WO2017061006A1 - 無溶剤型ワニス組成物、絶縁コイル及びその製造方法、回転機、並びに密閉型電動圧縮機 - Google Patents
無溶剤型ワニス組成物、絶縁コイル及びその製造方法、回転機、並びに密閉型電動圧縮機 Download PDFInfo
- Publication number
- WO2017061006A1 WO2017061006A1 PCT/JP2015/078635 JP2015078635W WO2017061006A1 WO 2017061006 A1 WO2017061006 A1 WO 2017061006A1 JP 2015078635 W JP2015078635 W JP 2015078635W WO 2017061006 A1 WO2017061006 A1 WO 2017061006A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- general formula
- varnish composition
- thermosetting resin
- group
- epoxy
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D163/00—Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/68—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D163/00—Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
- C09D163/10—Epoxy resins modified by unsaturated compounds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/40—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/12—Impregnating, heating or drying of windings, stators, rotors or machines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/30—Windings characterised by the insulating material
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/44—Protection against moisture or chemical attack; Windings specially adapted for operation in liquid or gas
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/14—Polycondensates modified by chemical after-treatment
- C08G59/1433—Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
- C08G59/1438—Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
- C08G59/1455—Monocarboxylic acids, anhydrides, halides, or low-molecular-weight esters thereof
- C08G59/1461—Unsaturated monoacids
- C08G59/1466—Acrylic or methacrylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/14—Peroxides
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/14—Structural association with mechanical loads, e.g. with hand-held machine tools or fans
Definitions
- the present invention relates to a solventless varnish composition used as an insulating varnish, an insulating coil manufactured using the solventless varnish composition, a manufacturing method thereof, a rotating machine, and a hermetic electric compressor.
- Coils for rotating machines such as electric motors, generators, and compressors are impregnated with an insulating varnish in order to maintain the insulation and maintain the mechanical strength of the coil formed by winding the enamel wire around the iron core.
- a low-viscosity resin for example, a solvent-type varnish in which an epoxy resin or a phenol resin is dissolved in an organic solvent, or styrene as a reactive diluent
- Solventless varnishes such as polyester resins used
- solvent-type varnish and solvent-free varnish a large amount of organic components are volatilized during the curing process after the impregnation.
- solvent-type varnishes have safety and health problems and odor problems derived from a large amount of volatile organic components.
- the volatilization of organic components not involved in the curing reaction proceeds, so the energy loss in the heating furnace increases and the curing time increases. There is also the problem of lengthening. If the treatment time in the heating furnace becomes longer, the amount of CO 2 emission increases, which is a big problem in the present day when environmental regulations are advanced.
- a hermetic electric compressor used in a refrigeration / air-conditioning apparatus such as a refrigerator or an air conditioner has, for example, a structure as shown in the partial schematic explanatory diagrams of FIGS. 1 (a) and 1 (b) and the schematic explanatory diagram of FIG.
- an electric element 2 composed of a stator and a rotor and a compression element 3 driven by the electric element 2 are provided.
- Refrigerating machine oil 4 is stored at the bottom of the closed container 1. .
- the electric element 2 is supported by a stator whose outer peripheral portion is fixed to the hermetic container 1 and a fixed gap from the inner peripheral surface of the stator, and is connected to the compression element 3 by a crankshaft 5.
- a magnet wire 6 provided on the stator is connected to a compressed power supply terminal 7 provided on the sealed container 1 to supply power.
- the stator includes a core 8 in which iron plates are laminated in a cylindrical shape, magnet wires 6 passing through slots 9 formed in the axial direction on the inner peripheral surface of the core 8, and the core 8. It is composed of an insulating film 10 between and between the magnet wires 6 and an interlayer between the magnet wires 6, and a binding thread 11 used for binding the magnet wires 6. Further, the magnet wires 6 are insulated in order to improve their insulation performance. Impregnation treatment is performed by the varnish 12.
- the cured product of the insulating varnish 12 is exposed to a refrigerant system environment containing fluorocarbon (refrigerant) and refrigerating machine oil, it has excellent resistance to such a refrigerant system environment (for example, the mechanical strength is maintained and the refrigerant system is improved). The extractability is low).
- Hydrofluorocarbons that do not contain chlorine atoms in the molecule as an alternative refrigerant for example, R-134a, R-125, R-22, R-23, R-32, Switching to R-152a, R-407c, R-404a, R-410a, etc.
- alternative polar refrigerating machine oils such as polyalkylene glycol, ester, and ether have been used.
- the electric element 2 is constantly exposed to a refrigerant system environment including refrigerant and refrigerating machine oil under high temperature and high pressure. Since this mixed liquid has extremely high polarity, organic materials such as a cured product of the insulating film 10 and the binding thread 11 and the insulating varnish 12 constituting the stator of the conventional electric element 2 may be deteriorated or eluted. As a result, there is a problem that an abnormality may occur in parts in the hermetic electric compressor or insulation deterioration may occur.
- the cured product of the conventional insulating varnish 12 is formed using a monomer having a small polarity such as styrene, the compatibility between the extract extracted from the cured product of the insulating varnish 12 and the alternative refrigerating machine oil is high. Low. For this reason, oligomers and the like are deposited in the refrigerant system environment including refrigerant and refrigerating machine oil, and this deposits as sludge on capillaries and expansion valves in the refrigeration / air conditioning cycle. There is a problem that occurs.
- an insulating varnish 12 that gives a cured product with little energy loss and a short curing time during the curing process, and that is hard to cause precipitation of oligomers and the like even when exposed to a mixture of refrigerant and refrigerator oil under high temperature and high pressure. It is desired.
- Patent Document 3 discloses a thermosetting resin having two or more (meth) acryloyl groups in one molecule and a vinyl monomer having an ether bond or an ester bond. It has been proposed to use a solventless varnish composition containing an organic peroxide as an insulating varnish.
- the (meth) acryloyl group of the thermosetting resin and the vinyl group of the vinyl monomer are polymerized in the presence of an organic peroxide as a reaction initiator. It hardens by. Since this curing (polymerization) reaction is based on a radical polymerization reaction involving an unsaturated bond group, there is a limit in improving the curing rate even if the components to be blended are optimized and the type is changed.
- the present invention has been made in order to solve the above-described problems, and has a refrigerant system environment including a refrigerant and a refrigerating machine oil that have a low energy loss and a short curing time and are under high temperature and high pressure during the curing process.
- Another object of the present invention is to provide an insulating coil in which oligomers and the like are not easily deposited even when exposed to a refrigerant system environment including a refrigerant and refrigerating machine oil under high temperature and high pressure, and a method for manufacturing the same.
- an object of the present invention is to provide a highly reliable rotating machine and hermetic electric compressor that are less prone to insulation deterioration and can suppress clogging of throttle parts such as capillaries and expansion valves. .
- thermosetting resins having specific functional groups have been converted into specific monofunctional vinyl monomers, organic peroxides, and epoxy resins.
- the crosslinking (polymerization) reaction of two types of thermosetting resins proceeds efficiently, the curing speed is remarkably improved, and a cured product having physical properties suitable as an insulating varnish can be obtained.
- the headline and the present invention were completed. That is, the present invention relates to a thermosetting resin (A) having two or more (meth) acryloyl groups in one molecule, and a thermosetting resin (B) having one or more epoxy groups in one molecule.
- thermosetting resin (A) A monofunctional vinyl-based monomer having an ether bond or an ester bond, an organic peroxide having a 10-hour half-life temperature of 40 ° C. or higher, and a curing catalyst for epoxy resin, the thermosetting resin (A),
- the solvent-free varnish composition is characterized in that the epoxy equivalent of the mixed resin with the thermosetting resin (B) is 500 to 5000.
- the present invention is an insulating coil produced using the solventless varnish composition. Further, the present invention is a method for producing an insulating coil, characterized in that an annular coil is impregnated with the solventless varnish composition and heated at 130 ° C. to 180 ° C. to be cured. Moreover, this invention is a rotary machine characterized by having the said insulation coil. Furthermore, the present invention is used in a refrigeration / air-conditioning apparatus using a refrigerant mainly composed of hydrofluorocarbon or a refrigerant mainly composed of a natural refrigerant, and is driven by the electric element and the electric element in the sealed container.
- a hermetic electric compressor in which refrigerating machine oil is stored at the bottom of the hermetic container, the electric element having a stator having the insulating coil. It is a hermetic electric compressor.
- the cured product has little energy loss and a short curing time during the curing process, and is less likely to precipitate oligomers even when exposed to a refrigerant system environment including a refrigerant and refrigerating machine oil under high temperature and high pressure. It is possible to provide a solventless varnish composition that can be used as an insulating varnish that imparts water. Moreover, according to this invention, even if it exposes to the refrigerant
- the solventless varnish composition of the present embodiment has a thermosetting resin (A) having two or more (meth) acryloyl groups in one molecule and one or more epoxy groups in one molecule.
- a thermosetting resin (B) a monofunctional vinyl monomer having an ether bond or an ester bond, an organic peroxide having a 10-hour half-life temperature of 40 ° C. or higher, and a curing catalyst for epoxy resin are included.
- the solventless varnish composition of the present embodiment further includes a polyfunctional vinyl monomer having two or more (meth) acryloyl groups or allyl groups in one molecule, if necessary.
- thermosetting resin (A) is polymerized by an addition reaction occurring at the unsaturated bond site ((meth) acryloyl group) of the thermosetting resin (A) via free radicals generated from the organic peroxide. Curing proceeds. In addition to the addition reaction with the thermosetting resin (A) via free radicals, the thermosetting resin (B) also proceeds with ring-opening addition polymerization of the epoxy group due to the presence of the epoxy resin curing catalyst, Polymerization and curing proceeds. Three-dimensional crosslinking between the thermosetting resin (A) and the thermosetting resin (B) by the reactive groups (unsaturated bond sites, epoxy groups) of the two types of thermosetting resins (A) and (B).
- the pot life of the solventless varnish composition of the present embodiment mainly depends on the addition reaction via free radicals generated from the organic peroxide. Therefore, even if it mix
- thermosetting resin (A) is not particularly limited as long as it has two or more (meth) acryloyl groups in one molecule as a reactive group.
- examples of the thermosetting resin (A) include epoxy (meth) acrylate resins (vinyl ester resins), urethane (meth) acrylate resins, polyether (meth) acrylate resins, polyester (meth) acrylate resins, and the like. . These may be used singly or in combination of two or more.
- the epoxy (meth) acrylate resin means a resin obtained by an addition reaction between (meth) acrylic acid and an epoxy compound, and changes the kind of epoxy compound, the modification ratio of (meth) acrylic acid addition, and the like.
- epoxy compound examples include compounds having a bisphenol A-based, bisphenol E-based, bisphenol F-based, hydrogenated phthalic acid-based, cresol novolak-based, phenol novolak-based, resorcin-based, or techmore-based polyphenylene ether-based skeleton.
- Urethane (meth) acrylate resin means a resin obtained by urethanizing an isocyanate compound, a polyol compound, and a hydroxyl group-containing acrylic monomer, and by changing the type of compound to be combined, the number of functional groups of (meth) acrylate, etc. Resins with different physical properties can be obtained.
- the polyether (meth) acrylate resin means a chain polymer having an ether bond (—C—O—C—) in the main chain and a (meth) acryloyl group at the terminal.
- the polyester (meth) acrylate resin is a saturated polyester obtained by condensation reaction of a saturated dibasic acid and a polyhydric alcohol or an unsaturated polyester obtained by condensation reaction of an ⁇ , ⁇ -unsaturated dibasic acid and a polyhydric alcohol. , Both mean those having a (meth) acryloyl group at the terminal.
- thermosetting resin (A) is preferably an epoxy (meth) acrylate resin from the viewpoint of excellent hydrolysis resistance, mechanical strength, and heat resistance.
- epoxy (meth) acrylate resin from the viewpoint of excellent hydrolysis resistance, mechanical strength, and heat resistance.
- the weight average molecular weight (Mw) is preferably 15000 or less, more preferably 1000 to 10000, and the viscosity at 60 ° C. is due to the ease of viscosity adjustment. It is desirable to use a compound of 10,000 mPa ⁇ s or less as the thermosetting resin (A).
- the thermosetting resin (A) having such characteristics may be used alone or in combination of two or more.
- the compound represented by the general formula (I) is as follows.
- R 1 , R 2 and R 3 are each independently H or CH 3 , R 4 is H or Br, and R 5 is a group represented by general formula (i). Yes, l is an integer from 1 to 50.
- R 6 is H or CH 3 .
- the compound represented by general formula (II) is as follows.
- R 7 , R 8 and R 9 are each independently H or CH 3 , R 10 is H or Br, and R 11 is a group represented by general formula (ii).
- X 1 is at least one selected from the group consisting of an aromatic hydrocarbon group, a saturated or unsaturated alicyclic hydrocarbon group, and a linear or branched saturated or unsaturated aliphatic hydrocarbon group.
- a divalent group containing 1 group and having 1 to 20 carbon atoms and 0 to 6 oxygen atoms, and m is an integer of 1 to 50.
- R 12 is H or CH 3
- X 2 is an aromatic hydrocarbon group, a saturated or unsaturated alicyclic hydrocarbon group, and a linear or branched saturated or unsaturated group.
- R 13 , R 14 and R 15 are each independently H or CH 3
- R 16 , R 17 and R 18 are represented by the general formula (i) or (ii).
- n is an integer of 1 to 50.
