent without absorption of light, in other words, formed of a material having an extinction coefficient of substantially 0, the amount of light transmitted through the substrate 1022 can be increased, and as a result, illumination is achieved. There is an advantage that the amount of light emitted from the instrument 1010 to the surroundings can be increased.
  • the phosphor layer 1024 is a wavelength conversion material that receives light incident from the light source S through the optical fiber F and the fiber coupling 1012 and converts the color (wavelength) of the received light by phosphor particles.
  • the phosphor layer 1024 generates heat upon conversion of the color of light.
  • the phosphor layer 1024 includes yellow phosphor particles that receive blue light from the light source S and emit yellow light, such as yttrium aluminum garnet (YAG) -based phosphor particles. It is formed by sealing phosphor particles with a resin such as silicon or epoxy.
  • the phosphor layer 1024 generates white light in which yellow light obtained by converting a part of blue light from the light source S by phosphor particles and the remaining part of the blue light are mixed and emits in the Z-axis plus direction.
  • the phosphor layer 1024 generally reduces (deteriorates) the efficiency of converting the color of light when placed under high temperature.
  • the lighting fixture 1010 avoids the temperature increase of the phosphor layer 1024 by appropriately radiating the heat generated by the phosphor layer 1024 to the outside of the lighting fixture 1010 by the heat transfer plate 1026 and the heat dissipation plate 1028 as a heat dissipation mechanism. Do.
  • the heat dissipation may be enhanced by mixing a material having a high thermal conductivity, such as an inorganic oxide such as ZnO, with the resin forming the phosphor layer 1024.
  • the heat transfer plate 1026 is a plate-like heat transfer body that transfers the heat generated by the phosphor layer 1024 to the heat dissipation plate 1028.
  • the heat transfer plate 1026 is disposed in surface contact with the substrate 1022, and the heat generated by the phosphor layer 1024 is transferred through the substrate 1022, and the heat is further transferred to the heat dissipation plate 1028 to obtain the phosphor layer 1024. Control the temperature rise of Further, at the portion where the heat transfer plate 1026 is in direct contact with the phosphor layer 1024, the heat generated by the phosphor layer 1024 can be transmitted directly, that is, without passing through the substrate 1022. This also suppresses the increase in temperature of the phosphor layer 1024.
  • the heat transfer plate 1026 is formed of a metal having a relatively high thermal conductivity (for example, aluminum or copper) or another material having a relatively high thermal conductivity (such as ceramic or resin).
  • the surface of the heat transfer plate 1026 in contact with the heat dissipation plate 1028 is also referred to as a first surface, and the surface opposite to the first surface and in contact with the substrate 1022 is also referred to as a second surface.
  • the heat transfer plate 1026 is disposed such that the second surface is in surface contact with the surface of the substrate 1022 on which the phosphor layer 1024 is applied, and is open at a position overlapping the portion on the second surface to which the phosphor layer 1024 is applied. It has a part 1027.
  • the opening 1027 is an opening for transmitting the light transmitted or emitted from the phosphor layer 1024 to the Z direction plus side. More specifically, the opening 1027 is disposed on the extension of the optical path of the blue light received by the phosphor layer 1024, and is generated by the blue light received by the phosphor layer 1024 and conversion by the phosphor layer 1024. White light generated by the yellow light is passed through.
  • the opening 1027 corresponds to a first opening.
  • the heat dissipating plate 1028 is a heat dissipating member disposed in surface contact with the first surface of the heat transfer plate 1026 and having an opening 1029 at a position overlapping the opening 1027 of the heat transfer plate 1026.
  • the heat radiating plate 1028 is a heat radiating member that radiates the heat transferred from the phosphor layer 1024 via the heat transfer plate 1026 to the outside of the lighting fixture 1010.
  • the surface of the heat sink 1028 may be formed with an uneven shape to increase the efficiency of heat dissipation to the outside of the lighting apparatus 1010 by increasing the surface area.
  • the opening 1029 is an opening for emitting the light transmitted or emitted from the phosphor layer 1024, that is, the light transmitted through the opening 1027 to the outside in the luminaire 1010 by passing the light in the Z direction plus side. . More specifically, the opening 1029 is disposed on the extension of the light path, and passes the white light passed through the opening 1027 of the heat transfer plate 1026 toward the outside of the luminaire 1010. The opening 1029 corresponds to a second opening.
  • the phosphor layer 1024 is configured such that the thickness in the Z direction is equal to or less than the thickness in the Z direction of the heat transfer plate 1026. Further, in the phosphor layer 1024, the thickness in the Z direction is substantially equal to the thickness in the Z direction of the heat transfer plate 1026, that is, the interface between the phosphor layer 1024 and the heat dissipation plate 1028 transfers heat. It may be configured to be flush with the interface between the plate 1026 and the heat sink 1028. In this way, the heat generated by the phosphor layer 1024 can be directly transmitted to the heat dissipation plate 1028 without passing through the substrate 1022 and the heat transfer plate 1026, and the amount of heat transfer can be further increased.
  • FIG. 15 is a perspective view showing a substrate 1022 in the present embodiment.
  • the first surface of the substrate 1022 is shown as the surface 1022A and the second surface is shown as the surface 1022B.
  • the substrate 1022 has a portion on the surface 1022A coated with the phosphor layers 1024A, 1024B and 1024C (hereinafter also referred to as the phosphor layer 1024A etc.) corresponding to the above-mentioned phosphor layer 1024.
  • the light 1042A, 1042B, and 1042C (hereinafter, also referred to as light 1042A and the like hereinafter) which has been introduced into the luminaire 1010 from the optical fiber F and the fiber coupling 1012 and has passed through the lens array It is irradiated from the side. Regions to which the light 1042A and the like are irradiated are shown as regions 1062A, 1062B and 1062C, respectively, in FIG.
  • the portion to which the phosphor layer 1024 is applied is formed, for example, in a substantially circular shape.
  • the substrate 1022 has portions 1054 A, 1054 B and 1054 C where the phosphor layer 1024 is not applied on a line from the central portion 1050 to the peripheral portion 1052 of the circular shape.
  • FIG. 16 is a perspective view showing a heat transfer plate 1026 in the present embodiment.
  • the first surface of heat transfer plate 1026 is shown as surface 1026A and the second surface is shown as surface 1026B.
  • the heat transfer plate 1026 is provided with a plurality of openings 1027A, 1027B and 1027C (hereinafter also referred to as an opening 1027A etc.).
  • the openings 1027A and the like have the same shape as that of the phosphor layer 1024A and the like in FIG. Therefore, when the substrate 1022 and the heat transfer plate 1026 are superimposed, the phosphor layer 1024A etc. and the opening 1027A etc. overlap and the light in the Z-axis plus direction transmitted or emitted by the phosphor layer 1024A etc. is opened. It passes through the unit 1027A and the like.
  • the openings 1027A and the like are formed in a substantially circular shape, and the heat transfer plate 1026 has the heat transfer members 1074A, 1074B and 1074C (hereinafter also referred to as the heat transfer members 1074A and the like) separating the openings 1027A and the like. You may By doing this, the heat transfer body 1074A or the like transfers the heat generated by the phosphor layer 1024 to the peripheral portion 1052 of the heat transfer plate 1026, whereby the heat is properly dissipated to the outside of the lighting fixture 1010. be able to.
  • the heat transfer body 1074A or the like may be disposed so as to extend from the central portion 1070 of the circular shape to the peripheral portion 1072. More specifically, the heat transfer members 1074A and the like may be disposed so as to extend substantially linearly from the central portion 1070 of the circular shape to the peripheral portion 1072, that is, they may be disposed radially. Since the light from the lens array 1015 is irradiated to a position relatively close to the central portion 1050 of the substrate 1022 and the heat flow path from the central portion 1050 to the peripheral portion 1052 is relatively long, the heat generated by the phosphor layer 1024 is It tends to be accumulated near the central portion 1050 of the substrate 1022.
  • the heat transfer body 1074A or the like arranged as described above transfers the heat generated by the phosphor layer 1024 from the central portion 1050 to the peripheral portion 1052, whereby the heat generated by the phosphor layer 1024 is appropriately generated. Heat can be dissipated to the outside of the lighting device 1010.
  • the heat transfer bodies 1074A and the like may be arranged at equal angular intervals centering on the central portion 1070. By doing so, the bias in the heat flow direction from the central portion 1050 to the peripheral portion 1052 of the substrate 1022 can be reduced, and the temperature of the phosphor layer 1024 can be reduced.
  • FIG. 17 is a cross-sectional view of the lighting fixture 1010 in the present embodiment. Specifically, FIG. 17 is a view showing a cross section of the lighting fixture 1010 taken along line VII-VII in FIG.
  • the cross-sectional view shown in FIG. 17 shows a holder 1016, a substrate 1022, a phosphor layer 1024, a heat transfer plate 1026, a heat dissipation plate 1028, and a lens 1030 provided in the lighting apparatus 1010.
  • the distribution of the temperature of each component in this cross section and the distribution of the temperature of the phosphor layer 1024 when illumination by the lighting fixture 1010 is performed will be shown.
  • similar temperature distributions in three techniques related to the luminaire 1010, related techniques 1, 2 and 3, are also shown, and these will be described in comparison with the luminaire 1010.
  • the related art 1 is a technology relating to a luminaire which does not include the heat transfer plate 1026 and the heat sink 1028 in the luminaire 1010.
  • the related art 2 is a technology relating to a luminaire that does not include the heat transfer plate 1026 in the luminaire 1010.
  • the related art 3 is a technology relating to a luminaire that does not include the heat sink 1028 in the luminaire 1010.
  • the simulation evaluation is a steady state in which each of the lighting fixtures is placed under an environment of a temperature of 30 ° C. while the light source emits light, and the temperature of each part of the lighting fixtures becomes substantially constant.
  • the temperature of the phosphor layer is evaluated in the state where the temperature of each part is saturated.
  • FIG. 18 is an explanatory view showing the temperature distribution of the cross section of the lighting fixture and the temperature distribution of the phosphor layer in the related art 1, respectively.
  • FIG. 19 is an explanatory view showing the temperature distribution of the cross section of the luminaire and the temperature distribution of the phosphor layer in the related art 2, respectively.
  • FIG. 20 is an explanatory view showing the temperature distribution of the cross section of the lighting fixture and the temperature distribution of the phosphor layer in the related art 3, respectively.
  • FIG. 21 is an explanatory view showing the temperature distribution of the cross section of the lighting fixture 1010 and the temperature distribution of the phosphor layer 1024, respectively.
  • the maximum values of the temperature of the phosphor layer in the related techniques 1, 2 and 3 and the luminaire 1010 are 159.6 ° C., 146.9 ° C., 152.7 ° C., 144, respectively. .7 degrees C.
  • the temperature of the phosphor layer is the highest in the case where the heat transfer plate 1026 and the heat radiation plate 1028 are not provided as in Related Technology 1 among the four lighting fixtures targeted for the simulation evaluation, that is, the heat radiation efficiency Evaluation results that are bad are obtained.
  • the heat transfer plate 1026 and the heat sink 1028 are provided (related techniques 2 and 3)
  • the heat dissipation efficiency is improved to a certain extent with respect to the case of the related technique 1.
  • the lighting fixture 1010 is provided with the heat transfer plate 1026 and the heat sink 1028, the heat emitted from the phosphor layer 1024 can be efficiently dissipated to the outside of the lighting fixture 1010, and the temperature of the phosphor layer is the lowest. An evaluation result that can be obtained is obtained.
  • the specific configuration of the lens array 1015 will be described below.
  • FIG. 22 is a perspective view showing the configuration of the lens array 1015 of the lighting fixture 1010 in the present embodiment.
  • FIG. 23 is a top view showing the configuration of the diffractive lens array 1142 of the lighting fixture 1010 according to this embodiment.
  • FIG. 24 is a cross-sectional view taken along line XIV-XIV of FIG.
  • the lens array 1015 is disposed between the fiber coupling 1012 and the fluorescent member 1020, and splits and separates the light introduced from the light source S into the luminaire 1010 through the optical fiber F and the fiber coupling 1012 to obtain the fluorescent member Emit towards 1020.
  • the lens array 1015 is an example of, for example, a microlens array, and includes, for example, a substrate 1141 and a diffractive lens array 1142 as shown in FIG.
  • the substrate 1141 is a substrate of a microlens array.
  • a diffractive lens array 1142 is formed on the substrate 1141. Note that, as a material for forming the base material 1141, as in the case of the substrate 1022, an arbitrary material such as glass or plastic can be used.
  • the diffractive lens array 1142 splits and separates the light introduced into the luminaire 1010 and emits the light toward the fluorescent member 1020.
  • the cross-sectional shape of the diffractive lens array 1142 in a plane perpendicular to the incident surface of the fluorescent member 1020 is a sawtooth shape. Further, the diffractive lens array 1142 has a plurality of areas in which the arrangement direction of the saw teeth is the same in the same area and the arrangement directions of the saw teeth are different in different areas.
  • diffraction type lens array 1142 has regions 1142A, 1142B and 1142C (hereinafter also referred to as region 1142A etc.) which are three regions having different alignment directions.
  • region 1142A etc. An example is shown.
  • FIGS. 22 and 23 in the same area of each of the three areas 1142 A and the like, there are a plurality of lens arrays linearly arranged, and the arrangement direction of each of the plurality of lens arrays is the same.
  • the wavelength of blue light from the light source S is, for example, 460 nm
  • the grating pitch of the plurality of lens arrays is, for example, 5 ⁇ m
  • the grating height is 1 ⁇ m.
  • the cross-sectional shape along line XIV-XIV in FIG. 23 is sawtooth-shaped as shown in FIG.
  • the cross section indicated by the XIV-XIV line corresponds to a plane perpendicular to the incident plane of the fluorescent member 1020 described above.
  • FIG. 24 shows the cross-sectional shape of the diffractive lens array 1142 in the area 1142A, the other areas 1142B and the area 1142C are also saw-tooth shaped. That is, the diffractive lens array 1142 corresponds to a so-called blazed diffraction grating. Thereby, the diffractive lens array 1142 can increase the first-order diffraction efficiency and can reduce the loss of light (optical loss).
  • the diffractive lens array 1142 for example, as shown in FIG. 23, the arrangement direction of the sawtooth in each of the three regions 1142A and the like is different. With this configuration, even if the diffractive lens array 1142 splits and separates the light introduced into the lighting fixture 1010 and emits the light toward the fluorescent member 1020, the light incident on the incident surface of the fluorescent member 1020. It can prevent energy concentration.
  • the material of the diffractive lens array 1142 is selected according to the method of forming the diffractive lens array 1142, the heat resistance, and the refractive index.
  • Examples of a method of forming the diffractive lens array 1142 include nanoimprinting, printing, photolithography, EB lithography, and particle orientation.
  • As the material of the diffractive lens array 1142 when the diffractive lens array 1142 is formed by nanoimprinting or printing, for example, epoxy resin or acrylic resin is selected as a UV curable resin, and polymethyl methacrylate (PMMA) is selected as a thermoplastic resin. do it.
  • the material of the diffractive lens array 1142 may be glass or quartz in consideration of heat resistance, and the diffractive lens array 1142 may be formed by photolithography or EB lithography.
  • the diffractive lens array 1142 may be formed of a material having a refractive index similar to that of the base 1141 so that light from the base 1141 can easily enter.
  • the diffractive lens array 1142 preferably has no absorption of light and is transparent, and is preferably made of a material having an extinction coefficient of substantially zero.
  • FIG. 25 is a perspective view showing an optical path of light passing through the diffractive lens array 1142 of the lighting fixture 1010 in the present embodiment.
  • the lighting fixture 1010 is configured such that the light 1040 introduced into the lighting fixture 1010 by the diffractive lens array 1142 is divided into three lights 1042A, 1042B and 1042C (hereinafter also referred to as lights 1042A etc. Notation) is divided and separated, and emitted toward the fluorescent member 1020.
  • the light 1040 can be split and separated and incident on the fluorescent member 1020 without largely changing the spot diameter of the light 1040 introduced into the luminaire 1010.
  • the fluorescent member 1020 since each of the split and separated light 1042A and the like is incident on different regions of the incident surface, energy concentration on the incident surface of the fluorescent member 1020 can be prevented. Then, the fluorescent member 1020 can produce white light 1044 using the incident light 1042A or the like.
  • the luminaire of this modification includes a fiber coupling 1012, lenses 1014 and 30, a lens array 1015, a holder 1016, and a fluorescent member 1020 similarly to the luminaire 1010.
  • the fluorescent member 1020 includes a substrate 1082, a fluorescent layer 1024, a heat transfer plate 1086, and a heat sink 1028.
  • components other than the substrate 1082 and the heat transfer plate 1086 are the same as those of the same names in the second embodiment, and therefore detailed description will be omitted.
  • FIG. 26 is a perspective view showing a substrate 1082 in the present modification.
  • the substrate 1082 is a translucent substrate having only one portion on which the phosphor layer 1084 is applied.
  • the light 1042A, 1042B and 1042C (FIG. 15) which has been introduced from the optical fiber F into the luminaire 1010 and passed through the lens array 1015 is irradiated to the phosphor layer 1084 from the surface 82B side.
  • the areas irradiated with the light are shown as areas 1062A, 1062B and 1062C, respectively.
  • FIG. 27 is a perspective view showing a heat transfer plate 1086 in the present modification.
  • the heat transfer plate 1086 is disposed such that the second surface is in surface contact with the surface of the substrate 1082 to which the phosphor layer 1084 is applied, and the heat transfer plate 1086 overlaps with one portion on the second surface to which the phosphor layer 1084 is applied. , Has one opening 1087.
  • the opening 1087 is an opening for transmitting the light transmitted or emitted from the phosphor layer 1084 to the Z direction plus side.
  • the lighting apparatus of this modification can efficiently transfer the heat generated by the phosphor layer 1084 to the heat sink 1028 through the heat transfer plate 1086. That is, in the lighting device of this modification, the heat transfer efficiency can be enhanced by the heat transfer plate 1086.
  • the lighting apparatus of this modification includes a fiber coupling 1012, lenses 1014 and 1030, a lens array 1015, a holder 1016, and a fluorescent member 1020, as in the lighting apparatus 1010.
  • the fluorescent member 1020 includes a substrate 1092, a fluorescent layer 1024, a heat transfer plate 1096, and a heat sink 1028.
  • components other than the substrate 1092 and the heat transfer plate 1096 are the same as those of the same names in the second embodiment, and therefore detailed description will be omitted.
  • FIG. 28 is a perspective view showing a substrate 1092 in the present modification.
  • the substrate 1092 is a translucent substrate having portions to which the phosphor layers 1094A and 1094B are applied. Each of the phosphor layers 1094A and 1094B is introduced from the optical fiber F into the luminaire 1010, and the light passing through the lens array 1015 is irradiated from the surface 1092B side. In FIG. 28, the areas irradiated with the light are shown as areas 1062E and 1062F, respectively.
  • FIG. 29 is a perspective view showing a heat transfer plate 1096 in the present modification.
  • the heat transfer plate 1096 is disposed such that the second surface is in surface contact with the surface of the substrate 1092 to which the phosphor layers 1094A and 1094B are applied, and overlaps the portions on the second surface to which the phosphor layers 1094A and 1094B are applied. In position, it has two openings 1097A and 1097B.
  • the openings 1097A and 1097B are openings for transmitting light transmitted or emitted from the phosphor layers 1094A and 1094B to the Z direction plus side.
  • the heat generated by the phosphor layers 1094A and 1094B can be efficiently transmitted to the heat dissipation plate 1028 by the heat transfer plate 1096. That is, in the lighting apparatus of this modification, the heat transfer efficiency can be enhanced by the heat transfer plate 1096.
  • the lighting fixture 1010 includes the light-transmitting substrate 1022 having one or more portions provided with the phosphor layer 1024, and the light transmission arranged in surface contact with the substrate 1022 A heat transfer plate 1026 having one or more openings 1027 disposed at positions overlapping the one or more portions, and a surface 1026 B of the heat transfer plate 1026 that is in surface contact with the substrate 1022. And a heat sink 1028 having an opening 1029 at a position overlapping the one or more openings 1027 of the heat transfer plate 1026.
  • the heat transfer plate 1026 is directly transferred the heat generated when the phosphor layer 1024 converts the wavelength of light through the substrate 1022, and the heat is further transferred to the heat dissipation plate 1028. Tell.
  • the presence of the heat transfer plate 1026 can suppress the increase in temperature of the phosphor layer 1024.
  • the lighting fixture 1010 can increase the heat dissipation efficiency while preventing the lighting fixture from being enlarged.
  • the substrate 1022 has a plurality of portions as one or more portions
  • the heat transfer plate 1026 is a plurality of openings 1027 as the one or more openings 1027, at positions overlapping the respective portions. There may be a plurality of openings 1027 arranged.
  • the heat transfer plate 1026 transfers the heat generated by the phosphor layer 1024 to the heat dissipation plate 1028 even when the phosphor layer 1024 is disposed at a plurality of locations on the substrate 1022.
  • the lighting fixture 1010 can increase the heat dissipation efficiency while preventing the lighting fixture from being enlarged.
  • the heat transfer plate 1026 may have heat transfer bodies 1074A, 1074B and 1074C which are arranged to extend from the central portion 1070 to the peripheral portion 1072 of the heat transfer plate 1026.
  • the heat transfer plate 1026 transfers the heat generated by the phosphor layer 1024 from the central portion 1070 of the heat transfer plate 1026 to the peripheral portion 1072 by the heat transfer body and to the heat dissipation plate 1028.
  • the heat transfer plate 1026 transfers the heat generated by the phosphor layer 1024 from the central portion 1070 of the heat transfer plate 1026 to the peripheral portion 1072 by the heat transfer body and to the heat dissipation plate 1028.
  • the heat transfer bodies 1074A, 1074B, and 1074C may be arranged at equal angular intervals centering on the central portion 1070.
  • the heat transfer members 1074A, 1074B, and 1074C can uniformly transfer heat from the central portion 1070 of the heat transfer plate 1026 to the peripheral portion 1072 without deviation in orientation.
