WO2017056324A1 - 極端紫外光生成システム - Google Patents

極端紫外光生成システム Download PDF

Info

Publication number
WO2017056324A1
WO2017056324A1 PCT/JP2015/078110 JP2015078110W WO2017056324A1 WO 2017056324 A1 WO2017056324 A1 WO 2017056324A1 JP 2015078110 W JP2015078110 W JP 2015078110W WO 2017056324 A1 WO2017056324 A1 WO 2017056324A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet light
extreme ultraviolet
laser beam
actuator
burst
Prior art date
Application number
PCT/JP2015/078110
Other languages
English (en)
French (fr)
Inventor
隆之 薮
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to PCT/JP2015/078110 priority Critical patent/WO2017056324A1/ja
Priority to JP2017542664A priority patent/JP6649958B2/ja
Publication of WO2017056324A1 publication Critical patent/WO2017056324A1/ja
Priority to US15/912,628 priority patent/US10085334B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • H05G2/006X-ray radiation generated from plasma being produced from a liquid or gas details of the ejection system, e.g. constructional details of the nozzle

Definitions

  • This disclosure relates to an extreme ultraviolet light generation system.
  • an exposure apparatus that combines an apparatus for generating extreme ultraviolet (EUV) light having a wavelength of about 13 nm and a reduced projection reflection optical system is expected.
  • EUV light generation apparatus an LPP (Laser Produced Plasma) type apparatus using plasma generated by irradiating a target material with laser light, and a DPP (Discharge Produced Plasma) using plasma generated by discharge are used.
  • LPP Laser Produced Plasma
  • DPP discharge Produced Plasma
  • An extreme ultraviolet light generation system is an extreme ultraviolet light generation system that repeatedly outputs extreme ultraviolet light emitted from a target that has been turned into a plasma upon irradiation with pulsed laser light.
  • a target supply unit that sequentially supplies targets to a set plasma generation region, a laser device that outputs pulsed laser light, a laser light condensing system that condenses the pulsed laser light output from the laser device, and a laser light collecting device
  • An actuator connected to the optical system to adjust the focusing position of the pulsed laser light, an extreme ultraviolet light generation controller that controls the extreme ultraviolet light generation system to output extreme ultraviolet light based on the burst pattern, and based on the burst pattern Targets supplied to the plasma generation region that occur during the output of extreme ultraviolet light
  • the actuator may be an actuator controller for feed-forward control so as to compensate for the deviation of the focusing position of the pulsed laser light to and.
  • FIG. 1 is a diagram showing a schematic configuration of an exemplary LLP type extreme ultraviolet light generation system.
  • FIG. 2 is a diagram showing each period constituting the burst operation.
  • FIG. 3 is a partial cross-sectional view illustrating a schematic configuration of an extreme ultraviolet light generation system according to a comparative example.
  • FIG. 4 is an enlarged view showing a part of the configuration for condensing the pulse laser beam in the extreme ultraviolet light generation system according to the comparative example.
  • FIGS. 7A and 7B are diagrams illustrating a relationship between a deviation of a focused position of pulsed laser light generated during a burst operation according to a comparative example and energy of EUV light.
  • FIGS. FIG. 6 is a partial cross-sectional view illustrating a schematic configuration of the extreme ultraviolet light generation system according to the first embodiment.
  • FIG. 7 is an enlarged view showing a part of the configuration for condensing the pulse laser beam in the extreme ultraviolet light generation system according to the first embodiment.
  • FIGS. 8A to 8E are diagrams showing the relationship between the energy of EUV light during the burst operation, the amount of deviation of the laser focusing position in the Y direction, and the control amount of each actuator in the first embodiment.
  • FIG. 9 is a partial cross-sectional view illustrating a schematic configuration of the extreme ultraviolet light generation system according to the second and third embodiments.
  • FIGS. 9A to 9E are diagrams showing the relationship between the energy of EUV light during burst operation, the amount of deviation of the laser focusing position in the Y direction, and the control amount of each actuator in the second embodiment.