- thermosetting resin (B) is not particularly limited as long as it has one or more epoxy groups in one molecule as a reactive group. Moreover, by using the thermosetting resin (B) further having a (meth) acryloyl group as a reactive group other than the epoxy group, only the thermosetting resin (A) is passed through free radicals generated from the organic peroxide. In addition, since the addition reaction also occurs in the (meth) acryloyl group of the thermosetting resin (B), the three-dimensional crosslinking reaction by both the thermosetting resin (A) and the thermosetting resin (B) is promoted and cured. It becomes possible to increase the heat resistance and mechanical strength of the object. Therefore, in order to increase the curing rate of the solventless varnish composition of the present embodiment, the thermosetting resin (B) may have both an epoxy group and a (meth) acryloyl group in one molecule. preferable.
- the thermosetting resin (B) is excellent in hydrolysis resistance, mechanical strength and heat resistance, and is compatible with the thermosetting resin (A). From the viewpoint of properties, it is preferably a resin having the same skeleton as the compounds represented by the general formulas (I) to (III) and having one or more epoxy groups in the side chain. Such resins can be represented by the following general formulas (IV) to (V).
- the weight average molecular weight (Mw) is preferably 15000 or less, more preferably 1000 to 10000, and the viscosity at 60 ° C. is 10000 mPa.
- -It is desirable to use resin below s as a thermosetting resin (B).
- the thermosetting resin (B) having such properties may be used alone or in combination of two or more.
- the resin represented by the general formula (IV) is as follows.
- R 19 and R 20 are each independently H or CH 3 , R 21 is H or Br, and R 22 is a group represented by general formula (i) or (ii). Or an epoxy group of the formula (iii), and p is an integer of 0 to 50.
- the epoxy group of the formula (iii) is as follows.
- the resin represented by the general formula (V) is as follows.
- R 23 , R 24 and R 25 are each independently H or CH 3
- R 26 , R 27 and R 28 are represented by general formula (i) or (ii).
- thermosetting resin (A) and the resin curable resin (B) have the same structure, thereby improving the compatibility between the thermosetting resin (A) and the resin curable resin (B). Can do. Therefore, the combination of the thermosetting resin (A) represented by the general formula (I) or (II) and the thermosetting resin (B) represented by the general formula (IV), and the general formula (III) It is particularly preferable to use a combination of the thermosetting resin (A) represented and the thermosetting resin (B) represented by the general formula (V). By using such a combination, the compatibility between the thermosetting resin (A) and the resin curable resin (B) is improved, so that a uniform solventless varnish composition can be obtained.
- the epoxy equivalent of the thermosetting resin (mixed resin of thermosetting resin (A) and thermosetting resin (B)) blended in the solventless varnish composition of the present embodiment is 500 or more, preferably 1000. That's it.
- the curing rate can be improved without shortening the pot life of the solventless varnish composition.
- the crosslink density of the cured product can be improved, and the amount of extract extracted from the cured product when exposed to a refrigerant system environment can be reduced.
- the upper limit of the epoxy equivalent is 5000 or less, preferably 4000 or less. When the epoxy equivalent exceeds 5000, the ring-opening addition polymerization of the epoxy group increases, and the extract amount of the extract increases.
- Organic peroxide is used as a reaction initiator.
- the organic peroxide is not particularly limited as long as the 10-hour half-life temperature is 40 ° C. or higher, and those known in the technical field can be used.
- Examples of organic peroxides include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxyesters, and peroxydicarbonates. Can be used. These organic peroxides may be used alone or in combination of two or more.
- the impregnation treatment of the coil with the solventless varnish composition is usually performed in a room temperature atmosphere of less than 40 ° C. Therefore, it is possible to improve the pot life of the solventless varnish composition by selecting an organic peroxide having a role of initiating a polymerization reaction and having a high activation temperature. Therefore, from the viewpoint of securing the pot life of the solventless varnish composition suitable for the impregnation treatment of the coil, the 10-hour half-life temperature of the organic peroxide is preferably 80 ° C. or higher. In order to efficiently cure the solventless varnish composition, the 10-hour half-life temperature of the organic peroxide may be equal to or lower than the setting temperature of the curing furnace when the solventless varnish composition is cured. preferable.
- organic peroxides having such a 10-hour half-life temperature examples include 1,1-di (t-butylperoxy) cyclohexane, 1,1-di (t-hexylperoxy) cyclohexane, 1,1 -Di (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-di (t-butylperoxy) -2-methylcyclohexane, 2,2-di (4,4-di- ( Butyl peroxy) cyclohexyl) propane, n-butyl 4,4-di- (t-butylperoxy) valerate, 2,2-di- (t-butylperoxy) butane, t-hexylperoxyisopropyl monocarbonate, t-butylperoxymaleic acid, t-butylperoxy-3,5,5-trimethylhexanoic acid, t-butylperoxylauric acid,
- the compounding amount of the organic peroxide in the solventless varnish composition of the present embodiment is not particularly limited, but the thermosetting resin (A), the thermosetting resin (B), and (arbitrary multifunctional vinyl) Is preferably 0.1 to 10 parts by mass, and more preferably 0.5 to 5 parts by mass with respect to a total of 100 parts by mass of the monomer.
- the amount of the organic peroxide is less than 0.1 parts by mass, the crosslink density is reduced, and the solvent resistance of the cured product is lowered (the extract produced from the cured product when exposed to a refrigerant system environment). (Extraction amount increases).
- the compounding amount of the organic peroxide is more than 10 parts by mass, the pot life of the solventless varnish composition tends to be remarkably shortened.
- the curing catalyst for epoxy resin has an action of ring-opening polymerization of the epoxy group of the thermosetting resin (B).
- the curing catalyst for epoxy resin is not particularly limited as long as it has the above action, and a known catalyst in the technical field can be used.
- Examples of epoxy resin curing catalysts include tertiary amines, tertiary amine salts, boric acid esters, Lewis acids, organometallic compounds, organophosphorus compounds, quaternary ammonium salts, quaternary phosphonium salts, amines
- Examples include complexes, imidazole compounds, and compounds containing transition metals such as titanium and cobalt. These may be used alone or in combination of two or more.
- tertiary amines include lauryl dimethylamine, N, N-dimethylcyclohexylamine, N, N-dimethylbenzylamine, N, N-dimethylaniline, (N, N-dimethylaminomethyl) phenol, 2,4 , 6-tris (N, N-dimethylaminomethyl) phenol, 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), 1,5-diazabicyclo [4.3.0] nonene-5 ( DBN).
- DBU 1,8-diazabicyclo [5.4.0] undecene-7
- DBN 1,5-diazabicyclo [4.3.0] nonene-5
- Examples of the tertiary amine salt include the above-mentioned tertiary amine carboxylates, sulfonates, and inorganic acid salts.
- Examples of the carboxylate include carboxylic acid salts (particularly fatty acid salts) having 1 to 30 carbon atoms (particularly 1 to 10 carbon atoms) such as octylate.
- Examples of the sulfonate include p-toluenesulfonate, benzenesulfonate, methanesulfonate, and ethanesulfonate.
- tertiary amine salts include salts of 1,8-diazabicyclo [5.4.0] undecene-7 (DBU) (eg, p-toluenesulfonate, octylate). Can be mentioned.
- DBU 1,8-diazabicyclo [5.4.0] undecene-7
- boric acid esters examples include trimethyl borate, triethyl borate, tripropyl borate, tributyl borate, and cyclic borate ester compounds.
- the Lewis acid any compound having a property of accepting an electron pair (including a transition metal compound) may be used. However, considering its characteristics, in addition to boron, aluminum, gallium, indium, and thallium, titanium, zinc, A compound containing any element of tin, scandium, ytterbium, vanadium, chromium, manganese, cobalt, nickel, iron and copper is preferable.
- organometallic compound examples include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, zinc stearate, aluminum acetylacetone complex, and the like.
- organic phosphorus compounds include tetraphenylphosphonium / tetraphenylborate and triphenylphosphine.
- quaternary ammonium salts include tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetraethylammonium chloride, tetraethylammonium bromide, tetraethylammonium iodide, tetrabutylammonium chloride, tetrabutyl bromide.
- Examples include ammonium, tetrabutylammonium iodide, triethylbenzylammonium chloride, triethylbenzylammonium bromide, triethylbenzylammonium iodide, triethylphenethylammonium chloride, triethylphenethylammonium bromide, triethylphenethylammonium bromide, and the like.
- Examples of quaternary phosphonium salts include tetrabutylphosphonium chloride, tetrabutylphosphonium iodide, tetrabutylphosphonium acetate, tetraphenylphosphonium chloride, tetraphenylphosphonium bromide, tetraphenylphosphonium iodide, ethyltriphenylphosphonium chloride, odor Ethyltriphenylphosphonium iodide, ethyltriphenylphosphonium iodide, ethyltriphenylphosphonium acetate, ethyltriphenylphosphonium phosphate, propyltriphenylphosphonium chloride, propyltriphenylphosphonium bromide, propyltriphenylphosphonium iodide, butyltriphenyl chloride Examples thereof include phosphonium, butyltriphenylphosphonium bro
- amine complexes examples include boron halide amine complexes that are complexes of boron halides and amine compounds such as boron trifluoride, boron trichloride, and boron tribromide.
- examples of the amine compound include aliphatic tertiary amines such as trimethylamine, tri-n-propylamine, N, N-dimethyloctylamine and N, N-dimethylbenzylamine, N, N-dimethylaniline and the like.
- Aromatic tertiary amines 1-alkylated substituted or unsubstituted imidazole or pyridine heterocyclic tertiary amines, monoethylamine, n-hexylamine and other aliphatic primary amines, benzylamine, etc.
- boron halide amine complexes include boron trifluoride monoethylamine complex, boron trifluoride diethylamine complex, boron trifluoride isopropylamine complex, boron trifluoride chlorophenylamine complex, boron trifluoride- Triallylamine complex, boron trifluoride benzylamine complex, boron trifluoride aniline complex, boron trichloride monoethylamine complex, boron trichloride phenol complex, boron trichloride piperidine complex, boron trichloride dimethyl sulfide complex, boron trichloride N, Examples thereof include N-dimethyloctylamine complex, boron trichloride N, N-dimethyldodecylamine complex, and boron trichloride N, N-diethyldioctylamine complex.
- imidazole compounds include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1- Benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 1- (2-cyanoethyl) -2-ethyl-4-methyl Imidazole, 2,4-diamino-6 (2′-methylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′-undecylimidazole (1 ′)) ethyl-s-triazine 2,4-diamino-6 (2'-ethyl, 4-methyl
- the compounding quantity of the curing catalyst for epoxy resins in the solventless varnish composition in the present embodiment is not particularly limited, the thermosetting resin (A) and the thermosetting resin (B), and (arbitrary polyfunctionality)
- the total amount of vinyl monomers) is preferably 0.01 parts by mass or more and 10.0 parts by mass or less, more preferably 0.02 parts by mass or more and 5.0 parts by mass or less.
- the blending amount of the epoxy resin curing catalyst is less than 0.01 parts by mass, the effect of ring-opening polymerization of the epoxy group may not be sufficiently obtained.
- the blending amount of the epoxy resin curing catalyst is more than 10.0 parts by mass, the pot life may be too short.
- a vinyl monomer excellent in compatibility with alternative refrigeration oils such as polyalkylene glycol oil, ester oil, and ether oil is used.
- the vinyl monomer a low-viscosity vinyl monomer having an ether bond or an ester bond is preferable.
- a monofunctional vinyl monomer is more preferable.
- Preferred vinyl monomers for use in the solventless varnish composition of the present embodiment are hydroxyalkyls, alkyls, alicyclics, aromatics, ethers having a vinyl group, allyl group, methacryloyl group or acryloyl group. It is a kind of thing.
- a low-viscosity methacrylic monomer or acrylic monomer having a viscosity of 20 mPa ⁇ s or less at room temperature (25 ° C.) is preferable in order to adjust the viscosity.
- a compound represented by the general formula (VI), a compound represented by the general formula (VII), and the like can be used.
- a single type of vinyl monomer may be used, or a plurality of types may be mixed and used.
- the compound represented by general formula (VI) is as follows.
- R 29 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
- R 30 is — (CH 2 ) s — (wherein s is an integer of 1 to 10) or — (CH (R 31 ) O) t —
- R 31 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
- t is an integer of 1 to 10
- X 3 is H, OH or OCO (R 32 ) (wherein R 32 is an alkyl group having 1 to 5 carbon atoms, an allyl group, a vinyl group, or a 1-alkylvinyl group having an alkyl group having 1 to 5 carbon atoms, particularly a monofunctional vinyl group) In the case of a monomer, R 32 is an alkyl group having 1 to 5 carbon atoms).
- R 33 contains at least one group selected from the group consisting of a hydrogen atom, an aromatic hydrocarbon group, and a linear or branched saturated or unsaturated aliphatic hydrocarbon group. And a monovalent group having 1 to 20 carbon atoms and 0 to 10 oxygen atoms.
- Specific examples of the compound represented by the general formula (VI) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, lauryl (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, and 4-hydroxybutyl. Examples include (meth) acrylate and n-octyl acrylate. Specific examples of the compound represented by the general formula (VII) include diethylene glycol bisallyl carbonate. Among the above monofunctional vinyl monomers, 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate are preferable because they are particularly excellent in compatibility with alternative refrigerating machine oil.