  • the phosphor layer 1024 may be formed so that the interface with the heat sink 1028 is flush with the interface between the heat transfer plate 1026 and the heat sink 1028.
  • the heat generated by the phosphor layer 1024 is directly transmitted to the heat dissipation plate 1028 without passing through the substrate 1022 and the heat transfer plate 1026, and the amount of heat transfer can be further increased. Thereby, the temperature rise of the phosphor layer 1024 can be further prevented.
  • the phosphor layer 1024 receives incident blue light, converts a part of the received blue light into yellow light, and the phosphor layer 1024 receives light at one or more openings 1027 of the heat transfer plate 1026. It is disposed on the extension of the optical path of the blue light, and allows the white light generated by the blue light received by the phosphor layer 1024 and the yellow light generated by the conversion by the phosphor layer 1024 to pass through.
  • the opening 1029 is disposed on the extension of the light path, and the white light passed through one or more openings 1027 of the heat transfer plate 1026 may be allowed to pass to the outside of the lighting fixture 1010.
  • the lighting fixture 1010 can emit white light to the outside using the incident blue light, and can prevent the phosphor layer 1024 from becoming hot.
  • a lighting device 1001 includes the lighting device 1010 described above, a light source S, and an optical fiber F for guiding light emitted by the light source S to the lighting device 1010, and is provided on a substrate 1022 of the lighting device 1010.
  • the phosphor layer 1024 receives the light guided by the optical fiber F.
  • the lighting device 1001 has the same effect as the lighting device 1010.
  • FIG. 30 is an external view of a lighting device 2001 in the present embodiment.
  • the lighting device 2001 includes a light source S, an optical fiber F, and a lighting fixture 2010.
  • the light source S is a light source that emits light, and is, for example, a laser diode (LD) or a light emitting diode (LED). More specifically, the light source S is an LD or an LED that emits blue light, but the color of the light emitted by the light source S is not limited to the above.
  • LD laser diode
  • LED light emitting diode
  • the optical fiber F has a double structure in which a low refractive index cladding layer wraps a high refractive index core.
  • the optical fiber F functions as a light transmission path for guiding the light emitted from the light source S to the luminaire 2010.
  • the core and the cladding layer of the optical fiber F are both quartz glass or plastic having a very high transmittance to light.
  • the luminaire 2010 is a luminaire that illuminates the periphery of the luminaire 2010 by emitting the light transmitted from the light source S through the optical fiber F to the outside of the luminaire 2010.
  • the luminaire 2010 has a phosphor layer that converts the color (wavelength) of all or part of the light received from the optical fiber F.
  • the phosphor layer is obtained by sealing a yellow phosphor that converts blue light into yellow light with a resin or the like.
  • the lighting equipment 2010 generates white light by converting a part of blue light transmitted from the light source S into yellow light with a yellow phosphor, and emits white light around the lighting equipment 2010.
  • FIG. 31 is a cross-sectional view showing an internal configuration of the lighting fixture 2010 included in the lighting device 2001 in the present embodiment.
  • FIG. 31 is a view showing a cross section of lighting fixture 2010, taken along line II-II in FIG.
  • the luminaire 2010 comprises a fiber coupling 2012, lenses 2014 and 2030, a lens array 2015, a holder 2016 and a fluorescent member 2020.
  • the fiber coupling 2012 is an optical member which is connected to the optical fiber F and guides the light transmitted from the light source S in the Z-axis plus direction through the optical fiber F into the luminaire 2010.
  • the lens 2014 is an optical member that changes the optical path of light introduced through the fiber coupling 2012.
  • the material forming the lens 2014 is, for example, a light transmitting material such as glass or plastic.
  • the lens array 2015 is an optical member that changes the optical path of the light emitted from the lens 2014. Specifically, the lens array 2015 changes (splits) the light path of the light so as to divide the introduced light into light traveling toward each of the plurality of (for example, two) light paths toward the fluorescent member 2020. Do.
  • the specific configuration of the lens array 2015 will be described later with specific examples.
  • the lens array 2015 may be disposed at any position between the fiber coupling 2012 and the fluorescent member 2020. In particular, it may be arranged to be in contact with the lens 2014 or it may be formed as part of the lens 2014 (ie integrally molded with the lens 2014).
  • the material forming the lens array 2015 is a light transmitting material such as glass or plastic.
  • the holder 2016 is a housing that accommodates each component of the lighting apparatus 2010 inside.
  • the material forming the holder 2016 is, for example, a material having relatively high thermal conductivity, such as aluminum or copper.
  • the fluorescent member 2020 is a member including a phosphor that receives the light passing through the lens array 2015, converts the color of the received light, and emits the converted light.
  • the fluorescent member 2020 has a heat transfer plate and a heat dissipation plate as a heat dissipation mechanism that radiates the heat generated by the phosphor to the outside of the lighting apparatus 2010 in addition to the phosphor.
  • the lens 2030 is an optical member that adjusts light distribution characteristics when light emitted from the fluorescent member 2020 is emitted to the outside of the lighting device 2010 (Z-axis plus direction).
  • the lens 2030 makes the light distribution characteristic narrow-angle light distribution or wide-angle light distribution based on the shape of the lens 2030.
  • the lens 2030 may be one having appropriate light distribution characteristics depending on the application of the lighting apparatus 2010.
  • the material forming the lens 2030 is similar to the material of the lens 2014.
  • FIG. 32 is an exploded perspective view of the holder 2016 and the fluorescent member 2020 provided in the lighting device 2010 in the present embodiment.
  • FIG. 33 is a cross-sectional view of the holder 2016 and the fluorescent member 2020 provided in the lighting device 2010 in the present embodiment. The cross-sectional view shown in FIG. 33 is an enlarged view of the vicinity of the holder 2016 and the fluorescent member 2020 in the cross-sectional view shown in FIG.
  • the fluorescent member 2020 includes a heat transfer plate 2022, a substrate 2024, a phosphor layer 2025, and a heat sink 2028.
  • the heat transfer plate 2022 is a plate-like heat transfer body that transfers (radiates) the heat generated by the phosphor layer 2025 to the holder 2016 and the air in contact with the heat transfer plate 2022.
  • the heat transfer plate 2022 is disposed between the holder 2016 and the substrate 2024 in surface contact with each of the holder 2016 and the substrate 2024.
  • the heat transfer plate 2022 transfers the heat generated by the phosphor layer 2025 through the substrate 2024 and transfers the transferred heat to the holder 2016, thereby suppressing the increase in temperature of the phosphor layer 2025.
  • the heat transfer plate 2022 is made of a metal having a relatively high thermal conductivity (for example, aluminum or copper) or another material having a relatively high conductivity (such as ceramic or resin).
  • the surface of the heat transfer plate 2022 in contact with the substrate 2024 is also referred to as a first surface, and the surface opposite to the first surface and in contact with the holder 2016 is also referred to as a second surface.
  • the heat transfer plate 2022 may be formed by processing a part of the holder 2016. That is, the heat transfer plate 2022 may be integrally molded or integrated with the holder 2016. As described above, when the heat transfer plate 2022 and the holder 2016 are arranged in surface contact, an air layer of several ⁇ m is formed between the heat transfer plate 2022 and the holder 2016, and this air layer is the heat transfer plate 2022 Transfer to the holder 2016 may be impeded. Therefore, by integrally molding the heat transfer plate 2022 and the holder 2016, it is possible to prevent the air layer of several ⁇ m from being generated, and to prevent the transmission of heat from the heat transfer plate 2022 to the holder 2016 to be prevented. . In addition, there is an advantage that the manufacturing cost can be reduced by reducing the members constituting the lighting apparatus 2010.
  • the heat transfer plate 2022 has an opening 2023.
  • the opening 2023 is an opening for transmitting the light emitted from the lens array 2015 to the Z-axis plus side. That is, the light emitted from the lens array 2015 passes through the opening 2023 and reaches the phosphor layer 2025.
  • the opening 2023 is disposed on the optical path of the blue light emitted from the lens array 2015. In other words, the heat transfer plate 2022 is disposed at a position where the light path of the blue light passes through the opening 2023.
  • the opening 2023 corresponds to the first opening.
  • the substrate 2024 is a light-transmitting substrate.
  • the light emitted from the lens array 2015 and having passed through the opening 2023 is irradiated to the substrate 2024.
  • the substrate 2024 has a portion provided with a phosphor layer 2025 for converting the color of the received light.
  • the method for providing the phosphor layer 2025 on the substrate 2024 is not limited to the above.
  • the surface having the portion to which the phosphor layer 2025 is applied is also referred to as a first surface, and the surface opposite to the first surface is also referred to as a second surface.
  • the case where light from the optical fiber F is irradiated from the second surface side will be described as an example.
  • any material such as glass and plastic can be used, for example.
  • glass for example, soda glass, non-alkali glass, sapphire glass or the like can be used.
  • plastic for example, acrylic resin, polycarbonate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN) or the like can be used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the substrate 2024 is transparent without absorption of light, in other words, formed of a material having an extinction coefficient of substantially 0, the amount of light transmitted through the substrate 2024 can be increased, resulting in illumination. There is an advantage that the amount of light emitted from the device 2010 to the surroundings can be increased.
  • the phosphor layer 2025 is a wavelength conversion material that receives light introduced from the light source S through the optical fiber F and converts the color (wavelength) of the received light by phosphor particles.
  • the phosphor layer 2025 generates heat upon conversion of the color of light.
  • the phosphor layer 2025 includes yellow phosphor particles that receive blue light from the light source S and emit yellow light, such as yttrium aluminum garnet (YAG) -based phosphor particles. It is formed by sealing phosphor particles with a resin such as silicon or epoxy.
  • the phosphor layer 2025 generates white light in which yellow light obtained by converting a part of blue light from the light source S by phosphor particles and the remaining part of the blue light are mixed, and emits white light in the Z-axis plus direction.
  • the phosphor layer 2025 generally reduces (deteriorates) the efficiency of converting the color of light when placed under high temperature.
  • the lighting fixture 2010 suppresses the increase in temperature of the phosphor layer 2025 by appropriately releasing the heat generated by the phosphor layer 2025 to the outside of the lighting fixture 2010 by the heat transfer plate 2022 as a heat dissipation mechanism.
  • the heat dissipation may be enhanced by mixing a material having a high thermal conductivity, such as an inorganic oxide such as ZnO, with the resin forming the phosphor layer 2025.
  • the heat dissipating plate 2028 is a heat dissipating member which is disposed in surface contact with the first surface of the substrate 2024 and has an opening 2029 at a position overlapping the portion of the substrate 2024 on which the phosphor layer 2025 is provided.
  • the heat sink 2028 dissipates the heat transmitted from the phosphor layer 2025 to the outside of the lighting apparatus 2010.
  • An uneven shape may be formed on the surface of the heat sink 2028. By increasing the surface area of the heat sink 2028, the efficiency of radiating heat to the outside of the lighting apparatus 2010 is enhanced.
  • the opening 2029 is an opening for emitting the light transmitted or emitted from the phosphor layer 2025 to the outside of the lighting apparatus 2010 by passing the light to the Z-axis plus side.
  • the opening 2029 is an example of a second opening.
  • FIG. 34 is a schematic view showing specific shapes of the heat transfer plate 2022 and the substrate 2024 and an optical path of light in the present embodiment.
  • the heat transfer plate 2022 and the substrate 2024 are shown disassembled for the purpose of explanation, but the heat transfer plate 2022 and the substrate 2024 are actually disposed in contact with each other.
  • the first surface of the heat transfer plate 2022 is shown as a surface 2022A and the second surface is shown as a surface 2022B.
  • the first surface of the substrate 2024 is shown as a surface 2024A and the second surface is shown as a surface 2024B.
  • the heat transfer plate 2022 is provided with a plurality of openings 2023A and 2023B (hereinafter also referred to as an opening 2023A and the like).
  • Each of the openings 2023A and the like has a substantially semicircular shape
  • the light 2042A and 2042B (hereinafter, also referred to as light 2042A and the like) traveling in the Z-axis plus direction emitted from the lens array 2015 has a substantially semicircular shape. ) Passes.
  • the heat transfer plate 2022 has a heat transfer body 2054 extending from the central portion 2050 to the peripheral portion 2052 of the heat transfer plate 2022.
  • the heat transfer body 2054 is, for example, a rod shape. It can be said that the openings 2023 A and the like are partitioned by the heat transfer body 2054.
  • the substrate 2024 has a portion on which the phosphor layer 2025 is applied on the surface 2024A.
  • the phosphor layer 2025 In the phosphor layer 2025, light 2042A and the like emitted from the lens array 2015 and having passed through the openings 2023A and the like are irradiated from the surface 2024B side. Regions to which the light 2042A and the like are irradiated are shown as regions 2062A and 2062B, respectively, in FIG.
  • the portion to which the phosphor layer 2025 is applied is formed, for example, in a substantially circular shape.
  • the phosphor layer 2025 may not be applied to a portion of the phosphor layer 2025 to which the light 2042A or the like is not irradiated (that is, a portion overlapping the heat transfer member 2054). This portion is not irradiated with the light 2042A or the like, so that the phosphor contained in this portion of the phosphor layer 2025 does not perform wavelength conversion.
  • the phosphor layer 2025 When the phosphor layer 2025 is irradiated with the light 2042 A or the like, the phosphor layer 2025 converts a part of the irradiated light to generate heat, so that if there is no heat dissipation mechanism, the center of the substrate 2024 The temperature in the vicinity of the portion 2060 becomes higher than the temperature around it, which may cause deterioration of the phosphor layer 2025.
  • the heat transfer body 2054 disposed in contact with the central portion 2060 of the substrate 2024 transfers the heat in the vicinity of the central portion 2060 to the peripheral portion 2052 of the heat transfer plate 2022 to increase the temperature of the central portion 2060 and the fluorescence. Deterioration of the body layer 2025 is suppressed.
  • the heat transfer body 2054 may have any other shape as long as it extends from the central portion 2050 to the peripheral portion 2052 of the heat transfer plate 2022. More specifically, the heat transfer body 2054 may be disposed so as to extend substantially linearly from the central portion 2050 to each of the plurality of locations in the peripheral portion 2052, that is, may be disposed radially. By doing so, the amount of heat transferred from the central portion 2050 of the heat transfer plate 2022 to the peripheral portion 2052 can be increased.
  • the heat transfer members 2054 may be arranged at equal angular intervals centering on the central portion 2050. By doing so, the deviation of the heat flow direction from the central portion 2050 to the peripheral portion 2052 of the heat transfer plate 2022 can be reduced, and the temperature of the phosphor layer 2025 can be reduced without deviation.
  • the heat transfer body 2054 may have any shape as long as it is disposed at a position different from the light path of the light emitted from the lens array 2015, that is, the position not blocking the light. In addition, part of the light may be blocked. In the case of partially blocking, the light amount of the light emitted from the lighting apparatus 2010 to the outside decreases as a result, but the effect of suppressing the increase in temperature of the phosphor layer 2025 and preventing deterioration is the same as above. It is exhibited.
  • FIG. 35 is a cross-sectional view of the lighting apparatus 2010 in the present embodiment. Specifically, FIG. 35 is a view showing a cross section taken along line VI-VI in FIG.
  • a holder 2016 provided in the lighting fixture 2010, a heat transfer plate 2022, a substrate 2024, a phosphor layer 2025, a heat dissipation plate 2028, and a lens 2030 are shown.
  • the distribution of the temperature of each component in this cross section and the distribution of the temperature of the phosphor layer 2025 when illumination by the lighting fixture 2010 is performed will be shown.
  • similar temperature distributions in related techniques 1A and 2A, which are two techniques related to the luminaire 2010, are also shown, and these will be described in comparison with the luminaire 2010.
  • the related art 1A is a technology related to a luminaire that does not include the heat transfer plate 2022 and the heat sink 2028 in the luminaire 2010.
  • the related art 2A is a technology relating to a luminaire that does not include the heat transfer plate 2022 in the luminaire 2010 (includes the heat dissipating plate 2028).
  • the lighting fixtures were placed under an environment of a temperature of 30 ° C. while the light source S was emitting light, and the temperature of each part of the lighting fixture became a steady state. It is carried out by evaluation of the temperature of the phosphor layer in the state (that is, the state in which the temperature of each part is saturated).
  • FIG. 36 is an explanatory view showing the temperature distribution of the cross section of the lighting fixture in the related art 1A.
  • FIG. 37 is an explanatory view showing a temperature distribution of a cross section of a lighting fixture and a temperature distribution of a phosphor layer in Related Art 2A.
  • FIG. 38 is an explanatory view showing the temperature distribution of the cross section of the lighting apparatus 2010 and the temperature distribution of the phosphor layer 2025.
  • the maximum values of the temperature of the phosphor layer in the related techniques 1A and 2A and the luminaire 2010 are 159.6 ° C., 146.9 ° C. and 126.5 ° C., respectively. .
  • the temperature of the phosphor layer is the highest in the case where the heat transfer plate 2022 and the heat radiation plate 2028 are not provided as in related art 1A among the three lighting devices targeted for the simulation evaluation, that is, the heat radiation efficiency Evaluation results that are bad are obtained.
  • the heat sink 2028 is provided (related art 2A)
  • the heat dissipation efficiency is improved to a certain extent in the case of the related art 1A.
  • the lighting fixture 2010 can efficiently dissipate the heat generated by the phosphor layer 2025 to the outside of the lighting fixture 2010, and the temperature of the phosphor layer 2025 can be reduced. The evaluation result that it can be made the lowest is obtained.
  • FIG. 39 is a cross-sectional view showing a first example (heat transfer plate 2022C) of another shape of the heat transfer plate of the lighting fixture 2010 in the present embodiment.
  • the width in the Z direction of the heat transfer body 2054A is formed relatively large.
  • the heat transfer body 2054A can transmit the heat of the central portion 2050 to the peripheral portion 2052 more by the volume being larger than the heat transfer body 2054.
  • the heat transfer plate 2022C has a shape that does not block the optical path of the light emitted from the lens array 2015. As a result, the amount of light emitted from the lighting device 2010 to the outside can be maintained without reduction.
  • the heat transfer body 2054A can suppress the increase in temperature of the phosphor layer 2025 while maintaining the amount of light emitted from the lighting fixture 2010 to the outside.
  • FIG. 40 is a cross-sectional view showing a second example (heat transfer plate 2022D) of another shape of the heat transfer plate of the lighting fixture 2010 in the present embodiment.
  • the heat transfer plate 2022D shown in FIG. 40 is formed in a shape that does not block the optical path of the light emitted from the lens array 2015.
  • the optical path of the light emitted from the lens array 2015 can be determined in design based on the positions and shapes of the fiber coupling 2012, the lens 2014, and the lens array 2015. Therefore, it is possible to form the heat transfer body 2054B having a shape that does not interrupt the light path defined as described above.
  • the heat transfer plate 2022D has a position and a shape that occupies all or part of the space between the light paths of the light in the space on the positive side in the Z-axis direction with respect to the lens array 2015.
  • the heat transfer body 2054B is a Z-axis minus It has a tapered shape whose width increases as it proceeds in the direction.
  • the heat transfer body 2054B can also suppress the increase in temperature of the phosphor layer 2025 while maintaining the amount of light emitted from the lighting device 2010 to the outside.
  • heat transfer plates 2022C and 2022D as different shapes of the heat transfer plate 2022 (heat transfer body 2054) as described above, it is possible to increase the amount of heat transferred from the central portion 2050 of the heat transfer plate to the peripheral portion 2052 is there.
  • FIG. 41 is a perspective view showing the configuration of the lens array 2015 of the lighting device 2010 in the present embodiment.
  • FIG. 42 is a top view showing the configuration of the diffractive lens array 2142 of the lighting device 2010 in the present embodiment.
  • FIG. 43 is a cross-sectional view taken along line XIV-XIV of FIG.
  • the lens array 2015 is disposed between the fiber coupling 2012 and the fluorescent member 2020, and splits and separates the light introduced from the light source S into the luminaire 2010 through the optical fiber F and the fiber coupling 2012, thereby the fluorescent member Emit towards 20.
  • the lens array 2015 is an example of, for example, a microlens array, and includes, for example, a base 2141 and a diffractive lens array 2142 as shown in FIG.
  • the substrate 2141 is a substrate of a microlens array.
  • a diffractive lens array 2142 is formed on the base 2141. Note that, as a material for forming the base material 2141, as in the case of the substrate 2024, arbitrary materials such as glass and plastic can be used.
  • the diffractive lens array 2142 splits and separates the light introduced into the luminaire 2010 and emits the light toward the fluorescent member 2020.
  • the cross-sectional shape of the diffractive lens array 2142 in a plane perpendicular to the incident surface of the fluorescent member 2020 is a sawtooth shape. Further, the diffractive lens array 2142 has a plurality of areas in which the arrangement direction of the saw teeth is the same in the same area and the arrangement directions of the saw teeth are different in different areas.
  • diffraction type lens array 2142 has regions 2142A and 2142B (hereinafter also referred to as region 2142A etc.) which are two regions having different arrangement directions of saw teeth.
  • regions 2142A and 2142B hereinafter also referred to as region 2142A etc.
  • FIG. 41 and FIG. 42 in the same area of each of the two areas 2142A and the like, there are a plurality of lens arrays linearly arranged, and the arrangement direction of each of the plurality of lens arrays is the same.
  • the wavelength of blue light from the light source S is, for example, 460 nm
  • the grating pitch of the plurality of lens arrays is, for example, 5 ⁇ m
  • the grating height is 1 ⁇ m.
  • the cross-sectional shape taken along line XIV-XIV in FIG. 42 is sawtooth-shaped as shown in FIG.