  • FIG. 11 is a diagram illustrating a calculation example for obtaining the center of gravity of the plasma.
  • FIGS. 8A to 8E are diagrams showing creation of a control pattern in a case where it becomes impossible to detect the energy of EUV light during a burst period in the first modification of the second embodiment. It is a figure shown about the case where an imaging device is employ
  • FIG. FIGS. 8A to 8E are diagrams showing the relationship between the energy of EUV light during the burst operation, the amount of deviation of the laser focusing position in the Y direction, and the control amount of each actuator in the third embodiment.
  • Embodiment 2 5.1 Configuration of Second Embodiment 5.2 Operation of Second Embodiment 5.3 Action and Effect of Second Embodiment 5.4 Calculation Example of Plasma Position (Plasma Center of Gravity) Modification 1 of Embodiment 2 6.1 Example of Control Pattern Creation in Modification 1 of Embodiment 2 6.2 Operation of Modification 1 of Embodiment 2 6.3 Action and Effect of Modification 1 of Embodiment 2 Variation 2 of Embodiment 2 7.1 Configuration of Condensing Position Detection Unit in Modification 2 of Embodiment 2 7.2 Operation of Modification 2 of Embodiment 2 Embodiment 3 8.1 Configuration of Embodiment 3 8.2 Operation of Embodiment 3
  • an embodiment of the present disclosure will be described in detail with reference to the drawings.
  • extreme ultraviolet light is omitted and also referred to as “EUV light”.
  • FIG. 1 schematically shows a configuration of an exemplary LPP type EUV light generation system.
  • the EUV light generation apparatus 1 shown in FIG. 1 may be used together with at least one laser apparatus 3.
  • a system including the EUV light generation apparatus 1 and the laser apparatus 3 is referred to as an EUV light generation system 11.
  • the EUV light generation apparatus 1 may include a chamber 2 and a target supply unit 26.
  • the chamber 2 may be sealable.
  • the target supply unit 26 may be attached so as to penetrate the wall of the chamber 2, for example.
  • the material of the target 27 supplied from the target supply unit 26 may include, but is not limited to, tin, terbium, gadolinium, lithium, xenon, or a combination of any two or more thereof.
  • the wall of the chamber 2 may be provided with at least one through hole.
  • a window 21 may be provided in the through hole, and the pulse laser beam 32 output from the laser device 3 may pass through the window 21.
  • an EUV collector mirror 23 having a spheroidal reflecting surface may be disposed.
  • the EUV collector mirror 23 may have first and second focal points.
  • On the surface of the EUV collector mirror 23, for example, a multilayer reflective film in which molybdenum and silicon are alternately laminated may be formed.
  • the EUV collector mirror 23 is preferably arranged such that, for example, the first focal point thereof is located in the plasma generation region 25 and the second focal point thereof is located at the intermediate focal point (IF) 292.
  • a through hole 24 may be provided at the center of the EUV collector mirror 23, and the pulse laser beam 33 may pass through the through hole 24.
  • the EUV light generation apparatus 1 may include an EUV light generation controller 5, a target sensor 4, and the like.
  • the target sensor 4 may have an imaging function and may be configured to detect the presence, trajectory, position, speed, and the like of the target 27.
  • the EUV light generation apparatus 1 may include a connection portion 29 that allows communication between the inside of the chamber 2 and the inside of the exposure apparatus 6.
  • a wall 291 in which an aperture 293 is formed may be provided inside the connection portion 29.
  • the wall 291 may be arranged such that its aperture 293 is located at the second focal position of the EUV collector mirror 23.
  • the EUV light generation apparatus 1 may include a laser beam traveling direction controller 34, a laser beam collector mirror 22, a target collector 28 for collecting the target 27, and the like.
  • the laser beam traveling direction controller 34 may include an optical element for defining the traveling direction of the laser beam and an actuator for adjusting the position, posture, and the like of the optical element.
  • the pulsed laser beam 31 output from the laser device 3 passes through the window 21 as the pulsed laser beam 32 through the laser beam traveling direction controller 34 and enters the chamber 2. Also good.