- the blending amount of the monofunctional vinyl monomer in the solventless varnish composition of the present embodiment is not particularly limited, but the solvent resistance of the cured product (the extract produced from the cured product when exposed to a refrigerant system environment) (Extraction amount) of the thermosetting resin (A) and the thermosetting resin (B) and the mass ratio of the monofunctional vinyl monomer (the thermosetting resin (A) and the thermosetting resin ( The total of B) / monofunctional vinyl monomer) is preferably 15/85 or more, more preferably 30/70 or more. Moreover, when the impregnation property to a coil is considered, the said mass ratio becomes like this. Preferably it is 90/10 or less, More preferably, it is 70/30 or less.
- a polyfunctional vinyl-based monomer having two or more (meth) acryloyl groups or allyl groups in one molecule further reduces the extract amount of the extract produced from the cured product when exposed to a refrigerant system environment.
- the polyfunctional vinyl monomer has two or more (meth) acryloyl groups or allyl groups as reactive groups in one molecule, it is polymerized and completely taken in during the curing treatment of the solventless varnish composition. Also, the volatilization during the curing process is extremely low.
- there are a plurality of reactive groups it can actively participate in the polymerization reaction of the solventless varnish composition and promote the three-dimensional crosslinking of the solventless varnish composition. Property and mechanical strength can also be increased.
- the polyfunctional vinyl monomer is not particularly limited as long as it has two or more (meth) acryloyl groups or allyl groups in one molecule, and those known in this technical field can be used. Moreover, since a polyfunctional vinyl-type monomer is used as a reactive diluent, in order to reduce the viscosity of a solventless varnish composition, a thing with a viscosity (25 degreeC) of 50 mPa * s or less is preferable.
- multifunctional vinyl monomers include carboxylic acids such as trimellitic acid and pyromellitic acid, alcohols such as trimethylolpropane, trihydroxyethyl isocyanurate, and pentaerythritol, and acrylic acid, methacrylic acid, and allyl alcohol.
- carboxylic acids such as trimellitic acid and pyromellitic acid
- alcohols such as trimethylolpropane, trihydroxyethyl isocyanurate, and pentaerythritol
- acrylic acid, methacrylic acid, and allyl alcohol examples include esters or ethers obtained by a reaction with a vinyl group-containing monomer.
- preferred polyfunctional vinyl monomers include 2-hydroxy-3-acryloyloxypropyl methacrylate, polyethylene glycol diacrylate, ethoxylated bisphenol A diacrylate, propoxylated ethoxylated bisphenol A diacrylate, and tricyclodecane dimethanol.
- Diacrylate 9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene, 1,10-decanediol diacrylate, 1,9-nonanediol diacrylate, dipropylene glycol diacrylate, tripropylene glycol diacrylate Acrylate, polypropylene glycol diacrylate, polytetramethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentylglycol Diacrylate, PO-modified neopentyl glycol diacrylate, neopentyl glycol hydroxypivalate ester diacrylate, ethoxylated isocyanuric acid triacrylate, ⁇ -caprolactone-modified tris- (2-acryloxyethyl) isocyanurate, ethoxylated glycerin triacrylate , Pentaerythritol triacrylate, trimethylolpropane triacrylate
- the blending amount of the polyfunctional vinyl monomer occupies the total amount of the monofunctional vinyl monomer and the polyfunctional vinyl monomer from the viewpoint of sufficiently obtaining the above effects.
- the ratio of the polyfunctional vinyl monomer is preferably 5% by mass or more, more preferably 30% by mass or more.
- the proportion of the polyfunctional vinyl monomer is preferably 60% by mass or less, and preferably 50% by mass or less. .
- the solventless varnish composition of the present embodiment improves the solvent resistance against incompatible refrigerating machine oils such as conventional naphthenic, paraffinic mineral oils or alkylbenzene oils (the extract amount of the extract produced from the cured product is reduced).
- an organic acid metal salt can be blended as necessary. Since the organic acid metal salt remarkably improves the surface hardness of the cured product of the solventless varnish composition, the amount of the extract can be reduced.
- organic acid metal salt is not particularly limited, and those known in the technical field can be used.
- organic acid metal salts include salts of organic acids such as octylic acid and naphthenic acid with metals such as Co, Mn, Sn, Ni, Zn, Pb, Cr and Fe.
- organic acid metal salts include cobalt naphthenate, manganese naphthenate, tin naphthenate, nickel naphthenate, zinc naphthenate, lead naphthenate, chromium naphthenate, iron naphthenate, cobalt octylate, manganese octylate, Examples include tin octylate, nickel octylate, zinc octylate, lead octylate, chromium octylate, and iron octylate. These organic acid metal salts may be used alone or as a mixture of a plurality of types.
- the compounding amount of the organic acid metal salt in the solventless varnish composition of the present embodiment is not particularly limited, but is preferably based on 100 parts by mass of the solventless varnish composition from the viewpoint of sufficiently obtaining the above effects. Is 0.01 parts by mass or more, more preferably 0.03 parts by mass or more. Moreover, from the viewpoint of preventing the pot life of the solventless varnish composition from being shortened, it is preferably 10 parts by mass or less, more preferably 5 parts by weight or less, with respect to 100 parts by mass of the solventless varnish composition. is there.
- a photoinitiator can be blended as a reaction initiator as necessary in order to enable ultraviolet curing.
- a photoinitiator By blending a photoinitiator, it is possible to suppress volatilization of various monomers generated during the curing of the solventless varnish composition, which can greatly reduce the work environment deterioration and impact on air pollution. it can. It does not specifically limit as a photoinitiator, A well-known thing can be used in the said technical field.
- photoinitiators examples include benzoin ether compounds such as benzoin isobutyl ether and hydroxycyclohexyl phenyl ketone, benzyl ketal compounds such as dimethylbenzyl ketal, and 1-phenyl-2-hydroxy-2-methylpropan-1-one.
- benzoin ether compounds such as benzoin isobutyl ether and hydroxycyclohexyl phenyl ketone
- benzyl ketal compounds such as dimethylbenzyl ketal
- 1-phenyl-2-hydroxy-2-methylpropan-1-one examples include benzoin ether compounds such as benzoin isobutyl ether and hydroxycyclohexyl phenyl ketone, benzyl ketal compounds such as dimethylbenzyl ketal, and 1-phenyl-2-hydroxy-2-methylpropan-1-one.
- Acetophenone derivatives and ketone compounds such as 4,4-bis (dimethylaminobenzophenone
- the blending amount of the photoinitiator in the solventless varnish composition of the present embodiment is preferably 0.1 parts by mass with respect to 100 parts by mass of the solventless varnish composition from the viewpoint of sufficiently obtaining the above effects. As mentioned above, More preferably, it is 0.5 mass part or more. Further, from the viewpoint of reducing the possibility that the photoinitiator is extracted from the cured product of the solventless varnish composition into the refrigerant and causing contamination of the refrigerant system, the amount of the photoinitiator is determined by the solventless varnish composition. Preferably it is 20 mass parts or less with respect to 100 mass parts of things, More preferably, it is 10 mass parts or less.
- the method for producing the solventless varnish composition of the present embodiment is not particularly limited, and the above components may be mixed uniformly. Mixing is not particularly limited, and may be performed using a mixer known in the art.
- the solventless varnish composition of the present embodiment has a low energy loss and a short curing time during the curing process, and oligomers and the like even when exposed to a refrigerant system environment including refrigerant and refrigeration oil under high temperature and pressure Therefore, it can be used as an insulating varnish.
- the coil impregnated with the solventless varnish composition of the present embodiment is not particularly limited, and examples thereof include coils used in various rotating machines such as an electric motor (motor), a generator, a transformer, and an electric compressor. .
- the structure of the coil is not particularly limited.
- the coil has a core having a plurality of slots and windings provided in the slots.
- an insulating tape may be attached to the coil, or an interphase paper may be inserted.
- the impregnation of the coil with the solventless varnish composition of the present embodiment is performed by electrically insulating the winding of the coil, physically supporting and fixing the winding, and transferring the heat generated in the winding to the core. It is performed mainly for the purpose of suppressing heat generation of wires and protecting windings.
- the impregnation of the solvent-free varnish composition of the present embodiment into the coil is not particularly limited, but generally includes five steps of a preheating step, an air cooling step, an impregnation step, an extra drop step, and a curing and drying step.
- the preheating step the coil before impregnation as the object to be processed is heat-treated at a predetermined temperature.
- the air cooling step the coil obtained in the preheating step is cooled to a predetermined temperature in order to suppress the temperature rise of the solventless varnish composition in the impregnation step.
- the impregnation step the coil obtained in the air cooling step is immersed and impregnated in a solventless varnish composition in an impregnation tank.
- an unnecessary solventless varnish composition adhering to the side surface of the coil treated in the impregnation process is dropped.
- the impregnated solventless varnish composition is cured.
- the method for impregnating the coil with the solventless varnish composition is not limited to the dipping method (dipping method) in which the coil is immersed in the impregnation tank containing the solventless varnish composition exemplified above. You may use other well-known methods, such as the dripping impregnation method (drip method) which dripped a solvent-type varnish composition to a coil.
- the temperature of the solventless varnish composition is about 15 ° C. to 70 ° C., and the time is 1 minute to 20 minutes. It is preferable to immerse the coil. In this case, ultrasonic vibration may be applied to allow the solventless varnish composition to penetrate into the fine gaps of the coil. At this time, if the temperature is less than 15 ° C., the viscosity of the solventless varnish composition becomes high, and impregnation of the solventless varnish composition into the coil may be insufficient. On the other hand, when the temperature exceeds 70 ° C., the pot life of the solventless varnish composition may be shortened.
- the impregnation time is less than 1 minute, the impregnation of the solventless varnish composition into the coil may be insufficient. On the other hand, even if the impregnation is carried out for more than 20 minutes, a significant increase in the amount of the solventless varnish composition adhering to the coil cannot be expected, and the working time is increased, which is not preferable from the viewpoint of productivity.
- the temperature of the solventless varnish composition is about 90 ° C. to 110 ° C. for 1 minute to 20 minutes. It is preferable to perform the impregnation while applying ultrasonic vibration over time. At this time, if the temperature is less than 90 ° C., the solventless varnish composition has a high viscosity, and therefore, there is a possibility that the solventless varnish composition cannot be rapidly impregnated into the coil. On the other hand, when the temperature exceeds 110 ° C., the viscosity may increase due to the progress of curing of the solventless varnish composition.
- the impregnation time is less than 1 minute, the impregnation of the solventless varnish composition into the coil may be insufficient. On the other hand, even if the impregnation is carried out for more than 20 minutes, it is not possible to expect a significant increase in the amount of adhesion to the coil. In either case of the dipping method or the drop impregnation method, the impregnation can be performed in a plurality of times.
- the heating temperature in the curing and drying step is not particularly limited, but is generally 130 ° C. to 180 ° C., preferably 140 ° C. to 170 ° C.
- the heating time varies depending on the composition of the solventless varnish composition, the curing speed and the amount of adhesion to the coil. Therefore, the heating time necessary for the solventless varnish composition to be completely solidified may be set according to the composition of the solventless varnish composition, and is generally 10 minutes to 6 hours, preferably 20 minutes to 4 hours, more preferably 30 minutes to 2 hours.
- a coil having excellent electrical insulation can be obtained.
- an annular coil disposed on the stator core is impregnated with a solventless varnish composition and cured by heating at 130 ° C.
- the insulating coil obtained by impregnating with the solventless varnish composition by the above method can be incorporated in an electric motor (motor), a generator, a transformer, an electric compressor, and the like.
- the coil is made of a refrigerant (R-134a, R-125, R- 32, hydrofluorocarbons such as R-23, R-152a, R-407C, R-404A, R-410A; natural refrigerants such as CO 2 , propane, propylene, isobutane and ammonia) / refrigerant oil (incompatible oil, It is exposed to high temperature and high pressure in the refrigerant system of compatible oil.
- a refrigerant R-134a, R-125, R- 32, hydrofluorocarbons such as R-23, R-152a, R-407C, R-404A, R-410A
- natural refrigerants such as CO 2 , propane, propylene, isobutane and ammonia
- Embodiment 2 FIG.
- the hermetic electric compressor according to the present embodiment is used in a refrigeration / air-conditioning apparatus using a refrigerant mainly composed of hydrofluorocarbon or a refrigerant mainly composed of a natural refrigerant.
- the compression element driven by the electric element is housed, refrigeration oil is stored at the bottom of the sealed container, and the electric element has the stator having the insulating coil described in the first embodiment.
- FIG. 1 is a partial schematic explanatory view of a hermetic electric compressor, where (a) is a plan view and (b) is a side view.
- FIG. 2 is a schematic explanatory diagram of a hermetic electric compressor. 1 and 2, the hermetic electric compressor includes a hermetic container 1, and an electric element 2 and a compression element 3 arranged in the hermetic container 1. The compression element 3 is driven by the electric element 2, and refrigerating machine oil 4 is stored at the bottom of the sealed container 1.
- the electric element 2 is supported by a stator whose outer peripheral portion is fixed to the hermetic container 1 and a fixed gap from the inner peripheral surface of the stator, and is connected to the compression element 3 by a crankshaft 5. Having a child. And the magnet wire 6 provided in the stator is connected with the compression power supply terminal 7 provided in the airtight container 1, and a power supply is supplied.
- the stator includes a core 8 in which iron plates are laminated in a cylindrical shape, magnet wires 6 passing through slots 9 formed in the axial direction on the inner peripheral surface of the core 8, and the core 8.
