WO2017057459A1 - ひずみゲージ、荷重センサ、及びひずみゲージの製造方法 - Google Patents

ひずみゲージ、荷重センサ、及びひずみゲージの製造方法 Download PDF

Info

Publication number
WO2017057459A1
WO2017057459A1 PCT/JP2016/078622 JP2016078622W WO2017057459A1 WO 2017057459 A1 WO2017057459 A1 WO 2017057459A1 JP 2016078622 W JP2016078622 W JP 2016078622W WO 2017057459 A1 WO2017057459 A1 WO 2017057459A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain gauge
strain
thermoplastic polyimide
resin
layer
Prior art date
Application number
PCT/JP2016/078622
Other languages
English (en)
French (fr)
Inventor
道伯 稲森
陽介 江原
忠彦 唐木
Original Assignee
ミネベア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016169658A external-priority patent/JP2017067764A/ja
Application filed by ミネベア株式会社 filed Critical ミネベア株式会社
Priority to CN201680056644.XA priority Critical patent/CN108139196A/zh
Priority to EP16851630.0A priority patent/EP3358292B1/en
Publication of WO2017057459A1 publication Critical patent/WO2017057459A1/ja
Priority to US15/938,161 priority patent/US11131590B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges

Definitions

  • the present invention relates to a strain gauge including a thermoplastic polyimide (TPI) layer as a fusion layer, a load sensor including the strain gauge, and a method for manufacturing the strain gauge.
  • TPI thermoplastic polyimide
  • the load sensor used for measuring the weight of an object mainly includes a strain body and a strain gauge.
  • the strain generating body is generally made of a metal such as an aluminum alloy, and deforms according to the weight of the measurement target (generates strain).
  • a strain gauge generally has a plate-like base material having insulation properties and a resistor provided on one surface of the base material, and the other surface of the base material is fixed to the surface of the strain generating body by an adhesive. Yes.
  • deformation strain
  • the strain gauge resistor expands and contracts accordingly, and the electrical resistance value of the resistor changes.
  • the weight of the object to be measured is obtained based on the change in the electric resistance value of the resistor.
  • An example of a strain sensor is disclosed in Patent Document 1.
  • a strain gauge is bonded to the strain generating body using a thermosetting adhesive.
  • the adhesive is applied to the strain gauge, and the strain gauge to which the adhesive is applied is held in contact with the strain generating body and held together with a jig to contact the strain gauge and the strain generating body. Is held under pressure.
  • the strain gauge and the strain generating body held together are put into a furnace and heated to cure the adhesive. After the heating, the strain gauge and the strain generating body are removed from the furnace, the jig is removed, and finally the excess adhesive is removed from the contact surface between the strain gauge and the strain generating body.
  • the present invention solves the above-described problems, makes the strain gauge as thin as possible, and can manufacture a load sensor with a simpler process, a load sensor including the strain gauge, and manufacture of the strain gauge It aims to provide a method.
  • the strain gauge of the first aspect may further include a protective cover that covers the resistor.
  • the thickness of the fusion layer may be 3 ⁇ m to 12 ⁇ m, and the resin material may be polyimide.
  • the thermoplastic polyimide layer may contain a resin and / or filler other than the thermoplastic polyimide.
  • the resin other than the thermoplastic polyimide may be an epoxy resin or a phenol resin.
  • the resin other than the thermoplastic polyimide may be an engineering plastic.
  • the filler may be inorganic fine particles.
  • a strain body There is provided a load sensor comprising the strain gauge of the first aspect attached to the strain body.
  • the strain gauge may be attached to the strain-generating body via the fusion layer, and a portion of the surface of the strain-generation body in contact with the fusion layer. May be roughened.
  • the surface roughness of the portion subjected to the rough surface treatment may be 3 to 7 ⁇ m.
  • the thickness of the fusion layer may be not less than the surface roughness of the portion subjected to the roughening treatment and not more than 12 ⁇ m.
  • a method for producing a strain gauge comprising: cutting the base material to obtain a plurality of strain gauges having a resistor on one surface of the cut base material and the fusion layer on the other surface.
  • forming the fusion layer includes applying a thermoplastic polyamic acid varnish blended with an epoxy resin onto the other surface of the base material, and baking it. Good.
  • the strain gauge of the present invention is thin and can manufacture a load sensor by a simpler process.
  • FIG. 1 is a perspective view of a strain gauge according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the relationship between the thickness of the fused layer and various characteristics of the strain gauge.
  • FIG. 3 is a flowchart showing the manufacturing process of the strain gauge.
  • FIG. 4 is a flowchart showing a process of manufacturing a load sensor by attaching a strain gauge to a strain generating body.
  • 5 (a) to 5 (d) are explanatory views showing a state in which the strain gauge is attached to the strain generating body.
  • FIG. 6 is a perspective view of the load sensor according to the embodiment of the present invention.
  • the strain gauge 10 of the embodiment includes a base material 1, a resistor 2 provided on one surface of the base material 1, a cover 3 covering the resistor 2, and the other surface of the base material 1. And the fusing layer 4 provided on the main body.
  • the substrate 1 is a flexible plate-like member made of a resin material, and more specifically a parallel plate.
  • the resin material is preferably a polyimide (PI) resin, which will be described below as a polyimide base material, but may be polyamideimide (PAI), polyethylene (PE), polyetheretherketone (PEEK), or the like.
  • PI polyimide
  • PAI polyamideimide
  • PE polyethylene
  • PEEK polyetheretherketone
  • the thickness of the substrate 1 is, for example, about 12 ⁇ m to about 25 ⁇ mm.
  • the resistor 2 is a metal layer formed of, for example, a copper-nickel alloy.
  • the resistor 2 is a pair of tabs 2t to which a lead wire for external connection is joined, and the other tab 2t extends in a zigzag manner and extends to the other.
  • a gauge sensing part 2c connected to the tab 2t.
  • the cover 3 is provided on the resistor 2 so as to cover only the gauge sensitive part 2c of the resistor 2, and prevents the gauge sensitive part 2c from being damaged.
  • the cover 3 can be formed of polyimide as an example, but may be the above-described PAI, PE, PEEK, or the like. In FIG. 1, the cover 3 is indicated by a broken line in order to clearly indicate the gauge sensing part 2 c of the resistor 2.
  • the fused layer 4 is a thermoplastic polyimide layer laminated on the surface of the substrate 1 opposite to the surface on which the resistor 2 is formed.
  • the thickness of the fusion layer 4 is preferably 3 ⁇ m to 12 ⁇ m, for example, 5 ⁇ m. The reason why this numerical range is preferable will be described with reference to FIG.
  • FIG. 2 shows the thickness of the fused layer of the strain gauge and the characteristics of the strain gauge (peel strength, insulation, and strain followability) when the strain gauge 10 and the strained body 20 subjected to the rough surface treatment described later are bonded. It is a graph showing a relationship.
  • the fusion layer 4 (thermoplastic polyimide layer) has a function of insulating the resistor 2 and the strain body 20 together with the substrate 1 (polyimide substrate).
  • the substrate 1 polyimide substrate.
  • the insulating property is represented by an arbitrary scale, and shows a tendency to increase as the thickness of the fusion layer 4 increases as in the peel strength.
  • the thickness of the fusion layer 4 is larger than 12 ⁇ m, the adhesive strength is further increased due to the effect of the rough surface treatment of the strain generating body 20, but sufficient strain followability such as creep characteristics cannot be obtained.
  • the thickness of the fusion layer 4 may be equal to or greater than the surface roughness of the strain-generation body 20.
  • the fusion layer 4 cannot enter the bottoms of the concave and convex portions of the strain-generating body 20, and the fusion layer 4 and the strain-generating body. Adhesive strength between 20 may be insufficient, or reliability may be impaired as shown in the examples described later.
  • the thermoplastic polyimide layer may contain a resin and / or filler other than the thermoplastic polyimide in addition to the thermoplastic polyimide. Since the thermoplastic polyimide is expensive, the raw material cost of the strain gauge can be reduced when the thermoplastic polyimide layer contains a low-cost resin and / or filler.
  • thermoplastic polyimide examples include an epoxy resin, a phenol resin, and an oxetane resin.
  • engineering plastics such as polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), polyether sulfone (PES), and polyetherimide (PEI) may be used.
  • thermoplastic polyimide layer containing an epoxy resin can be obtained by mixing and heating a polyamic acid and an epoxy resin.
  • the thermoplastic polyimide layer containing the epoxy resin obtained has the advantage that adhesive strength is high compared with the thermoplastic polyimide layer which does not contain an epoxy resin, as shown in the reference example mentioned later.
  • the filler examples include inorganic fine particles such as aluminum oxide, titanium oxide, boron nitride, and silicon oxide.
  • the linear expansion coefficient of the fusion layer 4 can be adjusted by containing inorganic fine particles in an appropriate ratio in the thermoplastic polyimide layer.
  • the thickness of the fusion layer 4 of the strain gauge 10 of this embodiment is larger than the thickness of the adhesive of the conventional strain gauge, and the thickness of the fusion layer 4 when the strain gauge 10 of this embodiment is attached to the strain body 20.
  • the heating temperature (fusion temperature) is higher than the heating temperature of the adhesive when the conventional strain gauge is attached to the strain generating body. Therefore, residual stress tends to occur in the fusion layer 4 of the strain gauge 10 of this embodiment attached to the strain body 20.