  • the pulse laser beam 32 may travel through the chamber 2 along at least one laser beam path, be reflected by the laser beam collector mirror 22, and be irradiated to the at least one target 27 as the pulse laser beam 33.
  • the target supply unit 26 may be configured to output the target 27 toward the plasma generation region 25 inside the chamber 2.
  • the target 27 may be irradiated with at least one pulse included in the pulse laser beam 33.
  • the target 27 irradiated with the pulse laser beam is turned into plasma, and plasma radiation 251 can be emitted from the plasma.
  • the EUV light 252 included in the plasma radiation light 251 may be selectively reflected by the EUV collector mirror 23.
  • the EUV light 252 reflected by the EUV collector mirror 23 may be condensed at the intermediate condensing point 292 and output to the exposure apparatus 6.
  • a single target 27 may be irradiated with a plurality of pulses included in the pulse laser beam 33.
  • the EUV light generation controller 5 may be configured to control the entire EUV light generation system 11.
  • the EUV light generation controller 5 may be configured to process image data of the target 27 imaged by the target sensor 4. Further, the EUV light generation controller 5 may be configured to control the timing at which the target 27 is output, the output direction of the target 27, and the like, for example. Further, the EUV light generation controller 5 may be configured to control, for example, the oscillation timing of the laser device 3, the traveling direction of the pulse laser light 32, the focusing position of the pulse laser light 33, and the like.
  • the various controls described above are merely examples, and other controls may be added as necessary.
  • FIG. 2 is a diagram showing each period constituting the burst operation, where the vertical axis indicates the magnitude of EUV light energy and the horizontal axis indicates the elapsed time.
  • energy of EUV light is omitted and also referred to as “EUV energy”.
  • the EUV light generation system may output EUV light by a burst operation.
  • the burst operation is an operation in which a burst period in which EUV light is output at a constant repetition frequency for a certain period and a pause period in which EUV light is not output for a predetermined period are repeated.
  • pulsed laser light is output.
  • the output of the pulse laser beam is stopped or the propagation of the pulse laser beam to the plasma generation region is suppressed.
  • Burst pattern A burst pattern is defined by data including one or more of the following.
  • Target EUV light energy during burst period EUV light output repetition frequency during burst period, number of EUV light output pulses or burst period length during burst period, number of burst periods, burst pause period length.
  • the burst pattern is instructed by the exposure apparatus.
  • Plasma generation area An area in which generation of plasma for outputting EUV light is started. In order to start plasma generation in the plasma generation region, it is necessary to supply the target to the plasma generation region and to focus the pulsed laser light on the plasma generation region at the timing when the target reaches the plasma generation region. is there. In the following description, it is assumed that the target is supplied to the plasma generation region at the timing when the pulsed laser beam is irradiated to the plasma generation region.
  • FIG. 3 shows an EUV light generation system of a comparative example. Also in this comparative example, the same reference numerals are given to the same constituent elements as those in the embodiment, and a duplicate description is omitted.
  • the EUV light generation system 11h may include a chamber 2 that internally generates EUV light.
  • a laser beam condensing unit 22h, an EUV condensing mirror 23, and a target collector 28 may be provided inside the chamber 2.
  • the chamber 2 may include a target supply unit 26 for introducing the target 27.
  • the target supply unit 26 may be provided so as to penetrate the chamber 2.
  • a melted target material may be stored in the target supply unit 26, a melted target material may be stored.
  • the pressure of the gas supplied from the pressurized gas source 61 may be adjusted through the pressure regulator 62 and provided to the target supply unit 26. You may comprise so that the target 27 may be discharge
  • the chamber 2 may include a target sensor 4 that detects the timing at which the targets 27 sequentially supplied from the target supply unit 26 pass a predetermined position.
  • the target sensor 4 may include an illumination unit 40 and a light receiving unit 45.
  • the illumination unit 40 may include a CW laser light source 41 and an illumination optical system 42.
  • the illumination unit 40 may be configured and arranged to output the illumination light Sk to a predetermined position R on the target trajectory.