- An insulating film 10 between the magnet wires 6 and between the magnet wires 6 and a binding thread 11 used for binding the magnet wires 6 are included.
- the magnet wire 6 is impregnated with an insulating varnish 12 in order to improve its insulating performance.
- the solventless varnish composition of the first embodiment is used as the insulating varnish 12.
- the solvent-free varnish composition of Embodiment 1 provides a cured product in which oligomers and the like are not easily deposited even when exposed to a refrigerant system environment including a refrigerant and refrigerator oil under high temperature and high pressure. For this reason, by using the solventless varnish composition of Embodiment 1 as the insulating varnish 12, it is difficult to cause insulation deterioration, and it is possible to suppress clogging of a throttle portion such as a capillary tube or an expansion valve, which is highly reliable. A hermetic electric compressor can be obtained.
- Thermosetting resin (A-2) In general formula (I), R 1 , R 2 and R 3 are H, R 4 is H, R 5 is general formula (i) (R 6 is H), Bisphenol F type epoxy acrylate having 1 to 5-8, a weight average molecular weight of about 2000, and a viscosity at 60 ° C.
- Thermosetting resin (A-3) In general formula (I), R 1 is CH 3 , R 2 and R 3 are H, R 4 is H, R 5 is general formula (i) (R 6 is CH 3 ) Bisphenol A type epoxy methacrylate having l of 10 to 15, a weight average molecular weight of about 4000, and a viscosity at 60 ° C.
- Thermosetting resin (A-4) In general formula (I), R 1 , R 2 and R 3 are CH 3 , R 4 is Br, R 5 is general formula (i) (R 6 is CH 3 ) ), Bisphenol A-type brominated epoxy methacrylate having a weight average molecular weight of about 4250 and a viscosity at 60 ° C. of 5500 mPa ⁇ s (having two methacryloyl groups in one molecule)
- Thermosetting resin (A-5) In general formula (III), R 13 , R 14 and R 15 are H, R 16 , R 17 and R 18 are general formula (i) (R 6 is H) , A resin having n of 16 to 22, a weight average molecular weight of about 5500, and a viscosity at 60 ° C.
- Thermosetting resin (A-6) In general formula (I), R 1 is H, R 2 and R 3 are CH 3 , R 4 is H, R 5 is general formula (i) (R 6 is H Bisphenol F type epoxy acrylate having l of 16 to 20, a weight average molecular weight of about 3000, and a viscosity at 60 ° C.
- Thermosetting resin (A-7) In general formula (I), R 1 , R 2 and R 3 are CH 3 , R 4 is H, R 5 is general formula (i) (R 6 is CH 3 ) ), Bisphenol A type epoxy methacrylate having a weight average molecular weight of about 17000 and a viscosity at 60 ° C.
- Thermosetting resin (A-8) In general formula (I), R 1 , R 2 and R 3 are CH 3 , R 4 is Br, R 5 is general formula (i) (R 6 is CH 3 ) ), L is 1, bisphenol A brominated epoxy methacrylate having a weight average molecular weight of about 870 and a viscosity at 60 ° C.
- Thermosetting resin (A-9) In general formula (II), R 7 , R 8 and R 9 are CH 3 , R 10 is H, R 11 is general formula (ii) (R 12 is CH 3 ) ), X 1 and X 2 are — (CH 2 ) —O—C ( ⁇ O) — (CH 2 ) 4 —C ( ⁇ O) —O—, m is 7 to 11, and the weight average molecular weight is about 2500 Bisphenol A type epoxy methacrylate having a viscosity of 3000 mPa ⁇ s at 60 ° C. (having two methacryloyl groups in one molecule)
- thermosetting resin having a weight average molecular weight of about 3550 and a viscosity at 60 ° C.
- Thermosetting resin (B-3) In general formula (IV), R 19 , R 20 and R 21 are H, R 22 is an epoxy group of formula (iii), p is 7 to 13, and weight average molecular weight Is a thermosetting resin having a viscosity of 5900 mPa ⁇ s at 60 ° C. (having two epoxy groups in one molecule)
- Thermosetting resin (B-4) In general formula (IV), R 19 and R 20 are CH 3 , R 21 is H, R 22 is general formula (i) (R 6 is H), and p is A thermosetting resin having a weight average molecular weight of 9 to 15 and a weight average molecular weight of about 4200 and a viscosity at 60 ° C.
- Thermosetting resin (B-5) In general formula (IV), R 19 and R 20 are CH 3 , R 21 is Br, R 22 is general formula (i) (R 6 is CH 3 ), p Is a thermosetting resin having a weight average molecular weight of about 2700 and a viscosity at 60 ° C.
- Thermosetting resin (B-6) In general formula (V), R 23 , R 24 and R 25 are H, 25% of R 26 , R 27 and R 28 are epoxy groups of formula (iii), 75% Is a thermosetting resin (one molecule) having the general formula (i) (R 6 is H), q is 5 to 9, the weight average molecular weight is about 2000, and the viscosity at 60 ° C. is 3900 mPa ⁇ s.
- Thermosetting resin (B-7) In general formula (IV), R 19 and R 20 are CH 3 , R 21 is H, R 22 is general formula (i) (R 6 is CH 3 ), p Is a thermosetting resin having a weight average molecular weight of about 870 and a viscosity at 60 ° C.
- Thermosetting resin (B-8) In general formula (IV), R 19 and R 20 are CH 3 , R 21 is H, R 22 is general formula (ii) (R 12 is CH 3 , X 2 is- (CH 2 ) —O—C ( ⁇ O) — (CH 2 ) 4 —C ( ⁇ O) —O—), p is 4 to 8, the weight average molecular weight is about 2400, 60 ° C.
- Monofunctional vinyl monomer (C-4) dicyclopentenyloxyethyl methacrylate (viscosity at 25 ° C., 20 mPa ⁇ s)
- Monofunctional vinyl monomer (C-5) 2-hydroxypropyl methacrylate (viscosity at 25 ° C. 10 mPa ⁇ s)
- Multifunctional vinyl monomer Multifunctional vinyl monomer (F-1): Trimethylolpropane triacrylate (viscosity at 25 ° C. 110 mPa ⁇ s) Multifunctional vinyl monomer (F-2): pentaerythritol tetraacrylate (viscosity at 25 ° C., 250 mPa ⁇ s) Multifunctional vinyl monomer (F-3): Neopentyl glycol diacrylate (viscosity at 25 ° C. 6 mPa ⁇ s) Multifunctional vinyl monomer (F-4): Neopentyl glycol dimethacrylate (viscosity at 25 ° C. 5 mPa ⁇ s)
- thermosetting resin (A-1) 60 parts by mass of thermosetting resin (A-1), 10 parts by mass of thermosetting resin (B-1), 30 parts by mass of monofunctional vinyl monomer (C-1), and organic peroxide (D -1)
- a solventless varnish composition was obtained by uniformly mixing 5 parts by mass with 0.4 parts by mass of the epoxy resin curing catalyst (E-1).
- the epoxy equivalent of the mixed resin of the thermosetting resin (A-1) and the thermosetting resin (B-1) was about 2000.
- a solventless varnish composition was obtained by uniformly mixing 10 parts by mass.
- the epoxy equivalent of the mixed resin of the thermosetting resin (A-2), the thermosetting resin (B-2), and the thermosetting resin (B-3) was about 1200.
- thermosetting resin (A-3), 10 parts by mass of thermosetting resin (B-4), 20 parts by mass of monofunctional vinyl monomer (C-1), and organic peroxide (D -3) Solvent-free by uniformly mixing 2 parts by weight, 0.2 parts by weight of epoxy resin curing catalyst (E-3) and 20 parts by weight of polyfunctional vinyl monomer (F-2) A mold varnish composition was obtained.
- the epoxy equivalent of the mixed resin of the thermosetting resin (A-3) and the thermosetting resin (B-4) was about 4000.
- thermosetting resin (A-4) 15 parts by mass of thermosetting resin (B-5), 20 parts by mass of vinyl monomer (C-1), and monofunctional vinyl monomer (C- 3) 20 parts by mass, 2 parts by mass of organic peroxide (D-4), 0.4 parts by mass of epoxy resin curing catalyst (E-4), and polyfunctional vinyl monomer (F-3) 10
- a solventless varnish composition was obtained by uniformly mixing with parts by mass.
- the epoxy equivalent of the mixed resin of the thermosetting resin (A-4) and the thermosetting resin (B-5) was about 3800.
- thermosetting resin (A-5), 10 parts by mass of thermosetting resin (B-6), 45 parts by mass of monofunctional vinyl monomer (C-4), and organic peroxide (D -4) 3 parts by mass, 0.5 parts by mass of epoxy resin curing catalyst (E-5), and 15 parts by mass of polyfunctional vinyl monomer (F-4) are mixed uniformly to eliminate solvent A mold varnish composition was obtained.
- the epoxy equivalent of the mixed resin of the thermosetting resin (A-5) and the thermosetting resin (B-6) was about 1500.
- thermosetting resin (A-9) 55 parts by mass of thermosetting resin (A-9), 15 parts by mass of thermosetting resin (B-8), 30 parts by mass of monofunctional vinyl monomer (C-5), organic peroxide (D -1)
- a solventless varnish composition was obtained by uniformly mixing 5 parts by mass with 0.4 parts by mass of the epoxy resin curing catalyst (E-1).
- the epoxy equivalent of the mixed resin of the thermosetting resin (A-9) and the thermosetting resin (B-8) was about 2900.
- thermosetting resin (B-1) and the epoxy resin curing catalyst (E-1) were not blended and the blending amount of the thermosetting resin (A-1) was changed to 70 parts by mass.
- a solventless varnish composition was obtained in the same manner as in Example 1.
- thermosetting resin (B-1) was not blended and the blending amount of the thermosetting resin (A-1) was changed to 70 parts by mass I got a thing.
- thermosetting resin (A-3) was changed to the thermosetting resin (A-7).
- the epoxy equivalent of the mixed resin of the thermosetting resin (A-7) and the thermosetting resin (B-4) was about 9000.
- thermosetting resin (A-4) to thermosetting resin (A-8) and changing thermosetting resin (B-5) to thermosetting resin (B-7)
- a solventless varnish composition was obtained in the same manner as in Example 4.
- the epoxy equivalent of the mixed resin of the thermosetting resin (A-8) and the thermosetting resin (B-7) was about 450.
- the coil to which the solventless varnish composition was adhered was heat-treated at a predetermined temperature for 30 minutes, 1 hour, and 2 hours to cure the solventless varnish composition.
- the heat treatment temperatures were 160 ° C. in Examples 1 and 6 and Comparative Examples 1 to 3, 155 ° C. in Examples 2 and 4, 165 ° C. in Examples 3 and 5, and Example 4 and Comparative Examples.
- Example 6 the temperature was 170 ° C
- Example 5 the temperature was 150 ° C.
- a three-point bending test was performed under the conditions of a span interval of 50 mm and a load speed of 1 mm / second, and the fixing force (N) was obtained from the load when the coil was broken.
- the adhering force (N) is preferably 150 N or more.
- Extractability (%) (Extractor flask weight after evaporating and drying methanol-Extractor flask weight before test) / Extractor flask weight before test ⁇ 100
- the hermetic electric compressor shown in FIGS. 1 and 2 was produced.
- the solventless varnish composition was impregnated into the magnet wire 6, cured by heat treatment under predetermined conditions, and then incorporated into a hermetic electric compressor.
- the heat treatment conditions were 160 ° C. for 30 minutes in Examples 1 and 6 and Comparative Examples 1 to 3, 1 hour at 155 ° C. in Example 2 and Comparative Example 4, 1 hour at 165 ° C. in Example 3 and Comparative Example 5,
- Example 4 and Comparative Example 6 the temperature was set at 170 ° C. for 30 minutes, and in Example 5, the temperature was set at 150 ° C. for 1 hour.
- Example 1 In Example 1 and Comparative Examples 1 to 3, hydrofluorocarbon R-407C (manufactured by Daikin Industries, Ltd., R-134a / R-125 / R-32) is used as the refrigerant, and the refrigerant oil is phase. Soluble ester oil (manufactured by Nippon Oil Co., Ltd., Freol ⁇ ) was used.
- Example 2 and Comparative Example 4 R744 (CO 2 ) was used as the refrigerant, and polyalkylene glycol was used as the refrigerating machine oil.
- Example 3 and Comparative Example 5 R-290 was used as the refrigerant, and polyvinyl ether was used as the refrigerating machine oil.
- Example 4 and Comparative Example 6 R-1270 was used as the refrigerant and polyvinyl ether was used as the refrigerating machine oil.
- R717 (ammonia) was used as the refrigerant, and polyalkylene glycol was used as the refrigerating machine oil.
- Example 6 R134a was used as the refrigerant, and ester oil (Freol ⁇ , manufactured by Nippon Oil Co., Ltd.) was used as the refrigerating machine oil.
- the flow rate retention rate of the throttle part of the hermetic electric compressor after 2000 hours of operation is measured by flowing refrigerant or air through the pipe at a constant pressure (0.49 N / m 2 ) and measuring the outlet flow rate with a flow meter.
- the ratio to the outlet flow rate before operation for 2000 hours was calculated according to the following formula.
- Flow rate retention (%) (Outlet flow rate after 2000 hours operation / Outlet flow rate before 2000 hours operation) ⁇ 100 In this evaluation, it indicates that the larger the value of the flow rate retention rate, the smaller the flow rate decrease in the throttle portion.
