WO2017057639A1 - めっき鋼材 - Google Patents

めっき鋼材 Download PDF

Info

Publication number
WO2017057639A1
WO2017057639A1 PCT/JP2016/078935 JP2016078935W WO2017057639A1 WO 2017057639 A1 WO2017057639 A1 WO 2017057639A1 JP 2016078935 W JP2016078935 W JP 2016078935W WO 2017057639 A1 WO2017057639 A1 WO 2017057639A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating layer
steel material
phase
plating
layer
Prior art date
Application number
PCT/JP2016/078935
Other languages
English (en)
French (fr)
Inventor
亜暢 小林
公平 ▲徳▼田
信之 下田
後藤 靖人
賢一郎 松村
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US15/752,734 priority Critical patent/US10563296B2/en
Priority to CN201680056510.8A priority patent/CN108138308B/zh
Priority to JP2017511362A priority patent/JP6179693B1/ja
Priority to KR1020187004413A priority patent/KR102058889B1/ko
Publication of WO2017057639A1 publication Critical patent/WO2017057639A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/017Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of aluminium or an aluminium alloy, another layer being formed of an alloy based on a non ferrous metal other than aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/06Alloys containing less than 50% by weight of each constituent containing zinc
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/12Electrodes characterised by the material
    • C23F13/14Material for sacrificial anodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/20Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/24Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/30Iron, e.g. steel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12729Group IIA metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • Y10T428/12965Both containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • This disclosure relates to plated steel materials.
  • the surface of a steel material is coated with a metal such as Zn to improve the corrosion resistance of the steel material.
  • a metal such as Zn
  • steel materials plated with Zn, Zn—Al, Zn—Al—Mg, Al—Si, etc. are being produced.
  • steel coating is often required to have wear resistance and post-processing adhesion.
  • hot dipping suitable for mass production is most widely used.
  • Patent Document 1 and Patent Document 2 may be similarly restricted by the processing method.
  • techniques such as immersion plating, thermal spraying, and vapor deposition are known as methods that can coat difficult-to-work alloys and the like from the viewpoint of being able to coat even processed products.
  • the vapor deposition method does not immerse the steel material in the molten metal, there are advantages such that the thermal influence on the steel material is small, the metal that can be coated, and the melting point tolerance range of the alloy system is wide.
  • Patent Document 5 discloses that “Al: 5 to 70% (meaning weight%, hereinafter the same)”, Vapor deposition containing 0.5 to 5% in total of one or more selected from Cr, Co, Ti, Ni and Mg (Ti and Mg are less than 5%), with the balance being substantially made of Zn.
  • a zinc alloy plating metal material excellent in corrosion resistance and workability, characterized in that a plating layer is formed on the surface of a metal material has been proposed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-255464
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2011-190507
  • Patent Document 3 Japanese Patent Application Laid-Open No. HEI 0-021066
  • Patent Document 4 Japanese Patent Application Laid-Open No. HEI 7-268604
  • Patent Document 5 Japanese Patent Application Laid-Open No. 1-21064
  • One aspect of the present disclosure has been made in view of the above-described background, and has a plating layer that is excellent in corrosion resistance (particularly, corrosion resistance after processing), alkali corrosion resistance and wear resistance, and is excellent in plating adhesion after processing.
  • the purpose is to provide plated steel.
  • the composition of the plating layer contains Zn: 20 to 83% and Al: 2.5 to 46.5% by mass, the balance is Mg and impurities, and the Mg content is 10% or more.
  • the structure of the plating layer is composed of a quasicrystalline phase, an MgZn 2 phase, and the remaining structure, and the area fraction of the quasicrystalline phase is 30 to 60%, and the quasicrystalline phase of 90% by number or more is the major axis.
  • a quasicrystalline phase with a grain size in the direction of 0.05 to 1.0 ⁇ m The plated steel material, wherein the plating layer has a thickness of 0.1 ⁇ m or more, and the interface alloy layer has a thickness of 500 nm or less.
  • the plating layer is one of C, Ca, Si, Ti, Cr, Fe, Co, Ni, V, Nb, Cu, Sn, Mn, Sr, Sb, Pb, Y, Cd, and La.
  • a fine quasicrystal that has a higher hardness and corrosion resistance (particularly corrosion resistance after processing) and alkali corrosion resistance than conventional Mg-containing plated steel materials by having a quasicrystalline phase in the plating layer. Can be uniformly distributed in the plating layer, thereby providing a plated steel material having excellent wear resistance. Furthermore, since the interface alloy layer between the plating layer and the steel material is thin, a plated steel material having excellent plating adhesion after processing can be provided. Moreover, it is possible to give the same function to an embossed product or the like obtained by processing a steel material according to one aspect of the present disclosure, and contribute to the development of the industry by realizing a long life of the member. .
  • the side sectional view showing the plating steel materials concerning the embodiment of this indication.
  • the graph which shows the relationship between temperature and the vapor pressure of a metal.
  • a plating layer containing a quasicrystalline phase in a high Mg Zn—Mg—Al system exhibits high corrosion resistance.
  • the steel material on which the Zn—Mg—Al plating layer containing the quasicrystalline phase is formed has extremely high hardness and excellent wear resistance.
  • it is somewhat difficult to stabilize the plating bath having the above-described composition and it is not easy to operate using the plating bath having the composition range. Therefore, the present disclosure has been reached as a result of research on applying the above-described high Mg-containing Zn—Mg—Al-based plating to a steel material without using a plating bath having the above-described composition.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • % indicating the content of a component (element) means “% by mass”.
  • the plated steel material 1 coated with the Mg-containing Zn alloy plating layer has a steel plate, a steel pipe, and a civil engineering / construction material (guard rail, stop plate) as shown in the cross-sectional structure of FIG. 1 (cross-sectional structure cut in the plating layer thickness direction).
  • Steel walls 2 such as water walls, corrugated pipes, etc., household appliances (such as housings of air conditioner outdoor units), automobile parts (suspension members, etc.), and plating layers (vapor deposition plating layers) formed on the surfaces of the steel 2 3).
  • a thin interface alloy layer (Fe—Al alloy layer) 4 is formed at the interface between the steel material 2 and the plating layer 3.
  • substrate of plating there is no restriction
  • the steel material 2 for example, general steel, Ni pre-plated steel, Al killed steel, and some high alloy steels can be applied.
  • the shape of the steel material 2 There is no restriction
  • the steel material 2 is not limited to the flat plate shape of FIG. 1, and a molded steel material curved in an L shape may be used.
  • the plating layer 3 may be formed on the steel material 2 processed into a target shape by various plastic processing methods such as press processing, roll forming, and bending.
  • an interface alloy layer 4 having a thickness of 500 nm or less is formed at the boundary between the plating layer 3 and the steel material 2.
  • the plating layer 3 is formed of a Zn—Mg—Al alloy layer having a thickness of 0.1 to 10 ⁇ m.
  • the interface alloy layer 4 is composed of an Al—Fe alloy layer.
  • the interfacial alloy layer 4 may be a thin layer that can hardly be confirmed depending on the manufacturing conditions of the plating layer 3.
  • the lower limit of the thickness of the interface alloy layer 4 is not particularly limited, but for example, 300 nm from the viewpoint of adhesion of the plating layer 3. The above is desirable.
  • the thickness of the interface alloy layer 4 exceeds 500 nm, the adhesion of the plating layer 3 is lowered, and when the steel material 2 is plastically processed, the plating layer 3 is easily separated from the surface of the steel material 2. If the thickness of the plating layer 3 is less than 0.1 ⁇ m, it is difficult to obtain sufficient corrosion resistance. Further, although the plating layer 3 having a thickness of 10 ⁇ m or more can be produced, the productivity may be inferior when the production is performed with a continuous plate.
  • the thickness of the plating layer 3 is 0.1 ⁇ m or more, preferably 0.1 to 10 ⁇ m, and more preferably 0.5 to 5 ⁇ m. In particular, when the thickness of the plating layer 3 is 0.5 to 5 ⁇ m, the corrosion resistance after plating and the adhesion of plating are compatible.
  • the thickness of the plating layer 3 and the interface alloy layer 4 is measured as follows. Cross-sectional observation of the plating layer 3 and the interface alloy layer 4 by SEM (scanning electron microscope) (in the cross-section cut in the thickness direction of the plating layer 3 and the interface alloy layer 4), parallel to the plating layer 3 and the interface alloy layer 4 (Observation of a region corresponding to a length of 2.5 mm) in a certain direction. In this region, the average value of the thicknesses of arbitrary five places (at least 15 places in total) of each plating layer 3 and each interface alloy layer 4 observed in at least three visual fields (magnification 10,000 times) is obtained. This average value is defined as the thickness of the plating layer 3 and the interface alloy layer 4.
  • the sample adjustment method for cross-sectional observation may be performed by a known resin embedding or cross-sectional polishing method.
  • the plating layer 3 has a quasicrystalline phase precipitated therein. That is, the plating layer 3 includes a plurality of quasicrystalline phases. Of the plurality of quasicrystalline phases precipitated in the plating layer 3, 90% by number or more of the quasicrystalline phases are quasicrystalline phases whose grain size in the major axis direction is 0.05 to 1.0 ⁇ m. It is desirable. An extremely thin oxide film may be formed on the surface of the plating layer 3.
  • the interface alloy layer 4 is formed on the surface of the steel material 2, and is a layer in which the Fe concentration range is 10% or more and 90% or less, for example. That is, the interface alloy layer 4 contains any one or more of Fe 3 Al, FeAl 3 , Fe 2 Al 5 , FeAl 3 , and an intermetallic compound in which part of Fe and Al is substituted by Zn. Yes.
  • the interface alloy layer 4 has, for example, an average composition of Fe: 30 to 50%, Al: 50 to 70%, Zn: 2 to 10% by mass, and the balance: impurities.
  • the plating layer 3 contains a large amount of Al and Zn, Al in the plating layer 3 reacts with Fe of the steel material 2 to form an Al 3 Fe phase on the surface of the steel material 2. Further, the component Zn of the plating layer 3 is inevitably taken in, and a part of the Zn is taken in, so that the interface alloy layer 4 having slightly different properties from the Al 3 Fe phase is formed. Since the interface alloy layer 4 is made of an Al—Fe alloy mainly composed of an Al 3 Fe phase, for example, the average value of the Fe concentration of the alloy layer is inevitably 30 to 50%. The average value of the Al concentration is 50 to 70%.
  • the component composition ratio determined by the deposition rate of the vapor deposition source metal is maintained in the plating layer 3 with respect to the component composition of the plating layer 3 of the Zn—Mg—Al alloy.
  • the reduction of the Al component and the Zn component of the Zn—Mg—Al alloy layer due to the formation of the interface alloy layer 4 is usually slight. This is because the formation of the interface alloy layer 4 is extremely thin.