  • the cross section indicated by the XIV-XIV line corresponds to a plane perpendicular to the incident plane of the fluorescent member 2020 described above.
  • FIG. 43 shows the cross-sectional shape of the diffractive lens array 2142 in the area 2142A, the other areas 2142B are also saw-tooth shaped. That is, the diffractive lens array 2142 corresponds to a so-called blazed diffraction grating. Thereby, the diffractive lens array 2142 can increase the first-order diffraction efficiency and can reduce the loss of light (optical loss).
  • the diffractive lens array 2142 for example, as shown in FIG. 42, the arrangement direction of the sawtooth in each of the two regions 2142A and the like is different. With this configuration, even if the diffractive lens array 2142 splits and separates the light introduced into the lighting fixture 2010 and emits the light toward the fluorescent member 2020, the light incident surface of the fluorescent member 2020 It can prevent energy concentration.
  • the material of the diffractive lens array 2142 is selected according to the method of forming the diffractive lens array 2142, heat resistance, and refractive index.
  • Examples of the method of forming the diffractive lens array 2142 include nanoimprinting, printing, photolithography, EB lithography, and particle orientation.
  • As the material of the diffractive lens array 2142 when the diffractive lens array 2142 is formed, for example, by nanoimprinting or printing, an epoxy resin or an acrylic resin as a UV curable resin, or polymethyl methacrylate (PMMA) as a thermoplastic resin is selected. do it.
  • the material of the diffractive lens array 2142 may be glass or quartz in consideration of heat resistance, and the diffractive lens array 2142 may be formed by photolithography or EB lithography.
  • the diffractive lens array 2142 may be formed of a material having a refractive index similar to that of the base 2141 so that light from the base 2141 can easily enter.
  • the diffractive lens array 2142 preferably has no absorption of light and is transparent, and is preferably made of a material having an extinction coefficient of substantially zero.
  • FIG. 44 is a perspective view showing an optical path of light passing through the diffractive lens array 2142 of the lighting device 2010 in the present embodiment.
  • the light 2040 introduced into the lighting device 2010 by the diffractive lens array 2142 is divided into two light beams 2042A and 2042B (hereinafter also referred to as light 2042A etc.) Divided and separated and emitted toward the fluorescent member 2020.
  • the light 2040 can be split and separated without being greatly changed in the spot diameter of the light 2040 introduced into the lighting apparatus 2010, and can be incident on the fluorescent member 2020.
  • the fluorescent member 2020 since the split and separated light 2042A and the like are respectively incident on different regions of the incident surface, energy concentration on the incident surface of the fluorescent member 2020 can be prevented. Then, the fluorescent member 2020 can generate white light 2044 using the incident light 2042A or the like.
  • the luminaire of this modification includes the fiber coupling 2012, the lenses 2014 and 30, the lens array 2015B, the holder 2016, and the fluorescent member 2020, similarly to the luminaire 2010.
  • the fluorescent member 2020 includes a heat transfer plate 2082, a substrate 2084, phosphor layers 2085A, 2085B and 2085C (hereinafter also referred to as a phosphor layer 2085A and the like), and a heat sink 2028.
  • a heat transfer plate 2082, the substrate 2084 and the phosphor layer 2085A are the same as those in the third embodiment (FIG. 31, FIG. 32, etc.), and therefore detailed. I omit explanation.
  • FIG. 45 is a schematic view showing specific shapes of the heat transfer plate 2082, the substrate 2084, the phosphor layer 2085A, and the like in the present modification and the optical path of light.
  • the first surface of the heat transfer plate 2082 is shown as a surface 2082A and the second surface is shown as a surface 2082B.
  • the first surface of the substrate 2084 is shown as a surface 2084A
  • the second surface is shown as a surface 2084B.
  • the lens array 2015B divides the light emitted from the lens 2014 into light 2042D, 2042E and 2042F (hereinafter referred to as light 2042D etc.) that travels through each of the three optical paths.
  • the heat transfer plate 2082 includes three openings 2083A, 2083B, and 2083C (hereinafter also referred to as an opening 2083A and the like).
  • the three openings 2083A and the like have a substantially circular shape as a whole, and the lights 2048D (hereinafter referred to as the light 2042D and the like) traveling in the Z-axis plus direction emitted from the lens array 2015B Notation) passes.
  • the heat transfer plate 2082 has three heat transfer members 2054 D, 2054 E and 2054 F (hereinafter also referred to as a heat transfer member 2054 D and the like) extending from the central portion 2050 B to the peripheral portion 52 B of the heat transfer plate 208 2. It can be said that the openings 2083A and the like are partitioned by the heat transfer body 2054D and the like.
  • the substrate 2084 is a substrate having three portions on which the phosphor layer 2085A and the like are applied.
  • the light 2042D or the like emitted from the lens array 2015B and having passed through the opening 2083A or the like is irradiated to the phosphor layer 2085A or the like from the surface 2084B side.
  • the regions irradiated with the light are shown as regions 2062D, 2062E and 2062F, respectively.
  • the temperature in the vicinity of the central portion 2060B of the substrate 2084 is lower than when divided into two.
  • the increase in temperature of the phosphor layer 2085A and the like is further suppressed, and the deterioration of the phosphor layer 2085A and the like is further reduced.
  • the lighting fixture 2010 of the third embodiment includes the light transmitting substrate 2024 having the portion provided with the phosphor layer 2025 and the heat transfer plate 2022 disposed in surface contact with the substrate 2024.
  • a heat transfer plate 2022 having one or more openings 2023 disposed at a position overlapping the above portion, and a surface of the substrate 2024 opposite to the surface in surface contact with the heat transfer plate 2022
  • a heat sink 2028 having an opening 2029 at a position overlapping the one or more openings 2023 of the heat transfer plate 2022.
  • the heat transfer plate 2022 transmits the heat generated when the phosphor layer 2025 converts the wavelength of light through the substrate 2024 to the air in contact with the holder 2016 and the heat transfer plate 2022. Heat is released.
  • the presence of the heat transfer plate 2022 can suppress the increase in temperature of the phosphor layer 2025. Therefore, the luminaire 2010 can increase the heat dissipation efficiency while preventing the luminaire from increasing in size.
  • the heat transfer plate 2022 has a heat transfer body 2054 which is disposed so as to extend from the central portion 2050 to the peripheral portion 2052 of the heat transfer plate 2022.
  • the heat transfer plate 2022 transfers the heat generated by the phosphor layer 2025 from the central portion 2050 of the heat transfer plate 2022 to the peripheral portion 2052 by the heat transfer member 2054.
  • the heat transfer member 2054 transfers the increase in temperature of the central portion 2060 of the substrate 2024 in which the heat generated by the phosphor layer 2025 is easily concentrated.
  • heat transfer members 2054 are arranged at equal angular intervals centering on the central portion 2050.
  • the heat transfer members 2054D, 2054E, and 2054F can uniformly transfer heat from the central portion 2050B of the heat transfer plate 2082 to the peripheral portion 2052B without deviation in orientation.
  • the temperature increase of the phosphor layers 2085A and the like can be prevented evenly without any deviation in the orientation as viewed from the central portion 2050B of the heat transfer plate 2082.
  • light from the light source S is incident on the lighting apparatus 2010, and the heat transfer body 2054 is disposed at a position where the light path of the light passes through the one or more opening portions 2023.
  • the heat transfer plate 2022 allows the light irradiated from the light source S via the lens array 2015 to pass through the opening 2023. Accordingly, the amount of light emitted from the lighting device 2010 to the outside can be maintained without reduction.
  • the heat transfer members 2054A and 2054B have a position and a shape that occupy all or part of the space inside the lighting apparatus 2010 excluding the light path of light.
  • the heat transfer members 2054A and 2054B can transmit the heat of the central portion 2050 to the peripheral portion 2052 more and do not block the light emitted from the light source through the lens array 2015. Therefore, it is possible to prevent the temperature increase of the phosphor layer 2025 while maintaining the amount of light emitted to the outside of the lighting apparatus 2010 without reducing it.
  • the phosphor layer 2025 receives the incident blue light, converts a part of the received blue light into yellow light, and one or more openings 2023 of the heat transfer plate 2022 extend the optical path of the blue light
  • the opening 2029 of the heat sink 2028 is disposed on the extension of the light path, and the blue light received by the phosphor layer 2025 and the yellow light generated by the conversion by the phosphor layer are disposed.
  • the generated white light is passed to the outside of the luminaire 2010.
  • the lighting fixture 2010 can emit white light to the outside using the incident blue light, and can prevent the phosphor layer 2025 from becoming hot.
  • the lighting device 2001 of the third embodiment includes the lighting device 2010 described above, the light source S, and the optical fiber F for guiding the light emitted from the light source S to the lighting device 2010, and the substrate of the lighting device 2010
  • a phosphor layer 2025 provided in 2024 receives the light guided by the optical fiber F.
  • the lighting device 2001 has the same effect as the lighting device 2010.
  • Embodiment 4 In the present embodiment, another embodiment of the lighting fixture will be described in which the heat radiation efficiency is enhanced while the enlargement is prevented.
  • the same components as those in the third embodiment are given the same reference numerals, and detailed description may be omitted.
  • FIG. 46 is an exploded perspective view of the holder 2016 and the fluorescent member 2020A provided in the lighting device 2010A in the present embodiment.
  • FIG. 47 is a cross-sectional view of the holder 2016 and the fluorescent member 2020A provided in the lighting device 2010A in the present embodiment.
  • the cross-sectional view shown in FIG. 47 shows a cross section (line II-II in FIG. 30) corresponding to the same position as the cross-sectional view of the lighting fixture 2010 of the third embodiment.
  • the fluorescent member 2020A includes heat transfer plates 2022 and 2026, a substrate 2024, a phosphor layer 2025, and a heat sink 2028.
  • the luminaire 2010A differs from the luminaire 2010 in that the luminaire 2010A includes a heat transfer plate 2026.
  • the phosphor layer 2025 also has a plurality of portions (phosphor layers 2025A and 2025B).
  • the opening 2023 of the heat transfer plate 2022 is an example of a first opening.
  • the heat transfer plate 2026 is a plate-like heat transfer body that transfers the heat generated by the phosphor layer 2025 to the heat dissipation plate 2028.
  • the heat transfer plate 2026 is disposed between the substrate 2024 and the heat dissipation plate 2028 in surface contact with the substrate 2024 and the heat dissipation plate 2028, and transfers the heat generated by the phosphor layer 2025 through the substrate 2024. By further transferring the heat to the heat sink 2028, the temperature increase of the phosphor layer 2025 is suppressed.
  • the heat transfer plate 2026 directly transfers the heat generated by the phosphor layer 2025, that is, without passing through the substrate 2024, at a portion in direct contact with the phosphor layer 2025.
  • the material forming the heat transfer plate 2026 is the same as that of the heat transfer plate 2022.
  • the surface of the heat transfer plate 2026 in contact with the heat sink 2028 is also referred to as a first surface, and the surface opposite to the first surface and in contact with the substrate 2024 is also referred to as a second surface.
  • the heat transfer plate 2026 is disposed such that the second surface is in surface contact with the surface of the substrate 2024 on which the phosphor layer 2025 is applied, and is open at a position overlapping the portion on the second surface to which the phosphor layer 2025 is applied. And a unit 2027.
  • the opening 2027 is an opening for passing the light emitted from the phosphor layer 2025 to the Z-axis plus side when the heat transfer plate 2026 is disposed in surface contact with the substrate 2024. More specifically, the opening 2027 is disposed on the extension of the optical path of the blue light received by the phosphor layer 2025, and is generated by the blue light received by the phosphor layer 2025 and conversion by the phosphor layer 2025. White light generated by the yellow light is passed through.
  • the white light emitted from the phosphor layer 2025 passes through the opening 2027, passes through the opening 2029 of the heat sink 2028, and is emitted to the outside of the lighting device 2010A.
  • the heat transfer plate 2026 is disposed at a position where the light path of the white light passes through the opening 2027.
  • the opening 2027 is an example of a second opening.
  • the heat dissipating plate 2028 is a heat dissipating member disposed in surface contact with the first surface of the heat transfer plate 2026 and having an opening 2029 at a position overlapping the opening 2027 of the heat transfer plate 2026.
  • the opening 2029 is disposed on the extension of the optical path of the light emitted from the lens array 2015, and passes the white light passed through the opening 2027 of the heat transfer plate 2026 toward the outside of the luminaire 2010A.
  • the heat sink 2028 is the same as the heat sink 2028 in the third embodiment.
  • the opening 2029 is an example of a third opening.
  • the phosphor layer 2025 is configured such that the thickness in the Z direction is equal to or less than the thickness in the Z direction of the heat transfer plate 2026. Further, in the phosphor layer 2025, the thickness in the Z direction is substantially equal to the thickness in the Z direction of the heat transfer plate 2026, that is, the interface between the phosphor layer 2025 and the heat dissipation plate 2028 transfers heat. It may be configured to be flush with the interface between the plate 2026 and the heat sink 2028. In this way, the heat generated by the phosphor layer 2025 can be directly transmitted to the heat dissipation plate 2028 without passing through the substrate 2024 and the heat transfer plate 2026, and the amount of heat transmission can be further increased.
  • FIG. 48 is a schematic view showing the specific shapes of the heat transfer plates 2022 and 2026 and the substrate 2024 and the optical path of light in this embodiment.
  • the heat transfer plates 2022 and 2026 and the substrate 2024 are shown disassembled for the purpose of explanation, but in actuality, the heat transfer plates 2022 and 2026 and the substrate 2024 are disposed in contact with each other.
  • the first surface of heat transfer plate 2026 is shown as surface 2026A and the second surface is shown as surface 2026B.
  • the heat transfer plate 2022 and the substrate 2024 are the same as those in the third embodiment (FIG. 34).
  • the heat transfer plate 2026 includes a plurality of openings 2027A and 2027B (hereinafter also referred to as the opening 2027A etc.) as the opening 2027.
  • the openings 2027A and the like have the same shape as the phosphor layer 2025A and the like of FIG. Therefore, when the substrate 2024 and the heat transfer plate 2026 are superimposed, each of the phosphor layers 2025A and the like and each of the openings 2027A and the like overlap. Then, the light in the Z-axis plus direction transmitted or emitted from the phosphor layer 2025A or the like passes through the opening 2027A or the like.
  • the heat transfer plate 2026 has a heat transfer body 2094 extending from the central portion 2090 to the peripheral portion 2092 of the heat transfer plate 2026. It can be said that the openings 2027A and the like are partitioned by the heat transfer body 2094.
  • the heat transfer body 2094 has another shape (for example, radial) as long as the heat transfer body 2054 of the heat transfer plate 2022 extends from the central portion 2090 to the peripheral portion 2092 of the heat transfer plate 2026. Alternatively, they may be arranged at equal angular intervals about the central portion 2090. By doing so, the deviation of the heat flow direction from the central portion 2090 to the peripheral portion 2092 of the heat transfer plate 2026 can be reduced, and the temperature of the phosphor layer 2025 can be uniformly reduced.
  • the heat transfer body 2094 may have any other shape as long as it does not block the optical path of the light emitted from the phosphor layers 2025A and 2025B.
  • the optical paths of the light emitted from the phosphor layers 2025A and 2025B can be determined in design based on the positions and shapes of the phosphor layers 2025A and 2025B, so that the light having a shape that does not block the optical path defined as described above.
  • a heating element 2094 can be formed.
  • FIG. 49 is an explanatory view showing the temperature distribution of the cross section of the lighting fixture 2010A in the present embodiment and the temperature distribution of the phosphor layer 2025.
  • This cross section is a cross section of the luminaire 2010A at the same position as the cross section of the luminaire 2010 shown in FIG.
  • the maximum value of the temperature of the phosphor layer in the luminaire 2010A is 125.7 ° C. This temperature is lower than that of the three luminaires (related arts 1A and 2A and luminaire 2010) of which simulation results are shown in the third embodiment.
  • the luminaire 2010A can efficiently dissipate the heat generated by the phosphor layer 2025 to the outside of the luminaire 2010A. An evaluation result is obtained that the temperature can be made the lowest.
  • the lighting fixture 2010A includes the light transmitting substrate 2024 having one or more portions provided with the phosphor layer 2025, and the transmission disposed in surface contact with the substrate 2024.
  • a heat transfer plate 2022 having one or more openings 2023 disposed at a position overlapping the one or more portions, and a surface of the substrate 2024 in surface contact with the heat transfer plate 2022
  • a heat transfer plate 2026 having a heat transfer plate 2026 disposed in surface contact with the opposite surface, the heat transfer plate 2026 having one or more openings 2027 disposed at positions overlapping the one or more portions; 2026 is disposed in surface contact with the surface opposite to the surface that is in surface contact with the substrate 2024, and a heat sink 2028 having an opening 2029 at a position overlapping the one or more openings 2027 of the heat transfer plate 2026 And .
  • the heat transfer plate 2022 transmits the heat generated when the phosphor layer 2025 converts the wavelength of light through the substrate 2024 to the air in contact with the holder 2016 and the heat transfer plate 2022. Heat is released.
  • the heat transfer plate 2026 receives the heat via the substrate 2024 and dissipates the heat to the air in contact with the heat dissipation plate 2028 and the heat transfer plate 2026.
  • the presence of the heat transfer plates 2022 and 2026 can suppress the increase in temperature of the phosphor layer 2025. Therefore, the luminaire 2010A can increase the heat dissipation efficiency while preventing the luminaire from increasing in size.
  • the substrate 2024 has a plurality of portions as the one or more portions
  • the heat transfer plate 2022 is a plurality of openings 2023 as the one or more openings 2023, and the plurality of portions are respectively
  • the heat transfer plate 2026 has a plurality of openings 2023 disposed at overlapping positions
  • the heat transfer plate 2026 is a plurality of openings 2027 serving as the one or more openings 2027 and is disposed at a position overlapping each of the plurality of portions A plurality of openings 2027.
  • the heat transfer plates 2022 and 2026 transfer the heat generated by the phosphor layer 2025 to the holder 2016 and the heat dissipation plate 2028 even when the phosphor layer 2025 is disposed at a plurality of locations on the substrate 2024. Therefore, the luminaire 2010A can increase the heat dissipation efficiency while preventing the luminaire from increasing in size.
  • Heat transfer plate 2022 has heat transfer body 2054 extending from central portion 2050 of heat transfer plate 2022 to peripheral portion 2052, and heat transfer plate 2026 is peripheral from central portion 2090 of heat transfer plate 2026.
  • the heat transfer body 2094 is disposed to extend to the portion 2092.
  • the heat transfer plates 2022 and 2026 transfer the heat generated by the phosphor layer 2025 from the central portion 2050 of the heat transfer plate 2022 to the peripheral portion 2052 by the heat transfer member 2054 and to the heat sink holder 2016
  • the heat transfer body 2012 transfers the heat transfer plate 2028 to the peripheral portion 2092 through the heat transfer plate 2028.
  • the heat transfer bodies 2054 are arranged at equal angular intervals around the central portion 2050, and the heat transfer bodies 2094 are arranged at equal angular intervals around the central portion 2090.
  • the heat transfer body 2054 can transmit heat evenly from the central portion 2050 to the peripheral portion 2052 of the heat transfer plate 2022 without any deviation in the orientation
  • the heat transfer member 2094 is a heat transfer plate Heat can be transmitted uniformly from the central portion 2090 of the heat exchanger 2026 to the peripheral portion 2092 without any bias in the orientation, whereby the fluorescence can be evenly distributed without any bias in the orientation as viewed from the central portions 2050 and 2090 of the heat transfer plates 2022 and 2026.
  • the temperature rise of the body layer 2025 can be prevented.
  • the heat transfer plate 2022 is disposed at a position where the light path of the light passes through the one or more opening portions 2023.
  • the heat transfer plate 2022 allows the light irradiated from the light source S via the lens array 2015 to pass through the opening 2023. Accordingly, the amount of light emitted from the lighting device 2010A to the outside can be maintained without reduction.
  • the phosphor layer 2025 is formed so that the interface with the heat sink 2028 is flush with the interface between the heat transfer plate 2026 and the heat sink 2028.
  • the heat generated by the phosphor layer 2025 can be directly transmitted to the heat sink 2028 without passing through the substrate 2024 and the heat transfer plate 2026, and the amount of heat transmission can be further increased. Thereby, the temperature rise of the phosphor layer 2025 can be further prevented.
  • the opening 2023 of the heat transfer plate 2022 is disposed on the optical path of the incident blue light, and the phosphor layer 2025 receives the blue light and converts a part of the received blue light into yellow light.
  • the one or more openings 2027 of the heat transfer plate 2026 are disposed on the extension of the optical path of the blue light received by the phosphor layer 2025, and the blue light received by the phosphor layer 2025 and the phosphor layer
  • the white light generated by the yellow light generated by the conversion by 2025 is allowed to pass, and the opening 2029 of the heat sink 2028 is disposed on the extension of the light path, and the one or more openings of the heat transfer plate 2026
  • the white light passed by 2027 is passed to the outside of the luminaire 2010A.
  • the lighting fixture 2010A can emit white light to the outside using the incident blue light, and can prevent the phosphor layer 2025 from becoming hot.
  • the lighting device 2001 of the present embodiment includes the lighting device 2010A described above, the light source S, and the optical fiber F for guiding the light emitted from the light source S to the lighting device 2010A, and the substrate 2024 of the lighting device 2010A.
  • the phosphor layer 2025 provided on the side receives the light guided by the optical fiber F.
  • the lighting device 2001 has the same effect as the lighting device 2010A.
  • the present invention can be realized by arbitrarily combining components and functions in each embodiment without departing from the scope of the present invention or embodiments obtained by applying various modifications that those skilled in the art may think to each embodiment.
  • the form is also included in the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Signal Processing (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