  • the target trajectory may be an ideal travel path of the target 27 output from the target supply unit 26 or a travel path of the target 27 according to the design of the target supply unit 26.
  • a target collector 28 may be provided on the extension line of the target track.
  • the light receiving unit 45 may include a light receiving optical system 46 and an optical sensor 47, and may be configured and arranged to receive illumination light Sk output from the illumination unit 40 and passing through a predetermined position R on the target trajectory. .
  • the illumination light Sk output from the CW laser light source 41 and transmitted through the illumination optical system 42 and the window 21a provided on the wall surface of the chamber 2 propagates through the predetermined position R on the target trajectory.
  • the illumination light Sk having passed through the predetermined position R may pass through the window 21b and the light receiving optical system 46 provided on the wall surface of the chamber 2 facing the window 21a to reach the optical sensor 47 and be received.
  • a laser apparatus 3 for generating EUV light by converting the target 27 into plasma may be provided outside the chamber 2.
  • a laser beam traveling direction controller 34h that propagates the pulse laser beam 31 output from the laser device 3 and determines the traveling direction thereof may be provided outside the chamber 2.
  • the laser beam condensing unit 22h provided in the chamber 2 may condense the pulsed laser beam 32 output from the laser beam traveling direction controller 34h.
  • the laser beam condensing system 70 h may include a laser beam traveling direction controller 34 h disposed outside the chamber 2 and a laser beam condensing unit 22 h disposed inside the chamber 2.
  • the pulse laser beam 31 output from the laser device 3 is incident on the laser beam traveling direction controller 34h, passes through the window 21 disposed on the wall surface of the chamber 2, and passes through the laser beam focusing unit 22h, thereby generating a plasma generation region.
  • the light may be condensed toward 25.
  • the target supply unit 26 may output the target 27 toward the plasma generation region 25 according to a command from the EUV light generation controller 5 h.
  • the target 27 may be a droplet.
  • This droplet-like target is also called a droplet.
  • the light receiving unit 45 may be configured to reduce the amount of light received by the light receiving unit 45 when the target 27 passes through the predetermined position R and blocks a part of the illumination light Sk.
  • the EUV light generation controller 5h may output a laser oscillation trigger signal Tr in which a predetermined delay time is added to the timing when the amount of received light Sk of the illumination light Sk by the light receiving unit 45 becomes equal to or less than a threshold value.
  • This delay time depends on the speed of the target 27, the distance from the predetermined position R to the plasma generation region 25, and the input of the laser oscillation trigger signal Tr to the laser device 3. It may be determined based on the time until the region 25 is reached.
  • the laser device 3 to which the laser oscillation trigger signal Tr is input may output the pulse laser beam 31.
  • the pulse laser beam 31 may be focused and applied to the target 27 supplied to the plasma generation region 25 via the laser beam traveling direction controller 34h and the laser beam focusing unit 22h.
  • the target 27 that has been irradiated with the pulse laser beam 33 can be turned into plasma and emit EUV light.
  • FIG. 4 is an enlarged view showing the configuration of the laser beam condensing unit.
  • the optical element provided in the laser beam traveling direction controller 34h and the laser beam focusing unit 22h constituting the laser beam focusing system 70h can be deformed or displaced by the heat generated by the irradiation of the pulsed laser beam 32.
  • the laser beam condensing unit 22h may be configured as shown in FIG. That is, the laser beam condensing unit 22h may include a concave mirror 222 that condenses the pulse laser beam 32, and the concave mirror 222 may be an off-axis parabolic mirror.
  • the laser beam condensing unit 22h may further include a convex mirror 221 at a position facing the concave mirror 222, and the convex mirror 221 may be an elliptical mirror.
  • the pulse laser beam 33 may be condensed toward the plasma generation region 25 with a high NA.
  • the laser beam condensing unit 22h may include a plate 223 on which a convex mirror 221 and a concave mirror 222 are arranged. The plate 223 may be held in the chamber 2.
  • the laser beam traveling direction controller 34h may include a first reflection mirror 341, an intermediate reflection mirror 342, and a second reflection mirror 343.