- the solventless varnish compositions of Examples 1 to 6 give a cured product having an adhesion strength of 150 N or more with a heating time of 30 minutes, and the heating time can be increased. The adhesive strength of the cured product hardly changed.
- the solventless varnish compositions of Examples 1 to 5 give a cured product having an extraction rate of less than 1% in a heating time of 30 minutes, and the heating time can be increased. The extraction rate of the cured product hardly changed. This tendency was the same even when the solventless varnish composition after storage for 1 month was used.
- the hermetic electric compressors produced using the solventless varnish compositions of Examples 1 to 5 showed a high value of 97% or more in the throttle portion. There was almost no decrease in the flow rate at the throttle. Moreover, sludge generation etc. were not confirmed in the expansion valve and the piping line, and the appearance did not change at all.
- the solventless varnish composition of Comparative Example 1 does not contain the thermosetting resin (B) and the epoxy resin curing catalyst, the curing rate is slow, and the curing reaction does not occur at a curing time of 2 hours or less. Not complete. As a result, it is considered that the solventless varnish composition of Comparative Example 1 gave a cured product having a low fixing force and a high extraction rate. Moreover, in the hermetic electric compressor manufactured using the solventless varnish composition of Comparative Example 1, since the solventless varnish composition was not sufficiently cured, a lot of sludge was generated in the expansion valve and the piping line. As a result, a change in the appearance was confirmed, and a decrease in the flow rate at the throttle portion was also increased.
- the solventless varnish composition of Comparative Example 2 contains an epoxy resin curing catalyst, since it does not contain the thermosetting resin (B), the epoxy resin curing catalyst hardly contributes to the curing reaction, The curing rate is slow and the curing reaction is not completed at a curing time of 2 hours or less. As a result, even when the solventless varnish composition of Comparative Example 2 was used, it is considered that the same result as that obtained when the solventless varnish composition of Comparative Example 1 was used was obtained. Although the solventless varnish composition of Comparative Example 3 contains the thermosetting resin (B), it does not contain an epoxy resin curing catalyst, so that the epoxy group of the thermosetting resin (B) is involved.
- the solvent-free varnish composition of Comparative Example 4 used an organic peroxide (cumyl peroxyneodecanoate) having a 10-hour half-life temperature of 36 ° C., when each raw material was added and stirring was started at room temperature When the curing reaction proceeded and the mixing was completed, the solventless varnish composition was changed to a highly viscous gel. Therefore, various evaluations could not be performed.
- the epoxy equivalent in the mixed resin is as high as about 9000 (that is, the amount of epoxy groups present in the solventless varnish composition is large, and the thermosetting resin has a methacryloyl group. The amount of (A) is very small).
- the former In the radical reaction via the methacryloyl group and the addition reaction via the epoxy group, the former has a relatively high reaction rate.
- the addition reaction via the epoxy group is the main. This causes a decrease in the curing rate. Therefore, the solventless varnish composition of Comparative Example 5 has a slow curing rate and does not complete the curing reaction in a curing time of 2 hours or less. As a result, even when the solventless varnish composition of Comparative Example 5 was used, the same result as that obtained when the solventless varnish composition of Comparative Example 1 was used was given. The solventless varnish composition of Comparative Example 6 was obtained.
- Example 7 The fan motor stator coil having the fan motor stator core provided with windings was preheated and air cooled, and then immersed and impregnated in the solventless varnish composition of Example 1 housed in the impregnation tank. Next, after removing the unnecessary solvent-free varnish composition by dropping the stator coil for the fan motor, the stator coil for the fan motor that has been impregnated is obtained by performing heat curing at 160 ° C. for 30 minutes. Obtained. Next, the heat generation temperature was measured by a coil energization test, and the inside of the fan motor stator coil was observed. The coil energization test was performed under conditions of 100 V, 4 A, and 10 minutes.
- the exothermic temperature was found to be as good as 50 ° C. with no marked increase. Since the coil is sufficiently fixed by the cured product of the solventless varnish composition, it is considered that the heat generated in the winding during energization was quickly transmitted to the core and the heat generation was suppressed. Moreover, as a result of observing the inside of the coil, it was confirmed that the solventless varnish composition was sufficiently impregnated into the fine voids.
- Example 8> The power transformer coil in which the winding was provided on the transformer core was preheated and air-cooled, and then immersed in the solventless varnish composition of Example 4 contained in the impregnation tank and impregnated. Next, after extra drops of the power transformer coil were removed to remove unnecessary solventless varnish composition, heat curing was performed at 170 ° C. for 30 minutes to obtain a power transformer coil that had been impregnated. As a result of observing the inside of the coil of the obtained power transformer coil, it was confirmed that the solventless varnish composition was sufficiently impregnated in the fine voids. Further, when each slot portion of the coil to which the solventless varnish composition was fixed was cut out and the fixing property was evaluated with a precision universal testing machine, it was confirmed that the composition had sufficient mechanical strength.
- 1 sealed container 2 electric element, 3 compression element, 4 refrigerating machine oil, 5 crankshaft, 6 magnet wire, 7 compression power terminal, 8 core, 9 slot, 10 insulation film, 11 binding yarn, 12 insulation varnish.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Emergency Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Paints Or Removers (AREA)
- Polyethers (AREA)
- Manufacture Of Motors, Generators (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Epoxy Resins (AREA)
Abstract
Description
したがって、硬化処理工程中においてエネルギーロスが少なく且つ硬化時間が短いと共に、高温高圧下にある冷媒及び冷凍機油の混合液にさらされてもオリゴマーなどの析出が生じ難い硬化物を与える絶縁ワニス12が望まれている。
本発明は、上記のような問題を解決するためになされたものであり、硬化処理工程中においてエネルギーロスが少なく且つ硬化時間が短いと共に、高温高圧下にある冷媒及び冷凍機油を含む冷媒系環境にさらされてもオリゴマーなどの析出が生じ難い硬化物を与える絶縁ワニスとして用いることが可能な無溶剤型ワニス組成物を提供することを目的とする。
また、本発明は、高温高圧下にある冷媒及び冷凍機油を含む冷媒系環境にさらされてもオリゴマーなどの析出が生じ難い絶縁コイル及びその製造方法を提供することを目的とする。
さらに、本発明は、絶縁劣化が生じ難く、毛細管、膨張弁などの絞り部の閉塞を抑制することが可能な、信頼性の高い回転機及び密閉型電動圧縮機を提供することを目的とする。
すなわち、本発明は、1分子中に2個以上の(メタ)アクリロイル基を有する熱硬化性樹脂(A)と、1分子中に1個以上のエポキシ基を有する熱硬化性樹脂(B)と、エーテル結合又はエステル結合を有する単官能性ビニル系モノマーと、10時間半減期温度が40℃以上の有機過酸化物と、エポキシ樹脂用硬化触媒とを含み、前記熱硬化性樹脂(A)と前記熱硬化性樹脂(B)との混合樹脂のエポキシ当量が500~5000であることを特徴とする無溶剤型ワニス組成物である。