波長変換装置(1)は、紫外光から可視光までの波長領域のうちの所定の波長の光を発する光源(11)と、入射面に入射された光源(11)からの光を波長変換する蛍光体層(13)と、光源(11)と蛍光体層(13)との間に配置され、光源(11)が発する光を分割かつ分離して、蛍光体層(13)の入射面に出射する光学部材(12)とを備える。

Description

波長変換装置及び照明装置
 本発明は、波長変換装置及び照明装置に関する。
 レーザーなどの固体光源を用いた照明がある。このような照明では、固体光源が発する青色光を蛍光体に照射することで白色光を作り出す。蛍光体は、青色光の一部により励起された黄色光と透過した青色光の他部とを散乱させるので、これらが混色された白色光を作り出すことができる。
 一方で、レーザーなどの固体光源は、指向性が強くエネルギー密度が高い。そのため、蛍光体に、固体光源の発する青色光が直接的に照射されたときには、蛍光体は、照射された領域で多くの熱が発生し高温となる。蛍光体は温度が高くなると波長変換効率が下がる温度消光特性を有するので、蛍光体の温度上昇を抑制する必要がある。
 そこで、例えば特許文献1には、固体光源からの光を拡散させる拡散手段を蛍光体層上に形成する照明装置について開示されている。特許文献1によれば、拡散手段により、固体光源からの光のエネルギー分布を拡散させることで、蛍光体層へのエネルギー集中を防ぎ(熱負荷を軽減し)、蛍光体層の温度上昇を抑制することができる。
特開2012-104267号公報
 しかしながら、上記の従来技術では、蛍光体層への熱負荷を軽減できるものの、固体光源からの光の一部が拡散により散乱ロスされてしまうという問題がある。つまり、上記の従来技術では、照明装置の高出力化を図るのが難しいという問題がある。
 本発明は、上述の課題を鑑みてなされたもので、蛍光体層への熱負荷を軽減しつつ、高出力化を図ることができる波長変換装置及びそれを用いた照明装置を提供することを目的とする。
 上記目的を達成するために本発明の一態様に係る波長変換装置は、紫外光から可視光までの波長領域のうちの所定の波長の光を発する光源と、入射面に入射された前記光源からの光を波長変換する蛍光体層と、前記光源と前記蛍光体層との間に配置され、前記光源が発する光を分割かつ分離して、前記蛍光体層の前記入射面に入射させる光学部材とを備える。
 本発明の一態様に係る波長変換装置では、蛍光体層への熱負荷を軽減しつつ、高出力化を図ることができる。
図1は、実施の形態1における波長変換装置が用いられる照明装置の一例を示す図である。 図2は、実施の形態1における波長変換装置の構成の一例を示す図である。 図3Aは、実施の形態1における光学部材の構成の斜視図を示す図である。 図3Bは、図3Aに示す回折型レンズアレイの上面図を示す図である。 図3Cは、図3AのZ平面における光学部材の断面図を示す図である。 図4は、実施の形態1における波長変換装置の動作を説明するための図である。 図5は、比較例の動作を説明するための図である。 図6は、実施の形態1における波長変換装置のシミュレーションモデル図である。 図7は、一次回折効率と格子高さとの関係のシミュレーション結果を示す図である。 図8は、変形例における波長変換装置の構成の一例を示す図である。 図9は、変形例におけるマイクロレンズアレイの断面図である。 図10は、図9に示すマイクロレンズアレイの上面図である。 図11は、実施の形態2における照明装置の外観図である。 図12は、実施の形態2における照明装置に含まれる照明器具の内部構成を示す断面図である。 図13は、実施の形態2における照明器具が備えるホルダ及び蛍光部材の分解斜視図である。 図14は、実施の形態2における照明器具が備えるホルダ及び蛍光部材の断面図である。 図15は、実施の形態2における基板を示す斜視図である。 図16は、実施の形態2における伝熱板を示す斜視図である。 図17は、実施の形態2における照明器具の断面図である。 図18は、関連技術1における照明器具の断面の温度分布を示す説明図である。 図19は、関連技術2における照明器具の断面の温度分布を示す説明図である。 図20は、関連技術3における照明器具の断面の温度分布を示す説明図である。 図21は、実施の形態2における照明器具の断面の温度分布を示す説明図である。 図22は、実施の形態2における照明器具のレンズの具体的構成を示す斜視図である。 図23は、実施の形態2における回折型レンズアレイの構成を示す上面図である。 図24は、図23のXIV-XIV線における断面図である。 図25は、実施の形態2における回折型レンズアレイを通過する光の光路を示す斜視図である。 図26は、実施の形態2の変形例1における基板を示す斜視図である。 図27は、実施の形態2の変形例1における伝熱板を示す斜視図である。 図28は、実施の形態2の変形例2における基板を示す斜視図である。 図29は、実施の形態2の変形例2における伝熱板を示す斜視図である。 図30は、実施の形態3における照明装置の外観図である。 図31は、実施の形態3における照明装置に含まれる照明器具の内部構成を示す断面図である。 図32は、実施の形態3における照明器具が備えるホルダ及び蛍光部材の分解斜視図である。 図33は、実施の形態3における照明器具が備えるホルダ及び蛍光部材の断面図である。 図34は、実施の形態3における伝熱板及び基板の具体的形状と光の光路とを示す模式図である。 図35は、実施の形態3における照明器具の断面図である。 図36は、関連技術1Aにおける照明器具の断面の温度分布を示す説明図である。 図37は、関連技術2Aにおける照明器具の断面の温度分布を示す説明図である。 図38は、実施の形態3における照明器具の断面の温度分布を示す説明図である。 図39は、実施の形態3における照明器具の伝熱板の別形状の第一例を示す断面図である。 図40は、実施の形態3における照明器具の伝熱板の別形状の第二例を示す断面図である。 図41は、実施の形態3における照明器具のレンズの具体的構成を示す斜視図である。 図42は、実施の形態3における回折型レンズアレイの構成を示す上面図である。 図43は、図42のXIV-XIV線における断面図である。 図44は、実施の形態3における回折型レンズアレイを通過する光の光路を示す斜視図である。 図45は、実施の形態3の変形例1における伝熱板及び基板の具体的形状と光の光路とを示す模式図である。 図46は、実施の形態4における照明器具が備えるホルダ及び蛍光部材の分解斜視図である。 図47は、実施の形態4における照明器具が備えるホルダ及び蛍光部材の断面図である。 図48は、実施の形態4における伝熱板及び基板の具体的形状と光の光路とを示す模式図である。 図49は、実施の形態4における照明器具の断面の温度分布、及び、蛍光体層の温度分布を示す説明図である。
 以下、実施の形態について、図面を参照しながら説明する。ここで示す実施の形態は、いずれも本発明の一具体例を示すものである。従って、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、並びに、ステップ(工程)及びステップの順序等は、一例であって本発明を限定するものではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意に付加可能な構成要素である。また、各図は、模式図であり、必ずしも厳密に図示されたものではない。
 (実施の形態1)
 [照明装置]
 以下では、まず、本実施の形態における波長変換装置が用いられる応用製品として、照明装置を例に挙げて説明する。
 図1は、本実施の形態における波長変換装置1が用いられる照明装置4の一例を示す図である。
 図1に示される照明装置4は、例えば内視鏡やファイバースコープなどであり、波長変換装置1と、光ファイバ2と、灯具3とを備える。
 光ファイバ2は、離れた場所に光を伝える伝送路である。光ファイバ2は、高屈折率のコアをコアより低屈折率のクラッド層が包んだ二重構造で構成される。コアおよびクラッド層はともに光に対して透過率が非常に高い石英ガラスまたはプラスチックからなる。
 灯具3は、光ファイバ2を介して伝送された波長変換装置1からの光を、観察対象物に照射するために用いられる。灯具3は、例えば、ステンレス製のファイバカップリング、ステンレス製のフェルール、ガラス製のレンズ、アルミ製のホルダー、およびアルミ製の外郭で構成される。
 波長変換装置1は、照明装置4においてはレーザーを用いた光源手段に該当し、光ファイバ2に光を入射する。以下、波長変換装置1の詳細について説明する。
 [波長変換装置]
 図2は、本実施の形態における波長変換装置1の構成の一例を示す図である。
 波長変換装置1は、図2に示すように、光源11と、光学部材12と、蛍光体層13とを備える。
 (光源11)
 光源11は、紫外光から可視光までの波長領域のうちの所定の波長の光を発する。本実施の形態では、光源11は、青色光を発するレーザーである。
 (光学部材12)
 図3Aは、本実施の形態における光学部材12の構成の斜視図を示す図である。図3Bは、図3Aに示す回折型レンズアレイ122の上面図を示す図である。図3Cは、図3AのZ平面における光学部材12の断面図を示す図である。
 光学部材12は、光源11と蛍光体層13との間に配置され、光源11が発する光を分割かつ分離して、蛍光体層13の入射面に入射させる。光学部材12は、分割かつ分離した光源11が発する光を、蛍光体層13の入射面の領域であって光源11の光軸を中心とした光源11が発する光の径よりも大きな領域に重ならずに入射させる。光学部材12は、例えばマイクロレンズアレイの一例であり、例えば図3Aに示すように、基材121と、回折型レンズアレイ122とを備える。
 基材121は、マイクロレンズアレイの基材である。基材121上には、回折型レンズアレイ122が形成されている。
 なお、基材121を形成する材料としては、例えば、ガラス、プラスチックなど任意のものを用いることができる。ここで、ガラスとしては、例えば、ソーダガラス、無アルカリガラスなどを用いることができる。また、プラスチックとしては、例えば、アクリル樹脂、ポリカーボネート、ポリエチレンテレフタラート(PET)、ポリエチレンナフタレート(PEN)などを用いることができる。また、基材121の材料は、耐熱性を考慮して選ぶ必要がある。さらに、基材121は、光の吸収が無く透明であることが好ましく、消衰係数がほぼ0の材料で形成されていることが好ましい。
 回折型レンズアレイ122は、光源11が発する光を分割かつ分離して、蛍光体層13の入射面に向けて出射する。回折型レンズアレイ122の、蛍光体層13の入射面に垂直な面における断面形状は、鋸歯状である。また、回折型レンズアレイ122は、同一領域では鋸歯の並び方向が同じであり、異なる領域では鋸歯の並び方向がそれぞれ異なる複数の領域を有する。
 本実施の形態では、回折型レンズアレイ122は、例えば図3Aおよび図3Bに示すように並び方向がそれぞれ異なる3つの領域(領域121a、121b、122c)を有する例が示されている。図3Aおよび図3Bでは、3つの領域(領域121a、121b、122c)それぞれの同一領域内では、直線状に並ぶレンズアレイが複数あり、複数のレンズアレイそれぞれの並び方向は同一である。ここで、光源11の青色光の波長が例えば460nmである場合、複数のレンズアレイの格子ピッチは、例えば5μmであり、格子高さは1μmである。また、図3AのZ平面または図3BのZ1における回折型レンズアレイ122の断面形状は、図3Cに示すように鋸歯状である。ここで、Z平面は、上記の蛍光体層13の入射面に垂直な面に該当する。図3Cでは、領域122aにおける回折型レンズアレイ122の断面形状が示されているが、他の領域122bおよび領域122cも同様に、鋸歯状である。つまり、回折型レンズアレイ122は、いわゆるブレーズド回折格子に該当する。これにより、回折型レンズアレイ122は、一次回折効率を高くでき、光源11が発する光のロス(光学ロス)を少なくすることができる。
 また、回折型レンズアレイ122は、例えば図3Bの上面図に示されているように、3つの領域(領域122a、領域122b、領域122c)それぞれにおける鋸歯の並び方向が異なる。このように構成されることで、回折型レンズアレイ122は、光源11が発する光を分割かつ分離して、蛍光体層13の入射面に入射させたときに、蛍光体層13の入射面におけるエネルギー集中を防ぐことができる。
 なお、回折型レンズアレイ122の材料は、回折型レンズアレイ122の形成方法や耐熱性、屈折率によって選択される。回折型レンズアレイ122の形成方法としては、ナノインプリント、印刷、フォトリソ、EBリソ、粒子配向などが挙げられる。回折型レンズアレイ122の材料は、回折型レンズアレイ122を、例えばナノインプリントや印刷により形成する場合、UV硬化樹脂としてエポキシ樹脂やアクリル樹脂など、熱可塑性樹脂としてポリメタクリル酸メチル(PMMA)などを選択すればよい。また、回折型レンズアレイ122の材料は、耐熱性を考慮して、ガラスや石英を選択し、フォトリソやEBリソにより回折型レンズアレイ122を形成してもよい。また、回折型レンズアレイ122は、基材121からの光が入射しやすいように基材121と同程度の屈折率の材料で形成されていることが好ましい。さらに、回折型レンズアレイ122は、基材121と同様に、光の吸収が無く透明であることが好ましく、消衰係数がほぼ0の材料で形成されていることが好ましい。
 (蛍光体層13)
 蛍光体層13は、光源11が発する青色光から白色光を作り出し、作り出した白色光を光ファイバ2に入射する。
 より具体的には、蛍光体層13は、図2に示す下面(入射面)から入射された光の一部を波長変換する機能を有する。本実施の形態では、蛍光体層13は、光源11からの青色光が入射され、入射された青色光の一部により励起された黄色光を出射する。また、蛍光体層13は、入射された青色光の他部を出射(透過)する。蛍光体層13では、これら青色光および黄色光が混色されて出射されることになるので、蛍光体層13は白色光を出射することになる。
 蛍光体層13は、図2に示すように例えば平板状に形成される。蛍光体層13は、蛍光体を含み、当該蛍光体をシリコン、エポキシ等の樹脂で覆って形成される。なお、波長変換に伴う損失は熱に変わる。蛍光体層13は温度が高くなると波長変換効率が下がる温度消光特性を有するため、蛍光体層13の放熱は非常に重要である。ここでは特に図示しないが、蛍光体層13は、例えばAlなどの高熱伝導率を持つ材料で形成された放熱プレートで支持されることが望ましい。また、蛍光体層13を形成する樹脂に熱伝導率の高い材料、例えばZnO等の無機酸化物を混合することで放熱性を高めてもよい。また、蛍光体層13の入射面に微小構造を設け、蛍光体層13に光が入射しやすいように、または入射面から放熱されやすいようにしてもよい。
 [波長変換装置1の動作]
 次に、以上のように構成される波長変換装置1の動作について説明する。
 図4は、本実施の形態における波長変換装置1の動作を説明するための図である。図5は、比較例の動作を説明するための図である。
 図4に示すように、本実施の形態における波長変換装置1は、光源11と蛍光体層13との間に配置された光学部材12を備えることにより、光源11が発する光11aを3つ(光12a、光12b、光12c)に分割かつ分離して蛍光体層13の入射面に向けて出射することができる。このようにして、光源11の光11aのスポット径を大きく変えることなく光12a、光12bおよび光12cに分割かつ分離して、蛍光体層13に入射させることができる。また、蛍光体層13では、入射面の異なる領域に、分割かつ分離された光(光12a、光12b、光12c)が入射されていることから、蛍光体層13の入射面におけるエネルギー集中を防ぐことができているのがわかる。そして、蛍光体層13は、入射面の異なる領域に、入射された光(光12a、光12b、光12c)から、それぞれ白色光13eを作りだすことができる。
 このように、本実施の形態における波長変換装置1は、蛍光体層13の入射面におけるエネルギー集中を防ぎ、蛍光体層13の温度上昇を抑制することができるので、光源11が発する光をロスすることなく蛍光体層13に全量出射することができる。つまり、本実施の形態における波長変換装置1によれば、光源11が発する光のエネルギーを大きくしても蛍光体層13の温度上昇を抑制できるので、高出力化を図ることができる。
 一方、図5に示す比較例では、本実施の形態の光学部材12を備えない波長変換装置50について示されている。
 図5に示す比較例における波長変換装置50では、光源11が発する光11aが分割かつ分離されず、そのまま蛍光体層13の入射面の一つの領域52aに向けて出射され、領域52aにおいて白色光52bを作りだす。しかし、蛍光体層13の一つの領域52aに、光11aのエネルギーが集中しているため、領域52aの温度上昇が抑制できない。つまり、比較例における波長変換装置50を使用すればするほど、領域52aの温度が上昇し、波長変換効率が下がっていってしまうので、光11aのエネルギーを減らすために光源11の出力を絞る必要が発生する。
 [波長変換装置1の動作シミュレーション]
 次に、本実施の形態の波長変換装置1の動作シミュレーションについて説明する。
 図6は、本実施の形態における波長変換装置1のシミュレーションモデル図である。図7は、一次回折効率と格子高さとの関係のシミュレーション結果を示す図である。
 図6には、本実施の形態の波長変換装置1の図4に示すz平面における断面のシミュレーションモデルが示されている。図6にシミュレーションモデルでは、光源11と蛍光体層13との距離を5.5mmとし、領域122aの回折型レンズアレイ122の格子ピッチを5μmとし、光源11の光11aが回折された光12aと光11aとの角度θ(回折角)を5.2degとした。そして、図6に示すシミュレーションモデルを用いて一次回折効率と格子高さと関係をシミュレーションした。その結果は図7に示されている。なお、光源11の青色光の波長は460nmとしている。また、一次回折効率は、入射光である光源11の光12aのエネルギーのうち、回折光としてどの程度のエネルギーを取り出せるかを示す値である。
 図7に示すように、格子高さが0.8μm~1.1μmの範囲で、一次回折効率は、80%以上あり、格子高さが1.0μm付近では、一次回折効率は88%である。これにより、回折型レンズアレイ122は、格子ピッチを5μmかつ格子高さを1.0μmで鋸歯状のレンズアレイが形成されることにより、一次回折効率が高くでき、光源11が発する光のロス(光学ロス)が少なくすることができるのがわかる。
 [効果等]
 以上のように、本実施の形態の波長変換装置1によれば、光源11と蛍光体層13との間に光源11より入射された光を回折により分離かつ分割する光学部材を備える。これにより、蛍光体層13への熱負荷を軽減しつつ、高出力化を図ることができる。
 より具体的には、本発明の一態様に係る波長変換装置は、紫外光から可視光までの波長領域のうちの所定の波長の光を発する光源11と、入射面に入射された光源11からの光を波長変換する蛍光体層13と、光源11と蛍光体層13との間に配置され、光源11が発する光を分割かつ分離して、蛍光体層13の入射面に入射させる光学部材12とを備える。
 これにより、光源11が発する光を分割かつ分離して、蛍光体層13の入射面に向けて出射しても、蛍光体層13の入射面におけるエネルギー集中を防ぐことができる。それにより、光源11が発する光のエネルギーを大きくしても蛍光体層13の温度上昇を抑制できるので、波長変換装置1の高出力化を図ることができる。
 ここで、例えば、光学部材12により分割かつ分離された光源11が発する光は、入射面の領域であって光源11の光軸を中心とした光源11が発する光の径よりも大きな領域に重ならずに入射される。
 また、例えば、光学部材12は、マイクロレンズアレイである。
 これにより、入射光を回折するマイクロレンズアレイにより光学ロスを少なくし高出力化できる。
 ここで、例えば、マイクロレンズアレイ(回折型レンズアレイ122)の入射面に垂直な面における断面形状は、鋸歯状である。
 これにより、回折型レンズアレイ122は、いわゆるブレーズド回折格子に相当するので、一次回折効率が高くでき、光源11が発する光のロス(光学ロス)が少なくすることができ、波長変換装置1の高出力化を図ることができる。
 また、例えば、マイクロレンズアレイ(回折型レンズアレイ122)は、同一領域では鋸歯の並び方向が同じであり、異なる領域では鋸歯の並び方向がそれぞれ異なる複数の領域を有する。ここで、例えば、複数の領域は、3つの領域である。
 これにより、光源11が発する光を分割かつ分離して、蛍光体層13の入射面に向けて出射しても、蛍光体層13の入射面におけるエネルギー集中を防ぐことができる。それにより、光源11が発する光のエネルギーを大きくしても蛍光体層13の温度上昇を抑制できるので、波長変換装置1の高出力化を図ることができる。
 (変形例)
 なお、本発明の波長変換装置1の構成は、上記実施の形態1で説明したものに限らない。蛍光体層13上に、上述した回折型レンズアレイ122とは異なる回折型レンズアレイを有するマイクロレンズアレイをさらに備えるとしてもよい。以下、この場合の例を変形例として説明する。
 図8は、本変形例における波長変換装置の構成の一例を示す図である。図9は、本変形例におけるマイクロレンズアレイ14の断面図である。図10は、図9に示すマイクロレンズアレイ14の上面図である。図2と同様の要素には同一の符号を付しており、詳細な説明は省略する。
 マイクロレンズアレイ14は、基材141と回折型レンズアレイ142とを備える。
 基材141は、マイクロレンズアレイ14の基材であり、平板状に形成されている。本変形例では、基材141は、蛍光体層13上に形成されている。基材141上には、回折型レンズアレイ142が形成される。
 基材141を形成する材料としては、基材121と同様であるため詳細な説明は省略するが、基材141は、蛍光体層13からの光が入射しやすいように蛍光体層13と同程度の屈折率の材料で形成されていることが好ましい。ここで、同程度の屈折率とは両者の屈折率差が±0.2以下であることを意味する。また、蛍光体層13と基材141の間は、特に図示していないが、両者と同程度の屈折率を持つ接着層で接着されることが好ましい。接着層の材料としてはアクリル樹脂やエポキシ樹脂などが挙げられる。また、基材141および接着層は、光の吸収が無く透明であることが好ましいく、消衰係数がほぼ0の材料で形成されていることが好ましい。
 回折型レンズアレイ142は、蛍光体層13で波長変換された光の一部と蛍光体層13を透過した光の他部とを出射面から出射する。回折型レンズアレイ142の出射面には、図9に示すように、波長変換された光の一部と透過した光の他部とを回折して出射するための複数の回折レンズが設けられている。複数の回折レンズは、例えば図10に示すように、出射面において同心円状に設けられている。本実施の形態では、出射面に垂直な面における回折レンズの断面は、鋸歯状であるとして説明するが、それに限らず、矩形状、三角形状または半球状でもよい。
 また、複数の回折レンズは、蛍光体層13で黄色光に波長変換された青色光の一部と蛍光体層13を透過した青色光を回折させて、予め定めた領域である光ファイバ2の開口部に集光させるように設けられている。そのため、複数の回折レンズのピッチは、所定の区域(ゾーン)ごとに異なる。また、複数の回折レンズのピッチは、回折型レンズアレイ142の中心から周辺に向かって狭くなっている。
 回折型レンズアレイ142の材料は、回折型レンズアレイ122と同様であるため詳細な説明は省略するが、回折型レンズアレイ142は、基材141からの光が入射しやすいように基材141と同程度の屈折率の材料で形成されていることが好ましい。さらに、回折型レンズアレイ142は、基材141と同様に、光の吸収が無く透明であることが好ましく、消衰係数がほぼ0の材料で形成されていることが好ましい。
 なお、蛍光体層13から回折型レンズアレイ142に光が入射しやすいように、蛍光体層13に直接マイクロレンズアレイ14を形成(一体的に形成)してもよい。この場合、蛍光体層13を構成する樹脂によってマイクロレンズアレイ14を形成してもよいし、蛍光体層13と同程度の屈折率を持つ材料で形成してもよい。
 (その他)
 上述した実施の形態1は一例にすぎず、各種の変更、付加、省略等が可能であることは言うまでもない。
 また、上述した実施の形態1で示した構成要素及び機能を任意に組み合わせることで実現される形態も本発明の範囲に含まれる。その他、上記実施の形態1に対して当業者が思い付く各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態1における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
 例えば、上記実施の形態1における波長変換装置1を用いた照明装置も本発明に含まれる。上記実施の形態1における波長変換装置1を照明装置に用いることでLED光源を用いた照明装置よりも小型化できる。