  • the pulsed laser light 31 output from the laser device 3 may pass through the first, intermediate, and second reflecting mirrors 341, 342, and 343, the convex mirror 221, and the concave mirror 222 in this order.
  • Plasma may be generated continuously by irradiating each of the targets 27 continuously supplied to the plasma generation region 25 with the pulsed laser light 33 one after another.
  • Plasma radiation 251 including EUV light 252 can be continuously emitted from continuously generated plasma.
  • the plasma radiation 251 that has passed through the through hole 24 of the EUV collector mirror 23 may heat the concave mirror 222 continuously.
  • the concave mirror 222 may be configured to have a high reflectance with respect to the wavelength of the pulse laser beam 32.
  • the concave mirror 222 may have a low reflectance with respect to light other than the wavelength of the pulsed laser light 32 included in the plasma radiation light 251, and can be heated by absorbing these lights.
  • the condensing position of the pulsed laser light 33 condensed through the reflecting surface may deviate from the plasma generation region 25.
  • the condensing position of the pulse laser beam 33 may gradually move away from the target 27 supplied to the plasma generation region 25. For this reason, the energy of the EUV light 252 emitted by the target 27 that has been irradiated with the pulsed laser light 33 may be reduced. This phenomenon can be prominent during burst operation.
  • 5A and 5B are diagrams showing the relationship between the deviation of the focused position of the pulse laser beam with respect to the target supplied to the plasma generation region and the EUV energy emitted with the deviation.
  • the vertical axis represents EUV energy
  • the horizontal axis represents time.
  • the vertical axis represents the amount of deviation between the target supplied to the plasma generation region and the focused position of the pulse laser beam
  • the horizontal axis represents time.
  • the target 27 supplied to the plasma generation region 25 is appropriately irradiated with the pulsed laser light 33.
  • Predetermined EUV energy can be output.
  • the deviation of the condensing position of the pulsed laser light 33 with respect to the supplied target 27 increases, and the EUV energy can be lowered accordingly.
  • the EUV energy can be greatly reduced.
  • the energy of the EUV light at the beginning of the second burst period that is performed with the pause period in between may be smaller than the energy of the EUV light at the beginning of the first burst period.
  • the temperature of the heated concave mirror 222 and the like decreases, so that there is a deviation between the target supplied to the plasma generation region 25 and the focused position of the pulse laser beam before the next burst period starts. You can get closer to the original state.
  • the EUV energy at the head of the next burst period may be lower than the EUV energy at the head of the previous burst period.
  • the deviation of the condensing position may be a deviation of the condensing position of the pulse laser beam with respect to the position of the target supplied to a predetermined plasma generation region. Further, the deviation of the condensing position may be a deviation of the condensing position of the pulse laser beam with respect to a predetermined position of the plasma generation region. Further, the deviation of the condensing position may be a deviation of the generation position of EUV light radiated from the target that has been irradiated with the pulsed laser light with respect to a predetermined position of the plasma generation region.
  • the position of the target may be the position of the center of gravity of the target.
  • the position of the plasma generation region may be the center position of the plasma generation region.
  • the holding portion of the optical elements is heated by the plasma radiation 251 or the scattered light of the pulsed laser light 32 as in the case of the optical elements, It can be deformed or displaced.
  • the optical element and its holding part can be heated and deformed or displaced.
  • the displacement may be a change in posture such as position or inclination.
  • the optical elements constituting the laser beam condensing system 70h and the holding parts thereof are heated and deformed or displaced, the optical path for propagating the pulse laser beam 31 can deviate from an appropriate optical path.
  • FIG. 6 is a partial cross-sectional view illustrating a schematic configuration of an EUV light generation system according to Embodiment 1.
  • FIG. 7 is an enlarged view showing the configuration of the laser beam condensing unit according to the first embodiment.
  • the EUV light generation system 11a of the first embodiment may be obtained by changing the configurations of the EUV light generation controller 5h and the laser light focusing system 70h in the EUV light generation system 11h of the comparative example.