  • the strain gauge 10 of the present embodiment it is preferable to suppress the residual stress by setting the linear expansion coefficient of the fusion layer 4 to a value close to the linear expansion coefficient of the strain generating body 20. Therefore, the thermoplastic polyimide layer containing inorganic fine particles whose linear expansion coefficient can be adjusted by the blending amount of the inorganic fine particles is suitable as a material for the fusion layer 4 of the strain gauge 10 of the present embodiment.
  • the manufacturing method of the strain gauge 10 of this embodiment includes a substrate preparation step (S01) for laminating a polyimide resin having a metal foil formed on one side, and a surface on which the metal foil of the polyimide substrate is formed.
  • the cover forming step (S04) for covering each of the plurality of resistors 2 with the cover 3 and the dividing step (S05) for cutting the substrate into the plurality of strain gauges 10 are included.
  • a polyimide substrate is formed by applying polyimide on a metal foil and baking it. Thereby, a plate-like polyimide substrate having a metal foil provided on one side is formed. Thereby, a plate-like polyimide substrate having a metal foil provided on one side is formed.
  • thermoplastic polyimide varnish is applied to the surface of the polyimide substrate opposite to the surface on which the metal foil is formed, and baked. Thereby, the melt
  • the thermoplastic polyimide varnish may contain a resin and / or filler other than the thermoplastic polyimide. Further, instead of the thermoplastic polyimide varnish, a thermoplastic polyamic acid varnish may be used.
  • a plurality of resistors 2 are formed from metal foil using photolithography, and in the cover forming step S04, a gauge sensitive part is formed for each of the plurality of resistors 2 formed on the substrate.
  • the substrate is cut according to the arrangement of the resistors 2, and a plurality of strain gauges 10 each having one base material 1, one resistor 2, one cover 3, and one fusion layer 4 are obtained.
  • the step of attaching the strain gauge 10 to the strain generating body 20 is a surface treatment step (S11) for forming irregularities on the surface of the strain generating body 20, and the strain gauge 10 is fused to the strain generating body 20.
  • the strain body 20 can be formed of a metal such as an aluminum alloy. Further, the strain body 20 is not limited to the plate-like member shown in FIG. 6, and may have various shapes such as a Robert shape and a ring shape. Further, the number of strain gauges 10 attached to the strain generating body 20 is not limited to one and is arbitrary.
  • a rough surface treatment is performed on a portion of the strain generating body 20 where the strain gauge 10 is fused.
  • fine irregularities are formed on the surface of the strain generating body 20 by, for example, sand blasting, laser blasting, chemical etching, or the like.
  • the surface roughness Ra of the portion is, for example, about 5 ⁇ m.
  • the center value is about 5 ⁇ m, preferably 3 ⁇ m to 7 ⁇ m.
  • the roughened portion is washed.
  • minute irregularities can be formed on the surface of the strain generating body 20 to increase the contact area between the strain generating body 20 and the fusion layer 4 of the strain gauge 10, and the strain gauge 10 can be bonded with higher adhesive strength. It becomes possible to fuse to the strain body 20.
  • FIGS. 5A to 5D show an example of a specific procedure for performing the heating / pressurizing step S12.
  • the strain gauge 10 held by the jig 50 is brought close to the strain generating body 20 placed on the conveyor 90, and then, as shown in FIG. 5 (b).
  • the fusing layer 4 of the strain gauge 10 is brought into contact with the strain generating body 20.
  • a part of the strain-generating body 20, that is, a part where the fusion layer 4 of the strain gauge 10 is in contact with the instantaneous heater 70 disposed below the conveyor 90 is locally applied. Heat to.
  • the strain gauge 10 is pressed against the strain generating body 20 by pressing the jig 50 further downward, and the fused layer 4 of the strain gauge 10 and the surface of the strain generating body 20 subjected to the rough surface treatment are pressure bonded.
  • the thermoplastic polyimide forming the fusing layer 4 is melted and enters the minute recesses formed on the surface of the strain-generating body 20 in the surface treatment step S11.
  • the heating temperature is 220 ° C.-260 ° C. of about way of example, pressure is 1N / m 2 ⁇ 2N / m 2 about an example, the time for heating and pressurization, be 5 seconds to about 20 seconds as an example it can.
  • the holding of the strain gauge 10 by the jig 50 is released, and the strain gauge 10 and the strain generating body 20 are air-cooled. Thereby, the thermoplastic polyimide forming the fusion layer 4 is solidified, and the strain gauge 10 is fused to the strain body 20 with high adhesive strength.
  • the load sensor 100 including the strain body 20 and the strain gauge 10 attached to a part of the strain body 20 as shown in FIG. 6 can be manufactured.
  • the strain gauge 10 is attached by bringing the fusion layer 4 of the strain gauge 10 into contact with the strain generating body 20 and simultaneously heating and pressing, and then cooling the strain gauge 10. Can be fixed to the strain body 20 with high adhesive strength. Therefore, a conventional process using a thermosetting adhesive, including an application process for applying an adhesive to the strain gauge and an adhesive removing process for removing excess adhesive from the contact surface between the strain gauge and the strain generating body. Compared to the above, the strain gauge 10 can be efficiently attached to the strain generating body 20 in a short time.
  • the strain gauge 10 is attached by locally heating only the vicinity of the contact surface between the fusion layer 4 of the strain gauge 10 and the strain generating body 20 by the instantaneous heating heater 70. Fusion to the strain body 20 is performed. Therefore, according to the mounting method of the present embodiment, the strain gauge and the strain generating body fixed by the jig are arranged in the furnace, and the strain gauge, the strain generating body, and the entire jig are placed at 150 degrees or more for 1 hour. Compared to the conventional process of heating as described above, the amount of energy required for heating can be greatly reduced.
  • the fusing layer 4 included in the strain gauge 10 of the present embodiment can be fused to the strain generating body 20 by heating and pressurizing for a short time, an attaching process for attaching the strain gauge 10 to the strain generating body 20 is performed.
  • This can be realized as a single flow process using the tool 50 and the instantaneous heater 70.
  • Such a single sink attachment process is a conventional heating / pressurization process (ie, a strain gauge and a strain generating body are held together by a jig as a batch process including a heating process of 1 hour or more.
  • the strain amount of the portion away from the strain generating body that is, the side opposite to the bonding surface with the strain generating body
  • the creep phenomenon may occur when the amount of elastic deformation (strain amount) of the surface provided with the resistor, which is the surface of the surface, gradually decreases with time.
  • strain amount the amount of elastic deformation of the surface provided with the resistor, which is the surface of the surface
  • the resistor and the strain generating body are conductors, it is necessary to insulate the resistor and the strain generating body by a base material that is a dielectric. Therefore, if the thickness of the base material is excessively reduced to suppress the occurrence of the creep phenomenon, dielectric breakdown occurs and the load sensor is damaged.
  • the strain gauge 10 includes a base material 1 made of polyimide and a fusion layer that is a thermoplastic polyimide layer formed on the surface of the base material 1 opposite to the surface on which the resistor 2 is formed. 4 having a laminated structure. For this reason, even if the thickness of the base material 1 made of polyimide is reduced, the resistor 2 and the strain body 20 can be well insulated by the laminated structure including the base material 1 and the fusion layer 4. . Therefore, according to the strain gauge 10 of the present embodiment, it is possible to suppress the occurrence of the creep phenomenon by reducing the thickness of the base material 1 while favorably insulating the resistor 2 and the strain body 20. There is also an effect.
  • the strain gauge 10 of the present embodiment has a configuration in which a part of the polyimide base material is replaced with a fusion layer that is a thermoplastic polyimide layer.
  • the strain gauge 10 of this embodiment reduces the thickness of the base material 1 to suppress the occurrence of the creep phenomenon, and at the same time, has a laminated structure of the base material 1 and the fusion layer 4 that is a thermoplastic polyimide layer. The insulating performance is maintained, and the strain gauge 10 can be efficiently bonded to the strain body 20 using the fusion layer 4.
  • the base material 1 is formed of polyimide
  • the fusion layer 4 is formed of thermoplastic polyimide. Since both polyimide and thermoplastic polyimide are polyimide materials, they have compatibility. Well, they are bonded together with high adhesive strength. Therefore, in the state where the strain gauge 10 is attached to the strain generating body 20, there is also an effect that the base material 1 of the strain gauge 10 has a high adhesive strength and is fixed to the strain generating body 20.
  • PAI, PE, and PEEK have sufficient adhesive strength and insulation performance in the same manner as thermoplastic polyimide, and the substrate 1 can be formed of these materials instead of polyimide.
  • Other resin materials can be used instead of polyimide as long as they have sufficient adhesive strength with thermoplastic polyimide.