 なお、上記実施の形態1および変形例では、回折型レンズアレイ122は、例えば図3Aおよび図3Bに示すように並び方向がそれぞれ異なる3つの領域(領域121a、121b、122c)を有するとして説明したが、これに限らない。光源11が発する光を分割かつ分離して、蛍光体層13の入射面に向けて出射しても、蛍光体層13の入射面におけるエネルギー集中を防ぐことができるのであれば、2つの領域でも4つの領域でもよい任意の数でよいのはいうまでもない。
 また、回折型レンズアレイ122の大きさは、光源11の光のスポット径よりも大きければよく、光源11が発する光の光束を変化させないことを条件に任意の値を取ることができる。
 (実施の形態2)
 本実施の形態において、大型化を防ぎながらも放熱効率を高めた照明器具について説明する。なお、同一の構成要素には同一の符号を付し、説明を省略する場合がある。なお、以下の説明において、各図面中に示すXYZ座標軸を用いた説明を行う場合もある。
 図11は、実施の形態2における照明装置1001の外観図である。
 図11に示されるように、照明装置1001は、光源Sと、光ファイバFと、照明器具1010とを備える。
 光源Sは、光を出射する光源であり、例えば、レーザダイオード(LD)、又は、発光ダイオード(LED)である。より具体的には、光源Sは、青色光を出射するLD又はLEDであるが、光源Sが出射する光の色は上記に限定されない。
 光ファイバFは、高屈折率のコアを低屈折率のクラッド層が包んだ二重構造で構成される。光ファイバFは、光源Sが出射した光を照明器具1010に導くための光の伝送路として機能する。コア及びクラッド層は、ともに、光に対して透過率が非常に高い石英ガラス又はプラスチックである。
 照明器具1010は、光源Sから光ファイバFを通じて伝送された光を照明器具1010の外部に出射することで、照明器具1010の周囲を照明する照明器具である。照明器具1010は、光ファイバFから受けた光の全部又は一部の色(波長)を変換する蛍光体層を有する。例えば、蛍光体層は、青色光を黄色光に変換する黄色蛍光体を樹脂等で封止したものである。この場合、照明器具1010は、光源Sから伝送された青色光の一部を黄色蛍光体により黄色光に変換することで白色光を生成し、照明器具1010の周囲に白色光を出射する。
 以降において、照明器具1010の構成について詳しく説明する。
 図12は、実施の形態2における照明装置1001に含まれる照明器具1010の内部構成を示す断面図である。図12は、照明器具1010の、図11におけるII-II線で示される断面を示す図である。
 図12に示されるように、照明器具1010は、ファイバカップリング1012と、レンズ1014及び30と、レンズアレイ1015と、ホルダ1016と、蛍光部材1020とを備える。
 ファイバカップリング1012は、光ファイバFに接続され、光源Sから光ファイバFを通じてZ軸プラス方向に伝送される光を照明器具1010内に導く光学部材である。
 レンズ1014は、ファイバカップリング1012を通じて導入された光の光路を変更する光学部材である。
 レンズアレイ1015は、レンズ1014から出射された光の光路を変更する光学部材である。レンズアレイ1015は、具体的には、導入された光を複数(例えば3個)の光路それぞれを進む光に分割し、分割後の光が蛍光部材1020上の複数の位置それぞれに到達するように、上記光の光路を変更(分離)する。レンズアレイ1015の具体的構成については、後で具体例を挙げて説明する。なお、レンズアレイ1015は、ファイバカップリング1012と蛍光部材1020との間のどの位置に配置されてもよい。特に、レンズ1014に接触するように配置されてもよいし、また、レンズ1014の一部として形成(つまり、レンズ1014と一体成型)されてもよい。
 ホルダ1016は、照明器具1010の各構成要素を内部に収容する筐体である。
 蛍光部材1020は、レンズアレイ1015を通過した光を受光し、受光した光の色を変換し、変換後の光を出射する蛍光体を含む部材である。蛍光部材1020は、蛍光体の他にも、蛍光体が発する熱を照明器具1010の外部に放熱する放熱機構としての伝熱板及び放熱板を有する。これらの構成については後で詳しく説明する。
 レンズ1030は、蛍光部材1020が出射した光を照明器具1010の外部(Z軸プラス方向)に出射するときの配光特性を調整する光学部材である。レンズ1030は、レンズ1030の形状に基づいて、上記配光特性を狭角配光にしたり、広角配光にしたりする。レンズ1030は、照明器具1010の用途に応じて適切な配光特性を有するものが採用され得る。
 以降において、照明器具1010の蛍光部材1020等の詳細な構成を説明する。
 図13は、本実施の形態における照明器具1010が備えるホルダ1016及び蛍光部材1020の分解斜視図である。図14は、本実施の形態における照明器具1010が備えるホルダ1016及び蛍光部材1020の断面図である。図14に示される断面図は、図12に示される断面図の、ホルダ1016及び蛍光部材1020近傍を拡大した拡大図である。
 図13及び図14に示されるように、蛍光部材1020は、基板1022と、蛍光体層1024と、伝熱板1026と、放熱板1028とを備える。
 基板1022は、透光性を有する基板である。基板1022には、光源Sからの光が光ファイバFを通じて照射される。基板1022は、光源Sから光ファイバFを通じて受光した光の色を変換する蛍光体層1024が設けられた部分を有する。蛍光体層1024は、基板1022に塗布されることで基板1022上に設けられる場合を例として説明するが、蛍光体層1024が基板1022上に設けられる手法は上記に限られない。なお、ここでは蛍光体層1024が塗布された部分を有する面を第一面ともいい、第一面と反対側の面を第二面ともいう。また、光ファイバFからの光は第二面側から照射される場合を例として説明する。基板1022は、例えば、サファイア基板である。
 基板1022を形成する材料としては、例えば、ガラス、プラスチックなど任意のものを用いることができる。ここで、ガラスとしては、例えば、ソーダガラス、無アルカリガラスなどを用いることができる。また、プラスチックとしては、例えば、アクリル樹脂、ポリカーボネート、ポリエチレンテレフタラート(PET)、ポリエチレンナフタレート(PEN)などを用いることができる。基板1022は、光の吸収が無く透明である、言い換えれば、消衰係数がほぼ0の材料で形成されていると、基板1022を透過する光の量を多くすることができ、結果的に照明器具1010から周囲に出射される光の量を多くすることができる利点がある。
 蛍光体層1024は、光源Sから入射される光を、光ファイバF及びファイバカップリング1012を通じて受光し、受光した光の色(波長)を蛍光体粒子により変換する波長変換材である。蛍光体層1024は、光の色の変換の際に熱を発生させる。
 具体的には、蛍光体層1024は、光源Sからの青色光を受光し、黄色光を出射する黄色蛍光体粒子、例えば、イットリウム・アルミニウム・ガーネット(YAG)系の蛍光体粒子を含み、この蛍光体粒子をシリコン又はエポキシ等の樹脂で封止して形成されたものである。蛍光体層1024は、光源Sからの青色光の一部を蛍光体粒子により変換した黄色光と、上記青色光の残部とが混色された白色光を生成し、Z軸プラス方向に出射する。蛍光体層1024は、一般に高温下に置かれると光の色を変換する効率が低下(劣化)する。そこで、照明器具1010は、放熱機構としての伝熱板1026及び放熱板1028により蛍光体層1024が発する熱を適切に照明器具1010の外部に放熱することで、蛍光体層1024の高温化を回避する。なお、蛍光体層1024を形成する樹脂に熱伝導率の高い材料、例えばZnO等の無機酸化物を混合することで放熱性を高めてもよい。
 伝熱板1026は、蛍光体層1024が発生させた熱を放熱板1028に伝える板状の伝熱体である。伝熱板1026は、基板1022に面接触して配置され、蛍光体層1024が発生させた熱を基板1022を介して伝えられ、その熱をさらに放熱板1028に伝えることで、蛍光体層1024の高温化を抑制する。また、伝熱板1026は、蛍光体層1024に直接に接触している部分においては、蛍光体層1024が発生させる熱を直接に、つまり基板1022を介さずに伝えられる。これによっても、蛍光体層1024の高温化が抑制される。伝熱板1026は、比較的熱伝導率の高い金属(例えば、アルミニウム又は銅など)、その他比較的熱伝導率の高い材料(セラミック又は樹脂など)により構成される。伝熱板1026のうち、放熱板1028に接する方の面を第一面ともいい、第一面とは反対側の面であり基板1022に接する方の面を第二面ともいう。伝熱板1026は、基板1022の蛍光体層1024が塗布された面に第二面が面接触して配置され、第二面上において蛍光体層1024が塗布された部分に重なる位置に、開口部1027を有する。
 開口部1027は、蛍光体層1024が透過又は出射した光をZ方向プラス側へ通過させるための開口である。より具体的には、開口部1027は、蛍光体層1024が受光した青色光の光路の延長線上に配置されており、蛍光体層1024が受光した青色光と、蛍光体層1024による変換により生じた黄色光とにより生成された白色光を通過させる。なお、開口部1027は、第一開口部に相当する。
 放熱板1028は、伝熱板1026の第一面に面接触して配置され、伝熱板1026の開口部1027に重なる位置に開口部1029を有する放熱部材である。放熱板1028は、蛍光体層1024から伝熱板1026を介して伝えられた熱を照明器具1010の外部へ放熱する放熱部材である。なお、放熱板1028の表面には、表面積を大きくすることで照明器具1010の外部へ放熱する効率を高めるための凹凸形状が形成されていてもよい。
 開口部1029は、蛍光体層1024が透過又は出射した光、つまり、開口部1027を通過してきた光をZ方向プラス側へ通過させることで、照明器具1010の外部へ出射させるための開口である。より具体的には、開口部1029は、光路の延長線上に配置されており、伝熱板1026の開口部1027が通過させた白色光を照明器具1010の外部に向けて通過させる。なお、開口部1029は、第二開口部に相当する。
 なお、蛍光体層1024は、Z方向の厚さが、伝熱板1026のZ方向の厚さ以下になるように構成される。また、蛍光体層1024は、Z方向の厚さが、伝熱板1026のZ方向の厚さと実質的に等しくなるように、つまり、蛍光体層1024と放熱板1028との界面が、伝熱板1026と放熱板1028との界面と面一となるように構成されてもよい。このようにすれば、蛍光体層1024が発生させた熱が直接に、つまり基板1022及び伝熱板1026を介さずに放熱板1028に伝えられ、熱の伝達量をより多くすることができる。
 図15は、本実施の形態における基板1022を示す斜視図である。図15において基板1022の第一面が面1022Aとして、第二面が面1022Bとして示されている。
 図15に示されるように、基板1022は、上記の蛍光体層1024に相当する蛍光体層1024A、1024B及び1024C(以降、蛍光体層1024A等とも表記)が塗布された部分を、面1022A上に有する。蛍光体層1024A等それぞれには、光ファイバF及びファイバカップリング1012から照明器具1010内に導入され、レンズアレイ1015を通過した光1042A、1042B及び1042C(以降、光1042A等とも表記)が面1022B側から照射されている。光1042A等が照射される領域は、図15においてそれぞれ領域1062A、1062B及び1062Cとして示されている。蛍光体層1024が塗布された部分は、例えば略円形形状に形成されている。基板1022は、当該円形形状の中心部1050から周辺部1052に向かう線上に、蛍光体層1024が塗布されない部分1054A、1054B及び1054Cを有する。
 図16は、本実施の形態における伝熱板1026を示す斜視図である。図16において伝熱板1026の第一面が面1026Aとして、第二面が面1026Bとして示されている。
 図16に示されるように、伝熱板1026は、複数の開口部1027A、1027B及び1027C(以降、開口部1027A等とも表記)を備えている。開口部1027A等は、図15の蛍光体層1024A等それぞれと同じ形状を有する。よって、基板1022と伝熱板1026とを重ね合わせると、蛍光体層1024A等と、開口部1027A等とが重なり合い、蛍光体層1024A等が透過又は出射したZ軸プラス方向への光が、開口部1027A等を通過する。
 また、開口部1027A等は略円形形状に形成されており、伝熱板1026は、開口部1027A等を区画する伝熱体1074A、1074B及び1074C(以降、伝熱体1074A等とも表記)を有してもよい。このようにすることで、伝熱体1074A等が、蛍光体層1024が発生させた熱を伝熱板1026の周辺部1052へ伝えることで、上記熱を適切に照明器具1010の外部へ放熱することができる。
 また、伝熱体1074A等は、上記円形形状の中心部1070から周辺部1072へ延びて配置されていてもよい。より具体的には、伝熱体1074A等は、上記円形形状の中心部1070から周辺部1072へ略直線状に延びて配置、つまり、放射状に配置されていてもよい。レンズアレイ1015からの光が基板1022の中心部1050に比較的近い位置に照射され、また、中心部1050から周辺部1052への熱流経路が比較的長いので、蛍光体層1024が発する熱は、基板1022の中心部1050の近傍に溜まりやすい。そこで、上記のように配置された伝熱体1074A等が、蛍光体層1024が発生させた熱を中心部1050から周辺部1052へ伝えることで、蛍光体層1024が発生させた熱を適切に照明器具1010の外部へ放熱することができる。
 なお、伝熱体1074A等は、中心部1070を中心として等角度間隔に配置されていてもよい。このようにすることで、基板1022の中心部1050から周辺部1052への熱流の方向の偏りを小さくすることができ、蛍光体層1024の温度を低下させることができる。
 以上のように構成された照明器具1010内の熱の伝達性についてのシミュレーション評価の結果を説明する。
 図17は、本実施の形態における照明器具1010の断面図である。具体的には、図17は、照明器具1010の、図1におけるVII-VII線で示される断面を示す図である。
 図17に示される断面図には、照明器具1010が備えるホルダ1016と、基板1022と、蛍光体層1024と、伝熱板1026と、放熱板1028と、レンズ1030とが示されている。以降において、照明器具1010による照明を行う際の、この断面における上記各構成要素の温度の分布、及び、蛍光体層1024の温度の分布を示す。また、照明器具1010に関連する3つの技術である関連技術1、2及び3における同様の温度分布も示し、これらと照明器具1010とを比較しながら説明する。ここで、関連技術1とは、照明器具1010における伝熱板1026及び放熱板1028を備えない照明器具に係る技術のことである。関連技術2とは、照明器具1010における伝熱板1026を備えない照明器具に係る技術のことである。関連技術3とは、照明器具1010における放熱板1028を備えない照明器具に係る技術のことである。
 なお、シミュレーション評価は、光源が光を出射している状態で上記各照明器具が温度30度Cの環境下に置かれ、照明器具の各部位の温度が実質的に一定値になった定常状態(つまり各部位の温度が飽和した状態)での蛍光体層の温度の評価により行う。
 図18は、それぞれ、関連技術1における照明器具の断面の温度分布、及び、蛍光体層の温度分布を示す説明図である。図19は、それぞれ、関連技術2における照明器具の断面の温度分布、及び、蛍光体層の温度分布を示す説明図である。図20は、それぞれ、関連技術3における照明器具の断面の温度分布、及び、蛍光体層の温度分布を示す説明図である。図21は、それぞれ、照明器具1010の断面の温度分布、及び、蛍光体層1024の温度分布を示す説明図である。
 シミュレーション評価の結果、関連技術1、2及び3、並びに、照明器具1010における蛍光体層の温度の最高値は、それぞれ、159.6度C、146.9度C、152.7度C、144.7度Cである。
 このように、上記シミュレーション評価の対象である4つの照明器具のうち、関連技術1のように伝熱板1026及び放熱板1028を備えない場合が蛍光体層の温度が最も高い、つまり、放熱効率が悪いという評価結果が得られる。また、伝熱板1026及び放熱板1028のいずれか一方を備える場合(関連技術2及び3)、関連技術1の場合に対して一定程度放熱効率が改善する。そして、照明器具1010は、伝熱板1026及び放熱板1028を備えることより、蛍光体層1024が発する熱が効率よく照明器具1010の外部へ放熱することができ、蛍光体層の温度を最も低くすることができるという評価結果が得られる。
 以降において、レンズアレイ1015の具体的構成について説明する。
 図22は、本実施の形態における照明器具1010のレンズアレイ1015の構成を示す斜視図である。図23は、本実施の形態における照明器具1010の回折型レンズアレイ1142の構成を示す上面図である。図24は、図23のXIV-XIV線における断面図である。
 レンズアレイ1015は、ファイバカップリング1012と蛍光部材1020との間に配置され、光源Sから光ファイバF及びファイバカップリング1012を通じて照明器具1010内に導入された光を分割かつ分離して、蛍光部材1020に向けて出射する。レンズアレイ1015は、例えばマイクロレンズアレイの一例であり、例えば図22に示すように、基材1141と、回折型レンズアレイ1142とを備える。
 基材1141は、マイクロレンズアレイの基材である。基材1141上には、回折型レンズアレイ1142が形成されている。なお、基材1141を形成する材料としては、基板1022同様、ガラス、プラスチックなど任意のものを用いることができる。
 回折型レンズアレイ1142は、照明器具1010内に導入された光を分割かつ分離して、蛍光部材1020に向けて出射する。回折型レンズアレイ1142の、蛍光部材1020の入射面に垂直な面における断面形状は、鋸歯状である。また、回折型レンズアレイ1142は、同一領域では鋸歯の並び方向が同じであり、異なる領域では鋸歯の並び方向がそれぞれ異なる複数の領域を有する。
 本実施の形態では、回折型レンズアレイ1142は、例えば図22および図23に示すように並び方向がそれぞれ異なる3つの領域である領域1142A、1142B及び1142C(以降、領域1142A等とも表記)を有する例が示されている。図22および図23では、3つの領域1142A等それぞれの同一領域内では、直線状に並ぶレンズアレイが複数あり、複数のレンズアレイそれぞれの並び方向は同一である。ここで、光源Sからの青色光の波長が例えば460nmである場合、複数のレンズアレイの格子ピッチは、例えば5μmであり、格子高さは1μmである。また、図23のXIV-XIV線における断面形状は、図24に示すように鋸歯状である。ここで、XIV-XIV線が示す断面は、上記の蛍光部材1020の入射面に垂直な面に該当する。図24では、領域1142Aにおける回折型レンズアレイ1142の断面形状が示されているが、他の領域1142B及び領域1142Cも同様に、鋸歯状である。つまり、回折型レンズアレイ1142は、いわゆるブレーズド回折格子に該当する。これにより、回折型レンズアレイ1142は、一次回折効率を高くでき、光のロス(光学ロス)を少なくすることができる。
 また、回折型レンズアレイ1142は、例えば図23に示されているように、3つの領域1142A等それぞれにおける鋸歯の並び方向が異なる。このように構成されることで、回折型レンズアレイ1142は、照明器具1010内に導入された光を分割かつ分離して、蛍光部材1020に向けて出射しても、蛍光部材1020の入射面におけるエネルギー集中を防ぐことができる。
 なお、回折型レンズアレイ1142の材料は、回折型レンズアレイ1142の形成方法や耐熱性、屈折率によって選択される。回折型レンズアレイ1142の形成方法としては、ナノインプリント、印刷、フォトリソ、EBリソ、粒子配向などが挙げられる。回折型レンズアレイ1142の材料は、回折型レンズアレイ1142を、例えばナノインプリントや印刷により形成する場合、UV硬化樹脂としてエポキシ樹脂やアクリル樹脂など、熱可塑性樹脂としてポリメタクリル酸メチル(PMMA)などを選択すればよい。また、回折型レンズアレイ1142の材料は、耐熱性を考慮して、ガラスや石英を選択し、フォトリソやEBリソにより回折型レンズアレイ1142を形成してもよい。また、回折型レンズアレイ1142は、基材1141からの光が入射しやすいように基材1141と同程度の屈折率の材料で形成されていてもよい。さらに、回折型レンズアレイ1142は、基材1141と同様に、光の吸収が無く透明であることが好ましく、消衰係数がほぼ0の材料で形成されていることが好ましい。
 次に、上記回折型レンズアレイ1142を用いる場合の照明器具1010内の光の光路について説明する。
 図25は、本実施の形態における照明器具1010の回折型レンズアレイ1142を通過する光の光路を示す斜視図である。
 図25に示すように、本実施の形態における照明器具1010は、回折型レンズアレイ1142により、照明器具1010内に導入された光1040を3つの光1042A、1042B及び1042C(以降、光1042A等とも表記)に分割かつ分離して蛍光部材1020に向けて出射する。このようにして、照明器具1010内に導入された光1040のスポット径を大きく変えることなく光1040を分割かつ分離して、蛍光部材1020に入射させることができる。また、蛍光部材1020では、入射面の異なる領域に、分割かつ分離された光1042A等それぞれが入射されていることから、蛍光部材1020の入射面におけるエネルギー集中を防ぐことができる。そして、蛍光部材1020は、入射された光1042A等を用いて白色光1044を作りだすことができる。
 以降において、基板1022及び伝熱板1026の2つの変形例について説明する。
 (実施の形態2の変形例1)
 本変形例では、1個だけの開口部を有する伝熱板を有する照明器具について説明する。なお、本変形例の照明器具において、上記実施の形態2の照明器具1010におけるものと同じ構成要素については、同じ符号を付し詳細な説明を省略する。
 本変形例の照明器具は、照明器具1010と同様に、ファイバカップリング1012と、レンズ1014及び30と、レンズアレイ1015と、ホルダ1016と、蛍光部材1020とを備える。また、蛍光部材1020は、基板1082と、蛍光体層1024と、伝熱板1086と、放熱板1028とを備える。上記各構成要素のうち、基板1082及び伝熱板1086を除くものについては上記実施の形態2における同一名称のものと同じであるので詳細な説明を省略する。
 図26は、本変形例における基板1082を示す斜視図である。
 基板1082は、蛍光体層1084が塗布された部分を1個だけ有する、透光性を有する基板である。蛍光体層1084には、光ファイバFから照明器具1010内に導入され、レンズアレイ1015を通過した光1042A、1042B及び1042C(図15)が面82B側から照射される。図26において、この光が照射される領域をそれぞれ領域1062A、1062B及び1062Cとして示している。
 図27は、本変形例における伝熱板1086を示す斜視図である。
 伝熱板1086は、基板1082の蛍光体層1084が塗布された面に第二面が面接触して配置され、第二面上において蛍光体層1084が塗布された1個の部分に重なる位置に、1個の開口部1087を有する。開口部1087は、蛍光体層1084が透過又は出射した光をZ方向プラス側へ通過させるための開口である。
 本変形例の照明器具は、蛍光体層1084が発生させた熱を伝熱板1086により効率よく放熱板1028に伝達することができる。つまり、本変形例の照明器具は、伝熱板1086により放熱効率を高めることができる。
 (実施の形態2の変形例2)
 本変形例では、2個の開口部を有する伝熱板を有する照明器具について説明する。なお、本変形例の照明器具において、上記実施の形態2の照明器具1010におけるものと同じ構成要素については、同じ符号を付し詳細な説明を省略する。
 本変形例の照明器具は、照明器具1010と同様に、ファイバカップリング1012と、レンズ1014及び1030と、レンズアレイ1015と、ホルダ1016と、蛍光部材1020とを備える。また、蛍光部材1020は、基板1092と、蛍光体層1024と、伝熱板1096と、放熱板1028とを備える。上記各構成要素のうち、基板1092及び伝熱板1096を除くものについては上記実施の形態2における同一名称のものと同じであるので詳細な説明を省略する。
 図28は、本変形例における基板1092を示す斜視図である。