また、本発明は、環状コイルを前記無溶剤型ワニス組成物で含浸し、130℃~180℃で加熱して硬化させることを特徴とする絶縁コイルの製造方法である。
また、本発明は、前記絶縁コイルを有することを特徴とする回転機である。
さらに、本発明は、ハイドロフルオロカーボンを主成分とする冷媒又は自然冷媒を主成分とする冷媒を用いた冷凍・空調装置に用いられ、その密閉容器内に、電動要素と、前記電動要素によって駆動される圧縮要素とが収納され、前記密閉容器の底部に冷凍機油が貯留されてなる密閉型電動圧縮機であって、前記電動要素が、前記絶縁コイルを備えた固定子を有することを特徴とする密閉型電動圧縮機である。
また、本発明によれば、高温高圧下にある冷媒及び冷凍機油を含む冷媒系環境にさらされてもオリゴマーなどの析出が生じ難い絶縁コイル及びその製造方法を提供することができる。
さらに、本発明によれば、絶縁劣化が生じ難く、毛細管、膨張弁などの絞り部の閉塞を抑制することが可能な、信頼性の高い回転機及び密閉型電動圧縮機を提供することができる。
本実施の形態発明の無溶剤型ワニス組成物は、1分子中に2個以上の(メタ)アクリロイル基を有する熱硬化性樹脂(A)と、1分子中に1個以上のエポキシ基を有する熱硬化性樹脂(B)と、エーテル結合又はエステル結合を有する単官能性ビニル系モノマーと、10時間半減期温度が40℃以上の有機過酸化物と、エポキシ樹脂用硬化触媒とを含む。また、本実施の形態の無溶剤型ワニス組成物は、必要に応じて、1分子中に2個以上の(メタ)アクリロイル基又はアリル基を有する多官能性ビニル系モノマーをさらに含む。
また、本実施の形態の無溶剤型ワニス組成物の可使時間(ポットライフ)は、有機過酸化物から生成した遊離ラジカルを介した付加反応に主に依存する。そのため、熱硬化性樹脂(B)及びエポキシ樹脂用硬化触媒を配合しても、可使時間に対する影響は少ない。したがって、本実施の形態の無溶剤型ワニス組成物は、可使時間を確保しつつ、硬化速度を増大させることが可能である。
ここで、エポキシ(メタ)アクリレート樹脂とは、(メタ)アクリル酸とエポキシ化合物との付加反応で得られた樹脂を意味し、エポキシ化合物の種類、(メタ)アクリル酸付加の変性割合などを変えることにより、物性の異なる樹脂を得ることができる。エポキシ化合物としては、ビスフェノールA系、ビスフェノールE系、ビスフェノールF系、水添フタル酸系、クレゾールノボラック系、フェノールノボラック系、レゾルシン系、テクモア系ポリフェニレンエーテル系の骨格を有する化合物が挙げられる。
ウレタン(メタ)アクリレート樹脂とは、イソシアネート化合物とポリオール化合物と水酸基含有アクリルモノマーとをウレタン化して得られた樹脂を意味し、組み合わせる化合物の種類、(メタ)アクリレートの官能基数などを変えることにより、物性の異なる樹脂を得ることができる。
ポリエステル(メタ)アクリレート樹脂とは、飽和二塩基酸と多価アルコールとを縮合反応させた飽和ポリエステル又はα、β-不飽和二塩基酸と多価アルコールとを縮合反応させた不飽和ポリエステルであり、いずれも末端に(メタ)アクリロイル基を有しているものを意味する。
また、本実施の形態の無溶剤型ワニス組成物では、粘度調整の容易さから、重量平均分子量(Mw)が、好ましくは15000以下、より好ましくは1000~10000であり、60℃での粘度が10000mPa・s以下の化合物を熱硬化性樹脂(A)として用いることが望ましい。このような特性を有する熱硬化性樹脂(A)は、単独で用いてもよいし、2種類以上を混合して用いてもよい。
一般式(II)で表される化合物は、下記の通りである。
一般式(III)で表される化合物は、下記の通りである。
また、本実施の形態の無溶剤型ワニス組成物では、粘度調整の容易さから、重量平均分子量(Mw)が好ましくは15000以下、より好ましくは1000~10000であり、60℃での粘度が10000mPa・s以下の樹脂を熱硬化性樹脂(B)として用いることが望ましい。このような特性を有する熱硬化性樹脂(B)は、単独で用いてもよいし、2種類以上を混合して用いてもよい。
ルイス酸としては、電子対を受容する性質を有する化合物(遷移金属系化合物を含む)であればよいが、その特性を考慮すると、ホウ素、アルミニウム、ガリウム、インジウム、タリウムの他、チタン、亜鉛、スズ、スカンジウム、イッテルビウム、バナジウム、クロム、マンガン、コバルト、ニッケル、鉄及び銅のいずれかの元素を含む化合物であることが好ましい。
有機リン系化合物の例としては、テトラフェニルホスホニウム・テトラフェニルボレート、トリフェニルホスフィンなどが挙げられる。
第四級アンモニウム塩の例としては、塩化テトラメチルアンモニウム、臭化テトラメチルアンモニウム、ヨウ化テトラメチルアンモニウム、塩化テトラエチルアンモニウム、臭化テトラエチルアンモニウム、ヨウ化テトラエチルアンモニウム、塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム、ヨウ化テトラブチルアンモニウム、塩化トリエチルベンジルアンモニウム、臭化トリエチルベンジルアンモニウム、ヨウ化トリエチルベンジルアンモニウム、塩化トリエチルフェネチルアンモニウム、臭化トリエチルフェネチルアンモニウム、臭化トリエチルフェネチルアンモニウムなどが挙げられる。
ハロゲン化ホウ素アミン錯体の代表的な具体例としては、三フッ化ホウ素モノエチルアミン錯体、三フッ化ホウ素ジエチルアミン錯体、三フッ化ホウ素イソプロピルアミン錯体、三フッ化ホウ素クロロフェニルアミン錯体、三フッ化ホウ素-トリアリルアミン錯体、三フッ化ホウ素ベンジルアミン錯体、三フッ化ホウ素アニリン錯体、三塩化ホウ素モノエチルアミン錯体、三塩化ホウ素フェノール錯体、三塩化ホウ素ピペリジン錯体、三塩化ホウ素硫化ジメチル錯体、三塩化ホウ素N,N-ジメチルオクチルアミン錯体、三塩化ホウ素N,N-ジメチルドデシルアミン錯体、三塩化ホウ素N,N-ジエチルジオクチルアミン錯体などが挙げられる。
本実施の形態の無溶剤型ワニス組成物に用いるのに好ましいビニル系モノマーは、ビニル基、アリル基、メタクリロイル基又はアクリロイル基を有するヒドロキシアルキル類、アルキル類、脂環類、芳香族類、エーテル類のものである。特に、本実施の形態の無溶剤型ワニス組成物では、粘度を調整するため、室温(25℃)での粘度が20mPa・s以下の低粘度のメタクリルモノマー又はアクリルモノマーが好ましい。例えば、一般式(VI)で表わされる化合物、一般式(VII)で表される化合物などを用いることができ、特に、硬化時の高い反応性と可使時間(ポットライフ)とを両立させる観点から、メタクリロイル基又はアクリロイル基を1つ有する単官能性ビニル系モノマーがより好ましい。ビニル系モノマーは、単独の種類を用いてもよいし、複数の種類を混合して用いてもよい。
一般式(VI)で表わされる化合物は、下記の通りである。
CH2=CH-CH2-OR33 (VII)
一般式(VII)中、R33は水素原子、又は芳香族炭化水素基、及び直鎖状又は分岐状の飽和又は不飽和の脂肪族炭化水素基からなる群より選ばれる少なくとも1つの基を含有する、炭素数が1~20且つ酸素数が0~10である1価の基である。
一般式(VII)で表わされる化合物の具体例としては、ジエチレングリコールビスアリルカーボネートなどが挙げられる。
上記の単官能性ビニル系モノマーの中でも、特に代替冷凍機油との相溶性に優れるという点から、2-ヒドロキシエチル(メタ)アクリレート及び2-ヒドロキシプロピル(メタ)アクリレートが好ましい。
多官能性ビニル系モノマーは、反応活性基である(メタ)アクリロイル基又はアリル基を1分子中に2個以上有するため、無溶剤型ワニス組成物の硬化処理中に重合して完全に取り込まれ、硬化処理中の揮発も著しく少ない。また、反応活性基が複数あることにより、無溶剤型ワニス組成物の重合反応に積極的に関与し、無溶剤型ワニス組成物の3次元架橋化を促進させることができるため、硬化物の耐熱性及び機械的強度を高めることもできる。
多官能性ビニル系モノマーの例としては、トリメリット酸、ピロメリット酸などのカルボン酸、トリメチロールプロパン、トリヒドロキシエチルイソシアヌレート、ペンタエリスリトールなどのアルコールと、アクリル酸、メタクリル酸、アリルアルコールなどのビニル基含有モノマーとの反応によって得られるエステル又はエーテルなどが挙げられる。
光開始剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。光開始剤の例としては、ベンゾインイソブチルエーテル、ヒドロキシシクロヘキシルフェニルケトンなどのベンゾインエーテル系化合物、ジメチルベンジルケタールなどのベンジルケタール系化合物、1-フェニル-2-ヒドロキシ-2-メチルプロパン-1-オンなどのアセトフェノン誘導体、4,4-ビス(ジメチルアミノベンゾフェノン)などのケトン系化合物などが挙げられる。これらは、単独を用いてもよいし、2種以上を混合して用いてもよい。
なお、コイルに無溶剤型ワニス組成物を含浸させる方法としては、上記で例示した無溶剤型ワニス組成物が入れられた含浸槽へコイルを浸漬する浸漬法(ディッピング法)に限定されず、無溶剤型ワニス組成物をコイルに滴下する滴下含浸法(ドリップ法)などの他の公知の方法を用いてもよい。
なお、浸漬法、滴下含浸法のいずれの場合でも、含浸を複数回に分けて行うことが可能である。
なお、加熱温度が低すぎたり、加熱時間が短すぎたりする場合には、硬化乾燥過程で無溶剤型ワニス組成物に未硬化部分が発生し、電気的特性、機械的特性などの種々の特性が低下することがある。一方、加熱温度が高すぎたり、加熱時間が長すぎたりする場合には、硬化乾燥過程において架橋反応のバランスがくずれ、硬化物にクラックが発生する原因となることがある。
特に、上記のような方法によって得られた絶縁コイルを冷凍・空調装置に用いられる密閉型電動圧縮機用のコイルとして適用する場合、該コイルは、冷媒(R-134a、R-125、R-32、R-23、R-152a、R-407C、R-404A、R-410Aなどのハイドロフルオロカーボン;CO2、プロパン、プロピレン、イソブタン、アンモニア等の自然冷媒)/冷凍機油(非相溶油、相溶油)の冷媒系中の高温高圧下に曝される。本実施の形態の無溶剤型ワニス組成物の硬化物は、このような環境に曝露されても、低分子有機化合物(例えば、オリゴマー)の析出が少ないため、圧縮機内の循環経路のロックや、キャピラリー管の閉塞などの問題を誘発しない。そのため、信頼性が高い回転機及び密閉型電動圧縮機の提供が可能となる。
本実施の形態の密閉型電動圧縮機は、ハイドロフルオロカーボンを主成分とする冷媒又は自然冷媒を主成分とする冷媒を用いた冷凍・空調装置に用いられ、その密閉容器内に、電動要素と、前記電動要素によって駆動される圧縮要素とが収納され、前記密閉容器の底部に冷凍機油が貯留されてなり、電動要素が、実施の形態1で説明した絶縁コイルを備えた固定子を有する。
図1は、密閉型電動圧縮機の部分概略説明図であり、(a)は平面図、(b)は側面図である。また、図2は、密閉型電動圧縮機の概略説明図である。
図1及び2において、密閉型電動圧縮機は、密閉容器1と、密閉容器1内に配置される電動要素2及び圧縮要素3とを備える。圧縮要素3は電動要素2によって駆動され、密閉容器1の底部には冷凍機油4が貯留されている。電動要素2は、外周部が密閉容器1に固定された固定子と、この固定子の内周面から一定の隙間を保つように支持され、クランク軸5にて圧縮要素3と連結された回転子とを有する。そして、固定子に設けられたマグネットワイヤ6が密閉容器1に設けられた圧縮電源端子7と連結されて電源が供給される。
以下の実施例及び比較例では、下記の材料を用いた。
<熱硬化性樹脂(A)>
熱硬化性樹脂(A-1):一般式(I)において、R1、R2及びR3がCH3、R4がH、R5が一般式(i)(R6はCH3である)、lが5~8であり、重量平均分子量が約2000であり、60℃での粘度が3500mPa・sであるビスフェノールA型エポキシメタクリレート(1分子中にメタクリロイル基を2個有する)
熱硬化性樹脂(A-2):一般式(I)において、R1、R2及びR3がH、R4がH、R5が一般式(i)(R6はHである)、lが5~8であり、重量平均分子量が約2000であり、60℃での粘度が3300mPa・sであるビスフェノールF型エポキシアクリレート(1分子中にアクリロイル基を2個有する)
熱硬化性樹脂(A-3):一般式(I)において、R1がCH3、R2及びR3がH、R4がH、R5が一般式(i)(R6はCH3である)、lが10~15であり、重量平均分子量が約4000であり、60℃での粘度が4800mPa・sであるビスフェノールA型エポキシメタクリレート(1分子中にメタクリロイル基を2個有する)
熱硬化性樹脂(A-4):一般式(I)において、R1、R2及びR3がCH3、R4がBr、R5が一般式(i)(R6はCH3である)、lが6~9であり、重量平均分子量が約4250であり、60℃での粘度が5500mPa・sであるビスフェノールA型臭素化エポキシメタクリレート(1分子中にメタクリロイル基を2個有する)
熱硬化性樹脂(A-6):一般式(I)において、R1がH、R2及びR3がCH3、R4がH、R5が一般式(i)(R6はHである)、lが16~20であり、重量平均分子量が約3000であり、60℃での粘度が4000mPa・sであるビスフェノールF型エポキシアクリレート(1分子中にアクリロイル基を2個有する)
熱硬化性樹脂(A-7):一般式(I)において、R1、R2及びR3がCH3、R4がH、R5が一般式(i)(R6はCH3である)、lが51~58であり、重量平均分子量が約17000であり、60℃での粘度が7300mPa・sであるビスフェノールA型エポキシメタクリレート(1分子中にメタクリロイル基を2個有する)
熱硬化性樹脂(A-8):一般式(I)において、R1、R2及びR3がCH3、R4がBr、R5が一般式(i)(R6はCH3である)、lが1であり、重量平均分子量が約870であり、60℃での粘度が300mPa・sであるビスフェノールA型臭素化エポキシメタクリレート(1分子中にメタクリロイル基を2個有する)
熱硬化性樹脂(A-9):一般式(II)において、R7、R8及びR9がCH3、R10がH、R11が一般式(ii)(R12はCH3である)、X1及びX2が-(CH2)-O-C(=O)-(CH2)4-C(=O)-O-、mが7~11あり、重量平均分子量が約2500であり、60℃での粘度が3000mPa・sであるビスフェノールA型エポキシメタクリレート(1分子中にメタクリロイル基を2個有する)
熱硬化性樹脂(B-1):一般式(IV)において、R19及びR20がCH3、R21がH、R22が一般式(i)(R6はCH3である)、pが3~7であり、重量平均分子量が約1850であり、60℃での粘度が3800mPa・sである熱硬化性樹脂(1分子中にエポキシ基を1個有する)
熱硬化性樹脂(B-2):一般式(IV)において、R19、R20及びR21がH、R22が一般式(i)(R6はHである)、pが7~13であり、重量平均分子量が約3550であり、60℃での粘度が6000mPa・sである熱硬化性樹脂(1分子中にエポキシ基を1個有する)
熱硬化性樹脂(B-3):一般式(IV)において、R19、R20及びR21がH、R22が式(iii)のエポキシ基、pが7~13であり、重量平均分子量が約3530であり、60℃での粘度が5900mPa・sである熱硬化性樹脂(1分子中にエポキシ基を2個有する)
熱硬化性樹脂(B-5):一般式(IV)において、R19及びR20がCH3、R21がBr、R22が一般式(i)(R6はCH3である)、pが2~5であり、重量平均分子量が約2700であり、60℃での粘度が4700mPa・sである熱硬化性樹脂(1分子中にエポキシ基を1個有する)
熱硬化性樹脂(B-6):一般式(V)において、R23、R24及びR25がH、R26、R27及びR28の25%が式(iii)のエポキシ基、75%が一般式(i)(R6はHである)、qが5~9であり、重量平均分子量が約2000であり、60℃での粘度が3900mPa・sである熱硬化性樹脂(1分子中にエポキシ基を複数個有する)
熱硬化性樹脂(B-7):一般式(IV)において、R19及びR20がCH3、R21がH、R22が一般式(i)(R6はCH3である)、pが0~1であり、重量平均分子量が約870であり、60℃での粘度が390mPa・sである熱硬化性樹脂(1分子中にエポキシ基を1個有する)