  • the present inventors have found that the quasicrystalline phase is contained in the Zn—Mg alloy layer in the following composition range in a necessary area fraction. I found it.
  • the composition of the plating layer 3 contains Zn: 20 to 83% and Al: 2.5 to 46.5% by mass, the balance is Mg and impurities, and the Mg content is 10% or more. It is.
  • the Zn (zinc): 20-83% In order to obtain a quasicrystalline phase as the metal structure of the plating layer 3, it is essential to contain Zn in the above range. Therefore, the Zn content of the plating layer is set to 20 to 83%. When the Zn content is less than 20%, it is difficult to generate a quasicrystalline phase in the plating layer 3. Similarly, when the Zn content exceeds 83%, it is difficult to generate a quasicrystalline phase in the plating layer 3. In order to preferably form quasicrystals and further improve the corrosion resistance, the Zn content is more preferably 60% or more (that is, 60 to 83%).
  • the composition range is such that the quasicrystalline phase tends to grow as the primary crystal, and the Mg phase becomes difficult to grow as the primary crystal. That is, the phase amount (area fraction) of the quasicrystalline phase in the plating layer 3 can be increased, and the Mg phase that degrades the corrosion resistance can be reduced as much as possible.
  • Al (aluminum): 2.5 to 46.5% Al is an element that improves the corrosion resistance of the planar portion of the plating layer 3.
  • Al is an element that promotes the formation of a quasicrystalline phase.
  • the Al content of the plating layer 3 is set to 2.5% or more.
  • the Al content is preferably 3% or more, and more preferably 5% or more.
  • the Al content is 46.5% or less, preferably 20% or less. Therefore, the Al content of the plating layer 3 is 2.5 to 46.5%, preferably 3 to 20%, and more preferably 5 to 20%.
  • Mg manganesium: balance
  • Mg is a main element constituting the plating layer 3 and further an element that improves sacrificial corrosion resistance. Mg is an important element that promotes the formation of a quasicrystalline phase. Therefore, the content of Mg as the balance is 10% or more, preferably in the range of 10 to 43%, more preferably in the range of 15 to 35%. When the Mg content is 10% or more, a quasicrystalline phase is stably formed. Therefore, heat treatment is not required if only the quasicrystalline phase is generated. In addition, although inclusion of Mg is essential, it is preferable for suppressing corrosion that the contained Mg is precipitated as an Mg phase in the plating layer 3 in order to improve corrosion resistance.
  • the plating layer 3 is one or two of C, Ca, Si, Ti, Cr, Fe, Co, Ni, V, Nb, Cu, Sn, Mn, Sr, Sb, Pb, Y, Cd, and La. You may contain the selective element of a seed
  • the composition of the plating layer 3 and the method for measuring the thickness of the plating layer 3 and the interface alloy layer 4 are as follows. First, the interfacial alloy layer 4 (Fe—Al layer) is passivated with fuming nitric acid, and only the upper plating layer 3 is peeled off, and the solution is removed by ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometry) or ICP-MS ( The composition of the plating layer 3 is measured by Inductively Coupled Plasma Mass Spectrometry.
  • ICP-AES Inductively Coupled Plasma Atomic Emission Spectrometry
  • ICP-MS ICP-MS
  • the structure of the plating layer 3 is composed of a quasicrystalline phase, a MgZn 2 phase, and the remaining structure, and the area fraction of the quasicrystalline phase is 30 to 60%, and more than 90% by number of the plurality of quasicrystalline phases.
  • the quasicrystalline phase has a quasicrystalline phase in which the grain size in the major axis direction is 0.05 to 1.0 ⁇ m (hereinafter, the quasicrystalline phase having a grain size of 0.05 to 1.0 ⁇ m is referred to as “90 Also referred to as “particle size of at least%”.
  • the wear resistance is improved by having a hard quasicrystalline phase in an area fraction of 30% or more. Moreover, an effect is seen also in corrosion resistance by having a quasicrystalline phase.
  • the quasicrystalline phase is hard, if the area fraction of the quasicrystalline phase exceeds 60%, cracks are generated during processing, and the plating adhesion after processing is reduced. Therefore, the area fraction of the quasicrystalline phase is preferably 30 to 60%, more preferably 35 to 50%.
  • the MgZn 2 phase also improves the wear resistance, corrosion resistance, and alkali corrosion resistance. The MgZn 2 phase also improves each performance, but the quasicrystalline phase is more effective than the MgZn 2 phase.
  • the degree of decrease is smaller than that of the quasicrystalline phase. Therefore, it is good to improve corrosion resistance, alkali corrosion resistance, and abrasion resistance, ensuring the adhesiveness of the plated layer 3 after processing.
  • the total area fraction of the quasicrystalline phase and the MgZn 2 phase is preferably 60% ⁇ quasicrystalline phase + MgZn 2 phase ⁇ 90%, and 70% ⁇ quasicrystalline phase + MgZn 2 phase ⁇ 85%. More preferably.
  • the area fraction of the remaining tissue is preferably 40% or less, and more preferably 30% or less.
  • the area fraction of the remaining structure may be 0%, but is preferably 10% or more from the viewpoint of plating adhesion after processing.
  • the quasicrystalline phase is 0.5 ⁇ Mg / (Zn + Al) ⁇ 0.83 when the Mg content, Zn content, and Al content contained in the quasicrystalline phase are atomic%.
  • Mg: (Zn + Al) which is the ratio of Mg atoms to the sum of Zn atoms and Al atoms, is defined as a quasicrystalline phase of 3: 6 to 5: 6.
  • Mg: (Zn + Al) is considered to be 4: 6.
  • the chemical component of the quasicrystalline phase is preferably calculated by quantitative analysis using TEM-EDX (Transmission Electron Microscope-Energy Dispersive X-ray Spectroscopy) or EPMA (Electron Probe Micro-Analyzer) mapping. Note that it is not easy to define a quasicrystal with an accurate chemical formula like an intermetallic compound. This is because the quasicrystalline phase cannot define a repetitive lattice unit like a unit cell of a crystal, and furthermore, it is difficult to specify the atomic positions of Zn and Mg.
  • TEM-EDX Transmission Electron Microscope-Energy Dispersive X-ray Spectroscopy
  • EPMA Electron Probe Micro-Analyzer
  • the plating layer 3 include, but are MgZn 2 phase and the remaining structure other than the quasicrystalline phase, the remaining structure is a quasi-crystal phase and MgZn 2 phase other tissues, Mg 51 Zn 20 phase, Mg 32 (Zn , Al) 49 phase, MgZn phase, Mg 2 Zn 3 phase, Zn phase, Al phase are included.
  • the quasicrystalline phase is a crystal structure first discovered by Daniel Schuchmann in 1982 and has an icosahedral atomic arrangement.
  • This crystal structure is a non-periodic crystal structure with a unique rotational symmetry that cannot be obtained with ordinary metals and alloys, for example, a 5-fold symmetry, and is equivalent to an aperiodic structure represented by a three-dimensional Penrose pattern.
  • it is usually confirmed by obtaining a radial regular decagonal electron beam diffraction image resulting from the regular icosahedron structure by electron beam observation by TEM observation.
  • the electron diffraction image shown in FIG. 3 to be described later is obtained only from the quasicrystal, and is not obtained from any other crystal structure.
  • the quasicrystalline phase obtained by the composition of the plating layer 3 is simply a Mg 32 (Zn, Al) 49 phase by X-ray diffraction, and JCPDS card: PDF # 00-019-0029 or # 00. A diffraction peak that can be identified by -039-0951 is shown.
  • the quasicrystalline phase is a substance having extremely excellent corrosion resistance, and the corrosion resistance is improved when it is contained in the plating layer 3 (Zn—Mg—Al layer).
  • the area fraction is 5% or more, the white rust generation tends to be suppressed in the initial stage of corrosion. For example, when the content is 30% or more at a higher area fraction, the effect is increased. That is, the quasicrystalline phase formed on the surface of the plating layer 3 (Zn—Mg—Al layer) has a high barrier effect against corrosion factors.
  • At least 3 views or more of an arbitrary cross section of the plating layer 3 (cross section cut in the thickness direction of the plating layer) (a region corresponding to a length of 500 ⁇ m in a direction parallel to the plating layer 3 is at least 3 views at a magnification of 5,000) Is taken with SEM-reflected electron image. From the experimental results obtained separately by TEM observation, the quasicrystalline phase, MgZn 2 phase, and remaining structure in the SEM-reflected electron image are specified.
  • the component mapping image is grasped, the same component composition location as the quasicrystalline phase, the MgZn 2 phase and the remaining structure in the plating layer 3 is specified, and the quasicrystalline phase in the plating layer 3, MgZn is obtained by image processing. Identify the two phases and the remaining tissue. Prepare an image in which each region of the quasicrystalline phase, the MgZn 2 phase, and the remaining structure is selected by an image analyzer, and measure the ratio of the quasicrystalline phase, the MgZn 2 phase, and the remaining structure in the plating layer 3 To do. Similarly, the average value from the three processed visual fields is defined as the area fraction of the quasicrystalline phase, the MgZn 2 phase, and the remaining structure in the plating layer 3.
  • Each phase of the plating layer 3 is identified by performing FIB (focused ion beam) processing on the cross section of the plating layer 3 (cross section cut in the thickness direction of the plating layer) and then using an electron diffraction image of a TEM (transmission electron microscope). Do.
  • FIB focused ion beam
  • Corrosion products having a high barrier effect are related to the proportion of Zn—Mg—Al component contained in the quasicrystalline phase.
  • Zn—Mg—Al alloy layer if Zn> Mg + Al (where the element symbol indicates the element content (mass%)), the corrosion product barrier High effect.
  • the area fraction of the quasicrystalline phase is higher. The effect is particularly great when the area fraction of the quasicrystalline phase is 80% or more.
  • the MgZn 2 phase and the Mg 2 Zn 3 phase have a small corrosion resistance improvement effect due to inclusion as compared with the quasicrystalline phase, but have a certain corrosion resistance and contain a large amount of Mg, and thus are excellent in alkali corrosion resistance.
  • Alkaline corrosion resistance can be obtained by including these single intermetallic compounds in the plating layer 3, but when coexisting with the quasicrystalline phase, the surface layer of the plating layer 3 in a highly alkaline environment (pH 13 to 14) of the quasicrystalline phase is obtained.
  • the oxide film is stabilized and exhibits particularly high corrosion resistance.
  • the quasicrystalline phase is preferably contained in the plating layer 3 in an area fraction of 30% or more.
  • the particle size of 90% or more of the quasicrystalline phases is preferably 0.1 to 0.5 ⁇ m, and more preferably 0.1 to 0.3 ⁇ m.
  • the ratio of the quasicrystalline phase having a particle size of 0.05 to 1.0 ⁇ m is preferably 90% by number or more, and more preferably 95% by number or more.
  • the particle size of the quasicrystalline phase (the particle size in the major axis direction of the quasicrystalline phase) and the proportion of the quasicrystalline phase having a particle size of 0.05 to 1.0 ⁇ m are measured by the following method. More than at least 3 fields of view (cross section cut in the thickness direction of the plating layer) of the plating layer 3 (at least 3 fields at a magnification of 5,000 times the area corresponding to the length of 500 ⁇ m in the direction parallel to the plating layer 3) Is photographed by the same method as the method for measuring the area fraction of the quasicrystalline phase, and the number of particles of the quasicrystalline phase in the plating layer 3 is counted.