  • the thickness of the base material 1 is thin in the strain gauge 10 of the present embodiment, the thickness of the portion excluding the fusion layer 4 from the strain gauge 10 is bonded without the conventional strain gauge, that is, the fusion layer. It is smaller than the thickness of the strain gauge attached to the strain body using the agent. Therefore, comparing the state in which the strain gauge 10 of the present embodiment is attached to the strain-generating body 20 with the fusion layer 4 and the state in which the conventional strain gauge is attached to the strain-generating body using an adhesive, The thickness of the strain gauge 10 of the embodiment is thinner than the total thickness of the conventional strain gauge and the adhesive.
  • the fusion layer 4 of the strain gauge 10 of the present embodiment is formed of thermoplastic polyimide, it can be stored semipermanently at room temperature unlike a thermosetting adhesive. Therefore, the strain gauge 10 of this embodiment is easy to store and handle.
  • the fusion layer forming step S04 is performed before the dividing step S05, and the fusion layers 4 of the plurality of strain gauges 10 are collectively formed in one step. is doing. Therefore, the strain gauge 10 having the fusion layer 4 can be efficiently manufactured.
  • the cover 3 is formed of polyimide, but the cover 3 can be formed of other materials. Specifically, for example, the cover 3 may be formed of thermoplastic polyimide.
  • the strain gauge 10 when fusing the strain gauge 10 to the strain body 20, it heated from the strain body 20 side, it heated from the strain body 20 side,
  • a heater can be provided in the jig 50, and both heating and pressurization can be performed using the jig 50.
  • the attachment method of the said embodiment does not need to include a surface treatment process.
  • strain gauge and load sensor of the present invention will be described with reference to examples, but the present invention is not limited thereto.
  • Example 1 a strain gauge was produced as follows. First, the polyimide varnish was apply
  • a load sensor was produced as follows.
  • the surface of an aluminum substrate having a thickness of 1 mm used as a strain generating body was roughened by laser blasting and washed.
  • the roughness of the roughened surface was measured with a surface roughness meter (SURFCOM series manufactured by Tokyo Seimitsu Co., Ltd., stylus type surface roughness measuring machine), and it was 7 ⁇ m.
  • the surface roughness measured here is the maximum height roughness (Rz).
  • the strain gauge is held by a jig, and the fused layer of the strain gauge is brought into contact with the roughened portion of the strain generating body, and is pressurized with a pressure of 30 kgf / cm 2 while being heated by a heater disposed below the strain generating body.
  • the contact portion between the strain body and the fusion layer was heated at 270 ° C. for 13 seconds.
  • the holding of the strain gauge by the jig was released, and the strain gauge and the strain generating body were air-cooled. As a result, the strain gauge was fused to the strain generating body, and a load sensor was obtained.
  • Example 2 A plurality of strain gauges were produced in the same manner as in Example 1 except that a thermoplastic polyimide varnish that became a 9 ⁇ m-thick fused layer was applied by firing. A load sensor was produced in the same manner as in Example 1.
  • ⁇ Reliability test> Sixteen load sensors of Example 1 and 15 load sensors of Example 2 were prepared, and the zero balance of each load sensor was measured. Next, artificial sweat was applied around the strain gauge and left at room temperature and humidity for 24 hours. Thereafter, the load sensor was exposed to a high-temperature and high-humidity environment for one week, and then the zero balance of the load sensor was measured to determine the difference (change amount) from the initial value.
  • the zero balance measurement means measuring the output voltage of the load sensor when the rated applied voltage is applied at no load.
  • Example 1 the change amount of zero balance of 4 of 16 load sensors exceeded 0.025 mV.
  • Example 2 none of the 15 samples whose zero balance change amount exceeded 0.025 mV.
  • the load sensor of Example 1 since the thickness of the fusion layer was smaller than the surface roughness of the strain generating body, the material of the fusion layer was not filled up to the bottom of the concave and convex portions of the strain generating body. It is thought that artificial sweat entered the gap between the layers.
  • the load sensor of Example 2 since the thickness of the fusion layer was larger than the surface roughness of the strain generating body, it is considered that the material of the fusion layer was sufficiently filled up to the bottom of the concave and convex portions of the strain generating body. .
  • thermoplastic polyamic acid varnish which is a thermoplastic polyimide varnish or a precursor of a thermoplastic polyimide so that the weight ratio of the bisphenol A type epoxy resin becomes a value described in Table 1.
  • the bisphenol F type epoxy compound was mix
  • TEPIC registered trademark manufactured by Nissan Chemical Industries, Ltd. was blended as an epoxy compound in the thermoplastic polyimide varnish or the thermoplastic polyamic acid varnish at a weight ratio shown in Table 3.
  • the obtained composition was applied on a glass plate (JIS R3203), heated at 120 ° C. for 20 minutes, and then heated at 200 ° C. for 10 minutes.
  • composition after heating The properties of the composition after heating are shown in Tables 1 to 3 where ⁇ indicates that the composition after heating is completely cured and no stickiness (tack) occurs, and X indicates that the stickiness occurs.
  • thermoplastic polyimide layer obtained by blending and curing an epoxy compound in the thermoplastic polyamic acid varnish contained a thermoplastic polyimide and an epoxy resin.
  • thermoplastic polyamic acid varnish In order to cure (polyimidize) the thermoplastic polyamic acid varnish, it is usually necessary to heat to about 300 ° C. However, in this reference example, the added epoxy resin reacted with the polyamic acid. It is thought that the curing reaction proceeded at a low temperature of about °C.
  • thermoplastic polyamic acid varnish in which 10 to 85 wt% of bisphenol A type epoxy compound is blended with a thermoplastic polyamic acid varnish in which tack is not generated
  • a composition in which 10 to 85 wt% of bisphenol F type epoxy compound is blended with thermoplastic polyamic acid varnish and thermoplasticity
  • the thermoplastic polyimide layer was formed by apply
  • thermoplastic polyamic acid varnish was applied on a glass plate and heated at 300 ° C. for 60 minutes to cure, thereby forming a thermoplastic polyimide layer.
  • thermoplastic polyimide layers were also scratched with a needle and examined for peeling from the glass plate.
  • thermoplastic polyimide layer obtained only from the thermoplastic polyimide varnish and the thermoplastic polyimide layer obtained only from the thermoplastic polyamic acid varnish were both peeled off from the glass plate.
  • the thermoplastic polyimide layer containing an epoxy resin obtained from the oriented composition did not peel from the glass plate.
  • the thermoplastic polyimide layer containing an epoxy resin has high adhesive strength with respect to glass compared with the thermoplastic polyimide layer which does not contain an epoxy resin. From this, it is speculated that the adhesive strength between the strain-generating body made of a metal such as aluminum and the fusion layer is improved when the thermoplastic polyimide layer (fusion layer) contains an epoxy resin.
  • thermoplastic polyamide acid varnish or thermoplastic polyimide varnish aluminum oxide fine particles (linear expansion coefficient 7.2 ppm / ° C.), rutile titanium oxide fine particles (linear expansion coefficient 7.2 ppm / ° C.), boron nitride fine particles (linear expansion) as fillers Containing a filler obtained by curing a material containing a coefficient of 0.57 ppm / ° C., silicon oxide fine particles (linear expansion coefficient 0.55 ppm / ° C.), and polyether ether ketone (PEEK) fine particles (linear expansion coefficient 45 ppm / ° C.).
  • the linear expansion coefficient of the thermoplastic polyimide layer was calculated.
  • the linear expansion coefficient of the thermoplastic polyimide layer containing no filler was 40 ppm / ° C. Table 4 shows the calculation result of the linear expansion coefficient.
  • the thermoplastic polyimide layer containing fine particles of aluminum oxide, titanium oxide, boron nitride, and silicon oxide which are inorganic materials, adjusts the linear expansion coefficient in a wide range depending on the blending amount of the filler. be able to.
  • the thermoplastic polyimide layer contains about 40-50 wt% of aluminum oxide fine particles, about 40-50 wt% of titanium oxide fine particles, about 30-40 wt% of boron nitride fine particles, or about 30-40 wt% of silicon oxide fine particles.
  • the linear expansion coefficient of the thermoplastic polyimide layer is about 25 ppm / ° C.
  • thermoplastic polyimide layer composed of a thermoplastic polyimide layer is suitable when aluminum alloy A2024 having a linear expansion coefficient of 25 ppm / ° C. is used as a material for the strain body. This is because the occurrence of residual stress due to a thermal process such as fusion is suppressed by the fact that the linear expansion coefficients of the fusion layer and the strain generating body are substantially equal. Thus, the fact that the thermoplastic polyimide layer contains the inorganic fine particles has an effect that the linear expansion coefficient of the fusion layer can be adjusted in accordance with the linear expansion coefficient of the strain generating body.
  • thermoplastic polyimide layer contains PEEK fine particles
  • the adjustable range of the linear expansion coefficient is narrow as shown in Table 4, so the linear expansion coefficient of the fusion layer is adjusted according to the linear expansion coefficient of the strain-generating body. Tend to be difficult to do.
  • the present invention is not limited to the above embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. .
  • a load sensor that can suppress the occurrence of a creep phenomenon can be efficiently manufactured. Therefore, it is possible to contribute to high accuracy and low price of the load sensor and measurement equipment using the load sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