熱硬化性樹脂(B-8):一般式(IV)において、R19及びR20がCH3、R21がH、R22が一般式(ii)(R12はCH3、X2は-(CH2)-O-C(=O)-(CH2)4-C(=O)-O-である)、pが4~8であり、重量平均分子量が約2400であり、60℃での粘度が2700mPa・sである熱硬化性樹脂(1分子中にエポキシ基を1個有する)
単官能性ビニル系モノマー(C-1):2-ヒドロキシエチルメタクリレート(25℃での粘度6mPa・s)
単官能性ビニル系モノマー(C-2):2-ヒドロキシプロピルアクリレート(25℃での粘度4mPa・s)
単官能性ビニル系モノマー(C-3):メトキシジエチレングリコールメタクリレート(25℃での粘度3mPa・s)
単官能性ビニル系モノマー(C-4):ジシクロペンテニルオキシエチルメタクリレート(25℃での粘度20mPa・s)
単官能性ビニル系モノマー(C-5):2-ヒドロキシプロピルメタクリレート(25℃での粘度10mPa・s)
有機過酸化物(D-1):ジクミルパーオキサイド(10時間半減期温度116.4℃)
有機過酸化物(D-2):t-ブチルパーオキシベンゾエート(10時間半減期温度104.3℃)
有機過酸化物(D-3):t-ブチルクミルパーオキサイド(10時間半減期温度119.5℃)
有機過酸化物(D-4):2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(10時間半減期温度117.9℃)
有機過酸化物(D-5):クミルパーオキシネオデカノエート(10時間半減期温度36.5℃)
エポキシ樹脂用硬化触媒(E-1):トリフェニルホスフィン
エポキシ樹脂用硬化触媒(E-2):オクチル酸亜鉛
エポキシ樹脂用硬化触媒(E-3):1-シアノエチル-2-メチルイミダゾール
エポキシ樹脂用硬化触媒(E-4):三塩化ホウ素N,N-ジエチルジオクチルアミン錯体
エポキシ樹脂用硬化触媒(E-5):1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)のオクチル酸塩
多官能性ビニル系モノマー(F-1):トリメチロールプロパントリアクリレート(25℃での粘度110mPa・s)
多官能性ビニル系モノマー(F-2):ペンタエリスリトールテトラアクリレート(25℃での粘度250mPa・s)
多官能性ビニル系モノマー(F-3):ネオペンチルグリコールジアクリレート(25℃での粘度6mPa・s)
多官能性ビニル系モノマー(F-4):ネオペンチルグリコールジメタクリレート(25℃での粘度5mPa・s)
熱硬化性樹脂(A-1)60質量部と、熱硬化性樹脂(B-1)10質量部と、単官能性ビニル系モノマー(C-1)30質量部と、有機過酸化物(D-1)5質量部と、エポキシ樹脂用硬化触媒(E-1)0.4質量部とを均一に混合することにより、無溶剤型ワニス組成物を得た。なお、熱硬化性樹脂(A-1)と熱硬化性樹脂(B-1)との混合樹脂のエポキシ当量は約2000であった。
熱硬化性樹脂(A-2)50質量部と、熱硬化性樹脂(B-2)10質量部と、熱硬化性樹脂(B-3)10質量部と、単官能性ビニル系モノマー(C-2)20質量部と、有機過酸化物(D-2)3質量部と、エポキシ樹脂用硬化触媒(E-2)0.6質量部と、多官能性ビニル系モノマー(F-1)10質量部とを均一に混合することにより、無溶剤型ワニス組成物を得た。なお、熱硬化性樹脂(A-2)と熱硬化性樹脂(B-2)と熱硬化性樹脂(B-3)との混合樹脂のエポキシ当量は約1200であった。
熱硬化性樹脂(A-3)50質量部と、熱硬化性樹脂(B-4)10質量部と、単官能性ビニル系モノマー(C-1)20質量部と、有機過酸化物(D-3)2質量部と、エポキシ樹脂用硬化触媒(E-3)0.2質量部と、多官能性ビニル系モノマー(F-2)20質量部とを均一に混合することにより、無溶剤型ワニス組成物を得た。なお、熱硬化性樹脂(A-3)と熱硬化性樹脂(B-4)との混合樹脂のエポキシ当量は約4000であった。
熱硬化性樹脂(A-4)40質量部と、熱硬化性樹脂(B-5)15質量部と、ビニル系モノマー(C-1)20質量部と、単官能性ビニル系モノマー(C-3)20質量部と、有機過酸化物(D-4)2質量部と、エポキシ樹脂用硬化触媒(E-4)0.4質量部と、多官能性ビニル系モノマー(F-3)10質量部とを均一に混合することにより、無溶剤型ワニス組成物を得た。なお、熱硬化性樹脂(A-4)と熱硬化性樹脂(B-5)との混合樹脂のエポキシ当量は約3800であった。
熱硬化性樹脂(A-5)30質量部と、熱硬化性樹脂(B-6)10質量部と、単官能性ビニル系モノマー(C-4)45質量部と、有機過酸化物(D-4)3質量部と、エポキシ樹脂用硬化触媒(E-5)0.5質量部と、多官能性ビニル系モノマー(F-4)15質量部とを均一に混合することにより、無溶剤型ワニス組成物を得た。なお、熱硬化性樹脂(A-5)と熱硬化性樹脂(B-6)との混合樹脂のエポキシ当量は約1500であった。
<実施例6>
熱硬化性樹脂(A-9)55質量部と、熱硬化性樹脂(B-8)15質量部と、単官能性ビニル系モノマー(C-5)30質量部と、有機過酸化物(D-1)5質量部と、エポキシ樹脂用硬化触媒(E-1)0.4質量部とを均一に混合することにより、無溶剤型ワニス組成物を得た。なお、熱硬化性樹脂(A-9)と熱硬化性樹脂(B-8)との混合樹脂のエポキシ当量は約2900であった。
熱硬化性樹脂(B-1)及びエポキシ樹脂用硬化触媒(E-1)を配合しなかったこと及び熱硬化性樹脂(A-1)の配合量を70質量部に変更したこと以外は実施例1と同様にして無溶剤型ワニス組成物を得た。
熱硬化性樹脂(B-1)を配合しなかったこと及び熱硬化性樹脂(A-1)の配合量を70質量部に変更したこと以外は実施例1と同様にして無溶剤型ワニス組成物を得た。
エポキシ樹脂用硬化触媒(E-1)を配合しなかったこと以外は実施例1と同様にして無溶剤型ワニス組成物を得た。
有機過酸化物(D-2)を有機過酸化物(D-5)に変更したこと以外は実施例2と同様にして無溶剤型ワニス組成物を得た。
熱硬化性樹脂(A-3)を熱硬化性樹脂(A-7)に変更したこと以外は実施例3と同様にして無溶剤型ワニス組成物を得た。なお、熱硬化性樹脂(A-7)と熱硬化性樹脂(B-4)との混合樹脂のエポキシ当量は約9000であった。
熱硬化性樹脂(A-4)を熱硬化性樹脂(A-8)に変更したこと及び熱硬化性樹脂(B-5)を熱硬化性樹脂(B-7)に変更したこと以外は実施例4と同様にして無溶剤型ワニス組成物を得た。なお、熱硬化性樹脂(A-8)と熱硬化性樹脂(B-7)との混合樹脂のエポキシ当量は約450であった。
(1)固着力
まず、線径が1mmのマグネットワイヤ(住友電工ウインテック株式会社製 0EIW-AD)を用い、JIS C2103の規格に準拠して、試験体としてのヘリカルコイルを作製した。次に、10本一組のコイルを、無溶剤型ワニス組成物中に垂直に浸漬し、浸漬された状態で60秒間保持した後、コイルを1mm/秒の速度で引き上げた。無溶剤型ワニス組成物が付着したコイルを、所定の温度にて30分、1時間及び2時間の3条件で熱処理し、無溶剤型ワニス組成物を硬化させた。ここで、熱処理温度は、実施例1及び6並びに比較例1~3では160℃、実施例2及び比較例4では155℃、実施例3及び比較例5では165℃、実施例4及び比較例6では170℃、実施例5では150℃とした。このようにして得られたコイルを用い、スパン間隔50mm、荷重速度1mm/秒の条件で3点曲げ試験を行い、固着力(N)をコイルが折れた時の加重から求めた。この評価において、固着力(N)は、150N以上であることが好ましい。
無溶剤型ワニス組成物を0.2mmのギャップのガラス板間に封入し、所定の温度にて30分、1時間及び2時間の3条件で熱処理して硬化させた後、ガラス板から外してシートを作製した。ここで、各実施例及び各比較例における熱処理温度は、固着力の評価の場合と同様にした。作製したシートの冷媒及び冷凍機油を含む冷媒系に対する抽出特性を確認するため、この冷媒系よりも硬化物の抽出性が高いメタノールを用いてメタノール抽出特性試験を実施した。実験は、ソックスレー抽出器を用い、メタノール沸点下でシートを8時間加温した。その後、メタノールを蒸発乾個させた後の抽出器フラスコ重量を測定し、試験前の抽出器フラスコ重量との差からシートの抽出性を以下の式に従って算出した。
抽出性(%)=(メタノールを蒸発乾個させた後の抽出器フラスコ重量-試験前の抽出器フラスコ重量)/試験前の抽出器フラスコ重量×100
さらに、無溶剤型ワニス組成物を40℃の条件下で1ヶ月保管した後、この無溶剤型ワニス組成物を用いて、上記と同様の試験を行った。
図1及び2に示す密閉型電動圧縮機を作製した。無溶剤型ワニス組成物は、マグネットワイヤ6に含浸させ、所定の条件で熱処理して硬化させた後、密閉型電動圧縮機に組み込んだ。熱処理条件は、実施例1及び6並びに比較例1~3では160℃で30分間、実施例2及び比較例4では155℃で1時間、実施例3及び比較例5では165℃で1時間、実施例4及び比較例6では170℃で30分間、実施例5では150℃で1時間とした。
流量保持率(%)=(2000時間運転後の出口流量/ 2000時間運転前の出口流量)×100
なお、この評価において、流量保持率の値が大きいほど、絞り部の流量低下が少ないことを示す。
(外観変化の評価基準)
○:まったく変化なし
△:一部変化あり
×:著しく変化あり
さらに、実施例1~5の無溶剤型ワニス組成物を用いて作製された密閉型電動圧縮機では、表3から明らかなように、絞り部の流量保持率が97%以上の高い値を示し、絞り部の流量低下がほとんどなかった。また、膨張弁及び配管ラインには、スラッジ生成なども確認されず、外観も全く変化しなかった。
比較例2の無溶剤型ワニス組成物は、エポキシ樹脂用硬化触媒を含んでいるものの、熱硬化性樹脂(B)を含んでいないため、エポキシ樹脂用硬化触媒が硬化反応にほとんど寄与せず、硬化速度が遅く、2時間以下の硬化時間では硬化反応が完了しない。その結果、比較例2の無溶剤型ワニス組成物を用いた場合でも、比較例1の無溶剤型ワニス組成物を用いた場合と同等の結果が得られたと考えられる。
比較例3の無溶剤型ワニス組成物は、熱硬化性樹脂(B)を含んでいるものの、エポキシ樹脂用硬化触媒を含んでいないため、熱硬化性樹脂(B)のエポキシ基が関与する付加反応が進行しないため、硬化速度が遅く、2時間以下の硬化時間では硬化反応が完了しない。その結果、比較例3の無溶剤型ワニス組成物を用いた場合でも、比較例1の無溶剤型ワニス組成物を用いた場合と同様の結果を与えた。
比較例5の無溶剤型ワニス組成物は、混合樹脂中のエポキシ当量が約9000と高い(すなわち、無溶剤型ワニス組成物に存在するエポキシ基の量が多く、メタクリロイル基を持つ熱硬化性樹脂(A)の量が非常に少ない)。メタクリロイル基を介するラジカル反応と、エポキシ基を介する付加反応では、前者の方が、反応速度が相対的に高いところ、比較例5の無溶剤型ワニス組成物では、エポキシ基を介する付加反応が主となり、硬化速度の低下を引き起こしている。そのため、比較例5の無溶剤型ワニス組成物は、硬化速度が遅く、2時間以下の硬化時間では硬化反応が完了しない。その結果、比較例5の無溶剤型ワニス組成物を用いた場合でも、比較例1の無溶剤型ワニス組成物を用いた場合と同様の結果を与えた
比較例6の無溶剤型ワニス組成物は、エポキシ当量が約450と小さい(すなわち、なわち、無溶剤型ワニス組成物に存在するエポキシ基の量が少ない)ため、エポキシ基を介する付加反応が十分に起こらず、硬化速度が増大しない。そのため、比較例6の無溶剤型ワニス組成物を用いた場合でも、比較例1の無溶剤型ワニス組成物を用いた場合と同様の結果を与えた。
ファンモータ用ステータコアに巻線が設けられたファンモータ用ステータコイルを、予熱及び空冷した後、含浸槽内に収容した実施例1の無溶剤型ワニス組成物に浸漬して含浸させた。次に、ファンモータ用ステータコイルを余滴して不必要な無溶剤型ワニス組成物を除去した後、160℃で30分間加熱硬化を行うことにより、含浸処理が行われたファンモータ用ステータコイルを得た。
次に、コイル通電試験によって発熱温度を測定すると共に、ファンモータ用ステータコイルの内部を観察した。なお、コイル通電試験は100V、4A、10分の条件で行った。
コイル通電試験では、発熱温度は50℃と顕著な上昇は認められず、良好な結果を得た。無溶剤型ワニス組成物の硬化物によってコイルが十分に固着されているため、通電時に巻線に発生した熱をコアに速やかに伝達し、発熱が抑制されたと考えられる。また、コイル内部を観察した結果、無溶剤型ワニス組成物が、微細空隙にも十分に含浸されていることが確認された。
トランスコアに巻線が設けられた電源トランスコイルを、予熱及び空冷した後、含浸槽内に収容した実施例4の無溶剤型ワニス組成物に浸漬し、含浸させた。次に、電源トランスコイルを余滴して不必要な無溶剤型ワニス組成物を除去した後、170℃で30分間加熱硬化を行うことにより、含浸処理が行われた電源トランスコイルを得た。
得られた電源トランスコイルのコイル内部を観察した結果、無溶剤型ワニス組成物が、微細空隙にも十分に含浸されていることが確認された。また、無溶剤型ワニス組成物が固着したコイルの各スロット部を切出し、固着性を精密万能試験機で評価したところ、十分な機械的強度を有することが確認された。
Claims (11)
- 1分子中に2個以上の(メタ)アクリロイル基を有する熱硬化性樹脂(A)と、1分子中に1個以上のエポキシ基を有する熱硬化性樹脂(B)と、エーテル結合又はエステル結合を有する単官能性ビニル系モノマーと、10時間半減期温度が40℃以上の有機過酸化物と、エポキシ樹脂用硬化触媒とを含み、前記熱硬化性樹脂(A)と前記熱硬化性樹脂(B)との混合樹脂のエポキシ当量が500~5000であることを特徴とする無溶剤型ワニス組成物。
- 1分子中に2個以上の(メタ)アクリロイル基又はアリル基を有する多官能性ビニル系モノマーをさらに含むことを特徴とする、請求項1に記載の無溶剤型ワニス組成物。
- 前記熱硬化性樹脂(A)が、一般式(I):
- 前記熱硬化性樹脂(B)が、一般式(IV):
- 前記有機過酸化物の10時間半減期温度が、80℃以上であり且つ前記無溶剤型ワニス組成物の硬化温度以下であることを特徴とする、請求項1~5のいずれか一項に記載の無溶剤型ワニス組成物。
- 前記エポキシ樹脂用硬化触媒が、第三級アミン、第三級アミン塩、ホウ酸エステル、ルイス酸、有機金属化合物、有機リン系化合物、第四級アンモニウム塩、第四級ホスホニウム塩、アミン錯体及びイミダゾール系化合物からなる群から選択される少なくとも1種であることを特徴とする、請求項1~6のいずれか一項に記載の無溶剤型ワニス組成物。
- 請求項1~7のいずれか一項に記載の無溶剤型ワニス組成物を用いて作製されたことを特徴とする絶縁コイル。
- 環状コイルを請求項1~7のいずれか一項に記載の無溶剤型ワニス組成物で含浸し、130℃~180℃で加熱して硬化させることを特徴とする絶縁コイルの製造方法。
- 請求項8に記載の絶縁コイルを有することを特徴とする回転機。
- ハイドロフルオロカーボンを主成分とする冷媒又は自然冷媒を主成分とする冷媒を用いた冷凍・空調装置に用いられ、その密閉容器内に、電動要素と、前記電動要素によって駆動される圧縮要素とが収納され、前記密閉容器の底部に冷凍機油が貯留されてなる密閉型電動圧縮機であって、
前記電動要素が、請求項8に記載の絶縁コイルを備えた固定子を有することを特徴とする密閉型電動圧縮機。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017544130A JP6532537B2 (ja) | 2015-10-08 | 2015-10-08 | 無溶剤型ワニス組成物、絶縁コイル及びその製造方法、回転機、並びに密閉型電動圧縮機 |
PCT/JP2015/078635 WO2017061006A1 (ja) | 2015-10-08 | 2015-10-08 | 無溶剤型ワニス組成物、絶縁コイル及びその製造方法、回転機、並びに密閉型電動圧縮機 |
US15/761,140 US11155730B2 (en) | 2015-10-08 | 2015-10-08 | Solvent-free varnish composition, insulated coil, process for producing same, rotating machine, and closed electric compressor |
CN201580083640.6A CN108137947B (zh) | 2015-10-08 | 2015-10-08 | 无溶剂型清漆组合物、绝缘线圈及其制造方法、旋转机以及密闭型电动压缩机 |