  • Other configurations of the EUV light generation system 11a may be the same as those of the EUV light generation system 11h of the comparative example.
  • the EUV light generation system 11a may be an EUV light generation system that repeatedly outputs EUV light emitted from a target that has been turned into plasma upon irradiation with pulsed laser light.
  • the EUV light generation system 11 a includes a chamber 2, a target supply unit 26 that sequentially supplies a target 27 to a plasma generation region 25 set in the chamber 2, and a laser device 3 that outputs a pulsed laser beam 31. Good.
  • the EUV light generation system 11a includes a laser light condensing system 70a that condenses the output pulse laser light 31, and each of the laser light condensing systems 70a that is connected to the laser light condensing system 70a to adjust the condensing position of the pulse laser light 33
  • Actuators 345, 346, and 225 may be provided.
  • the first actuator 345, the second actuator 346, and the actuator 225 are collectively referred to as actuators 345, 346, and 225.
  • the first actuator 345 and the second actuator 346 are also referred to as mirror actuators.
  • the actuator 225 is also referred to as a unit actuator.
  • the EUV light generation system 11a may include an EUV light generation controller 5a that controls the EUV light generation system 11a based on a burst pattern.
  • the EUV light generation system 11a may include an actuator controller 65 that performs feedforward control of each actuator so as to compensate for the deviation of the focused position of the pulsed laser light 33 with respect to the plasma generation region 25 that occurs during the burst operation. .
  • the deviation of the condensing position may be a deviation of the condensing position of the pulsed laser light 33 with respect to the target supplied to the plasma generation region 25.
  • the actuator controller 65 may previously store a control pattern for compensating for the deviation in the storage unit 66 in association with the burst pattern.
  • the storage unit 66 may be included in the actuator controller 65.
  • the actuator controller 65 performs feedforward control of the actuators so as to compensate for the shift using the control pattern associated with the burst pattern. May be.
  • the laser beam condensing system 70a may include a laser beam traveling direction controller 34a including a reflection mirror for defining the traveling direction of the pulsed laser beam 32.
  • the laser beam condensing system 70a may include a laser beam condensing unit 22a including a reflection mirror for condensing the pulsed laser beam 32.
  • the laser beam traveling direction controller 34a may be disposed on the upstream side of the laser beam focusing unit 22a.
  • the actuator 225 may be connected to the laser beam focusing unit 22a to adjust the laser beam focusing position.
  • the first and second actuators 345 and 346 may be connected to the laser beam traveling direction controller 34a to adjust the focusing position of the pulsed laser beam.
  • the response speeds of the first and second actuators 345 and 346 that are mirror actuators may be higher than the response speed of the actuator 225 that is a unit actuator.
  • the actuator 225 may hold the plate 223 of the laser beam condensing unit 22a so as to be movable.
  • the convex mirror 221 and the concave mirror 222 of the laser beam condensing unit 22a may be configured to move in parallel with the X, Y, and Z axes in FIG. 7, for example.
  • the actuator 225 may be held in the chamber.
  • the first and second actuators 345 and 346 may be connected to the first and second reflection mirrors 341 and 343 of the laser beam traveling direction controller 34a, respectively.
  • the first and second actuators 345 and 346 may be driven to adjust the positions and / or inclinations of the reflecting surfaces of the first and second reflecting mirrors 341 and 343.
  • Both the first and second reflection mirrors 341 and 343 may be planar reflection mirrors.
  • the laser beam traveling direction controller 34a may include an intermediate reflecting mirror 342 for changing the direction of the optical path in the optical path passing through the first and second reflecting mirrors 341 and 343.
  • the first and second actuators 345 and 346 individually adjust the inclinations of the first and second reflecting mirrors 341 and 343 to independently move the condensing position of the pulse laser beam 33 in different directions. It may be a thing.
  • the first and second actuators 345 and 346 collect the pulsed laser light 33 in different directions on a plane (XY plane in FIG. 6) including the trajectory of the target 27 passing through the plasma generation region 25.
  • the light position may be moved.