ひずみゲージ10は、樹脂材料で形成された基材1と、前記基材1上に設けられた抵抗体2と、前記基材1の前記抵抗体2が設けられた面とは反対側の面に設けられた融着層4とを有する。前記融着層4は熱可塑性ポリイミド層である。ひずみゲージ10を出来るだけ薄くするとともに、より簡単なプロセスで荷重センサ100を製造することができるひずみゲージ10が提供される。

Description

ひずみゲージ、荷重センサ、及びひずみゲージの製造方法
 本発明は、熱可塑性ポリイミド(TPI)層を融着層として備えるひずみゲージ、該ひずみゲージを備える荷重センサ、及び該ひずみゲージの製造方法に関する。
 物体の重量計測等に使用される荷重センサは、起歪体とひずみゲージとを主に備える。起歪体は一般にアルミニウム合金等の金属製であり、計測対象の重量に応じて変形する(ひずみを生じる)。ひずみゲージは一般に、絶縁性を有する板状の基材と、基材の一面上に設けられた抵抗体とを有し、基材の他面が起歪体の表面に接着剤によって固定されている。起歪体に変形(ひずみ)が生じるとこれに応じてひずみゲージの抵抗体に伸縮が生じ、抵抗体の電気抵抗値が変化する。計測対象の重量は、この抵抗体の電気抵抗値の変化に基づいて求められる。ひずみセンサの一例は特許文献1に開示されている。
特開2014-85259号
 荷重センサにおいては、ひずみ追従性を損なわないようにクリープ現象を抑制するという観点や、ひずみの良好な伝達という観点から、抵抗体と起歪体との間の絶縁性と接着性を維持しつつひずみゲージを薄くすることが望まれている。
 ところで、上記のような荷重センサを製造するには、一般に、熱硬化性の接着剤を用いてひずみゲージを起歪体に接着する。接着においては、ひずみゲージに接着剤を塗布し、接着剤を塗布したひずみゲージを起歪体に接触させた状態でそれらを治具で一体に保持してひずみゲージと起歪体との接触面を加圧保持する。次いで、一体に保持されたひずみゲージと起歪体とを炉に入れて加熱して接着剤を硬化させる。加熱後にひずみゲージ及び起歪体を炉から取り出して治具を取り外し、最後にひずみゲージと起歪体との接触面から余分な接着剤を除去する。
 このような、接着剤を使用する複雑で手間のかかる荷重センサの製造工程をより単純化又は簡素化して製造効率を高くしたいという要望もある。
 本発明は、上記の課題を解決し、ひずみゲージを出来るだけ薄くするとともに、より簡単なプロセスで荷重センサを製造することができるひずみゲージ、該ひずみゲージを備える荷重センサ、及び該ひずみゲージの製造方法を提供することを目的とする。
 本発明の第1の態様に従えば、
 樹脂材料で形成された基材と、
 前記基材上に設けられた抵抗体と、
 前記基材の、前記抵抗体が設けられた面とは反対側の面に設けられた融着層とを有し、
 前記融着層が熱可塑性ポリイミド層であるひずみゲージが提供される。
 第1の態様のひずみゲージは前記抵抗体を覆う保護カバーを更に備えてもよい。
 第1の態様のひずみゲージにおいて、前記融着層の厚さが3μm~12μmであってもよく、前記樹脂材料がポリイミドであってもよい。
 第1の態様のひずみゲージにおいて、前記熱可塑性ポリイミド層が、熱可塑性ポリイミド以外の樹脂及び/又はフィラーを含有してもよい。前記熱可塑性ポリイミド以外の樹脂は、エポキシ樹脂またはフェノール樹脂であってよい。前記熱可塑性ポリイミド以外の樹脂は、エンジニアリングプラスチックであってもよい。前記フィラーは無機微粒子であってよい。
 本発明の第2の態様に従えば、
 起歪体と、
 前記起歪体に取り付けられた第1の態様のひずみゲージとを備える荷重センサが提供される。
 第2の態様の荷重センサにおいて、前記ひずみゲージは前記融着層を介して前記起歪体に取り付けられていてもよく、前記起歪体の表面上の前記融着層が接触された部分には粗面処理が施されていてもよい。
 第2の態様の荷重センサにおいて、前記粗面処理が施された部分の表面粗さが3~7μmであってもよい。
 第2の態様の荷重センサにおいて、前記融着層の厚さが、前記粗面処理が施された部分の表面粗さ以上12μm以下であってよい。
 本発明の第3の態様に従えば、
 樹脂材料で形成された基材の一面上に複数の抵抗体を形成することと、
 前記基材の他面上に熱可塑性ポリイミド層である融着層を形成することと、
 前記基材を切断して、切断された前記基材の一面上に抵抗体を有し、他面上に前記融着層を有する複数のひずみゲージを得ることとを含むひずみゲージの製造方法が提供される。
 第3の態様のひずみゲージの製造方法において、前記融着層を形成することが、エポキシ樹脂を配合した熱可塑性ポリアミド酸ワニスを前記基材の他面上に塗布し、焼成することを含んでよい。
 本発明のひずみゲージは、薄く、且つより簡単なプロセスで荷重センサを製造することができる。
図1は本発明の実施形態に係るひずみゲージの斜視図である。 図2は融着層の厚みとひずみゲージの諸特性との関係を表すグラフである。 図3はひずみゲージの製造工程を示すフローチャートである。 図4はひずみゲージを起歪体に取り付けて荷重センサを製造する工程を示すフローチャートである。 図5(a)~(d)はひずみゲージを起歪体に取り付ける様子を示す説明図である。 図6は本発明の実施形態に係る荷重センサの斜視図である。
 本発明のひずみゲージの実施形態について、図1~図6を参照して説明する。
 図1に示す通り、実施形態のひずみゲージ10は、基材1と、基材1の一面上に設けられた抵抗体2と、抵抗体2を覆うカバー3と、基材1の他面上に設けられた融着層4とを主に有する。
 基材1は、樹脂材料で形成された可撓性を有する板状部材であり、より具体的には平行平板である。樹脂材料は、好ましくはポリイミド(PI)樹脂であり、以下ではポリイミド基材として説明するが、ポリアミドイミド(PAI)、ポリエチレン(PE)、ポリエーテルエーテルケトン(PEEK)などでも構わない。基材1の厚さは例えば約12μm~約25μmmである。
 抵抗体2は、例えば、銅ニッケル合金により形成された金属層であり、外部接続用のリード線が接合される一対のタブ2tと、一方のタブ2tからジグザグに折り返しながら延在して他方のタブ2tに接続するゲージ受感部2cとを有する。
 カバー3は、抵抗体2のゲージ受感部2cのみを覆うように抵抗体2の上に設けられ、ゲージ受感部2cに損傷等が生じることを防いでいる。カバー3は一例としてポリイミドで形成することができるが、前述のPAI、PE、PEEK等でもよい。なお、図1においては、抵抗体2のゲージ受感部2cを明示するためカバー3は破線で示している。
 融着層4は、基材1の抵抗体2が形成された面とは反対側の面に積層された熱可塑性ポリイミド層である。融着層4の厚さは、3μm~12μmとすることが好ましく、例えば5μmとすることができる。この数値範囲が好ましい理由を、図2に従って説明する。図2はひずみゲージ10と後述する粗面処理をした起歪体20を接着した時のひずみゲージの融着層の厚みとひずみゲージの諸特性(ピール強度、絶縁性及びひずみ追従性)との関係を表すグラフである。融着層4の厚みが3μmではピール強度は3N/cmとなってしまい、融着層4の厚さが3μm以下ではひずみゲージ10を起歪体20(図6)に十分なピール強度で固定することが出来ない。また、本発明では、この融着層4(熱可塑性ポリイミド層)が基材1(ポリイミド基材)とともに抵抗体2と起歪体20とを絶縁する機能を担っているため、融着層4(熱可塑性ポリイミド層)の厚みが薄すぎる場合、絶縁性が落ちてしまう恐れもある。図2中、絶縁性は任意スケールで表わしており、ピール強度と同様に融着層4の厚みが増すほど高くなる傾向を示している。一方、融着層4の厚さが12μmよりも大きい場合には、起歪体20の粗面処理の影響もあり接着強度は更に上がるが、クリープ特性といったひずみ追従性が十分に得られなくなる。