CZ2018-178A CZ309810B6 (cs) | 2015-10-08 | 2015-10-08 | Bezrozpouštědlový vícesložkový lak a jeho použití |
KR1020187009085A KR102066387B1 (ko) | 2015-10-08 | 2015-10-08 | 무용제형 바니시 조성물, 절연 코일 및 그 제조 방법, 회전기, 및 밀폐형 전동 압축기 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/078635 WO2017061006A1 (ja) | 2015-10-08 | 2015-10-08 | 無溶剤型ワニス組成物、絶縁コイル及びその製造方法、回転機、並びに密閉型電動圧縮機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017061006A1 true WO2017061006A1 (ja) | 2017-04-13 |
Family
ID=58488273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/078635 WO2017061006A1 (ja) | 2015-10-08 | 2015-10-08 | 無溶剤型ワニス組成物、絶縁コイル及びその製造方法、回転機、並びに密閉型電動圧縮機 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11155730B2 (ja) |
JP (1) | JP6532537B2 (ja) |
KR (1) | KR102066387B1 (ja) |
CN (1) | CN108137947B (ja) |
CZ (1) | CZ309810B6 (ja) |
WO (1) | WO2017061006A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3626779A4 (en) * | 2017-05-17 | 2020-04-15 | Mitsubishi Electric Corporation | LIQUID HEAT-CURING RESIN COMPOSITION, METHOD FOR PRODUCING A RESIN-CURED PRODUCT, STATOR REEL AND ELECTRIC LATHE |
WO2022039121A3 (ja) * | 2020-08-17 | 2022-04-21 | 東亞合成株式会社 | 熱硬化性樹脂組成物 |
WO2022239203A1 (ja) * | 2021-05-13 | 2022-11-17 | 三菱電機株式会社 | 絶縁ワニス組成物、絶縁ワニス硬化物、コイルおよびコイルの製造方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2594679B (en) * | 2017-07-18 | 2022-05-04 | Vallourec Oil & Gas France | Method for manufacturing a connecting part |
CN114423801B (zh) * | 2019-07-19 | 2024-08-06 | 蓝立方知识产权有限责任公司 | 用于环氧粉末涂料的酚醛硬化剂 |
JP6914309B2 (ja) | 2019-10-31 | 2021-08-04 | 三菱電機株式会社 | シート型絶縁ワニス及びその製造方法、電気機器、並びに回転電機 |
JP7537525B2 (ja) | 2021-01-27 | 2024-08-21 | 三菱電機株式会社 | 絶縁樹脂組成物、硬化物、回転機用コイル、および回転機 |
DE102021125492A1 (de) | 2021-10-01 | 2023-04-06 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zum Herstellen eines Bauteils, Stator sowie Vorrichtung |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5358537A (en) * | 1976-11-05 | 1978-05-26 | Mitsubishi Electric Corp | Refrigerant-resistant solventless varnish compositions with little odor |
JPS5483966A (en) * | 1977-12-16 | 1979-07-04 | Mitsubishi Electric Corp | Manufactue of resin-impregnated coil |
JPH04122720A (ja) * | 1990-09-12 | 1992-04-23 | Mitsubishi Electric Corp | エポキシ樹脂組成物,銅張積層板および製造方法 |
JPH0753676A (ja) * | 1993-08-10 | 1995-02-28 | Toshiba Chem Corp | 無溶剤エポキシ樹脂組成物及びそれを用いたプリプレグ、銅張積層板 |
JPH10285886A (ja) * | 1997-04-03 | 1998-10-23 | Mitsubishi Electric Corp | 密閉型電動圧縮機の製法 |
JP2006024917A (ja) * | 2004-06-11 | 2006-01-26 | Ryoden Kasei Co Ltd | コイル含浸絶縁処理用アクリル系ワニス |
JP2006265483A (ja) * | 2005-03-25 | 2006-10-05 | Kaneka Corp | 熱ラジカル硬化/熱カチオン硬化併用硬化性組成物 |
WO2007074890A1 (ja) * | 2005-12-28 | 2007-07-05 | Kaneka Corporation | 熱ラジカル硬化/熱潜在硬化型エポキシ併用硬化性組成物 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4911372B1 (ja) * | 1970-12-03 | 1974-03-16 | ||
JPH1060084A (ja) | 1996-08-19 | 1998-03-03 | Hitachi Chem Co Ltd | エポキシ樹脂組成物及びこのエポキシ樹脂組成物を用いて絶縁処理されたコイル |
JP2000044636A (ja) | 1998-05-27 | 2000-02-15 | Hitachi Chem Co Ltd | 熱硬化性樹脂組成物及びこれを用いたコイルの製造法 |
JP2006131868A (ja) | 2004-10-08 | 2006-05-25 | Hitachi Chem Co Ltd | 樹脂組成物、及びそれを用いた光学部材とその製造方法 |
JP4931183B2 (ja) | 2005-03-31 | 2012-05-16 | 富士フイルム株式会社 | 駆動装置 |
JP2007133232A (ja) | 2005-11-11 | 2007-05-31 | Kyocera Chemical Corp | 感光性熱硬化型樹脂組成物およびそれを用いたフレキシブルプリント配線板 |
JP5342170B2 (ja) * | 2008-05-15 | 2013-11-13 | 菱電化成株式会社 | 絶縁ワニス |
KR101302823B1 (ko) * | 2009-08-03 | 2013-09-02 | 료덴 가세이 가부시키가이샤 | 수분산형 바니쉬, 이 수분산형 바니쉬를 이용한 전동 압축기 및 그의 제법, 및 이 전동 압축기를 탑재한 냉동·공조 장치 |
JP2015004056A (ja) | 2013-05-22 | 2015-01-08 | 積水化学工業株式会社 | 電子部品用硬化性組成物及び接続構造体 |
WO2015056508A1 (ja) * | 2013-10-16 | 2015-04-23 | 三菱電機株式会社 | 水分散型絶縁ワニス組成物、それを用いた絶縁コイル及び密閉型電動圧縮機の製造方法、絶縁コイル並びに密閉型電動圧縮機 |
CN103642353B (zh) * | 2013-11-28 | 2016-06-29 | 六安科瑞达新型材料有限公司 | 一种热固性丙烯酸树脂粉末涂料组合物及其制备方法 |
-
2015
- 2015-10-08 CN CN201580083640.6A patent/CN108137947B/zh active Active
- 2015-10-08 CZ CZ2018-178A patent/CZ309810B6/cs unknown
- 2015-10-08 JP JP2017544130A patent/JP6532537B2/ja active Active
- 2015-10-08 KR KR1020187009085A patent/KR102066387B1/ko active IP Right Grant
- 2015-10-08 US US15/761,140 patent/US11155730B2/en active Active
- 2015-10-08 WO PCT/JP2015/078635 patent/WO2017061006A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5358537A (en) * | 1976-11-05 | 1978-05-26 | Mitsubishi Electric Corp | Refrigerant-resistant solventless varnish compositions with little odor |
JPS5483966A (en) * | 1977-12-16 | 1979-07-04 | Mitsubishi Electric Corp | Manufactue of resin-impregnated coil |
JPH04122720A (ja) * | 1990-09-12 | 1992-04-23 | Mitsubishi Electric Corp | エポキシ樹脂組成物,銅張積層板および製造方法 |
JPH0753676A (ja) * | 1993-08-10 | 1995-02-28 | Toshiba Chem Corp | 無溶剤エポキシ樹脂組成物及びそれを用いたプリプレグ、銅張積層板 |
JPH10285886A (ja) * | 1997-04-03 | 1998-10-23 | Mitsubishi Electric Corp | 密閉型電動圧縮機の製法 |
JP2006024917A (ja) * | 2004-06-11 | 2006-01-26 | Ryoden Kasei Co Ltd | コイル含浸絶縁処理用アクリル系ワニス |
JP2006265483A (ja) * | 2005-03-25 | 2006-10-05 | Kaneka Corp | 熱ラジカル硬化/熱カチオン硬化併用硬化性組成物 |
WO2007074890A1 (ja) * | 2005-12-28 | 2007-07-05 | Kaneka Corporation | 熱ラジカル硬化/熱潜在硬化型エポキシ併用硬化性組成物 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3626779A4 (en) * | 2017-05-17 | 2020-04-15 | Mitsubishi Electric Corporation | LIQUID HEAT-CURING RESIN COMPOSITION, METHOD FOR PRODUCING A RESIN-CURED PRODUCT, STATOR REEL AND ELECTRIC LATHE |
WO2022039121A3 (ja) * | 2020-08-17 | 2022-04-21 | 東亞合成株式会社 | 熱硬化性樹脂組成物 |
WO2022239203A1 (ja) * | 2021-05-13 | 2022-11-17 | 三菱電機株式会社 | 絶縁ワニス組成物、絶縁ワニス硬化物、コイルおよびコイルの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR102066387B1 (ko) | 2020-01-15 |
KR20180048908A (ko) | 2018-05-10 |
JPWO2017061006A1 (ja) | 2018-03-15 |
CZ2018178A3 (cs) | 2018-10-31 |
US11155730B2 (en) | 2021-10-26 |
US20180258313A1 (en) | 2018-09-13 |
JP6532537B2 (ja) | 2019-06-19 |
CN108137947B (zh) | 2019-12-13 |
CZ309810B6 (cs) | 2023-11-01 |
CN108137947A (zh) | 2018-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017061006A1 (ja) | 無溶剤型ワニス組成物、絶縁コイル及びその製造方法、回転機、並びに密閉型電動圧縮機 | |
JP3405653B2 (ja) | 密閉型電動圧縮機およびその製法、ならびにそれを用いてなる冷凍・空調装置 | |
JP6037363B2 (ja) | 水分散型絶縁ワニス組成物、並びにそれを用いた絶縁コイル及び密閉型電動圧縮機の製造方法 | |
JP5528453B2 (ja) | 水分散型ワニス、この水分散型ワニスを用いた電動圧縮機及びその製法、並びにこの電動圧縮機を搭載した冷凍・空調装置 | |
JP5202284B2 (ja) | 熱硬化性樹脂組成物 | |
JP4268957B2 (ja) | コイル含浸絶縁処理用アクリル系ワニス | |
US10381129B2 (en) | Epoxy resin compositions comprising epoxy and vinyl ester groups | |
JP2015002095A (ja) | 電気絶縁用樹脂組成物及びこれを用いた電気機器絶縁物の製造方法 | |
WO2022162805A1 (ja) | 絶縁樹脂組成物、硬化物、回転機用コイル、および回転機 | |
JP5321876B2 (ja) | 電気絶縁用樹脂組成物及びそれを用いた電気機器絶縁物の製造方法 | |
JP6759139B2 (ja) | コイル含浸用樹脂組成物及び自動車モータ用コイル | |
JP2011108476A (ja) | 電気絶縁用樹脂組成物およびそれを用いた電気機器絶縁物の製造方法 | |
JP2010244965A (ja) | 電気絶縁用樹脂組成物およびそれを用いた電気機器絶縁物の製造方法 | |
JP2013023674A (ja) | 熱硬化性樹脂組成物およびそれを用いて製造されたコイル | |
JP2011116879A (ja) | 不飽和ポリエステル樹脂組成物 | |
TWI544028B (zh) | 用於電氣捲線之浸漬樹脂調配物 | |
JP2017036420A (ja) | 高耐湿性電気絶縁用樹脂組成物およびコイル部品 | |
JP2010275355A (ja) | 熱硬化性樹脂組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15905825 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017544130 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15761140 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20187009085 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: PV2018-178 Country of ref document: CZ |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15905825 Country of ref document: EP Kind code of ref document: A1 |