  • the length of the quasicrystalline phase in the major axis direction (that is, the length of the straight line having the longest quasicrystalline phase diameter) is measured as the grain size. Then, the ratio of the quasicrystalline phase having a particle size of 0.05 to 1.0 ⁇ m to the total number of quasicrystalline phases is calculated.
  • the steel material 2 is preferably subjected to surface cleaning (hydrochloric acid pickling, water washing, drying) before depositing the plating layer 3.
  • the strong oxide film produced on the surface layer of the steel material 2 is peeled off by being immersed in 10% hydrochloric acid for 10 minutes or more, for example. After pickling, wash with water and remove moisture on the surface using a dryer or drying oven.
  • a vapor deposition method using a vacuum chamber is used as an example.
  • the following description demonstrates the case where the plating layer 3 is formed by a closed system, the same result is obtained also in the system which passes continuously.
  • Vacuum deposition is usually performed under a pressure of 10 ⁇ 2 to 10 ⁇ 5 Pa, and the mean free process at this time is several tens of centimeters to several tens of meters. Therefore, the material vaporized from the vapor deposition metal source reaches the surface of the steel material 2 with almost no collision. Further, since the energy of the evaporated particles is very small, the surface of the steel material 2 is hardly damaged. On the other hand, the plating layer 3 tends to be porous, the density is low, and the strength tends to be insufficient. This is because the particles cannot move from the position where they reach the steel surface because the energy of the evaporated particles is small.
  • the temperature of the steel material 2 is preferably 50 to 400 ° C. If the temperature is lower than 50 ° C., the metal atoms deposited on the surface of the steel material 2 cannot sufficiently form a crystal phase, resulting in a plating layer 3 with many voids, and sufficient corrosion resistance cannot be obtained.
  • the temperature of the steel material 2 is set to 400 ° C. or more and vapor deposition plating is performed for a long time, the interface alloy layer 4 grows thick, which causes a decrease in adhesion after processing of the plating layer 3. For this reason, it is desirable to perform vapor deposition (film formation) while heating the surface of the steel material 2 at 150 to 350 ° C., more preferably 200 to 300 ° C.
  • the vapor deposition rate for depositing the plating layer 3 is determined by the following contents. “1” It is determined by the temperature of the vapor deposition metal source and the vapor pressure of the metal source at that time. “2” Determined by the surface area and capacity of the deposited metal source. “3” It is determined by the distance from the vapor deposition metal source to the steel material 2 and the size in the chamber. Moreover, the heating method in the method of vapor-depositing the plating layer 3 can select either of the methods illustrated below. (1) Resistance heating. (2) Electron beam heating. (3) High frequency induction heating. (4) Laser heating.
  • a vapor deposition metal source can be installed and dissolved on the sample stage subjected to resistance heating.
  • thermoelectrons generated by resistance heating of a filament such as tungsten are accelerated at a high voltage and irradiated to a metal deposition source.
  • a metal vapor deposition source can be melt
  • high frequency induction heating a material is heated and evaporated by eddy current loss and hysteresis loss due to high frequency induction.
  • High frequency power is applied to a coil placed so as to surround the crucible containing the material and heated to melt the metal deposition.
  • a high-power laser is used for heating and evaporation.
  • laser light can be introduced into a vacuum container through a window, condensed with a lens, a concave mirror surface, etc., and heated to dissolve a vapor deposition metal source.
  • FIG. 2 is a graph showing the relationship between the temperature (K) and vapor pressure (Pa) of various metals. From the relationship shown in FIG. 2, the temperature and vapor pressure when using Al, Mg, and Zn as vapor deposition sources individually. And the heating temperature of each vapor deposition source may be determined.
  • the lid on the deposition metal source is removed and plating is started.
  • the plating chamber is small and the distance between the metal vapor deposition source and the steel material 2 is short, it is desirable to rotate the steel material 2 or the vapor deposition metal source so that each element can be uniformly plated.
  • the evaporated metal element flies to the surface of the steel material 2 to form a film, and the crystal grain size and the thickness of the interface alloy layer 4 with the steel material 2 change according to the temperature of the steel material 2.
  • the metal evaporated from the vapor deposition source is deposited on the surface of the steel material 2 while being almost quenched. Since the mobility of the adsorbed metal changes depending on the temperature of the steel material 2, each crystal grain size changes accordingly.
  • the metal to be plated on the steel material 2 contains Zn: 20 to 83% and Al: 2.5 to 46.5%, the balance is Mg and impurities, and the Mg content is 10% or more.
  • the holding temperature of each vapor deposition metal and the pressure in the vapor deposition chamber are adjusted so that the composition of the layer 3 is obtained. After plating, the degree of vacuum in the chamber is brought close to the atmosphere using an inert gas such as N 2 and the steel material 2 is taken out.
  • the plated steel material 1 coated with the plating layer 3 having the composition and structure described above is excellent in corrosion resistance to salt water and alkali corrosion resistance, excellent in adhesion after processing, and excellent in wear resistance.
  • post-treatment may be performed after the plating layer is formed.
  • post-treatment include various treatments for treating the surface of the plated steel sheet, such as treatment for upper layer plating, glazing treatment, non-chromate treatment, phosphate treatment, lubricity improvement treatment, weldability improvement treatment, etc. There is.
  • resin-based paint for example, polyester resin-based, acrylic resin-based, fluororesin-based, vinyl chloride resin-based, urethane resin-based, epoxy resin-based, etc.
  • roll coating for example, spray coating
  • film laminating method for example, a film laminating method when laminating a resin film such as an acrylic resin film.
  • vapor deposition metals Al, Mg, Zn
  • Al, Mg, Zn vapor deposition metals
  • ⁇ Device capacity (chamber internal capacity): 0.6 m 3, ⁇ Distance from vapor deposition metal source to steel plate (substrate): 0.6m, -Degree of vacuum during deposition: 5.0E-3 to 2.0E-5Pa, -Capacity of the vapor deposition metal source crucible: 40 ml, inner diameter: 30 ⁇ , ⁇ Vapor deposition method: electron beam, -Electron beam irradiation conditions: Voltage 10 V (fixed), current 0.7 to 1.5 A, ⁇ Steel temperature: 50-600 °C -Steel plate rotation speed: 15 rpm.
  • the electron beam irradiation current for each metal is controlled within the above range (range of 0.7 to 1.5 A). With this current control, the temperature of the metal changes, and the composition of the plating layer formed on the steel plate can be changed.
  • the temperature of the deposited metal source is measured with a thermocouple. For example, no.
  • the average temperature of the steel sheet was raised to 423.15 K (150 ° C.), and the average temperature of each vapor deposition metal source was Mg: 640 K, Al: 1280 K, Zn: 585 K, and the inside of the chamber
  • the average degree of vacuum was 7 ⁇ 10 ⁇ 4 Pa and the deposition time was 6 min.
  • the temperature of each metal was changed so that the composition of the plating layer of 14 test pieces and the relationship between the temperature and the vapor pressure of the metal shown in FIG. Further, the deposition time was controlled to obtain a desired plating layer thickness.
  • the structure of the plating layer was controlled by the composition of the plating layer and the average temperature of the steel plate.
  • the steel plate test piece (size: length 200 mm, width 200 mm) whose surface was covered with each plating layer having the grain size of the quasicrystalline phase, the thickness of the interface alloy layer, and the composition shown in Table 1 by controlling the vapor deposition conditions described above. , Thickness 0.8 mm) was manufactured, and corrosion resistance evaluation, post-processing corrosion resistance evaluation, alkali corrosion resistance evaluation, post-processing plating adhesion evaluation (bending test), and wear resistance evaluation of each of the obtained test pieces were performed. The results are also shown in Tables 1 and 2 below. The grain size of the quasicrystalline phase was measured in the major axis direction.
  • ⁇ Area fraction of each phase The area fraction of the quasicrystalline phase, the MgZn 2 phase, and the remaining structure was measured according to the method described above.
  • the wear resistance of the vapor deposition plating layer was measured using a linear sliding tester manufactured by HEIDON.
  • the contact portion was a steel ball (20R: material SKD11), a load of 500 g, a sliding distance of 40 mm, and a speed of 1200 mm / min. After 10 reciprocations, the surface of the test piece (plated steel sheet) was visually observed and evaluated. If the surface of the plated layer is clearly scratched or chipped after the test, it is evaluated as “D”, and after the test, the non-tested portion of the plated surface clearly changes in color compared to the tested portion.
  • the corrosion resistance of the vapor-deposited plated layer was evaluated by a combined cycle corrosion test (CCT) according to JASO M-609-91.
  • CCT combined cycle corrosion test
  • a sample in which red rust was generated 60% or more from the plating layer of the test piece (plated steel sheet) in 5 cycles was evaluated as “D”, and a sample in which red rust was generated 50% or more and less than 60% was evaluated as “C-”.
  • a sample in which red rust was generated at 40% or more and less than 50% was evaluated as “C”.
  • a sample in which red rust was generated at 30% or more and less than 40% was evaluated as “C +”.
  • a sample in which red rust was generated exceeding 10% and less than 30% was evaluated as “B”, and a sample having a red rust generation amount of 10% or less was evaluated as “A”.
  • the results are also shown in Tables 1 and 2.
  • the post-processing corrosion resistance of the vapor-deposited plating layer is the same as that except that the test piece (plated steel plate) was subjected to 2R, 60 ° V bending before the above corrosion resistance evaluation, and then the end face and back face of the test piece were covered with tape.
  • the evaluation was made in the same manner as the above corrosion resistance evaluation.
  • produced 80% or more from the plating layer of the test piece (plated steel plate) in 10 cycles was evaluated as "D”.
  • the alkali corrosion resistance of the vapor deposition plating layer was evaluated by immersing the plated steel sheet in caustic soda water controlled by a pH buffer device and evaluating the corrosion weight loss after a predetermined time.
  • a 0.5% NaCl aqueous solution (2 liters) (pH 13) a test piece (plated steel plate) end-sealed in water in which a 3 cm-long stirrer was rotated at 100 rpm was immersed for 6 hours. ) was measured.
  • the evaluation of a sample having a corrosion weight loss of 10 g / m 2 or more or a steel sheet exposed by dissolving a plating layer was “D”.
  • the evaluation of a sample having a weight loss of 8.5 g / m 2 or more and less than 10 g / m 2 was “C ⁇ ”.
  • the evaluation of a sample having a weight loss of 7.5 g / m 2 or more and less than 8.5 g / m 2 was “C”.
  • the evaluation of the sample having a corrosion weight loss of 6 g / m 2 or more and less than 7.5 g / m 2 was “C +”.
  • the evaluation of the sample having a weight loss of less than 6 g / m 2 was “B”.
  • the evaluation of the sample having a weight loss of less than 3 g / m 2 was “A”. Table 1 and Table 2 describe the respective evaluations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