 後述するように表面を粗面処理した起歪体20に融着層4を融着させる場合、融着層4の厚みは、起歪体20の表面粗さ以上であってよい。融着層4の厚みが起歪体20の表面粗さ未満である場合、起歪体20の凹凸の凹部の底まで融着層4が入り込むことができず、融着層4と起歪体20の間の接着強度が不十分になったり、後述する実施例で示すように信頼性が損なわれたりすることがある。
 熱可塑性ポリイミド層は、熱可塑性ポリイミドの他に、熱可塑性ポリイミド以外の樹脂及び/又はフィラーを含有してよい。熱可塑性ポリイミドは高価であるため、熱可塑性ポリイミド層が低コストの樹脂及び/又はフィラーを含有することで、ひずみゲージの原料費を低くすることができる。
 熱可塑性ポリイミド以外の樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、オキセタン樹脂等が挙げられる。また、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)、ポリエーテルサルフォン(PES)、ポリエーテルイミド(PEI)等のエンジニアリングプラスチックを用いてもよい。
 エポキシ樹脂を含有する熱可塑性ポリイミド層は、ポリアミド酸とエポキシ樹脂を混合して加熱することにより得ることができる。このようにして得られたエポキシ樹脂を含有する熱可塑性ポリイミド層は、後述する参考例で示すように、エポキシ樹脂を含有しない熱可塑性ポリイミド層と比べて接着強度が高いという利点がある。
 フィラーとしては、酸化アルミニウム、酸化チタン、窒化ホウ素、酸化ケイ素等の無機微粒子が挙げられる。後述する参考例で示すように熱可塑性ポリイミド層に無機微粒子を適当な比率で含有させることにより、融着層4の線膨張係数を調整することができる。本実施形態のひずみゲージ10の融着層4の厚みは、従来のひずみゲージの接着剤の厚みよりも大きく、本実施形態のひずみゲージ10を起歪体20に取り付けるときの融着層4の加熱温度(融着温度)は、従来のひずみゲージを起歪体に取り付けるときの接着剤の加熱温度よりも高い。そのため、起歪体20に取り付けた本実施形態のひずみゲージ10の融着層4には、残留応力が発生しやすい傾向がある。それゆえ、本実施形態のひずみゲージ10においては、融着層4の線膨張係数を起歪体20の線膨張係数に近い値とすることで残留応力を抑制することが好ましい。よって、無機微粒子の配合量によって線膨張係数を調整できる、無機微粒子を含有する熱可塑性ポリイミド層は、本実施形態のひずみゲージ10の融着層4の材料として好適である。
 次に、本実施形態のひずみゲージ10の製造方法を、図3のフローチャートに従って説明する。
 図3に示す通り、本実施形態のひずみゲージ10の製造方法は、片面上に金属箔が形成されたポリイミド樹脂を積層する基板準備工程(S01)と、ポリイミド基板の金属箔が形成された面とは反対側の面に融着層4を形成する融着層形成工程(S02)と、ポリイミド基板上の金属箔から複数の抵抗体2を形成する抵抗体形成工程(S03)と、形成された複数の抵抗体2の各々をカバー3で覆うカバー形成工程(S04)と、基板を複数のひずみゲージ10へと切断する分割工程(S05)とを含む。
 基板準備工程S01では、例えば、金属箔上にポリイミドを塗布し、焼成することでポリイミド基板を形成する。これにより、片面上に金属箔が設けられた板状のポリイミド基板が形成される。これにより、片面上に金属箔が設けられた板状のポリイミド基板が形成される。
 融着層形成工程S02では、例えば、ポリイミド基板の金属箔が形成された面とは反対側の面に熱可塑性ポリイミドワニスを塗布し、焼成する。これにより熱可塑性ポリイミド層である融着層4がポリイミド基板上に形成される。なお、熱可塑性ポリイミドワニスは、熱可塑性ポリイミド以外の樹脂及び/又はフィラーを含有してよい。また、熱可塑性ポリイミドワニスに代えて、熱可塑性ポリアミド酸ワニスを用いてもよい。抵抗体形成工程S03では、フォトリソグラフィを用いて、金属箔から複数の抵抗体2を形成し、カバー形成工程S04では、基板上に形成された複数の抵抗体2のそれぞれについて、ゲージ受感部2cをポリイミドのカバー3で覆う。分割工程S05では、抵抗体2の配置に従って基板を切削し、基材1、抵抗体2、カバー3、融着層4をそれぞれ1つずつ有する複数のひずみゲージ10を得る。
 次に、本実施形態のひずみゲージ10を起歪体20(図6)に取り付けて荷重センサを製造する方法について説明する。
 図4のフローチャートに示す通り、ひずみゲージ10を起歪体20に取り付ける工程は、起歪体20の表面に凹凸を形成する表面処理工程(S11)、起歪体20にひずみゲージ10を融着する加熱・加圧工程(S12)、互いに固着されたひずみゲージ10及び起歪体20を空冷する冷却工程(S13)を含む。
 起歪体20は、アルミニウム合金等の金属によって形成することができる。また起歪体20は、図6に示される板状部材には限られず、ロバーバル形、リング形等の様々な形状とし得る。また、起歪体20に取り付けられるひずみゲージ10の数は1つには限られず任意である。
 表面処理工程S11では、起歪体20の、ひずみゲージ10が融着される部分に粗面処理を施す。粗面処理は、例えば、サンドブラストやレーザブラスト、ケミカルエッチングなどにより起歪体20の表面に細かな凸凹を形成する。当該部分の表面粗さRaを例えば約5μmとする。センター値として約5μmで、3μm~7μmにするのが好ましい。その後、粗面処理が施された部分を洗浄する。これにより、起歪体20の表面に微小な凹凸を形成して起歪体20とひずみゲージ10の融着層4との接触面積を大きくすることができ、ひずみゲージ10をより高い接着強度で起歪体20に融着することが可能となる。
 加熱・加圧工程S12では、以下に詳述するように、ひずみゲージ10の融着層4を、起歪体20の粗面処理が施された部分に接触させた状態で加熱及び加圧を行い、ひずみゲージ10を起歪体20に融着する。図5(a)~図5(d)は、加熱・加圧工程S12を実施する具体的な手順の一例を示す。まず、図5(a)に示すように、コンベア90上に載置された起歪体20に治具50によって保持されたひずみゲージ10を近接させ、次いで、図5(b)に示すように、ひずみゲージ10の融着層4を起歪体20に接触させる。
 次いで、図5(c)に示す通り、コンベア90の下方に配置された瞬間加熱ヒータ70によって、起歪体20の一部分、即ちひずみゲージ10の融着層4が接触されている部分を局所的に加熱する。同時に、治具50を更に下方に押し付けることでひずみゲージ10を起歪体20に押圧し、ひずみゲージ10の融着層4と、起歪体20の粗面処理が施された表面とを圧着させる。これにより融着層4を形成する熱可塑性ポリイミドが溶融し、表面処理工程S11において起歪体20の表面に形成された微小な凹部に侵入する。
 加熱温度は、一例として220℃~260℃程度、加圧力は一例として1N/m~2N/m程度、加熱及び加圧を行う時間は、一例として5秒~20秒程度とすることができる。
 冷却工程S13では、図5(d)に示す通り、治具50によるひずみゲージ10の保持を解除し、ひずみゲージ10と起歪体20とを空冷する。これにより、融着層4を形成する熱可塑性ポリイミドが凝固し、ひずみゲージ10が起歪体20に高い接着強度で融着される。