 基板1092は、蛍光体層1094A及び1094Bが塗布された部分を有する、透光性を有する基板である。蛍光体層1094A及び1094Bそれぞれには、光ファイバFから照明器具1010内に導入され、レンズアレイ1015を通過した光が面1092B側から照射される。図28において、この光が照射される領域をそれぞれ領域1062E及び1062Fとして示している。
 図29は、本変形例における伝熱板1096を示す斜視図である。
 伝熱板1096は、基板1092の蛍光体層1094A及び1094Bが塗布された面に第二面が面接触して配置され、第二面上において蛍光体層1094A及び1094Bが塗布された部分に重なる位置に、2個の開口部1097A及び1097Bを有する。開口部1097A及び1097Bは、蛍光体層1094A及び1094Bが透過又は出射した光をZ方向プラス側へ通過させるための開口である。
 本変形例の照明器具は、蛍光体層1094A及び1094Bが発生させた熱を伝熱板1096により効率よく放熱板1028に伝達することができる。つまり、本変形例の照明器具は、伝熱板1096により放熱効率を高めることができる。
 以上のように、本実施の形態における照明器具1010は、蛍光体層1024が設けられた1以上の部分を有する、透光性を有する基板1022と、基板1022に面接触して配置される伝熱板1026であって、1以上の部分それぞれに重なる位置に配置される1以上の開口部1027を有する伝熱板1026と、伝熱板1026の、基板1022と面接触している面1026Bとは反対側の面1026Aに面接触して配置され、伝熱板1026の1以上の開口部1027に重なる位置に開口部1029を有する放熱板1028とを備える。
 これによれば、伝熱板1026は、蛍光体層1024が光の波長を変換する際に発生させる熱を、基板1022を介して、及び、直接に伝えられ、その熱をさらに放熱板1028に伝える。このように伝熱板1026が存在することにより蛍光体層1024の高温化を抑制することができる。よって、照明器具1010は、照明器具の大型化を防ぎながらも放熱効率を高めることができる。
 例えば、基板1022は、1以上の部分としての複数の部分を有し、伝熱板1026は、1以上の開口部1027としての複数の開口部1027であって、複数の部分それぞれに重なる位置に配置される複数の開口部1027を有してもよい。
 これによれば、伝熱板1026は、基板1022の複数の箇所に蛍光体層1024が配置させる場合でも、蛍光体層1024が発生させる熱を放熱板1028に伝える。よって、照明器具1010は、照明器具の大型化を防ぎながらも放熱効率を高めることができる。
 例えば、伝熱板1026は、伝熱板1026の中心部1070から周辺部1072へ延びて配置される伝熱体1074A、1074B及び1074Cを有してもよい。
 これによれば、伝熱板1026は、蛍光体層1024が発生させた熱を、伝熱板1026の中心部1070から周辺部1072へ伝熱体により伝達するとともに放熱板1028に伝える。これにより蛍光体層1024が発生させた熱が集中しやすい蛍光体層1024の中心部1050の高温化を防止することができる。
 例えば、伝熱体1074A、1074B及び1074Cは、中心部1070を中心として等角度間隔に配置されていてもよい。
 これによれば、伝熱体1074A、1074B及び1074Cが、伝熱板1026の中心部1070から周辺部1072に、方位の偏りなく均等に熱を伝達することができる。これにより、伝熱板1026の中心部1070からみた方位の偏りなく均等に、蛍光体層1024の高温化を防止することができる。
 例えば、蛍光体層1024は、放熱板1028との界面が、伝熱板1026と放熱板1028との界面と面一となるように形成されていてもよい。
 これによれば、蛍光体層1024が発生させた熱が直接に、つまり基板1022及び伝熱板1026を介さずに放熱板1028に伝えられ、熱の伝達量をより多くすることができる。これにより、蛍光体層1024の高温化をさらに防止することができる。
 例えば、蛍光体層1024は、入射された青色光を受光し、受光した青色光の一部を黄色光に変換し、伝熱板1026の1以上の開口部1027は、蛍光体層1024が受光した青色光の光路の延長線上に配置されており、蛍光体層1024が受光した青色光と、蛍光体層1024による変換により生じた黄色光とにより生成された白色光を通過させ、放熱板1028の開口部1029は、上記光路の延長線上に配置されており、伝熱板1026の1以上の開口部1027が通過させた白色光を照明器具1010の外部に向けて通過させてもよい。
 これによれば、照明器具1010は、入射される青色光を用いて白色光を外部に出射するとともに、蛍光体層1024の高温化を防止することができる。
 本実施の形態における照明装置1001は、上記の照明器具1010と、光源Sと、光源Sが出射した光を照明器具1010に導く光ファイバFとを備え、照明器具1010の基板1022に設けられた蛍光体層1024は、光ファイバFにより導かれた光を受光する。
 これによれば、照明装置1001は、照明器具1010と同様の効果を奏する。
 (その他)
 以上、本発明に係る照明器具について、上記実施の形態2に基づいて説明したが、本発明は、上記の実施の形態2に限定されるものではない。
 その他、各実施の形態2に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態2における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
 (実施の形態3)
 本実施の形態において、大型化を防ぎながらも放熱効率を高めた照明器具及び照明装置について説明する。なお、同一の構成要素には同一の符号を付し、説明を省略する場合がある。なお、以下の説明において、各図面中に示すXYZ座標軸を用いた説明を行う場合もある。
 図30は、本実施の形態における照明装置2001の外観図である。
 図30に示されるように、照明装置2001は、光源Sと、光ファイバFと、照明器具2010とを備える。
 光源Sは、光を出射する光源であり、例えば、レーザダイオード(LD)、又は、発光ダイオード(LED)である。より具体的には、光源Sは、青色光を出射するLD又はLEDであるが、光源Sが出射する光の色は上記に限定されない。
 光ファイバFは、高屈折率のコアを低屈折率のクラッド層が包んだ二重構造で構成される。光ファイバFは、光源Sが出射した光を照明器具2010に導くための光の伝送路として機能する。光ファイバFのコア及びクラッド層は、ともに、光に対して透過率が非常に高い石英ガラス又はプラスチックである。
 照明器具2010は、光源Sから光ファイバFを通じて伝送された光を照明器具2010の外部に出射することで、照明器具2010の周囲を照明する照明器具である。照明器具2010は、光ファイバFから受けた光の全部又は一部の色(波長)を変換する蛍光体層を有する。例えば、蛍光体層は、青色光を黄色光に変換する黄色蛍光体を樹脂等で封止したものである。この場合、照明器具2010は、光源Sから伝送された青色光の一部を黄色蛍光体により黄色光に変換することで白色光を生成し、照明器具2010の周囲に白色光を出射する。
 以降において、照明器具2010の構成について詳しく説明する。
 図31は、本実施の形態における照明装置2001に含まれる照明器具2010の内部構成を示す断面図である。図31は、照明器具2010の、図30におけるII-II線で示される断面を示す図である。
 図31に示されるように、照明器具2010は、ファイバカップリング2012と、レンズ2014及び2030と、レンズアレイ2015と、ホルダ2016と、蛍光部材2020とを備える。
 ファイバカップリング2012は、光ファイバFに接続され、光源Sから光ファイバFを通じてZ軸プラス方向に伝送される光を照明器具2010内に導く光学部材である。
 レンズ2014は、ファイバカップリング2012を通じて導入された光の光路を変更する光学部材である。レンズ2014を形成する材料は、例えばガラス又はプラスチック等、透光性を有する材料である。
 レンズアレイ2015は、レンズ2014から出射された光の光路を変更する光学部材である。レンズアレイ2015は、具体的には、導入された光を、複数(例えば2個)の光路それぞれを蛍光部材2020に向かって進行する光に分割するように、上記光の光路を変更(分離)する。レンズアレイ2015の具体的構成については、後で具体例を挙げて説明する。なお、レンズアレイ2015は、ファイバカップリング2012と蛍光部材2020との間のどの位置に配置されてもよい。特に、レンズ2014に接触するように配置されてもよいし、また、レンズ2014の一部として形成(つまり、レンズ2014と一体成型)されてもよい。レンズアレイ2015を形成する材料は、例えばガラス又はプラスチック等、透光性を有する材料である。
 ホルダ2016は、照明器具2010の各構成要素を内部に収容する筐体である。ホルダ2016を形成する材料は、例えば、アルミニウム又は銅等、熱伝導性が比較的高い材料である。
 蛍光部材2020は、レンズアレイ2015を通過した光を受光し、受光した光の色を変換し、変換後の光を出射する蛍光体を含む部材である。蛍光部材2020は、蛍光体の他にも、蛍光体が発生させる熱を照明器具2010の外部に放熱する放熱機構としての伝熱板及び放熱板を有する。これらの構成については後で詳しく説明する。
 レンズ2030は、蛍光部材2020が出射した光を照明器具2010の外部(Z軸プラス方向)に出射するときの配光特性を調整する光学部材である。レンズ2030は、レンズ2030の形状に基づいて、上記配光特性を狭角配光にしたり、広角配光にしたりする。レンズ2030は、照明器具2010の用途に応じて適切な配光特性を有するものが採用され得る。レンズ2030を形成する材料は、レンズ2014の材料と同様のものである。
 以降において、照明器具2010の蛍光部材2020等の詳細な構成を説明する。
 図32は、本実施の形態における照明器具2010が備えるホルダ2016及び蛍光部材2020の分解斜視図である。図33は、本実施の形態における照明器具2010が備えるホルダ2016及び蛍光部材2020の断面図である。図33に示される断面図は、図31に示される断面図の、ホルダ2016及び蛍光部材2020近傍を拡大した拡大図である。
 図32及び図33に示されるように、蛍光部材2020は、伝熱板2022と、基板2024と、蛍光体層2025と、放熱板2028とを備える。
 伝熱板2022は、蛍光体層2025が発生させた熱を、ホルダ2016、及び、伝熱板2022が接している空気に伝える(放熱する)板状の伝熱体である。伝熱板2022は、ホルダ2016と基板2024との間に、ホルダ2016と基板2024とのそれぞれに面接触して配置される。伝熱板2022は、蛍光体層2025が発生させた熱を基板2024を介して伝えられ、伝えられた熱をホルダ2016に伝えることで、蛍光体層2025の高温化を抑制する。伝熱板2022は、熱伝導率の比較的高い金属(例えば、アルミニウム又は銅など)、その他伝導率の比較的高い材料(セラミック又は樹脂など)により構成される。伝熱板2022のうち、基板2024に接する方の面を第一面ともいい、第一面とは反対側の面でありホルダ2016に接する方の面を第二面ともいう。
 なお、伝熱板2022は、ホルダ2016の一部を加工することで形成されてもよい。つまり、伝熱板2022は、ホルダ2016と一体成形又は一体化されてもよい。上記のように伝熱板2022とホルダ2016とが面接触して配置される場合、伝熱板2022とホルダ2016との間に数μmの空気層が形成され、この空気層が伝熱板2022からホルダ2016への熱の伝達を妨げることがある。そこで、伝熱板2022とホルダ2016とを一体成形することで、上記数μmの空気層が生じることを防ぎ、伝熱板2022からホルダ2016へ熱の伝達が妨げられることを回避することができる。また、照明器具2010を構成する部材を削減することで製造コストを削減できる利点がある。
 伝熱板2022は、開口部2023を有する。開口部2023は、レンズアレイ2015から出射された光をZ軸プラス側へ通過させるための開口である。すなわち、レンズアレイ2015から出射された光は、開口部2023を通過して蛍光体層2025に到達する。開口部2023は、レンズアレイ2015から出射された青色光の光路上に配置されている。言い換えれば、伝熱板2022は、上記青色光の光路が開口部2023を通る位置に配置されている。なお、開口部2023は、第一開口部に相当する。
 基板2024は、透光性を有する基板である。基板2024には、レンズアレイ2015から出射され、開口部2023を通過した光が照射される。基板2024は、受光した光の色を変換する蛍光体層2025が設けられた部分を有する。蛍光体層2025は、基板2024に塗布されることで基板2024上に設けられる場合を例として説明するが、蛍光体層2025が基板2024上に設けられる手法は上記に限られない。なお、ここでは蛍光体層2025が塗布された部分を有する面を第一面ともいい、第一面と反対側の面を第二面ともいう。また、光ファイバFからの光は第二面側から照射される場合を例として説明する。
 基板2024を形成する材料は、例えば、ガラス、プラスチックなど任意のものを用いることができる。ここで、ガラスとしては、例えば、ソーダガラス、無アルカリガラス、サファイアガラスなどを用いることができる。また、プラスチックとしては、例えば、アクリル樹脂、ポリカーボネート、ポリエチレンテレフタラート(PET)、ポリエチレンナフタレート(PEN)などを用いることができる。基板2024は、光の吸収が無く透明である、言い換えれば、消衰係数がほぼ0の材料で形成されていると、基板2024を透過する光の量を多くすることができ、結果的に照明器具2010から周囲に出射される光の量を多くすることができる利点がある。
 蛍光体層2025は、光源Sから光ファイバFを通じて導入された光を受光し、受光した光の色(波長)を蛍光体粒子により変換する波長変換材である。蛍光体層2025は、光の色の変換の際に熱を発生させる。
 具体的には、蛍光体層2025は、光源Sからの青色光を受光し、黄色光を出射する黄色蛍光体粒子、例えば、イットリウム・アルミニウム・ガーネット(YAG)系の蛍光体粒子を含み、この蛍光体粒子をシリコン又はエポキシ等の樹脂で封止して形成されたものである。蛍光体層2025は、光源Sからの青色光の一部を蛍光体粒子により変換した黄色光と、上記青色光の残部とが混色された白色光を生成し、Z軸プラス方向に出射する。蛍光体層2025は、一般に高温下に置かれると光の色を変換する効率が低下(劣化)する。そこで、照明器具2010は、放熱機構としての伝熱板2022により蛍光体層2025が発生させる熱を適切に照明器具2010の外部に放熱することで、蛍光体層2025の高温化を抑制する。なお、蛍光体層2025を形成する樹脂に熱伝導率の高い材料、例えばZnO等の無機酸化物を混合することで放熱性を高めてもよい。
 放熱板2028は、基板2024の第一面に面接触して配置され、基板2024のうち蛍光体層2025が設けられた部分に重なる位置に開口部2029を有する放熱部材である。放熱板2028は、蛍光体層2025から伝達された熱を照明器具2010の外部へ放熱する。なお、放熱板2028の表面には、凹凸形状が形成されていてもよい。放熱板2028の表面積を大きくすることで照明器具2010の外部へ放熱する効率を高めるためである。
 開口部2029は、蛍光体層2025が透過又は出射した光をZ軸プラス側へ通過させることで、照明器具2010の外部へ出射させるための開口である。なお、開口部2029は、第二開口部の一例である。
 図34は、本実施の形態における伝熱板2022及び基板2024の具体的形状と光の光路とを示す模式図である。図34において、説明のために伝熱板2022と基板2024とを分解して示しているが、実際には伝熱板2022と基板2024とは接して配置されている。図34において伝熱板2022の第一面が面2022Aとして、第二面が面2022Bとして示されている。また、基板2024の第一面が面2024Aとして、第二面が面2024Bとして示されている。
 図34に示されるように、伝熱板2022は、複数の開口部2023A及び2023B(以降、開口部2023A等とも表記)を備えている。開口部2023A等それぞれは、略半円形状を有しており、開口部2023A等には、レンズアレイ2015から出射されたZ軸プラス方向に進行する光2042A及び2042B(以降、光2042A等とも表記)が通過する。伝熱板2022は、伝熱板2022の中心部2050から周辺部2052へ延びる伝熱体2054を有する。伝熱体2054は、例えば棒状である。開口部2023A等は、伝熱体2054により区画されているともいえる。
 基板2024は、蛍光体層2025が塗布された部分を面2024A上に有する。蛍光体層2025には、レンズアレイ2015から出射され開口部2023A等を通過した光2042A等が面2024B側から照射されている。光2042A等が照射される領域は、図34においてそれぞれ領域2062A及び2062Bとして示されている。蛍光体層2025が塗布された部分は、例えば略円形形状に形成されている。なお、蛍光体層2025が塗布された部分のうち、光2042A等が照射されない部分(つまり、伝熱体2054と重なる部分)は、蛍光体層2025が塗布されていなくてもよい。この部分には光2042A等が照射されないので、蛍光体層2025のうちのこの部分に含まれる蛍光体は、波長変換を行わないからである。
 蛍光体層2025に光2042A等が照射されると、蛍光体層2025は照射された光のうちの一部の色を変換し熱を発生させるので、仮に何ら放熱機構がなければ基板2024の中心部2060付近は、その周囲より高温になり、蛍光体層2025の劣化が生じ得る。
 そこで、基板2024の中心部2060に接して配置される伝熱体2054により、中心部2060付近の熱が伝熱板2022の周辺部2052に伝達されることで、中心部2060の高温化及び蛍光体層2025の劣化が抑制される。
 なお、伝熱体2054は、伝熱板2022の中心部2050から周辺部2052へ延びる形状であれば、他の形状であってもよい。より具体的には、伝熱体2054は、中心部2050から周辺部2052の複数の箇所それぞれへ略直線状に延びて配置され、つまり、放射状に配置されていてもよい。このようにすることで、伝熱板2022の中心部2050から周辺部2052へ伝えられる熱量を大きくすることができる。
 また、伝熱体2054は、中心部2050を中心として等角度間隔に配置されていてもよい。このようにすることで、伝熱板2022の中心部2050から周辺部2052への熱流の方向の偏りを小さくすることができ、蛍光体層2025の温度を偏りなく低下させることができる。
 また、伝熱体2054は、レンズアレイ2015から出射された光の光路と異なる位置、つまり、上記光を遮らない位置に配置されるものであればどのような形状であってもよい。また、上記光のうちの一部を遮ることがあってもよい。一部を遮る場合には、結果的に照明器具2010が外部に出射する光の光量が減少することになるが、蛍光体層2025の高温化の抑制及び劣化防止の効果は、上記と同様に発揮される。
 以上のように構成された照明器具2010内の熱の伝達性についてのシミュレーション評価の結果を説明する。
 図35は、本実施の形態における照明器具2010の断面図である。具体的には、図35は、照明器具2010の図30におけるVI-VI線で示される断面を示す図である。
 図35に示される断面図には、照明器具2010が備えるホルダ2016と、伝熱板2022と、基板2024と、蛍光体層2025と、放熱板2028と、レンズ2030とが示されている。以降において、照明器具2010による照明を行う際の、この断面における上記各構成要素の温度の分布、及び、蛍光体層2025の温度の分布を示す。また、照明器具2010に関連する2つの技術である関連技術1A及び2Aにおける同様の温度分布も示し、これらと照明器具2010とを比較しながら説明する。ここで、関連技術1Aとは、照明器具2010における伝熱板2022及び放熱板2028を備えない照明器具に係る技術のことである。関連技術2Aとは、照明器具2010における伝熱板2022を備えない(放熱板2028を備える)照明器具に係る技術のことである。
 なお、シミュレーション評価は、光源Sが光を出射している状態で上記各照明器具が温度30度Cの環境下に置かれ、照明器具の各部位の温度が実質的に一定値になった定常状態(つまり各部位の温度が飽和した状態)での蛍光体層の温度の評価により行う。
 図36は、関連技術1Aにおける照明器具の断面の温度分布を示す説明図である。図37は、関連技術2Aにおける照明器具の断面の温度分布、及び、蛍光体層の温度分布を示す説明図である。図38は、照明器具2010の断面の温度分布、及び、蛍光体層2025の温度分布を示す説明図である。
 シミュレーション評価の結果、関連技術1A及び2A、並びに、照明器具2010における蛍光体層の温度の最高値は、それぞれ、159.6度C、146.9度C、及び、126.5度Cである。
 このように、上記シミュレーション評価の対象である3つの照明器具のうち、関連技術1Aのように伝熱板2022及び放熱板2028を備えない場合が蛍光体層の温度が最も高い、つまり、放熱効率が悪いという評価結果が得られる。また、放熱板2028を備える場合(関連技術2A)、関連技術1Aの場合に対して一定程度放熱効率が改善する。そして、照明器具2010は、伝熱板2022及び放熱板2028を備えることより、蛍光体層2025が発生させる熱が効率よく照明器具2010の外部へ放熱することができ、蛍光体層2025の温度を最も低くすることができるという評価結果が得られている。
 以降において、伝熱板2022の別形状について具体例を示しながら説明する。
 図39は、本実施の形態における照明器具2010の伝熱板の別形状の第一例(伝熱板2022C)を示す断面図である。
 図39に示される伝熱板2022Cは、伝熱体2054AのZ方向の幅が比較的大きく形成されている。伝熱体2054Aは、伝熱体2054より体積が大きいことで、中心部2050の熱を周辺部2052に、より一層多く伝達することができる。また、伝熱板2022Cは、レンズアレイ2015から出射された光の光路を遮らない形状を有する。その結果、照明器具2010が外部に出射する光の量を低下させずに維持することができる。このように、伝熱体2054Aは、照明器具2010が外部に出射する光の量を維持しながら、蛍光体層2025の高温化を抑制することができる。
 図40は、本実施の形態における照明器具2010の伝熱板の別形状の第二例(伝熱板2022D)を示す断面図である。
 図40に示される伝熱板2022Dは、レンズアレイ2015から出射された光の光路を遮らない形状に形成されたものである。レンズアレイ2015から出射された光の光路は、ファイバカップリング2012、レンズ2014及びレンズアレイ2015の位置及び形状に基づいて、設計上定められ得る。よって、上記のように定められた光路を遮らない形状を有する伝熱体2054Bを形成することができる。言い換えれば、伝熱板2022Dは、レンズアレイ2015よりZ軸方向プラス側の空間のうち、上記光の光路の間の空間の全部又は一部を占める位置及び形状を有する。
 具体的には、例えば、レンズアレイ2015から出射された光が基板2024に向かって(つまり、Z軸プラス方向に)進行するにつれて光束の幅が細くなる場合、伝熱体2054Bは、Z軸マイナス方向に進むにつれて幅が大きくなる先細形状を有する。伝熱体2054Bによっても、照明器具2010が外部に出射する光の量を維持しながら、蛍光体層2025の高温化を抑制することができる。
 上記のような伝熱板2022(伝熱体2054)の別形状としての伝熱板2022C及び2022Dにより、伝熱板の中心部2050から周辺部2052へ伝達される熱量を大きくすることが可能である。
 以降において、レンズアレイ2015の具体的構成について説明する。
 図41は、本実施の形態における照明器具2010のレンズアレイ2015の構成を示す斜視図である。図42は、本実施の形態における照明器具2010の回折型レンズアレイ2142の構成を示す上面図である。図43は、図42のXIV-XIV線における断面図である。
 レンズアレイ2015は、ファイバカップリング2012と蛍光部材2020との間に配置され、光源Sから光ファイバF及びファイバカップリング2012を通じて照明器具2010内に導入された光を分割かつ分離して、蛍光部材20に向けて出射する。レンズアレイ2015は、例えばマイクロレンズアレイの一例であり、例えば図41に示すように、基材2141と、回折型レンズアレイ2142とを備える。
 基材2141は、マイクロレンズアレイの基材である。基材2141上には、回折型レンズアレイ2142が形成されている。なお、基材2141を形成する材料としては、基板2024と同様に、ガラス、プラスチックなど任意のものを用いることができる。