鋼材と、前記鋼材の表面に被覆されためっき層と、前記鋼材及び前記めっき層の境界に形成された界面合金層とを備え、前記めっき層の組成は、質量%でZn:20~83%、及びAl:2.5~46.5%を含有し、残部がMgおよび不純物からなり、かつMg含有量が10%以上であり、前記めっき層の組織は、準結晶相とMgZn相と残部組織とからなり、前記準結晶相の面積分率が30~60%であり、90個数%以上の準結晶相がその長軸方向の粒径を0.05~1.0μmとした準結晶相であり、前記めっき層の厚みは0.1μm以上であり、前記界面合金層の厚さは500nm以下であるめっき鋼材である。

Description

めっき鋼材
 本開示は、めっき鋼材に関する。
 従来から、鋼材の表面にZnなどの金属を被覆して鋼材の耐食性を改善することがなされている。現在もZn、Zn-Al、Zn-Al-Mg、Al-Siなどをめっきした鋼材が生産されている。鋼材の被覆には耐食性以外に耐摩耗性や加工後密着性を要求されることも多い。鋼材の被覆方法としては、大量生産に適した溶融めっきが最も広く使用されている。
 鋼材の被覆に要求される耐食性は年々高くなり、そのため近年は以下の特許文献1及び特許文献2に示すような従来以上にMg含有量を高めためっきも提案されている。しかしながら、従来以上にMgを高くしようとすると、溶融めっき浴の作製時に金属が溶解せず、浴組成と加熱条件でドロスなどが発生するといった可能性がある。
 また、溶融めっき皮膜はめっき組成によっては界面合金層の生成により皮膜の加工後密着性が低下し、加工法に制約を受ける可能性がある。特に、非平衡相、金属間化合物を析出させた皮膜ではその傾向が強く、特許文献1及び特許文献2に示す提案も同様に加工法に制約を受ける可能性がある。
 それらに対して、浸漬めっき(どぶ漬け)、溶射、蒸着などの手法は加工後の製品でも被覆できる観点から、難加工性の合金などを被覆できる方法として知られている。それらの中でも、蒸着法は鋼材を溶融金属に浸漬しないため、鋼材への熱影響が少ない、被覆可能な金属、合金系の融点許容範囲が広いなどの利点がある。
 鋼材の耐食性を高めるためには、めっき層の形成と同様に、めっき層にZnを添加することが基本となるが、多くの用途に対しZn添加のみの皮膜では耐食性が不充分な皮膜となる場合が多い。
 そこで、特許文献3に記載されているようなMg含有皮膜の蒸着法が提案されている。これは5%~30%までのMg、0.5~5%のAl、Cr、Co、Mn、Ti、及びNiから選ばれる1種または2種以上を含み、残部がZnである合金皮膜を蒸着するもので、耐食性に優れるめっき皮膜である。また、特許文献4に示すように、めっき単層を蒸着により積層した後に熱処理でZn-Mgめっきを作製する技術が提案されている。
 その他、特許文献5には、「Al:5~70%(重量%の意味、以下同じ)、並びに、
Cr、Co、Ti、Ni、Mgから選ばれる1種又は2種以上を合計で0.5~5%含有し(但し、Ti、Mgは5%未満)、残部が実質的にZnからなる蒸着めっき層を、金属機材の表面に形成したものであることを特徴とする耐食性及び加工性に優れた亜鉛合金めっき金属材」が提案されている。
特許文献1:日本国特開2008-255464号公報
特許文献2:日本国特開2011-190507号公報
特許文献3:日本国特開平1-021066号公報
特許文献4:日本国特開平7-268604号公報
特許文献5:日本国特開平1-21064号公報
 従来技術においては、これらのように種々の合金蒸着めっき被覆が提案されているが、いずれの従来技術においても、生成できるめっき皮膜の耐食性(特に加工後の耐食性)、アルカリ耐食性、耐摩耗性、加工後密着性が十分であるとはいえない問題がある。
 本開示の一態様は、上述の背景に鑑みなされたもので、耐食性(特に加工後の耐食性)、アルカリ耐食性及び耐摩耗性に優れ、加工後のめっき密着性にも優れさせためっき層を有するめっき鋼材の提供を目的とする。
 本開示は、以上の背景に基づきなされたものであり、以下の態様を含む。
[1] 鋼材と、前記鋼材の表面に被覆されためっき層と、前記鋼材及び前記めっき層の境界に形成された界面合金層とを備え、
 前記めっき層の組成は、質量%でZn:20~83%、及びAl:2.5~46.5%を含有し、残部がMgおよび不純物からなり、かつMg含有量が10%以上であり、
 前記めっき層の組織は、準結晶相とMgZn相と残部組織とからなり、前記準結晶相の面積分率が30~60%であり、90個数%以上の前記準結晶相がその長軸方向の粒径を0.05~1.0μmとした準結晶相であり、
 前記めっき層の厚みは0.1μm以上であり、前記界面合金層の厚さは、500nm以下であるめっき鋼材。
[2] 前記残部組織の面積分率が40%以下である[1]に記載のめっき鋼材。
[3] 前記めっき層の厚みが0.1~10μmである[1]又は[2]に記載のめっき鋼材。
[4] 前記めっき層が蒸着めっき層である[1]~[3]のいずれか一項に記載のめっき鋼材。
[5] 前記界面合金層がAl-Fe合金層である[1]~[4]のいずれか一項に記載のめっき鋼材。
[6] 前記めっき層は、C、Ca、Si、Ti、Cr、Fe、Co、Ni、V、Nb、Cu、Sn、Mn、Sr、Sb、Pb、Y、Cd、及びLaの1種または2種以上の選択元素を含有し、かつ前記選択元素の合計含有量が質量%で0~0.5%である[1]~[5]のいずれか一項に記載のめっき鋼材。
 本開示の一態様によれば、めっき層中に準結晶相を有することで、従来のMg含有めっき鋼材より耐食性(特に加工後の耐食性)及びアルカリ耐食性に優れ、高硬度である微細な準結晶が均一にめっき層中に分布することで耐摩耗性に優れるめっき鋼材を提供できる。さらに、めっき層と鋼材の界面合金層が薄いため、加工後のめっき密着性に優れためっき鋼材を提供できる。
 また、本開示の一態様により鋼材に加工が施されたエンボス品等にも同機能を付与することが可能であり、部材の長寿命化を実現することで産業の発展に寄与することができる。
本開示の実施形態に係るめっき鋼材を示す側断面図。 温度と金属の蒸気圧の関係を示すグラフ。 準結晶相のTEM電子線回折像。
 本発明者らの研究により、高MgのZn-Mg-Al系に準結晶相を含有させためっき層が、高い耐食性を示すことを見出している。同時に、この準結晶相を含むZn-Mg-Al系めっき層を形成した鋼材は、極めて高い硬度を持ち、耐摩耗性に優れていることも見出している。
 ところが、前述の組成のめっき浴を安定化することにはやや難があり、当該組成域のめっき浴を用いて操業することは簡単ではない。
 よって、前述の組成のめっき浴を用いることなく前述の高Mg含有Zn-Mg-Al系めっきを鋼材に施すことについて研究を行った結果、本開示に到達した。
 以下、本開示の実施形態に係るめっき鋼材について説明する。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、成分(元素)の含有量を示す「%」は、「質量%」を意味する。
 実施形態に係るMg含有Zn合金めっき層を被覆しためっき鋼材1は、図1の断面構造(めっき層厚み方向に切断した断面構造)に示すように、鋼板、鋼管、土木建築材(ガードレール、止水壁、コルゲート管等)、家電部材(エアコンの室外機の筐体等)、自動車部品(足回り部材等)などの鋼材2と鋼材2の表面に蒸着により形成されためっき層(蒸着めっき層)3とからなる。また、鋼材2とめっき層3の界面には、薄い界面合金層(Fe-Al合金層)4が形成されている。
 めっきの下地となる鋼材2の材質に特に制限はない。鋼材2は、例えば、一般鋼、Niプレめっき鋼、Alキルド鋼、一部の高合金鋼を適用することが可能である。鋼材2の形状にも特に制限はなく、成型加工が施されていてもよい。
 鋼材2は、図1の平板状に限るものではなく、L字型に湾曲させた成型鋼材などを用いてもよい。また、プレス加工、ロールフォーミング、曲げ加工などの種々の塑性加工手法により目的の形状に加工した鋼材2に、めっき層3を形成しても差し支えない。
 以下、めっき層3と界面合金層4の組織、組成等について説明する。
 めっき層3と鋼材2の境界部分には、例えば、厚さ500nm以下の界面合金層4が形成されている。めっき層3は厚み0.1~10μmのZn-Mg-Al合金層から形成されている。界面合金層4はAl-Fe合金層で構成されている。なお、界面合金層4はめっき層3の製造条件によっては殆ど確認できない程度の薄い層となる場合がある。
 界面合金層4の厚みはめっき層3の蒸着条件に左右されるため、界面合金層4の厚みの下限については特に限定されるものではないが、例えば、めっき層3の密着性の観点から300nm以上が望ましい。界面合金層4の厚みが500nmを超えるようであると、めっき層3の密着性が低下し、鋼材2に塑性加工を行うと、鋼材2の表面からめっき層3が剥離し易くなる。
 めっき層3の厚みが0.1μm未満では十分な耐食性を得ることが難しい。また、10μm以上の厚みのめっき層3は作製可能であるものの、連続通板で生産を行う場合に生産性に劣ることがある。そのため、めっき層3の厚みは、0.1μm以上であり、0.1~10μmであることが好ましく、0.5~5μmがより好ましい。特に、めっき層3の厚みを0.5~5μmにすると、めっき後の耐食性とめっきの密着性が両立する。
 ここで、めっき層3及び界面合金層4の厚さは、次の通り測定する。SEM(走査型電子顕微鏡)により、めっき層3及び界面合金層4の断面観察(めっき層3及び界面合金層4の厚さ方向に切断された断面において、めっき層3及び界面合金層4と平行な方向に2.5mm長さ分に相当する領域の観察)を行う。この領域において、少なくとも三視野(倍率1万倍)に観察される各めっき層3及び各界面合金層4の任意の5箇所(少なくとも各計15箇所)の厚さの平均値を求める。この平均値をめっき層3及び界面合金層4の厚さとする。
 なお、断面観察のためのサンプル調整方法は公知の樹脂埋め込み又は断面研磨方法によって行えばよい。
 めっき層3は、その中に準結晶相が析出している。つまり、めっき層3中には、複数の複数の準結晶相を含む。そして、めっき層3中に析出している複数の準結晶相のうち、90個数%以上の準結晶相がその長軸方向の粒径を0.05~1.0μmとした準結晶相であることが望ましい。また、めっき層3の表面には極めて薄い酸化皮膜が形成されていてもよい。
 界面合金層4は、鋼材2の表面に形成されており、例えば、Fe濃度の範囲が10%以上90%以下となる層である。すなわち、界面合金層4中にはFeAl、FeAl、FeAl、FeAl、並びに、Fe及びAlの一部がZnに置換した金属間化合物等のいずれか一つ以上を含んでいる。
 なお、界面合金層4は、例えば、平均組成がFe:30~50%、Al:50~70%、Zn:2~10質量%、及び残部:不純物からなる。
 めっき層3中にAl、及びZnを多く含有することから、めっき層3中のAlが鋼材2のFeと反応して鋼材2の表面にAlFe相を形成する。また、めっき層3の成分のZnが必然的に取り込まれ、一部Znを取り込んだ形となり、AlFe相と性質を若干、異にする界面合金層4が生成する。
 AlFe相を主体とするAl-Fe合金からなる界面合金層4となるため、必然的に、例えば、合金層のFe濃度の平均値は30~50%となる。Al濃度の平均値は50~70%となる。
 蒸着法によりめっき層3を作製した場合、Zn-Mg-Al合金のめっき層3の成分組成について、ほぼ蒸着源金属の製膜速度により決定される成分組成比率がめっき層3でも保たれる。界面合金層4の生成によるZn-Mg-Al合金層のAl成分、Zn成分の減少は通常、僅かである。これは、界面合金層4の形成が極めて薄いためである。
 本発明者らが、蒸着めっき法によって準結晶相が得られる組成範囲を吟味した結果、以下の組成範囲で準結晶相がZn-Mg合金層内に必要な面積分率で含有されることを見出した。
 つまり、めっき層3の組成は、質量%でZn:20~83%、及びAl:2.5~46.5%を含有し、残部がMgおよび不純物からなり、かつMg含有量が10%以上である。
 めっき層3の組成について、望ましい範囲とその理由について説明する。
「Zn(亜鉛):20~83%」
 めっき層3の金属組織として準結晶相を得るためには、上記範囲のZnを含有することが必須である。このため、めっき層のZn含有量を20~83%とする。Zn含有量が20%未満の場合、めっき層3に準結晶相を生成することが難しくなる。また同様に、Zn含有量が83%超の場合、めっき層3に準結晶相を生成することが難しくなる。
 また、準結晶を好ましく生成させて耐食性をさらに向上させるためには、Zn含有量を60%以上(つまり60~83%)とすることがより好ましい。60%以上とすると、初晶として準結晶相が成長しやすい組成範囲となり、Mg相が初晶として成長しにくくなる。すなわち、めっき層3での準結晶相の相量(面積分率)を多くできるとともに、耐食性を劣化させるMg相を極力減らすことが可能である。
 「Al(アルミニウム):2.5~46.5%」
 Alは、めっき層3の平面部の耐食性を向上させる元素である。また、Alは、準結晶相の生成を促進する元素である。これらの効果を得るために、めっき層3のAl含有量を2.5%以上とする。準結晶相の平均円相当径を好ましい範囲に制御するためには、Al含有量を3%以上とすることが好ましく、5%以上とすることがより好ましい。
 一方、多量にAlが含有されると、アルカリ耐食性が低下し、更に準結晶相が生成しにくくなり耐食性が低下する。そのため、Al含有量を46.5%以下とし、好ましくは20%以下とする。
 よって、めっき層3のAl含有量は、2.5~46.5%とし、好ましくは3~20%とし、より好ましくは5~20%とする。
 「Mg(マグネシウム):残部」
 Mgは、ZnおよびAlと同様に、めっき層3を構成する主要な元素であり、さらに、犠牲防食性を向上させる元素である。また、Mgは、準結晶相の生成を促進させる重要な元素である。そのため、残部としてのMg含有量は、10%以上とし、10~43%の範囲が望ましく、15~35%の範囲がより好ましい。Mg含有量を10%以上にすると、安定的に準結晶相を形成するため、準結晶相の生成のみだけを目的とするのであれば熱処理を必要としない。なお、Mgの含有は必須であるが、含有されるMgが、めっき層3でMg相として析出することを抑制することが耐食性向上のために好ましい。
 また、めっき層3は、C、Ca、Si、Ti、Cr、Fe、Co、Ni、V、Nb、Cu、Sn、Mn、Sr、Sb、Pb、Y、Cd、及びLaの1種または2種以上の選択元素を含有してもよい。ただし、これらの選択元素の合計含有量は0~0.5%とする。
 これらの元素はめっき層3中に含有させることが可能であるが、上記合計含有量の範囲は、準結晶相の形成を阻害することなく、めっき層の性能を劣化させることなく添加できる組成範囲である。上記合計含有量の範囲を超えると、準結晶相は形成し難くなる。