 こうして、図6に示すような、起歪体20とその一部に取り付けられたひずみゲージ10とを備える荷重センサ100を製造することができる。
 上記のように、本実施形態のひずみゲージ10の取付け方法は、ひずみゲージ10の融着層4を起歪体20に接触させて加熱及び加圧を同時に行い、次いで冷却するだけでひずみゲージ10を起歪体20に高い接着強度で固定することができる。したがって、ひずみゲージに接着剤を塗布する塗布工程や、ひずみゲージと起歪体との接触面から余分な接着剤を除去する接着剤除去工程を含む、熱硬化性の接着剤を用いる従来の工程に比べて、ひずみゲージ10の起歪体20への取付けを短時間で効率よく行うことができる。
 本実施形態のひずみゲージ10の取付け方法は、ひずみゲージ10の融着層4と起歪体20との接触面の近傍のみを、瞬間加熱ヒータ70によって局所的に加熱し、ひずみゲージ10の起歪体20への融着を行っている。したがって、本実施形態の取付け方法によれば、治具によって固定されたひずみゲージと起歪体とを炉内に配置し、ひずみゲージ、起歪体、治具の全体を150度以上で1時間以上加熱する従来の工程に比べて、加熱に要するエネルギー量を大きく低減することができる。
 本実施形態のひずみゲージ10が備える融着層4は短時間の加熱及び加圧で起歪体20に融着することができるため、ひずみゲージ10を起歪体20に取り付ける取付け工程を、治具50と瞬間加熱ヒータ70とを用いた一個流し工程として実現することができる。このような一個流しの取付け工程は、1時間以上の加熱工程を含むバッチ処理工程として行われる従来法の加熱・加圧工程(即ち、ひずみゲージと起歪体とを治具で一体に保持してひずみゲージと起歪体との接触面を加圧し、一体に保持されたひずみゲージと起歪体とを炉内で加熱し、加熱後にひずみゲージ及び起歪体を炉から取り出して治具を取り外すことを含む従来法の加熱・加圧工程)に比べて簡略である。
 ところで、ひずみ追従性の悪化の一つの例として、起歪体に取り付けられたひずみゲージの基材において、起歪体から離れた部分のひずみ量、即ち起歪体との接着面とは反対側の面である抵抗体が設けられた面の弾性変形の量(ひずみ量)が時間の経過と共に次第に小さくなることによってクリープ現象が生じることがある。このようなクリープ現象を抑制するためには、基材の厚みを小さくし、抵抗体をできるだけ起歪体の近くに配置することが望ましい。
 一方で、抵抗体及び起歪体は導体であるため、誘電体である基材によって抵抗体と起歪体とを絶縁しておく必要がある。したがって、クリープ現象の発生を抑制すべく基材の厚みを過度に小さくすると、絶縁破壊が生じて荷重センサが破損してしまう。
 本実施形態のひずみゲージ10は、ポリイミドで形成された基材1と、基材1の抵抗体2が形成された面とは反対側の面に形成された熱可塑性ポリイミド層である融着層4からなる積層構造を有する。このため、ポリイミドで形成された基材1の厚さを小さくしても、基材1と融着層4からなる積層構造によって抵抗体2と起歪体20とを良好に絶縁することができる。したがって、本実施形態のひずみゲージ10によれば、抵抗体2と起歪体20とを良好に絶縁しながら、基材1の厚さを小さくしてクリープ現象の発生を抑制することができるという効果もある。
 換言すれば、本実施形態のひずみゲージ10は、ポリイミド基材の一部分を熱可塑性ポリイミド層である融着層に置き換えた構成であるといえる。これにより、本実施形態のひずみゲージ10は、基材1の厚さを小さくしてクリープ現象の発生を抑制すると同時に、基材1と熱可塑性ポリイミド層である融着層4との積層構造により絶縁性能を維持しており、且つひずみゲージ10の起歪体20への接着を融着層4を用いて効率良く行うことが可能となっている。
 本実施形態のひずみゲージ10は、基材1をポリイミドにより形成し、融着層4を熱可塑性ポリイミドにより形成しているが、ポリイミドと熱可塑性ポリイミドとは共にポリイミド系の材料であるため相性がよく、高い接着強度を有して互いに接着されている。そのため、ひずみゲージ10を起歪体20に取り付けた状態においては、ひずみゲージ10の基材1が高い接着強度を有して起歪体20に固定されるという効果もある。なお、PAI、PE、PEEKも熱可塑性ポリイミドと同様に十分な接着強度を及び絶縁性能を有しており、基板1をポリイミドに代えてこれらの材料で形成することも可能である。また、その他の樹脂材料も、熱可塑性ポリイミドと十分な接着強度を有していれば、ポリイミドに代えて使用することは可能である。
 本実施形態のひずみゲージ10は、基材1の厚さが薄いため、ひずみゲージ10から融着層4を除いた部分の厚さが、従来のひずみゲージ、即ち融着層を有さず接着剤を用いて起歪体に取り付けるひずみゲージの厚さよりも小さい。したがって、本実施形態のひずみゲージ10を融着層4を介して起歪体20に取り付けた状態と、従来のひずみゲージを接着剤を用いて起歪体に取り付けた状態とを比較すると、本実施形態のひずみゲージ10の厚さは、従来のひずみゲージと接着材との合計の厚さよりも薄い。
 また、本実施形態のひずみゲージ10の融着層4は熱可塑性ポリイミドで形成されているため、熱硬化性の接着剤とは異なり常温で半永久的に保存することができる。それゆえ、本実施形態のひずみゲージ10は保存や取扱いが容易である。
 本実施形態のひずみゲージ10の製造方法によれば、分割工程S05を行う前に、融着層形成工程S04を行って、複数のひずみゲージ10の融着層4を一括して一工程で形成している。したがって融着層4を有するひずみゲージ10を効率よく製造することができる。
 なお上記実施形態のひずみゲージ10においては、カバー3をポリイミドで形成していたが、カバー3をその他の材料で形成することもできる。具体的には例えば、カバー3を熱可塑性ポリイミドで形成してもよい。
 なお上記実施形態の取付け方法においては、ひずみゲージ10を起歪体20に融着する際に起歪体20側から加熱を行っていたが、ひずみゲージ10側から加熱を行ってもよい。具体的には例えば、治具50にヒータを設け、治具50を用いて加熱と加圧の両方を行うことができる。あるいは、加熱・加圧工程S12は、治具によって加圧状態で保持されたひずみゲージ10と起歪体20を炉内に配置することにより行っても良い。
 なお、上記実施形態の取付け方法は、表面処理工程を含まなくてもよい。
 本発明のひずみゲージ及び荷重センサを実施例により説明するが、本発明はこれらに限定されるものではない。
 実施例1
 実施例1において、以下のようにしてひずみゲージを作製した。まず、金属箔上にポリイミドワニスをキャスト法により塗布し、焼成することにより、片面に金属箔が設けられたポリイミド基板を得た。次に、ポリイミド基板の金属箔の設けられた面の反対の面に熱可塑性ポリイミドワニスをキャスト法により塗布し、焼成し、4μm厚さの融着層を形成した。金属箔上にフォトリソグラフィによりレジストパターンを形成し、金属箔をエッチングすることにより、ポリイミド基板上に複数の抵抗体を形成した。さらに、抵抗体のゲージ受感部上にポリイミドワニスを塗布してカバーを形成した。抵抗体の配置に従ってポリイミド基板を切削して、複数のひずみゲージを得た。