 回折型レンズアレイ2142は、照明器具2010内に導入された光を分割かつ分離して、蛍光部材2020に向けて出射する。回折型レンズアレイ2142の、蛍光部材2020の入射面に垂直な面における断面形状は、鋸歯状である。また、回折型レンズアレイ2142は、同一領域では鋸歯の並び方向が同じであり、異なる領域では鋸歯の並び方向がそれぞれ異なる複数の領域を有する。
 本実施の形態では、回折型レンズアレイ2142は、例えば図41および図42に示すように鋸歯の並び方向がそれぞれ異なる2つの領域である領域2142A及び2142B(以降、領域2142A等とも表記)を有する例が示されている。図41および図42では、2つの領域2142A等それぞれの同一領域内では、直線状に並ぶレンズアレイが複数あり、複数のレンズアレイそれぞれの並び方向は同一である。ここで、光源Sからの青色光の波長が例えば460nmである場合、複数のレンズアレイの格子ピッチは、例えば5μmであり、格子高さは1μmである。また、図42のXIV-XIV線における断面形状は、図43に示すように鋸歯状である。ここで、XIV-XIV線が示す断面は、上記の蛍光部材2020の入射面に垂直な面に該当する。図43では、領域2142Aにおける回折型レンズアレイ2142の断面形状が示されているが、他の領域2142Bも同様に、鋸歯状である。つまり、回折型レンズアレイ2142は、いわゆるブレーズド回折格子に該当する。これにより、回折型レンズアレイ2142は、一次回折効率を高くでき、光のロス(光学ロス)を少なくすることができる。
 また、回折型レンズアレイ2142は、例えば図42に示されているように、2つの領域2142A等それぞれにおける鋸歯の並び方向が異なる。このように構成されることで、回折型レンズアレイ2142は、照明器具2010内に導入された光を分割かつ分離して、蛍光部材2020に向けて出射しても、蛍光部材2020の入射面におけるエネルギー集中を防ぐことができる。
 なお、回折型レンズアレイ2142の材料は、回折型レンズアレイ2142の形成方法や耐熱性、屈折率によって選択される。回折型レンズアレイ2142の形成方法としては、ナノインプリント、印刷、フォトリソ、EBリソ、粒子配向などが挙げられる。回折型レンズアレイ2142の材料は、回折型レンズアレイ2142を、例えばナノインプリントや印刷により形成する場合、UV硬化樹脂としてエポキシ樹脂やアクリル樹脂など、熱可塑性樹脂としてポリメタクリル酸メチル(PMMA)などを選択すればよい。また、回折型レンズアレイ2142の材料は、耐熱性を考慮して、ガラスや石英を選択し、フォトリソやEBリソにより回折型レンズアレイ2142を形成してもよい。また、回折型レンズアレイ2142は、基材2141からの光が入射しやすいように基材2141と同程度の屈折率の材料で形成されていてもよい。さらに、回折型レンズアレイ2142は、基材2141と同様に、光の吸収が無く透明であることが好ましく、消衰係数がほぼ0の材料で形成されていることが好ましい。
 次に、上記回折型レンズアレイ2142を用いる場合の照明器具2010内の光の光路について説明する。
 図44は、本実施の形態における照明器具2010の回折型レンズアレイ2142を通過する光の光路を示す斜視図である。
 図44に示すように、本実施の形態における照明器具2010は、回折型レンズアレイ2142により、照明器具2010内に導入された光2040を2つの光2042A及び2042B(以降、光2042A等とも表記)に分割かつ分離して蛍光部材2020に向けて出射する。このようにして、照明器具2010内に導入された光2040のスポット径を大きく変えることなく光2040を分割かつ分離して、蛍光部材2020に入射させることができる。また、蛍光部材2020では、入射面の異なる領域に、分割かつ分離された光2042A等それぞれが入射されていることから、蛍光部材2020の入射面におけるエネルギー集中を防ぐことができる。そして、蛍光部材2020は、入射された光2042A等を用いて白色光2044を作りだすことができる。
 以降において、伝熱板2022及び基板2024の変形例について説明する。
 (実施の形態3の変形例1)
 本変形例では、3個の開口部を有する伝熱板、及び、3個の領域に分割された蛍光体層を有する照明器具について説明する。なお、本変形例の照明器具において、上記実施の形態3の照明器具2010におけるものと同じ構成要素については、同じ符号を付し詳細な説明を省略する。
 本変形例の照明器具は、照明器具2010と同様に、ファイバカップリング2012と、レンズ2014及び30と、レンズアレイ2015Bと、ホルダ2016と、蛍光部材2020とを備える。また、蛍光部材2020は、伝熱板2082と、基板2084と、蛍光体層2085A、2085B及び2085C(以降、蛍光体層2085A等とも表記)と、放熱板2028とを備える。上記各構成要素のうち、伝熱板2082、基板2084及び蛍光体層2085A等を除くものについては上記実施の形態3(図31及び図32等)における同一名称のものと同じであるので詳細な説明を省略する。
 図45は、本変形例における伝熱板2082、基板2084及び蛍光体層2085A等の具体的形状と光の光路とを示す模式図である。図45において伝熱板2082の第一面が面2082Aとして、第二面が面2082Bとして示されている。また、基板2084の第一面が面2084Aとして、第二面が面2084Bとして示されている。
 図45に示されるように、レンズアレイ2015Bは、レンズ2014から出射された光を3個の光路それぞれを進む光2042D、2042E及び2042F(以降、光2042D等と表記する)に分割する。
 伝熱板2082は、3個の開口部2083A、2083B及び2083C(以降、開口部2083A等とも表記)を備えている。3個の開口部2083A等は、全体として略円形形状を有しており、開口部2083A等には、レンズアレイ2015Bから出射されたZ軸プラス方向に進行する光2042D(以降、光2042D等とも表記)が通過する。伝熱板2082は、伝熱板2082の中心部2050Bから周辺部52Bへ延びる3つの伝熱体2054D、2054E及び2054F(以降、伝熱体2054D等とも表記)を有する。開口部2083A等は、伝熱体2054D等により区画されているともいえる。
 基板2084は、蛍光体層2085A等が塗布された3個の部分を有する基板である。蛍光体層2085A等には、レンズアレイ2015Bから出射され開口部2083A等を通過した光2042D等が面2084B側から照射される。図45において、この光が照射される領域をそれぞれ領域2062D、2062E及び2062Fとして示している。
 本変形例の照明器具は、レンズアレイ2015Bから出射される光が3つに分割されるので、2つに分割される場合に比べて、基板2084の中心部2060B付近の温度が低くなる。これにより蛍光体層2085A等の高温化がより一層抑制され、蛍光体層2085A等の劣化がより一層低減される。
 以上のように本実施の形態3の照明器具2010は、蛍光体層2025が設けられた部分を有する、透光性を有する基板2024と、基板2024に面接触して配置される伝熱板2022であって、上記部分に重なる位置に配置される1以上の開口部2023を有する伝熱板2022と、基板2024の、伝熱板2022と面接触している面とは反対側の面に面接触して配置され、伝熱板2022の1以上の開口部2023に重なる位置に開口部2029を有する放熱板2028とを備える。
 これによれば、伝熱板2022は、蛍光体層2025が光の波長を変換する際に発生させる熱を、基板2024を介して伝えられ、ホルダ2016及び伝熱板2022に接している空気に放熱する。このように伝熱板2022が存在することにより蛍光体層2025の高温化を抑制することができる。よって、照明器具2010は、照明器具の大型化を防ぎながらも放熱効率を高めることができる。
 また、伝熱板2022は、伝熱板2022の中心部2050から周辺部2052へ延びて配置される伝熱体2054を有する。
 これによれば、伝熱板2022は、蛍光体層2025が発生させた熱を、伝熱板2022の中心部2050から周辺部2052へ伝熱体2054により伝達する。これにより蛍光体層2025が発生させた熱が集中しやすい基板2024の中心部2060の高温化を防止することができる。
 また、伝熱体2054は、中心部2050を中心として等角度間隔に配置されている。
 これによれば、伝熱体2054D、2054E及び2054Fが、伝熱板2082の中心部2050Bから周辺部2052Bに、方位の偏りなく均等に熱を伝達することができる。これにより、伝熱板2082の中心部2050Bからみた方位の偏りなく均等に、蛍光体層2085A等の高温化を防止することができる。
 また、照明器具2010には、光源Sからの光が入射され、伝熱体2054は、光の光路が1以上の開口部2023を通る位置に配置されている。
 これによれば、伝熱板2022は、光源Sからレンズアレイ2015を介して照射された光を開口部2023により通過させる。これにより、照明器具2010が外部へ出射する光の量を低下させずに維持することができる。
 また、伝熱体2054A及び2054Bは、照明器具2010の内部の空間のうち、光の光路を除く全部又は一部を占める位置及び形状を有する。
 これによれば、伝熱体2054A及び2054Bは、中心部2050の熱を周辺部2052に、より一層多く伝達することができるとともに、光源からレンズアレイ2015を介して照射された光を遮らない。よって、照明器具2010が外部へ出射する光の量を低下させずに維持しながら、蛍光体層2025の高温化を防止することができる。
 また、蛍光体層2025は、入射された青色光を受光し、受光した青色光の一部を黄色光に変換し、伝熱板2022の1以上の開口部2023は、青色光の光路の延長線上に配置されており、放熱板2028の開口部2029は、上記光路の延長線上に配置されており、蛍光体層2025が受光した青色光と、蛍光体層による変換により生じた黄色光とにより生成された白色光を、照明器具2010の外部に向けて通過させる。
 これによれば、照明器具2010は、入射される青色光を用いて白色光を外部に出射するとともに、蛍光体層2025の高温化を防止することができる。
 また、本実施の形態3の照明装置2001は、上記に記載の照明器具2010と、光源Sと、光源Sが出射した光を照明器具2010に導く光ファイバFとを備え、照明器具2010の基板2024に設けられた蛍光体層2025は、光ファイバFにより導かれた光を受光する。
 これによれば、照明装置2001は、照明器具2010と同様の効果を奏する。
 (実施の形態4)
 本実施の形態において、大型化を防ぎながらも放熱効率を高めた照明器具の別形態について説明する。なお、実施の形態3におけるものと同じ構成要素には同一の符号を付し、詳細な説明を省略することがある。
 図46は、本実施の形態における照明器具2010Aが備えるホルダ2016及び蛍光部材2020Aの分解斜視図である。図47は、本実施の形態における照明器具2010Aが備えるホルダ2016及び蛍光部材2020Aの断面図である。図47に示される断面図は、実施の形態3の照明器具2010の断面図と同じ位置に相当する断面(図30のII-II線)を示すものである。
 図46及び図47に示されるように、蛍光部材2020Aは、伝熱板2022及び2026と、基板2024と、蛍光体層2025と、放熱板2028とを備える。ここで、照明器具2010Aが伝熱板2026を備えている点で照明器具2010と異なる。また、蛍光体層2025は、複数の部分(蛍光体層2025A及び2025B)を有する。なお、伝熱板2022の開口部2023は、第一開口部の一例である。
 伝熱板2026は、蛍光体層2025が発生させた熱を放熱板2028に伝える板状の伝熱体である。伝熱板2026は、基板2024と放熱板2028との間に、基板2024と放熱板2028とのそれぞれに面接触して配置され、蛍光体層2025が発生させた熱を基板2024を介して伝えられ、その熱をさらに放熱板2028に伝えることで、蛍光体層2025の高温化を抑制する。また、伝熱板2026は、蛍光体層2025に直接に接触している部分においては、蛍光体層2025が発生させる熱を直接に、つまり基板2024を介さずに伝えられる。これによっても、蛍光体層2025の高温化が抑制される。伝熱板2026を形成する材料は、伝熱板2022と同様である。伝熱板2026のうち、放熱板2028に接する方の面を第一面ともいい、第一面とは反対側の面であり基板2024に接する方の面を第二面ともいう。
 伝熱板2026は、基板2024の蛍光体層2025が塗布された面に第二面が面接触して配置され、第二面上において蛍光体層2025が塗布された部分に重なる位置に、開口部2027を有する。開口部2027は、伝熱板2026が基板2024と面接触して配置されるときに、蛍光体層2025が出射する光をZ軸プラス側へ通過させるための開口である。より具体的には、開口部2027は、蛍光体層2025が受光した青色光の光路の延長線上に配置されており、蛍光体層2025が受光した青色光と、蛍光体層2025による変換により生じた黄色光とにより生成された白色光を通過させる。蛍光体層2025から出射された白色光は、開口部2027を通過し、さらに放熱板2028の開口部2029を通過して照明器具2010Aの外部へ出射される。言い換えれば、伝熱板2026は、上記白色光の光路が開口部2027を通る位置に配置されている。なお、開口部2027は、第二開口部の一例である。
 放熱板2028は、伝熱板2026の第一面に面接触して配置され、伝熱板2026の開口部2027に重なる位置に開口部2029を有する放熱部材である。開口部2029は、レンズアレイ2015から出射された光の光路の延長線上に配置されており、伝熱板2026の開口部2027が通過させた白色光を照明器具2010Aの外部に向けて通過させる。放熱板2028は、実施の形態3における放熱板2028と同じものである。なお、開口部2029は、第三開口部の一例である。
 なお、蛍光体層2025は、Z方向の厚さが、伝熱板2026のZ方向の厚さ以下になるように構成される。また、蛍光体層2025は、Z方向の厚さが、伝熱板2026のZ方向の厚さと実質的に等しくなるように、つまり、蛍光体層2025と放熱板2028との界面が、伝熱板2026と放熱板2028との界面と面一となるように構成されてもよい。このようにすれば、蛍光体層2025が発生させた熱が直接に、つまり基板2024及び伝熱板2026を介さずに放熱板2028に伝えられ、熱の伝達量をより多くすることができる。
 図48は、本実施の形態における伝熱板2022及び2026並びに基板2024の具体的形状と光の光路とを示す模式図である。図48において、説明のために伝熱板2022及び2026並びに基板2024を分解して示しているが、実際には伝熱板2022及び2026並びに基板2024は接して配置されている。図48において伝熱板2026の第一面が面2026Aとして、第二面が面2026Bとして示されている。伝熱板2022及び基板2024については、実施の形態3(図34)におけるものと同様である。
 図48に示されるように、伝熱板2026は、開口部2027としての複数の開口部2027A及び2027B(以降、開口部2027A等とも表記)を備えている。開口部2027A等は、図48の蛍光体層2025A等それぞれと同じ形状を有する。よって、基板2024と伝熱板2026とを重ね合わせると、蛍光体層2025A等のそれぞれと、開口部2027A等のそれぞれとが重なる。そして、蛍光体層2025A等が透過又は出射したZ軸プラス方向への光が、開口部2027A等を通過する。伝熱板2026は、伝熱板2026の中心部2090から周辺部2092へ延びる伝熱体2094を有する。開口部2027A等は、伝熱体2094により区画されているともいえる。
 なお、伝熱体2094は、伝熱板2022の伝熱体2054と同様、伝熱板2026の中心部2090から周辺部2092へ延びる形状であれば、他の形状(例えば放射状)であってもよく、また、中心部2090を中心として等角度間隔に配置されていてもよい。このようにすることで、伝熱板2026の中心部2090から周辺部2092への熱流の方向の偏りを小さくすることができ、蛍光体層2025の温度を偏りなく低下させることができる。
 また、伝熱体2094は、蛍光体層2025A及び2025Bから出射された光の光路を遮らない形状に形成されたものであれば他の形状でもよい。蛍光体層2025A及び2025Bから出射された光の光路は、蛍光体層2025A及び2025Bの位置及び形状に基づいて設計上定められ得るので、上記のように定められた光路を遮らない形状を有する伝熱体2094を形成することができる。
 以上のように構成された照明器具2010A内の熱の伝達性についてのシミュレーション評価の結果を説明する。
 図49は、本実施の形態における照明器具2010Aの断面の温度分布、及び、蛍光体層2025の温度分布を示す説明図である。この断面は、図35に示した照明器具2010の断面と同じ位置における照明器具2010Aの断面である。
 シミュレーション評価の結果、照明器具2010Aにおける蛍光体層の温度の最高値は、125.7度Cである。この温度は、実施の形態3でシミュレーション結果を示した3つの照明器具(関連技術1A及び2A、並びに、照明器具2010)よりさらに低い温度となっている。このように照明器具2010Aは、伝熱板2022及び2026並びに放熱板2028を備えることより、蛍光体層2025が発生させる熱が効率よく照明器具2010Aの外部へ放熱することができ、蛍光体層の温度を最も低くすることができるという評価結果が得られる。
 以上のように、本実施の形態の照明器具2010Aは、蛍光体層2025が設けられた1以上の部分を有する、透光性を有する基板2024と、基板2024に面接触して配置される伝熱板2022であって、上記1以上の部分に重なる位置に配置される1以上の開口部2023を有する伝熱板2022と、基板2024の、伝熱板2022と面接触している面とは反対側の面に面接触して配置される伝熱板2026であって、上記1以上の部分それぞれに重なる位置に配置される1以上の開口部2027を有する伝熱板2026と、伝熱板2026の、基板2024と面接触している面とは反対側の面に面接触して配置され、伝熱板2026の上記1以上の開口部2027に重なる位置に開口部2029を有する放熱板2028とを備える。
 これによれば、伝熱板2022は、蛍光体層2025が光の波長を変換する際に発生させる熱を、基板2024を介して伝えられ、ホルダ2016及び伝熱板2022に接している空気に放熱する。また、伝熱板2026は、基板2024を介して上記熱を伝えられ、放熱板2028及び伝熱板2026に接している空気に放熱する。このように伝熱板2022及び2026が存在することにより蛍光体層2025の高温化を抑制することができる。よって、照明器具2010Aは、照明器具の大型化を防ぎながらも放熱効率を高めることができる。
 また、基板2024は、上記1以上の部分としての複数の部分を有し、伝熱板2022は、上記1以上の開口部2023としての複数の開口部2023であって、上記複数の部分それぞれに重なる位置に配置される複数の開口部2023を有し、伝熱板2026は、上記1以上の開口部2027としての複数の開口部2027であって、上記複数の部分それぞれに重なる位置に配置される複数の開口部2027を有する。
 これによれば、伝熱板2022及び2026は、基板2024の複数の箇所に蛍光体層2025が配置させる場合でも、蛍光体層2025が発生させる熱をホルダ2016及び放熱板2028に伝える。よって、照明器具2010Aは、照明器具の大型化を防ぎながらも放熱効率を高めることができる。
 また、伝熱板2022は、伝熱板2022の中心部2050から周辺部2052へ延びて配置される伝熱体2054を有し、伝熱板2026は、伝熱板2026の中心部2090から周辺部2092へ延びて配置される伝熱体2094を有する。
 これによれば、伝熱板2022及び2026は、蛍光体層2025が発生させた熱を、伝熱板2022の中心部2050から周辺部2052へ伝熱体2054により伝達するとともに放熱板ホルダ2016に伝え、また、伝熱板2026の中心部2090から周辺部2092へ伝熱体により伝達するとともに放熱板2028に伝える。これにより蛍光体層2025が発生させた熱が集中しやすい基板2024の中心部2060の高温化を防止することができる。
 また、伝熱体2054は、中心部2050を中心として等角度間隔に配置されており、伝熱体2094は、中心部2090を中心として等角度間隔に配置されている。
 これによれば、伝熱体2054が、伝熱板2022の中心部2050から周辺部2052に、方位の偏りなく均等に熱を伝達することができ、また、伝熱体2094が、伝熱板2026の中心部2090から周辺部2092に、方位の偏りなく均等に熱を伝達することができ、これにより、伝熱板2022及び2026の中心部2050及び2090からみた方位の偏りなく均等に、蛍光体層2025の高温化を防止することができる。
 また、照明器具2010Aには、光源Sからの光が入射され、伝熱板2022は、上記光の光路が上記1以上の開口部2023を通る位置に配置されている。
 これによれば、伝熱板2022は、光源Sからレンズアレイ2015を介して照射された光を開口部2023により通過させる。これにより、照明器具2010Aが外部へ出射する光の量を低下させずに維持することができる。
 また、蛍光体層2025は、放熱板2028との界面が、伝熱板2026と放熱板2028との界面と面一となるように形成されている。
 これによれば、蛍光体層2025が発生させた熱が直接に、つまり基板2024及び伝熱板2026を介さずに放熱板2028に伝えられ、熱の伝達量をより多くすることができる。これにより、蛍光体層2025の高温化をさらに防止することができる。
 また、伝熱板2022の開口部2023は、入射された青色光の光路上に配置されており、蛍光体層2025は、青色光を受光し、受光した青色光の一部を黄色光に変換し、伝熱板2026の上記1以上の開口部2027は、蛍光体層2025が受光した青色光の光路の延長線上に配置されており、蛍光体層2025が受光した青色光と、蛍光体層2025による変換により生じた黄色光とにより生成された白色光を通過させ、放熱板2028の開口部2029は、上記光路の延長線上に配置されており、伝熱板2026の上記1以上の開口部2027が通過させた白色光を照明器具2010Aの外部に向けて通過させる。
 これによれば、照明器具2010Aは、入射される青色光を用いて白色光を外部に出射するとともに、蛍光体層2025の高温化を防止することができる。
 また、本実施の形態の照明装置2001は、上記に記載の照明器具2010Aと、光源Sと、光源Sが出射した光を照明器具2010Aに導く光ファイバFとを備え、照明器具2010Aの基板2024に設けられた蛍光体層2025は、光ファイバFにより導かれた光を受光する。
 これによれば、照明装置2001は、照明器具2010Aと同様の効果を奏する。
 (その他)
 以上、本発明に係る照明器具及び照明装置について、上記実施の形態3及び4に基づいて説明したが、本発明は、上記の実施の形態3及び4に限定されるものではない。
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
  11  光源
  12  光学部材
  13、1024、1024A、1024B、1024C、1084、1094A、1094B、2025、2025A、2025B、2085A、2085B、2085C  蛍光体層
  1001、2001  照明装置
  1010、2010、2010A  照明器具
  1022、1082、1092、2024、2084  基板
  1022A、1022B、1026A、1026B、1082A、1082B、1092A、1092B、2022A、2022B、2024A、2024B、2026A、2026B、2082A、2082B、2084A、2084B  面
  1026、1086、1096、2022、2022C、2022D、2026、2082  伝熱板
  1027、1027A、1027B、1027C、1029、1087、1097A、1097B、2023、2023A、2023B、2027、2027A、2027B、2029、2083A、2083B、2083C  開口部
  1028、2028  放熱板
  1040、1042、1042A、1042B、1042C、1044、2040、2042、2042A、2042B、2042D、2042E、2042F、2044  光
  1050、1050B、1070、1070B、2050、2050B、2060、2060B、2090  中心部
  1052、1052B、1072、1072B、2052、2052B、2092  周辺部
  1074A、1074B、1074C、1074E、1074F、2054、2054A、2054B、2054D、2054E、2054F、2094  伝熱体
  F  光ファイバ
  S  光源