 ここで、めっき層3の組成、並びに、めっき層3及び界面合金層4の厚さの測定方法は、次の通りである。
 まず、発煙硝酸により界面合金層4(Fe-Al層)を不動態化して上層のめっき層3のみを剥離して、その溶液をICP-AES(Inductively Coupled Plasma Atomic Emission Spectrometry)又はICP-MS(Inductively Coupled Plasma Mass Spectrometry)にて、めっき層3の組成を測定する。
 次に、めっき層の組織について説明する。
 めっき層3の組織は、準結晶相とMgZn相と残部組織とからなり、前記準結晶相の面積分率が30~60%であり、複数の準結晶相のうち、90個数%以上の準結晶相がその長軸方向の粒径を0.05~1.0μmとした準結晶相(以下、粒径0.05~1.0μmの準結晶相の粒径を「準結晶相の90%以上の粒径」とも称する。)である。
 めっき層3の組織において、硬質である準結晶相を面積分率で30%以上有することで、耐摩耗性が向上する。また、準結晶相を有することで耐食性にも効果がみられる。しかしながら、準結晶相は硬いため、準結晶相の面積分率が60%を超えると、加工時にクラックが発生し、加工後のめっき密着性を低下させる。そのため、準結晶相の面積分率は、30~60%であることが好ましく、より好ましくは35~50%であることがより好ましい。
 MgZn相も準結晶と同様に耐摩耗性、耐食性、アルカリ耐食性を向上させる。MgZn相も各性能を向上させるものの、その程度は準結晶相の方が効果は大きい。一方、加工後のめっき密着性に関しては準結晶相よりも低下の度合いが小さい。そのため加工後のめっき層3の密着性を担保しつつ、耐食性、アルカリ耐食性、及び耐摩耗性を高めることがよい。この観点から、準結晶相及びMgZn相の合計の面積分率は、60%≦準結晶相+MgZn相≦90%であることが好ましく、70%≦準結晶相+MgZn相≦85%であることがより好ましい。
 また、残部組織の面積分率は、40%以下であることが好ましく、30%以下であることがより好ましい。残部組織の面積分率を低減し、準結晶相及びMgZn相の面積分率めっき相の合計の面積分率を増加させることで、加工後のめっき層3の密着性を担保しつつ耐食性、アルカリ耐食性、耐摩耗性を高められるためである。ただし、残部組織の面積分率は、0%であってもいが、加工後のめっき密着性の点から10%以上とすることがよい。
 ここで、めっき層3において、準結晶相は、準結晶相に含まれるMg含有量、Zn含有量、およびAl含有量が、原子%で、0.5≦Mg/(Zn+Al)≦0.83を満足する準結晶相として定義される。すなわち、Mg原子と、Zn原子及びAl原子の合計との比であるMg:(Zn+Al)が、3:6~5:6となる準結晶相として定義される。理論比としては、Mg:(Zn+Al)が4:6であると考えられる。
 準結晶相の化学成分は、TEM-EDX(Transmission Electron Microscope―EnergyDispersive X-ray Spectroscopy)による定量分析や、EPMA(Electron Probe Micro-Analyzer)マッピングによる定量分析で算出することが好ましい。なお、準結晶を金属間化合物のように正確な化学式で定義することは容易でない。準結晶相は、結晶の単位格子のように繰り返しの格子単位を定義することができず、さらには、Zn、Mgの原子位置を特定するのも困難なためである。
 また、めっき層3は、準結晶相以外にMgZn相及び残部組織が含むが、残部組織は、準結晶相及びMgZn相以外の組織であって、Mg51Zn20相、Mg32(Zn、Al)49相、MgZn相、MgZn相、Zn相、Al相が含まれる。
 準結晶相は、1982年にダニエル・シュヒトマン氏によって初めて発見された結晶構造であり、正20面体(icosahedron)の原子配列を有している。この結晶構造は、通常の金属、合金では得られない特異な回転対称性、例えば5回対称性を有する非周期的な結晶構造で、3次元ペンローズパターンに代表される非周期的な構造と等価な結晶構造として知られている。この金属物質を同定するためには、通常、TEM観察による電子線観察によって、相から、正20面体構造に起因する放射状の正10角形の電子線回折像を得ることで確認される。例えば、後述する図3に示す電子線回折像は、準結晶からのみ得られ、他のいかなる結晶構造からも得ることがない。
 また、めっき層3の組成で得られる準結晶相は、簡易的には、Mg32(Zn、Al)49相としてX線回折により、JCPDSカード:PDF#00-019-0029、又は、#00-039-0951で同定できる回折ピークを示す。
 準結晶相は、極めて耐食性に優れる物質で、めっき層3(Zn-Mg-Al層)中に含有されると耐食性が向上する。特に面積分率で5%以上、蒸着めっき層中に含有されると腐食初期段階において白錆発生が抑制される傾向にある。より高い面積分率でたとえば、30%以上含有されるとその効果を増す。すなわちめっき層3(Zn-Mg-Al層)の表面上に形成した準結晶相が腐食因子に対して高いバリア効果を有している。
 次に、めっき層3の準結晶相、MgZn相、及び残部組織の面積分率の測定方法について説明する。
 めっき層3の任意の断面(めっき層厚み方向に切断した断面)の少なくとも3視野以上(めっき層3と平行な方向に500μm長さ分に相当する領域を倍率5千倍で少なくとも3視野以上)をSEM-反射電子像で撮影する。別途TEM観察によって得られた実験結果から、SEM-反射電子像における準結晶相、MgZn相、及び残部組織を特定する。所定の視野において、成分マッピング像を把握し、めっき層3中における準結晶相、MgZn相、及び残部組織と同じ成分組成場所を特定し、画像処理によって、めっき層3における準結晶相、MgZn相、及び残部組織を特定する。画像解析装置によって、準結晶相、MgZn相、及び残部組織の各領域を範囲選択された画像を用意し、めっき層3中に占める準結晶相、MgZn相、及び残部組織の割合を測定する。同様に処理した3視野からの平均値を、めっき層3における準結晶相、MgZn相、及び残部組織の面積分率とする。
 めっき層3の各相の同定は、めっき層3の断面(めっき層厚み方向に切断した断面)をFIB(集束イオンビーム)加工を施した後、TEM(透過型電子顕微鏡)の電子回折像により行う。
 また、腐食促進試験等で準結晶相が腐食すると、バリア効果の高い腐食生成物が形成し、地鉄を長期にわたり防食する。バリア効果の高い腐食生成物は、準結晶相中に含まれるZn-Mg-Al成分比率が関係している。めっき層3(Zn-Mg-Al合金層)の成分組成において、Zn>Mg+Al(式中、元素記号は元素の含有量(質量%)を示す)が成立している場合、腐食生成物のバリア効果が高い。一般的に耐食性においては、準結晶相の面積分率が高い方が好ましい。準結晶相の面積分率で80%以上であるとその効果が特に大きい。これらの効果は、塩水噴霧サイクル(SST)を含む複合サイクル腐食試験で、その効果が大きく現れる。
 MgZn相及びMgZn相は、準結晶相と比較すると含有による耐食性向上効果は小さいが、一定の耐食性を有し、かつ、Mgを多く含有することから、アルカリ耐食性に優れる。これら単独の金属間化合物でもめっき層3中に含有されることでアルカリ耐食性が得られるが、準結晶相と併存すると準結晶相の高アルカリ環境(pH13~14)でのめっき層3の表層の酸化皮膜が安定化し、特に高い耐食性を示すようになる。このためには、準結晶相はめっき層3に面積分率で30%以上含有されることが好ましい。
 一方、めっき層3の組織において、準結晶相の90個数%以上の粒径が1.0μmよりも大きくなると加工により粒界から亀裂が伝搬し、加工後のめっき層3の密着性が低下する。つまり、複数の準結晶相の90%以上の粒径が1.0μm以下になると、加工後のめっき層3の密着性が向上し、また、粒が細かく分散していることで耐摩耗性も向上する。準結晶相の90個数%以上の粒径が0.05μm未満になると耐摩耗性が十分に発揮されない。そのため、準結晶相の90%個数以上の粒径は0.1~0.5μmであることが好ましく、0.1~0.3μmであることがより好ましい。
 また、粒径0.05~1.0μmの準結晶相の割合は、90個数%以上であることが好ましく、95個数%以上であることがより好ましい。
 準結晶相の粒径(準結晶相の長軸方向の粒径)、粒径0.05~1.0μmの準結晶相の割合は、次に示す方法により測定する。
 めっき層3の任意の断面(めっき層厚み方向に切断した断面)の少なくとも3視野(めっき層3と平行な方向に500μm長さ分に相当する領域を倍率5千倍で少なくとも3視野以上)以上を上記準結晶相の面積分率の測定方法と同様な手法で撮影し、めっき層3における準結晶相の粒子数を数える。また、準結晶相の長軸方向の長さ(つまり準結晶相の径が最長となる直線の長さ)を粒径として測定する。そして、数えた準結晶相の全粒子数に対する、粒径0.05~1.0μmの準結晶相の割合を算出する。
 次に、本実施形態のめっき鋼材の製造方法について詳細に説明する。
 鋼材2はめっき層3を蒸着する前に望ましくは表面清浄(塩酸酸洗、水洗、乾燥)に供される。鋼材2の表層に生成する強固な酸化被膜は、例えば、10%塩酸に10分以上浸漬することで剥離する。酸洗後、水洗し、ドライヤーや乾燥炉を使用して表面の水分を取り除く。
 鋼材2の表面にめっき層3を形成するには、一例として真空チャンバーを用いた蒸着法を用いる。なお、以下の説明では閉鎖系でめっき層3を形成する場合について説明するが、連続通板する系でも同様の結果が得られる。
 真空蒸着は、通常10-2~10-5Paの圧力下で行われ、このときの平均自由工程は数十cm~数十mである。したがって、蒸着金属源から気化した材料はほとんど衝突することなく鋼材2の表面へ到達する。また、蒸発粒子のエネルギーは非常に小さいため、鋼材2の表面にほとんどダメージを与えない。その半面、めっき層3がポーラスになりやすく、密度が低く、強度が不足する傾向がある。これは蒸発粒子のエネルギーが小さいために鋼材表面に到達した位置から粒子が移動できないことによる。
 そのため、蒸着による成膜(めっき)では蒸着粒子の鋼材2への入射頻度を、チャンバー内の残留気体の基板への入射頻度より十分大きくしなければ、めっき層3中に残留気体が取り込まれてしまう。残留気体の最も多い成分はHOである。めっき層3にHOが取り込まれると、めっき層3に空隙ができることになり、ポーラスで脆いめっき層となる。
 これを改善するためには鋼材2を加熱して蒸着めっきするのが有効である。鋼材2の温度が高ければ、残留気体の鋼材2への付着確率が減り、めっき層3中に取り込まれる量が減少する。また、鋼材2に吸着した蒸着金属が熱エネルギーで動きやすくなり、不安定な場所に付着したものが安定な場所へ移動できるようになり、めっき層3の密度も高まる。
 準結晶相とZnMg相をめっき層3が有し、なおかつめっき層3の加工後密着性を確保するためには、蒸着中に鋼材を加熱した方が望ましい。鋼材2の温度は50~400℃が望ましい。50℃よりも低い温度では鋼材2の表面に蒸着した金属原子が十分結晶相を形成できずに空隙の多いめっき層3となり、耐食性が十分に得られない。鋼材2の温度を400℃以上に設定し、長時間かけて蒸着めっきをした場合、界面合金層4が厚く成長してしまい、めっき層3の加工後密着性低下の要因となる。このため、望ましくは150~350℃、さらに望ましくは200~300℃に、鋼材2の表面を加熱しながら蒸着(成膜)することが望ましい。
 めっき層3を蒸着する場合の蒸着レートは以下の内容により決定される。
「1」蒸着金属源の温度とそのときの金属源の蒸気圧により決定される。
「2」蒸着金属源の表面積、容量により決定される。
「3」蒸着金属源から鋼材2までの距離、チャンバー内の大きさにより決定される。
 また、めっき層3を蒸着する方法における加熱方法は以下に例示する方法のいずれかを選択できる。
(1)抵抗加熱。(2)電子線加熱。(3)高周波誘導加熱。(4)レーザー加熱。
 蒸着させる金属の特性によって蒸着方法を使い分けることが好ましい。
 抵抗加熱では高融点金属や各種発熱体材料の両端に電圧を加えて電気を流しジュール熱を発生させる。この抵抗加熱させている試料台の上に蒸着金属源を設置して溶解させることができる。
 電線加熱ではタングステンなどのフィラメントを抵抗加熱することにより発生する熱電子を高電圧で加速して、金属蒸着源に照射する。電子の運動エネルギーが衝突し熱に変換されることで、金属蒸着源を溶解することができる。
 高周波誘導加熱では高周波誘導による渦電流損とヒステリシス損によって材料を加熱蒸発する方法である。材料を入れたるつぼを囲むように設置したコイルに高周波電力を投入して加熱し、金属蒸着を溶解させることができる。
 レーザー加熱では高出力レーザーを加熱蒸発に用いる。レーザー光は一般的に窓から真空容器に導入し、レンズ、凹鏡面などで集光して蒸着金属源を加熱し、溶解することができる。
 [めっき層の形成]
 チャンバーの真空引きが完了したら、蒸着金属源の上面に蓋をした状態で融点付近まで蒸着金属を加熱する。このとき蒸着金属を加熱しすぎると溶融金属の表面がゆらぎ均一な蒸着めっきができない。また、加熱温度が低すぎると十分に金属が気化しない。蒸着量は加熱温度における蒸気圧でおおよそ決まるため、温度と蒸気圧と、そのときのチャンバー内の真空度から決定する。
 図2は各種金属の温度(K)と蒸気圧(Pa)の関係を示すグラフであり、図2に示す関係から蒸着源としてのAl、Mg、Znを個々に用いた場合の温度と蒸気圧の関係を把握して各蒸着源の加熱温度を決定すればよい。
 蒸着金属の加熱が完了したら蒸着金属源上の蓋を外してめっきを開始する。めっきをするチャンバーが小さく金属蒸着源と鋼材2までの距離が短い場合は、鋼材2あるいは蒸着金属源を回転させて均一に各元素をめっきできるようにすることが望ましい。
 蒸発した金属元素は鋼材2の表面に飛来して皮膜として生成し、鋼材2の温度に応じて結晶粒径や鋼材2との界面合金層4の厚みが変化する。
 蒸着源から蒸発した金属は鋼材2の表面にほぼ急冷状態のまま被着する。鋼材2の温度によって吸着した金属の移動度が変化するので、それにより各結晶粒径が変化する。
 鋼材2上にめっきさせる金属は、Zn:20~83%、及びAl:2.5~46.5%を含有し、残部がMgおよび不純物からなり、かつMg含有量が10%以上であるめっき層3の組成となるように、各蒸着金属の保持温度と蒸着チャンバー内の圧力を調整する。
 めっき後、N等の不活性ガスを用いてチャンバー内の真空度を大気に近づけて鋼材2を取り出す。
 