 得られたひずみゲージを用いて、以下のようにして荷重センサを作製した。起歪体として用いる厚み1mmのアルミニウム基板の表面をレーザーブラストにより粗面処理し、洗浄した。粗面処理した表面の粗さを表面粗さ計(東京精密社製SURFCOMシリーズ、触針方式の表面粗さ測定機)により測定したところ、7μmであった。ここで測定した表面粗さは、最大高さ粗さ(Rz)である。ひずみゲージを治具で保持し、ひずみゲージの融着層を起歪体の粗面処理した部分に接触させ、30kgf/cmの圧力で加圧しながら、起歪体の下方に配置したヒータにより、起歪体と融着層の接触部分を270℃で13秒間加熱した。次いで、治具によるひずみゲージの保持を解除し、ひずみゲージと起歪体とを空冷した。これにより、ひずみゲージが起歪体に融着され、荷重センサが得られた。
 実施例2
 焼成により9μm厚さの融着層となる熱可塑性ポリイミドワニスを塗布した以外は実施例1と同様にして複数のひずみゲージを作製した。また、実施例1と同様にして荷重センサを作製した。
 <信頼性試験>
 実施例1の荷重センサを16個、実施例2の荷重センサを15個用意し、各荷重センサのゼロバランスを測定した。次いで、ひずみゲージ周辺に人工汗液を塗布し、24時間常温常湿にて放置した。その後荷重センサを高温高湿環境下に1週間曝した後、荷重センサのゼロバランスを測定し、初期値との差(変化量)を求めた。なお、ゼロバランスの測定とは、無負荷時、定格印加電圧を加えた際の荷重センサの出力電圧を測定することを意味する。
 実施例1では、16個中4個の荷重センサのゼロバランスの変化量が0.025mVを超えていた。一方、実施例2では、ゼロバランスの変化量が0.025mVを超えたものは15個中ひとつもなかった。実施例1の荷重センサは、融着層の厚みが起歪体の表面粗さよりも小さかったため、起歪体の凹凸の凹部の底まで融着層の材料が充填されず、起歪体と融着層の間のすきまに人工汗が侵入したと考えられる。一方、実施例2の荷重センサは、融着層の厚みが起歪体の表面粗さよりも大きかったため、起歪体の凹凸の凹部の底まで融着層の材料が十分に充填されたと考えられる。
 参考例1
 熱可塑性ポリイミドワニスまたは熱可塑性ポリイミドの前駆体である熱可塑性ポリアミド酸ワニスに、ビスフェノールA型エポキシ化合物を、ビスフェノールA型エポキシ樹脂の重量割合が表1に記載する値になるように配合した。同様に、熱可塑性ポリイミドワニスまたは熱可塑性ポリアミド酸ワニスにビスフェノールF型エポキシ化合物を、表2に記載する重量割合で配合した。また、熱可塑性ポリイミドワニスまたは熱可塑性ポリアミド酸ワニスに、エポキシ化合物として日産化学工業社製TEPIC(登録商標)を、表3に記載する重量割合で配合した。
 得られた組成物をガラス板(JIS R3203)上に塗布し、120℃で20分間加熱した後、200℃で10分間加熱した。
 加熱後の組成物の性状について、加熱後の組成物が完全に硬化してべたつき(タック)が発生しなかったものを○、べたつきが生じたものを×として、表1~3中に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~3に示すように、熱可塑性ポリイミドワニスにエポキシ化合物を配合した場合、エポキシ化合物の配合量によらず、加熱後にタックが生じた。一方、熱可塑性ポリアミド酸ワニスにエポキシ化合物を配合した場合は、エポキシ化合物の配合量を適切な値とすることにより、完全に硬化してタックは生じなかった。熱可塑性ポリアミド酸ワニスにエポキシ化合物を配合して硬化させることによって得られた樹脂層(熱可塑性ポリイミド層)は、熱可塑性ポリイミドとエポキシ樹脂を含有していた。
 なお、熱可塑性ポリアミド酸ワニスを硬化(ポリイミド化)させるためには、通常約300℃に加熱する必要があるが、本参考例においては、添加したエポキシ樹脂がポリアミド酸と反応したことにより、200℃程度の低い温度で硬化反応が進んだと考えられる。
 タックが発生しなかった熱可塑性ポリアミド酸ワニスにビスフェノールA型エポキシ化合物を10~85wt%配合した組成物、熱可塑性ポリアミド酸ワニスにビスフェノールF型エポキシ化合物を10~85wt%配合した組成物及び熱可塑性ポリアミド酸ワニスにTEPICを10wt%配合した組成物の硬化物をニードルでスクラッチし、ガラス板から剥離するかどうかを調べた。また、熱可塑性ポリイミドワニスをガラス板上に塗布し、200℃で30分間加熱して硬化させることにより、熱可塑性ポリイミド層を形成した。同様に、熱可塑性ポリアミド酸ワニスをガラス板上に塗布し300℃で60分間加熱して硬化させることにより、熱可塑性ポリイミド層を形成した。これらの熱可塑性ポリイミド層もニードルでスクラッチし、ガラス板から剥離するかを調べた。
 その結果、熱可塑性ポリイミドワニスのみから得られた熱可塑性ポリイミド層及び熱可塑性ポリアミド酸ワニスのみから得られた熱可塑性ポリイミド層はいずれもガラス板から剥離したが、熱可塑性ポリアミド酸ワニスにエポキシ化合物を配向した組成物から得られた、エポキシ樹脂を含む熱可塑性ポリイミド層はガラス板から剥離しなかった。この結果は、エポキシ樹脂を含む熱可塑性ポリイミド層は、エポキシ樹脂を含有しない熱可塑性ポリイミド層と比べてガラスに対する接着強度が高いことを示している。このことから、熱可塑性ポリイミド層(融着層)がエポキシ樹脂を含有することにより、アルミ等の金属からなる起歪体と融着層の接着強度も向上することが推察される。
 参考例2
 熱可塑性ポリアミド酸ワニスまたは熱可塑性ポリイミドワニスに、フィラーとして酸化アルミニウム微粒子(線膨張係数7.2ppm/℃)、ルチル型酸化チタン微粒子(線膨張係数7.2ppm/℃)、窒化ホウ素微粒子(線膨張係数0.57ppm/℃)、酸化ケイ素微粒子(線膨張係数0.55ppm/℃)、ポリエーテルエーテルケトン(PEEK)微粒子(線膨張係数45ppm/℃)を配合した材料を硬化させて得られるフィラー含有熱可塑性ポリイミド層の線膨張係数を計算した。なお、フィラーを含有しない熱可塑性ポリイミド層の線膨張係数は40ppm/℃とした。線膨張係数の計算結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、無機材料である酸化アルミニウム、酸化チタン、窒化ホウ素、酸化ケイ素の微粒子をフィラーとして含有する熱可塑性ポリイミド層は、フィラーの配合量によって線膨張係数を広範な範囲で調整することができる。例えば、熱可塑性ポリイミド層が、酸化アルミニウム微粒子を約40~50wt%、酸化チタン微粒子を約40~50wt%、窒化ホウ素微粒子を約30~40wt%または酸化ケイ素微粒子を約30~40wt%含む場合、熱可塑性ポリイミド層の線膨張係数は約25ppm/℃となる。このような熱可塑性ポリイミド層からなる融着層は、線膨張係数25ppm/℃であるアルミ合金A2024を起歪体の材料として用いる場合に好適である。融着層と起歪体の線膨張係数がほぼ等しいことにより、融着等の熱プロセスによる残留応力の発生が抑制されるためである。このように、熱可塑性ポリイミド層が無機微粒子を含有することは、起歪体の線膨張係数に合わせて融着層の線膨張係数を調整できるという効果がある。一方、熱可塑性ポリイミド層がPEEK微粒子を含む場合は、表4に示すように線膨張係数の調整可能範囲が狭いため、起歪体の線膨張係数に合わせて融着層の線膨張係数を調整することが難しい傾向がある。
 本発明の特徴を維持する限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。
 本発明のひずみゲージによれば、クリープ現象の発生を抑制し得る荷重センサを、効率よく製造することができる。したがって、荷重センサやこれを用いた計測機器の高精度化及び低価格化に貢献することができる。
1 基材、2 抵抗体、3 カバー、4 融着層、10 ひずみゲージ、20 起歪体、100 荷重センサ
 