Claims (18)

  1.  紫外光から可視光までの波長領域のうちの所定の波長の光を発する光源と、
     入射面に入射された前記光源からの光を波長変換する蛍光体層と、
     前記光源と前記蛍光体層との間に配置され、前記光源が発する光を分割かつ分離して、前記蛍光体層の前記入射面に入射させる光学部材とを備える、
     波長変換装置。
  2.  前記光学部材により分割かつ分離された前記光源が発する光は、前記入射面の領域であって前記光源の光軸を中心とした前記光源が発する光の径よりも大きな領域に重ならずに入射される、
     請求項1に記載の波長変換装置。
  3.  前記光学部材は、マイクロレンズアレイである、
     請求項1または2に記載の波長変換装置。
  4.  前記マイクロレンズアレイの前記入射面に垂直な面における断面形状は、鋸歯状である、
     請求項3に記載の波長変換装置。
  5.  前記マイクロレンズアレイは、同一領域では鋸歯の並び方向が同じであり、異なる領域では鋸歯の並び方向がそれぞれ異なる複数の領域を有する、
     請求項4に記載の波長変換装置。
  6.  前記複数の領域は、3つの領域である、
     請求項5に記載の波長変換装置。
  7.  請求項1~6のいずれか1項に記載の波長変換装置と、
     前記波長変換装置の前記蛍光体層を保持する1以上の部分を有し、透光性を有する基板に面接触して配置される伝熱板であって、前記1以上の部分それぞれに重なる位置に配置される1以上の第一開口部を有する伝熱板と、
     前記伝熱板の、前記基板と面接触している面とは反対側の面に面接触して配置され、前記伝熱板の前記1以上の第一開口部に重なる位置に第二開口部を有する放熱板とを備える、
     照明装置。
  8.  前記基板は、前記1以上の部分としての複数の部分を有し、
     前記伝熱板は、前記1以上の第一開口部としての複数の第一開口部であって、前記複数の部分それぞれに重なる位置に配置される複数の第一開口部を有する、
     請求項7に記載の照明装置。
  9.  請求項1~6のいずれか1項に記載の波長変換装置と、
     前記波長変換装置の前記蛍光体層を保持する1以上の部分を有し、透光性を有する基板に面接触して配置される伝熱板であって、前記部分に重なる位置に配置される1以上の第一開口部を有する伝熱板と、
     前記基板の、前記伝熱板と面接触している面とは反対側の面に面接触して配置され、前記伝熱板の前記1以上の第一開口部に重なる位置に第二開口部を有する放熱板とを備える、
     照明装置。
  10.  前記伝熱板は、前記伝熱板の中心部から周辺部へ延びて配置される伝熱体を有する、
     請求項7~9のいずれか1項に記載の照明装置。
  11.  前記伝熱体は、前記中心部を中心として等角度間隔に配置されている、
     請求項10に記載の照明装置。
  12.  前記蛍光体層は、入射された青色光を受光し、受光した青色光の一部を黄色光に変換し、
     前記伝熱板の前記1以上の第一開口部は、前記蛍光体層が受光した青色光の光路の延長線上に配置されており、
     前記放熱板の前記第二開口部は、前記光路の延長線上に配置されており、前記蛍光体層が受光した青色光と、前記蛍光体層による変換により生じた黄色光とにより生成された白色光を前記照明装置の外部に向けて通過させる、
     請求項7~11のいずれか1項に記載の照明装置。
  13.  請求項1~6のいずれか1項に記載の波長変換装置と、
     前記波長変換装置の前記蛍光体層を保持する1以上の部分を有し、透光性を有する基板に面接触して配置される第一伝熱板であって、前記1以上の部分に重なる位置に配置される1以上の第一開口部を有する第一伝熱板と、
     前記基板の、前記第一伝熱板と面接触している面とは反対側の面に面接触して配置される第二伝熱板であって、前記1以上の部分それぞれに重なる位置に配置される1以上の第二開口部を有する第二伝熱板と、
     前第二伝熱板の、前記基板と面接触している面とは反対側の面に面接触して配置され、前記第二伝熱板の前記1以上の第二開口部に重なる位置に第三開口部を有する放熱板とを備える、
     照明装置。
  14.  前記基板は、前記1以上の部分としての複数の部分を有し、
     前記第一伝熱板は、前記1以上の第一開口部としての複数の第一開口部であって、前記複数の部分それぞれに重なる位置に配置される複数の第一開口部を有し、
     前記第二伝熱板は、前記1以上の第二開口部としての複数の第二開口部であって、前記複数の部分それぞれに重なる位置に配置される複数の第二開口部を有する、
     請求項13に記載の照明装置。
  15.  前記第一伝熱板は、前記第一伝熱板の中心部から周辺部へ延びて配置される第一伝熱体を有し、
     前記第二伝熱板は、前記第二伝熱板の中心部から周辺部へ延びて配置される第二伝熱体を有する、
     請求項14に記載の照明装置。
  16.  前記第一伝熱体は、前記中心部を中心として等角度間隔に配置されており、
     前記第二伝熱体は、前記中心部を中心として等角度間隔に配置されている、
     請求項15に記載の照明装置。
  17.  前記第一伝熱板の第一開口部は、入射された青色光の光路上に配置されており、
     前記蛍光体層は、前記青色光を受光し、受光した青色光の一部を黄色光に変換し、
     前記第二伝熱板の前記1以上の第二開口部は、前記蛍光体層が受光した青色光の光路の延長線上に配置されており、前記蛍光体層が受光した青色光と、前記蛍光体層による変換により生じた黄色光とにより生成された白色光を通過させ、
     前記放熱板の前記第三開口部は、前記光路の延長線上に配置されており、前記第二伝熱板の前記1以上の第二開口部が通過させた白色光を前記照明装置の外部に向けて通過させる、
     請求項13~16のいずれか1項に記載の照明装置。
  18.  さらに、
     前記光源が出射した光を前記照明装置に導く光ファイバとを備え、
     前記蛍光体層は、前記光ファイバにより導かれた光を受光する、
     請求項9~16のいずれか1項に記載の照明装置。
PCT/JP2016/004500 2015-10-09 2016-10-06 波長変換装置及び照明装置 WO2017061120A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680058358.7A CN108139038B (zh) 2015-10-09 2016-10-06 波长转换装置及照明装置
US15/765,258 US10381532B2 (en) 2015-10-09 2016-10-06 Wavelength conversion device and lighting apparatus
EP16853276.0A EP3361140B1 (en) 2015-10-09 2016-10-06 Wavelength conversion device and lighting apparatus

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2015201570A JP6604473B2 (ja) 2015-10-09 2015-10-09 照明器具、及び、照明装置
JP2015-201570 2015-10-09
JP2015-201335 2015-10-09
JP2015201335A JP6692032B2 (ja) 2015-10-09 2015-10-09 波長変換装置及び照明装置
JP2016043890A JP6765051B2 (ja) 2016-03-07 2016-03-07 照明器具、及び、照明装置
JP2016043839A JP6775177B2 (ja) 2016-03-07 2016-03-07 照明器具、及び、照明装置
JP2016-043890 2016-03-07
JP2016-043839 2016-03-07

Publications (1)

Publication Number Publication Date
WO2017061120A1 true WO2017061120A1 (ja) 2017-04-13

Family

ID=58487409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004500 WO2017061120A1 (ja) 2015-10-09 2016-10-06 波長変換装置及び照明装置

Country Status (5)

Country Link
US (1) US10381532B2 (ja)
EP (1) EP3361140B1 (ja)
CN (1) CN108139038B (ja)
TW (2) TWI705214B (ja)
WO (1) WO2017061120A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108720796A (zh) * 2017-04-25 2018-11-02 松下知识产权经营株式会社 照明导光装置以及内窥镜装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7245980B2 (ja) * 2018-12-18 2023-03-27 パナソニックIpマネジメント株式会社 波長変換部材、光学装置、プロジェクタ及び波長変換部材の製造方法
CN113302430B (zh) * 2019-01-24 2023-06-02 松下知识产权经营株式会社 照明装置
CN112666780B (zh) 2019-10-15 2022-06-24 台达电子工业股份有限公司 波长转换装置
CN114484302A (zh) * 2022-01-26 2022-05-13 林耀 带有散热结构光源载体
DE102022113815A1 (de) 2022-06-01 2023-12-07 Marelli Automotive Lighting Reutlingen (Germany) GmbH Lichtquellenmodul für eine Beleuchtungseinrichtung eines Kraftfahrzeugs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025427A (ja) * 2007-07-18 2009-02-05 Nippon Zeon Co Ltd 多層フィルム及び発光デバイス
JP2011186350A (ja) * 2010-03-11 2011-09-22 Panasonic Corp 照明装置および投写型画像表示装置
WO2014073136A1 (ja) * 2012-11-07 2014-05-15 パナソニック株式会社 光源および画像投写装置
JP2015108758A (ja) * 2013-12-05 2015-06-11 三星電子株式会社Samsung Electronics Co.,Ltd. 照明装置、投射型映像表示装置、照明方法、および投射型映像表示方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473471A (en) * 1993-04-16 1995-12-05 Matsushita Electric Industrial Co., Ltd. Complex lens with diffraction grating
US6547423B2 (en) * 2000-12-22 2003-04-15 Koninklijke Phillips Electronics N.V. LED collimation optics with improved performance and reduced size
KR100665219B1 (ko) * 2005-07-14 2007-01-09 삼성전기주식회사 파장변환형 발광다이오드 패키지
US7196354B1 (en) * 2005-09-29 2007-03-27 Luminus Devices, Inc. Wavelength-converting light-emitting devices
CN101288124B (zh) 2005-10-28 2010-09-01 三菱电机株式会社 衍射光学元件及光学头装置
JP2008084396A (ja) 2006-09-27 2008-04-10 Matsushita Electric Ind Co Ltd 半導体装置および半導体装置の製造方法、光ピックアップ装置および光ディスクドライブ装置
JP5036332B2 (ja) 2007-01-26 2012-09-26 スタンレー電気株式会社 発光装置および色変換フィルター
JP5665160B2 (ja) 2008-03-26 2015-02-04 パナソニックIpマネジメント株式会社 発光装置および照明器具
KR101304749B1 (ko) 2008-06-20 2013-09-05 샤프 가부시키가이샤 연결체 및 당해 연결체를 구비하는 조명 장치
JP2010003579A (ja) 2008-06-20 2010-01-07 Sharp Corp 放熱部材、放熱ユニット及び照明装置
JP2011204866A (ja) 2010-03-25 2011-10-13 Toshiba Lighting & Technology Corp 発光装置
US8833975B2 (en) 2010-09-07 2014-09-16 Sharp Kabushiki Kaisha Light-emitting device, illuminating device, vehicle headlamp, and method for producing light-emitting device
JP5285688B2 (ja) 2010-12-28 2013-09-11 シャープ株式会社 発光装置、照明装置および車両用前照灯
JP2012104267A (ja) 2010-11-08 2012-05-31 Stanley Electric Co Ltd 光源装置および照明装置
WO2013008361A1 (ja) 2011-07-12 2013-01-17 パナソニック株式会社 光学素子及びそれを用いた半導体発光装置
CN102287714A (zh) * 2011-08-19 2011-12-21 上海交通大学 具有光栅的背光系统
JP5254418B2 (ja) 2011-10-18 2013-08-07 シャープ株式会社 照明装置および前照灯
US20130286653A1 (en) * 2012-04-30 2013-10-31 Qualcomm Mems Technologies, Inc. Multi-beam light engine
JP2012230914A (ja) 2012-07-25 2012-11-22 Sharp Corp 発光装置
CN103968332B (zh) * 2013-01-25 2015-10-07 深圳市光峰光电技术有限公司 一种波长转换装置、发光装置及投影系统
JP2014146661A (ja) 2013-01-28 2014-08-14 Panasonic Corp 発光モジュール、照明装置および照明器具
CN103346243B (zh) * 2013-07-12 2016-08-31 广东洲明节能科技有限公司 承载散热板和远程荧光粉结构的led光源及其生产方法
JP6260006B2 (ja) * 2013-07-30 2018-01-17 パナソニックIpマネジメント株式会社 撮像装置、並びにそれを用いた撮像システム、電子ミラーシステムおよび測距装置
CN104566230B (zh) * 2013-10-15 2017-07-11 深圳市光峰光电技术有限公司 波长转换装置及其光源系统、投影系统
JP5748007B2 (ja) 2014-01-29 2015-07-15 日亜化学工業株式会社 発光装置
US20170179359A1 (en) * 2014-02-11 2017-06-22 Philips Lighting Holding B.V. A wavelength converting element, a light emitting module and a luminaire
JP2015169929A (ja) 2014-03-11 2015-09-28 ソニー株式会社 光源装置、光源ユニット、及び画像表示装置
JP6067629B2 (ja) 2014-07-28 2017-01-25 シャープ株式会社 発光装置、照明装置および車両用前照灯
CN104503013B (zh) * 2014-12-31 2017-05-31 华南师范大学 一种led荧光透明聚碳酸酯光栅及其制备方法
US10047929B2 (en) * 2015-09-16 2018-08-14 James Redpath System and method of generating perceived white light

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025427A (ja) * 2007-07-18 2009-02-05 Nippon Zeon Co Ltd 多層フィルム及び発光デバイス
JP2011186350A (ja) * 2010-03-11 2011-09-22 Panasonic Corp 照明装置および投写型画像表示装置
WO2014073136A1 (ja) * 2012-11-07 2014-05-15 パナソニック株式会社 光源および画像投写装置
JP2015108758A (ja) * 2013-12-05 2015-06-11 三星電子株式会社Samsung Electronics Co.,Ltd. 照明装置、投射型映像表示装置、照明方法、および投射型映像表示方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108720796A (zh) * 2017-04-25 2018-11-02 松下知识产权经营株式会社 照明导光装置以及内窥镜装置
DE102018109095B4 (de) 2017-04-25 2020-06-25 Panasonic Intellectual Property Management Co., Ltd. Beleuchtungslichtleitungsvorrichtung und endoskopvorrichtung
CN108720796B (zh) * 2017-04-25 2020-10-16 松下知识产权经营株式会社 照明导光装置以及内窥镜装置
US10912452B2 (en) 2017-04-25 2021-02-09 Panasonic Intellectual Property Management Co., Ltd. Illumination light guiding device and endoscope device

Also Published As

Publication number Publication date
TW201928246A (zh) 2019-07-16
US20180294390A1 (en) 2018-10-11
EP3361140B1 (en) 2019-08-28
TWI661151B (zh) 2019-06-01
TW201713893A (zh) 2017-04-16
TWI705214B (zh) 2020-09-21
CN108139038B (zh) 2020-10-27
US10381532B2 (en) 2019-08-13
EP3361140A1 (en) 2018-08-15
CN108139038A (zh) 2018-06-08
EP3361140A4 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
WO2017061120A1 (ja) 波長変換装置及び照明装置
US8042975B2 (en) Plano-fresnel LED lens and LED assembly thereof
JP6355558B2 (ja) 改善された光学系を備えているオプトエレクトロニクスモジュール
US10912452B2 (en) Illumination light guiding device and endoscope device
JP2020030414A (ja) 波長変換装置及び照明装置
JP2005203481A (ja) 紫外線照射装置
JP6604473B2 (ja) 照明器具、及び、照明装置
EP3425268B1 (en) Wavelength conversion device and illuminating device
JP6761991B2 (ja) 波長変換装置及び照明装置
US10174909B2 (en) Optical member and microlens array
JP6765051B2 (ja) 照明器具、及び、照明装置
JP6775177B2 (ja) 照明器具、及び、照明装置
JP6692032B2 (ja) 波長変換装置及び照明装置
JP2008177399A (ja) 光照射装置
JP3158453U (ja) 光照射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853276

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15765258

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016853276

Country of ref document: EP