 以上説明した組成、及び組織を有するめっき層3を被覆しためっき鋼材1は、塩水に対する耐食性、アルカリ耐食性に優れ、加工後密着性に優れ、耐摩耗性にも優れた特徴を有する。
 また、本開示は、めっき鋼材の作製において、めっき層を形成後に後処理を実施してもよい。
 後処理としては、めっき鋼板の表面を処理する各種の処理が挙げられ、上層めっきを施す処理、ク口メー卜処理、非クロメート処理、りん酸塩処理、潤滑性向上処理、溶接性向上処理等がある。また、めっき後の後処理としては、樹脂系塗料(例えば、ポリエステル樹脂系、アクリル樹脂系、フッ素樹脂系、塩化ビニル樹脂系、ウレタン樹脂系、エポキシ樹脂系等)を、ロール塗装、スプレー塗装、カーテンフロー塗装、ディップ塗装、フィルムラミネート法(例えば、アクリル樹脂フィルム等の樹脂フィルムを積層する際のフィルムラミネート法)等の方法により塗工して、塗料膜を形成する処理もある。
 次に本開示を実施例に基づいて更に説明する。
 まず、めっき層の蒸着に際して、チャンバー内に設けた蒸着金属(Al,Mg,Zn)を電子線によって個別にそれぞれ加熱した。これら元素の合金を加熱して蒸着させることも可能であるが、これらの金属は個々の融点及び蒸気圧が異なることから、合金を用いて蒸着を行うとめっき層の深さ方向に対する組成分布の制御が困難となるため、元素毎の個別蒸着源を用いた。なお、蒸着条件は次の通りとした。
・装置容量(チャンバー内容量):0.6m3、
・蒸着金属源から鋼板(基板)までの距離:0.6m、
・蒸着中の真空度:5.0E-3~2.0E-5Pa、
・蒸着金属源用るつぼの容量:40ml、内径:30φ、
・蒸着方法:電子線、
・電子線照射条件:電圧10V(固定)、電流0.7~1.5A、
・鋼板温度:50~600℃、
・鋼板回転速度:15rpm。
 ここで、蒸着金属(Al,Mg,Zn)を電子線照射により加熱して蒸着するとき、各金属に対する電子線照射の電流を上記範囲(0.7~1.5Aの範囲)で制御する。この電流制御によって金属の温度が変化し、鋼板上に形成するめっき層の組成を変化させることができる。蒸着金属源の温度は熱電対により測定する。
 例えば、No.14の試験片の場合、鋼板の平均温度を423.15K(150℃)まで昇温した状態で、各蒸着金属源の温度平均を、Mg:640K、Al:1280K、Zn:585Kとし、チャンバー内の平均真空度を7×10-4Paとし、蒸着時間を6minとした。
 そして、No.14の試験片のめっき層の組成と、図2に示す温度と金属の蒸気圧の関係とを目安として、目的とするめっき層の組成となるように、各金属の温度を変化させた。また、蒸着時間を制御して所望のめっき層の膜厚とした。
 なお、めっき層の組織は、めっき層の組成と鋼板の平均温度によって制御した。
 以上説明した蒸着条件を制御して、表1に示す準結晶相の粒径、界面合金層の厚さ、組成を有する各めっき層で表面を被覆した鋼板試験片(サイズ:縦200mm、横200mm、厚み0.8mm)を製造し、得られた各試験片の耐食性評価、加工後耐食性評価、アルカリ耐食性評価、加工後めっき密着性の評価(曲げ試験)、耐摩耗性評価を行った。それらの結果を以下の表1、表2に併記した。準結晶相の粒径はその長軸方向の粒径を測定した。
<各相の面積分率>
 準結晶相、MgZn相、残部組織の面積分率を既述の方法に従って測定した。
<準結晶相の長軸方向の粒径>
 準結晶相の長軸方向の粒径を既述の方法に従って測定した。
 表1において、「粒径(長軸方向の長さ)が0.05~1μmの準結晶相の粒子数」/「全準結晶相の粒子数」≧0.9となる場合、表1に準結晶相の平均粒径(平均長軸方向の長さ)を記載し、「粒径(長軸方向の長さ)が0.05~1μmの準結晶相の粒子数」/「全準結晶相の粒子数」<0.9となる場合、表1に「NG」を表記し、準結晶相の平均粒径(平均長軸方向の長さ)をかっこ内に記載した。
 なお、「NG」の試験片の中にはめっき層の全面が準結晶相になっているものがあり、準結晶相の粒径を測定できなかったものについては「-」と記載した。
 <耐摩耗性評価>
 蒸着めっき層の耐摩耗性は、HEIDON社製、直線摺動試験機を使用して測定した。接触部分は鋼球(20R:材質SKD11)とし、荷重500g、摺動距離40mm、速度1200mm/minとした。10往復後、試験片(めっき鋼板)の表面を目視により観察し、評価した。試験後めっき層の表面にあきらかな傷や欠けがみられた場合は「D」と評価し、試験後にめっき表面の非試験部が試験部に比べて明瞭に色みが変化したものは「C」と評価し、試験後にめっき表面の非試験部が、試験部に比べてわずかに色みが変化したものは「B」と評価し、試験前と外観がほとんど変化しなかったものを「A」と評価した。それらの結果を表1、表2に併記した。
 ただし、「C」の評価については、「C-」、「C」及び「C+」の3段階で評価し、「C-」、「C」及び「C+」の順番で、色みの変化の度合いが小さかったことを示している。
<耐食性評価>
 蒸着めっき層の耐食性は、JASO M-609-91に準拠した複合サイクル腐食試験(CCT)によって評価した。5サイクルでの試験片(めっき鋼板)のめっき層から赤錆が60%以上発生した試料を「D」、50%以上60%未満赤錆が発生した試料を「C-」と評価した。40%以上50%未満赤錆が発生した試料を「C」と評価した。30%以上40%未満赤錆が発生した試料を「C+」と評価した。10%超え30%未満赤錆が発生した試料を「B」、赤錆発生量が10%以下の試料を「A」と評価した。それらの結果を表1、表2に併記した。
<加工後耐食性評価>
 蒸着めっき層の加工後耐食性は、上記耐食性評価を実施する前に、2R、60°V曲げ加工を試験片(めっき鋼板)に施した後に、試験片の端面および裏面をテープで被覆した以外は、上記耐食性評価と同様にして評価した。
 そして、10サイクルでの試験片(めっき鋼板)のめっき層から赤錆が80%以上発生した試料を「D」と評価した。700%以上80%未満赤錆が発生した試料を「C-」と評価した。60%以上70%未満赤錆が発生した試料を「C」と評価した。50%以上60%未満赤錆が発生した試料を「C+」と評価した。30%超え50%未満赤錆が発生した試料を「B」と評価した。赤錆発生量が30%以下の試料を「A」と評価した。それらの結果を表1、表2に併記した。
<アルカリ耐食性評価>
 蒸着めっき層のアルカリ耐食性は、pHバッファ装置で管理された苛性ソーダ水中にめっき鋼板を浸漬し、所定時間経過後の腐食減量を評価した。0.5%NaCl水溶液(2リットル)中(pH13)に、長さ3cm撹拌子を100rpmで回転させた水中で端面シールされた試験片(めっき鋼板)を6時間浸漬し、試験片(めっき鋼板)の重量減を測定した。
 腐食減量が10g/m以上あるいはめっき層が溶解して鋼板が露出した試料の評価は「D」とした。腐食減量が8.5g/m以上10g/m未満の試料の評価は「C-」とした。腐食減量が7.5g/m以上8.5g/m未満の試料の評価は「C」とした。腐食減量が6g/m以上7.5g/m未満の試料の評価は「C+」とした。腐食減量が6g/m未満の試料の評価は「B」とした。腐食減量が3g/m未満の試料の評価は「A」とした。表1、表2にそれぞれの評価を記載した。
 <加工後めっき密着性の評価(曲げ試験)>
 試験片(めっき鋼板)の加工性を評価するために、JIS H 8504 めっきの密着性試験法のうち(j)曲げ試験法を行った。その後さらに(g)引きはがし試験方法のうち(1)テープ試験方法をJIS Z 1522 粘着テープを用いて行い、試験片(めっき鋼板)のめっき密着性を評価した。
 試験片(めっき鋼板)を曲げた段階でめっき層が剥離した試料の場合は評価を「D」と判断した。試料の曲げ部にテープを貼り、剥がした際に一部めっきが付着した場合は評価を「C」と判断した。テープでめっきが剥離せず、曲げ戻した場合にめっきが一部剥離した場合は評価を「B」と判断した。テープでめっきが剥離せず、曲げ戻した場合にもめっきが剥離しない場合は評価を「A」と判断した。そして、それらの各評価を表1、表2に記載した。
 ただし、「C」の評価については、「C-」、「C」及び「C+」の3段階で評価し、「C-」、「C」及び「C+」の順番で、めっきの付着の度合いが小さかったことを示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示す結果から、No.14、21、22、25,26、30、32、33、37~38の試料は、耐食性、加工後耐食性、アルカリ耐食性、加工後めっき密着性、耐摩耗性に優れていることがわかる。
 また、基板の温度が高いと界面合金層が成長し、加工後めっき密着性が低下する傾向があり、温度が高いことで結晶粒も成長するため結晶粒径も大きくなる傾向がある。
 図3は表1のNo.34の試験片の断面TEM観察により、準結晶相の部分を同定し、その部分の電子線回折像を示す。図3に示すように、正20面体構造に起因する放射状の正10角形の電子線回折像を得ることができたので、この試料には準結晶相が析出していることを確認できた。
 本開示の上記態様によれば、建材、自動車、家電分野等で使用する際、飛躍的に耐食性(特に加工後の耐食性)、アルカリ耐食性、耐摩耗性が向上しためっき鋼材を提供することができる。そのため、従来の表面処理鋼材よりも部材の長寿命化を実現することができる。
 なお、日本国特許出願第2015-191856号の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (6)