Claims (15)

  1.  樹脂材料で形成された基材と、
     前記基材上に設けられた抵抗体と、
     前記基材の、前記抵抗体が設けられた面とは反対側の面に設けられた融着層とを有し、
     前記融着層が熱可塑性ポリイミド層であるひずみゲージ。
  2.  前記抵抗体を覆う保護カバーを更に備える請求項1に記載のひずみゲージ。
  3.  前記融着層の厚さが3μm~12μmである請求項1又は2に記載のひずみゲージ。
  4.  前記樹脂材料はポリイミドである請求項1~3のいずれか一項に記載のひずみゲージ。
  5.  前記熱可塑性ポリイミド層が、熱可塑性ポリイミド以外の樹脂及び/又はフィラーを含有する請求項1~4のいずれか一項に記載のひずみゲージ。
  6.  前記熱可塑性ポリイミド層が、前記熱可塑性ポリイミド以外の樹脂を含有し、
     前記熱可塑性ポリイミド以外の樹脂が、エポキシ樹脂である請求項5に記載のひずみゲージ。
  7.  前記熱可塑性ポリイミド層が、前記熱可塑性ポリイミド以外の樹脂を含有し、
     前記熱可塑性ポリイミド以外の樹脂が、フェノール樹脂である請求項5に記載のひずみゲージ。
  8.  前記熱可塑性ポリイミド層が、前記熱可塑性ポリイミド以外の樹脂を含有し、
     前記熱可塑性ポリイミド以外の樹脂が、エンジニアリングプラスチックである請求項5に記載のひずみゲージ。
  9.  前記熱可塑性ポリイミド層が、前記フィラーを含有し、
     前記フィラーが無機微粒子である請求項5~8のいずれか1項に記載のひずみゲージ。
  10.  起歪体と、
     前記起歪体に取り付けられた請求項1~9のいずれか一項に記載のひずみゲージとを備える荷重センサ。
  11.  前記ひずみゲージは前記融着層を介して前記起歪体に取り付けられており、前記起歪体の表面上の、前記融着層が接触された部分には粗面処理が施されている請求項10に記載の荷重センサ。
  12.  前記粗面処理が施された部分の表面粗さが3~7μmである請求項11に記載の荷重センサ。
  13.  前記融着層の厚さが、前記粗面処理が施された部分の表面粗さ以上12μm以下である請求項11又は12に記載の荷重センサ。
  14.  樹脂材料で形成された基材の一面上に複数の抵抗体を形成することと、
     前記基材の他面上に熱可塑性ポリイミド層である融着層を形成することと、
     前記基材を切断して、切断された前記基材の一面上に抵抗体を有し、他面上に前記融着層を有する複数のひずみゲージを得ることとを含むひずみゲージの製造方法。
  15.  前記融着層を形成することが、エポキシ樹脂を配合した熱可塑性ポリアミド酸ワニスを前記基材の他面上に塗布し、焼成することを含む請求項14に記載のひずみゲージの製造方法。
PCT/JP2016/078622 2015-09-29 2016-09-28 ひずみゲージ、荷重センサ、及びひずみゲージの製造方法 WO2017057459A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680056644.XA CN108139196A (zh) 2015-09-29 2016-09-28 应变仪、负载传感器以及应变仪的制造方法
EP16851630.0A EP3358292B1 (en) 2015-09-29 2016-09-28 Strain gauge, load sensor, and method for manufacturing strain gauge
US15/938,161 US11131590B2 (en) 2015-09-29 2018-03-28 Strain gauge, load sensor, and method for manufacturing strain gauge

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-191990 2015-09-29
JP2015191990 2015-09-29
JP2016-169658 2016-08-31
JP2016169658A JP2017067764A (ja) 2015-09-29 2016-08-31 ひずみゲージ、荷重センサ、及びひずみゲージの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/938,161 Continuation US11131590B2 (en) 2015-09-29 2018-03-28 Strain gauge, load sensor, and method for manufacturing strain gauge

Publications (1)

Publication Number Publication Date
WO2017057459A1 true WO2017057459A1 (ja) 2017-04-06

Family

ID=58427714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078622 WO2017057459A1 (ja) 2015-09-29 2016-09-28 ひずみゲージ、荷重センサ、及びひずみゲージの製造方法

Country Status (1)

Country Link
WO (1) WO2017057459A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112236658A (zh) * 2018-06-14 2021-01-15 新东工业株式会社 应变体、应变体的制造方法、以及物理量测量传感器
WO2023074715A1 (ja) * 2021-10-29 2023-05-04 ミネベアミツミ株式会社 歪みゲージモジュール
WO2023181688A1 (ja) * 2022-03-25 2023-09-28 Koa株式会社 荷重センサ素子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06218880A (ja) * 1992-12-04 1994-08-09 Mitsui Toatsu Chem Inc 接着性絶縁テープおよびそれを用いた半導体装置
JPH07166148A (ja) * 1993-12-17 1995-06-27 Mitsui Toatsu Chem Inc 可溶性ポリイミドを用いた接着方法
JP2651556B2 (ja) * 1992-12-11 1997-09-10 株式会社 寺岡精工 ロードセル及びその製造方法
JPH11302809A (ja) * 1998-04-16 1999-11-02 Mitsui Chem Inc 銅薄膜基板及びプリント配線板の製造法
JP2005214970A (ja) * 2004-01-27 2005-08-11 Mettler Toledo Gmbh 電気機械変換器のための防湿技術
JP2010151571A (ja) * 2008-12-25 2010-07-08 Kyowa Electron Instr Co Ltd ひずみゲージ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06218880A (ja) * 1992-12-04 1994-08-09 Mitsui Toatsu Chem Inc 接着性絶縁テープおよびそれを用いた半導体装置
JP2651556B2 (ja) * 1992-12-11 1997-09-10 株式会社 寺岡精工 ロードセル及びその製造方法
JPH07166148A (ja) * 1993-12-17 1995-06-27 Mitsui Toatsu Chem Inc 可溶性ポリイミドを用いた接着方法
JPH11302809A (ja) * 1998-04-16 1999-11-02 Mitsui Chem Inc 銅薄膜基板及びプリント配線板の製造法
JP2005214970A (ja) * 2004-01-27 2005-08-11 Mettler Toledo Gmbh 電気機械変換器のための防湿技術
JP2010151571A (ja) * 2008-12-25 2010-07-08 Kyowa Electron Instr Co Ltd ひずみゲージ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3358292A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112236658A (zh) * 2018-06-14 2021-01-15 新东工业株式会社 应变体、应变体的制造方法、以及物理量测量传感器
US11733113B2 (en) 2018-06-14 2023-08-22 Sintokogio, Ltd. Strain element, strain element manufacturing method, and physical quantity measuring sensor
WO2023074715A1 (ja) * 2021-10-29 2023-05-04 ミネベアミツミ株式会社 歪みゲージモジュール
WO2023181688A1 (ja) * 2022-03-25 2023-09-28 Koa株式会社 荷重センサ素子

Similar Documents

Publication Publication Date Title
JP2019164161A (ja) ひずみゲージ、荷重センサ、及び荷重センサの製造方法
WO2017057459A1 (ja) ひずみゲージ、荷重センサ、及びひずみゲージの製造方法
EP2461644B1 (en) Flexible heater and method for manufacturing the same
TWI639167B (zh) Flat angle wire, manufacturing method thereof and electric appliance
TWI462205B (zh) 接合體及其製造方法
US20140049358A1 (en) Chip resistor and method of manufacturing the same
US9355943B2 (en) Manufacturing and evaluation method of a semiconductor device
JP6996595B2 (ja) 多層配線基板
JP2603543B2 (ja) 電子部品用接着テープ
US20140224532A1 (en) Thin-film wiring substrate and substrate for probe card
JP2015032646A (ja) 成形体の製造方法
WO2009122607A1 (ja) 半導体装置及びその製造方法
JP5424984B2 (ja) 半導体モジュールの製造方法
JP2006272886A (ja) フレキシブル金属積層体およびフレキシブルプリント基板
US9620267B2 (en) Resistor and manufacturing method for same
JP2021193725A (ja) 電子部品保護シート
CN1837317B (zh) 半导体装置、粘合剂和双面粘合膜
JP2005330300A (ja) 熱硬化性樹脂組成物、フィルム状接着剤及び半導体パッケージ
CN106910582A (zh) 片式电阻器及其制造方法
US20200047436A1 (en) Filler-resin composite, method for producing filler-resin composite, filler-resin composite layer, and method for using filler-resin composite
CN109661719B (zh) 半导体封装回流工序用聚酰亚胺薄膜及其制备方法
JP2022500845A (ja) 半導体パッケージ用ポリイミドフィルム
JP4866561B2 (ja) フレキシブル金属積層体およびフレキシブルプリント基板
JP7306571B2 (ja) 温度センサおよび温度センサアレイ
WO2022186372A1 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016851630

Country of ref document: EP