  1.  鋼材と、前記鋼材の表面に被覆されためっき層と、前記鋼材及び前記めっき層の境界に形成された界面合金層とを備え、
     前記めっき層の組成は、質量%でZn:20~83%、及びAl:2.5~46.5%を含有し、残部がMgおよび不純物からなり、かつMg含有量が10%以上であり、
     前記めっき層の組織は、準結晶相とMgZn相と残部組織とからなり、前記準結晶相の面積分率が30~60%であり、90個数%以上の前記準結晶相がその長軸方向の粒径を0.05~1.0μmとした準結晶相であり、
     前記めっき層の厚みは0.1μm以上であり、前記界面合金層の厚さは500nm以下であるめっき鋼材。
  2.  前記残部組織の面積分率が40%以下である請求項1に記載のめっき鋼材。
  3.  前記めっき層の厚みが0.1~10μmである請求項1又は請求項2に記載のめっき鋼材。
  4.  前記めっき層が蒸着めっき層である請求項1~請求項3のいずれか一項に記載のめっき鋼材。
  5.  前記界面合金層がAl-Fe合金層である請求項1~請求項4のいずれか一項に記載のめっき鋼材。
  6.  前記めっき層は、C、Ca、Si、Ti、Cr、Fe、Co、Ni、V、Nb、Cu、Sn、Mn、Sr、Sb、Pb、Y、Cd、及びLaの1種または2種以上の選択元素を含有し、かつ前記選択元素の合計含有量が質量%で0~0.5%である請求項1~請求項5のいずれか一項に記載のめっき鋼材。
PCT/JP2016/078935 2015-09-29 2016-09-29 めっき鋼材 WO2017057639A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/752,734 US10563296B2 (en) 2015-09-29 2016-09-29 Coated steel
CN201680056510.8A CN108138308B (zh) 2015-09-29 2016-09-29 镀覆钢材
JP2017511362A JP6179693B1 (ja) 2015-09-29 2016-09-29 めっき鋼材
KR1020187004413A KR102058889B1 (ko) 2015-09-29 2016-09-29 도금 강재

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-191856 2015-09-29
JP2015191856 2015-09-29

Publications (1)

Publication Number Publication Date
WO2017057639A1 true WO2017057639A1 (ja) 2017-04-06

Family

ID=58423752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078935 WO2017057639A1 (ja) 2015-09-29 2016-09-29 めっき鋼材

Country Status (5)

Country Link
US (1) US10563296B2 (ja)
JP (1) JP6179693B1 (ja)
KR (1) KR102058889B1 (ja)
CN (1) CN108138308B (ja)
WO (1) WO2017057639A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022501508A (ja) * 2018-09-27 2022-01-06 ポスコPosco 溶接液化脆性に対する抵抗性及びめっき密着性に優れた高耐食めっき鋼板
US11414743B2 (en) * 2017-12-26 2022-08-16 Posco Multilayered zinc alloy plated steel material having excellent spot weldability and corrosion resistance

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101940885B1 (ko) * 2016-12-26 2019-01-21 주식회사 포스코 점용접성 및 내식성이 우수한 단층 아연합금도금강재 및 그 제조방법
TWI686510B (zh) * 2018-05-16 2020-03-01 日商日本製鐵股份有限公司 鍍敷鋼板
KR102153172B1 (ko) * 2018-08-30 2020-09-07 주식회사 포스코 열간 성형성 및 내식성이 우수한 알루미늄-아연 합금 도금강판 및 그 제조방법
EP3950971B1 (en) * 2019-03-29 2023-11-22 JFE Steel Corporation Grain-oriented electrical steel sheet and production method therefor
CN110004390B (zh) * 2019-05-28 2021-12-07 无锡市华锋车业部件有限公司 一种锌铝镁合金镀层及其在操纵用钢丝绳上的应用
WO2021060879A1 (ko) * 2019-09-24 2021-04-01 주식회사 포스코 내식성, 내골링성, 가공성 및 표면 품질이 우수한 도금 강판 및 이의 제조방법
KR20210070681A (ko) * 2019-12-05 2021-06-15 주식회사 포스코 알루미늄계 합금 도금강판 및 그 제조방법
JP7247946B2 (ja) * 2020-04-24 2023-03-29 Jfeスチール株式会社 溶融亜鉛めっき鋼板及びその製造方法
EP4170056A1 (en) * 2020-06-19 2023-04-26 POSCO Co., Ltd Plated steel sheet having excellent corrosion resistance, workability and surface quality and method for manufacturing same
CN113025938B (zh) * 2021-02-07 2023-01-31 首钢集团有限公司 一种具有优异膜下耐蚀性的镀锌钢板及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255464A (ja) * 2007-03-15 2008-10-23 Nippon Steel Corp 溶融Mg−Zn系合金めっき鋼材
JP2011190507A (ja) * 2010-03-15 2011-09-29 Nippon Steel Corp 加工部耐食性に優れたMg系合金めっき鋼材
JP2012528247A (ja) * 2009-05-25 2012-11-12 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト 平鋼製品の製造方法および平鋼製品

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421064A (en) 1987-07-16 1989-01-24 Kobe Steel Ltd Zinc alloy plated metallic material having superior corrosion resistance and workability
JPS6421066A (en) 1987-07-16 1989-01-24 Kobe Steel Ltd Zinc alloy plated metallic material having superior corrosion resistance
JPH07268604A (ja) 1994-03-29 1995-10-17 Nisshin Steel Co Ltd Zn−Mg系蒸着めっき鋼板の製造方法
AU2007228054B2 (en) 2006-03-20 2011-03-10 Nippon Steel Corporation Highly corrosion-resistant hot dip galvanized steel stock
CN102888555B (zh) 2008-06-13 2014-09-17 株式会社神户制钢所 异种材料接合用钢材、异种材料接合体及异种材料接合方法
KR20120075235A (ko) 2010-12-28 2012-07-06 주식회사 포스코 고내식 용융아연합금 도금강판과 그 제조방법
AU2014388691B2 (en) * 2014-03-28 2017-08-03 Nippon Steel Corporation Plated steel sheet containing quasicrystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255464A (ja) * 2007-03-15 2008-10-23 Nippon Steel Corp 溶融Mg−Zn系合金めっき鋼材
JP2012528247A (ja) * 2009-05-25 2012-11-12 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト 平鋼製品の製造方法および平鋼製品
JP2011190507A (ja) * 2010-03-15 2011-09-29 Nippon Steel Corp 加工部耐食性に優れたMg系合金めっき鋼材

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11414743B2 (en) * 2017-12-26 2022-08-16 Posco Multilayered zinc alloy plated steel material having excellent spot weldability and corrosion resistance
JP2022501508A (ja) * 2018-09-27 2022-01-06 ポスコPosco 溶接液化脆性に対する抵抗性及びめっき密着性に優れた高耐食めっき鋼板
JP7187686B2 (ja) 2018-09-27 2022-12-12 ポスコ 溶接液化脆性に対する抵抗性及びめっき密着性に優れた高耐食めっき鋼板

Also Published As

Publication number Publication date
CN108138308A (zh) 2018-06-08
JPWO2017057639A1 (ja) 2017-10-05
US20180237900A1 (en) 2018-08-23
CN108138308B (zh) 2020-01-17
US10563296B2 (en) 2020-02-18
KR102058889B1 (ko) 2019-12-26
JP6179693B1 (ja) 2017-08-16
KR20180030649A (ko) 2018-03-23

Similar Documents

Publication Publication Date Title
JP6179693B1 (ja) めっき鋼材
JP6346972B6 (ja) Zn−Mg合金めっき鋼板及びその製造方法
US10662516B2 (en) Hot-dip Al—Zn—Mg—Si coated steel sheet and method of producing same
JP5785336B1 (ja) 準結晶含有めっき鋼板
JP5785335B1 (ja) 準結晶含有めっき鋼板
CA2911442C (en) Galvannealed steel sheet and manufacturing method thereof
JP2017066523A (ja) Al−Mg系溶融めっき鋼材
JP6505126B2 (ja) 複数層基板および製造方法
CN116324004B (zh) 镀覆钢材
JP6164391B1 (ja) Mg含有Zn合金被覆鋼材
Chung et al. Effects of heat treatment on microstructure evolution and corrosion performance of mechanically plated zinc coatings
JP6744413B2 (ja) 合金コーティング鋼板およびその製造方法
WO2016140286A1 (ja) 準結晶含有めっき鋼板及び準結晶含有めっき鋼板の製造方法
JP6955036B2 (ja) 合金コーティング鋼板およびその製造方法
JP6569437B2 (ja) 加工性と耐食性に優れるMg含有合金めっき鋼材
JP2002180223A (ja) 溶融亜鉛系めっき鋼材およびその製造方法
JP2003183800A (ja) 耐黒変性および耐食性に優れた溶融亜鉛系めっき鋼板およびその製造方法
JP2021195563A (ja) 溶融Zn−Al−Mg系めっき鋼材
TWI512140B (zh) 含準晶體之鍍敷鋼板
TW202142713A (zh) 熔融Al系鍍覆鋼板及熔融Al系鍍覆鋼板的製造方法
JP2002180228A (ja) 溶融Al−Zn系合金めっき鋼材およびその製造方法
JP2003064465A (ja) プレス成形性及び表面光沢に優れたチタン板
JPH06248431A (ja) 加工性および耐赤錆性に優れたAl−Cr合金蒸着めっき金属材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017511362

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851810

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187004413

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15752734

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851810

Country of ref document: EP

Kind code of ref document: A1