  • the different directions may be a Y direction and an X direction orthogonal to each other. Note that the Y direction shown in FIG. 6 may be set to be parallel to the trajectory of the target 27 passing through the plasma generation region 25.
  • the actuator 225 changes the position and / or inclination of the plate 223 of the laser light condensing unit 22a, thereby condensing the pulsed laser light reflected by the convex mirror 221 and the concave mirror 222 held by the plate 223. May be moved.
  • the actuator 225 may be an XY- ⁇ stage that moves the position of the plate 223 in the direction of arrow Y in FIG. 7 and can change the inclination of the plate 223 with respect to the XY plane.
  • a piezoelectric element, a rotary actuator, a linear motor, or the like may be used as the actuator that drives the XY- ⁇ stage.
  • the actuator 225 may move the condensing position of the pulse laser beam 33 on the XY plane by moving the plate 223 in parallel with respect to the XY plane in FIG.
  • the XY plane may be a plane including the trajectory of the target 27 passing through the plasma generation region 25.
  • the actuator 225 may move the condensing position of the pulsed laser light 33 in the Y direction by moving the plate 223 in parallel in the Y direction in FIG.
  • the Y direction may be a Y direction parallel to the trajectory of the target 27 passing through the plasma generation region 25.
  • Each of the first and second actuators 345 and 346 connected to the laser beam traveling direction controller 34a and the actuator 225 connected to the laser beam focusing unit 22a may be connected to the actuator controller 65.
  • the storage unit 66 may store a control pattern input from the outside. This control pattern may be associated with a specific burst pattern.
  • An external apparatus such as an exposure apparatus may specify a burst pattern used when generating EUV light to the EUV light generation controller 5a.
  • This burst pattern may be selected from burst patterns stored in the EUV light generation controller 5a. Alternatively, the burst pattern may be input by the operator to the EUV light generation controller 5a.
  • the storage unit 66 included in the actuator controller 65 may store in advance a control pattern for suppressing the deviation of the focused position of the pulsed laser light 33 and a predetermined burst pattern in association with each other.
  • the control amount of the control pattern stored in the storage unit 66 may be obtained by experiment or computer simulation.
  • one burst pattern may be designated by the EUV light generation controller 5a, and one control pattern associated with the burst pattern may be stored in the storage unit 66.
  • a plurality of burst patterns may be designated by the EUV light generation controller 5a, and a control pattern associated with each burst pattern may be stored in the storage unit 66.
  • the EUV light generation controller 5a may notify the actuator controller 65 of the designated burst pattern.
  • the actuator controller 65 may acquire a control pattern associated with the notified burst pattern from the storage unit 66.
  • the actuator controller 65 controls the first and second actuators 345 and 346 and the actuator according to the control amount of the control pattern associated with the burst pattern. 225 may be feedforward controlled.
  • the positions and / or inclinations of the reflecting surfaces of the first and second reflecting mirrors 341 and 343 are adjusted to a predetermined state according to the control amount of the control pattern. Also good.
  • the position and / or inclination of the plate 223 on which the convex mirror 221 and the concave mirror 222 are arranged may be adjusted to a predetermined state according to the control amount of the control pattern.
  • the pulse laser beam 31 output from the laser device 3 may pass through the laser beam focusing system 70a and irradiate the target 27 supplied to the plasma generation region 25.
  • the target 27 may be turned into plasma by this irradiation, and EUV light may be emitted.
  • the actuator controller 65 may perform feedforward control of each actuator 345, 346, 225 according to the control pattern.
  • the actuator controller 65 may perform feedforward control at the time of output of the EUV light at the head during at least each burst period included in the burst operation.
  • the actuator controller 65 may perform feedforward control when EUV light is output a plurality of times from the beginning during each burst period included in the burst operation.
  • Actuator controller 65 may perform feedforward control only at the time of the output of the leading extreme ultraviolet light during each burst period included in the burst operation.
  • the actuator controller 65 may acquire a synchronization signal necessary for performing various feedforward controls as described above from the EUV light generation controller 5a.
  • Embodiment 1 As an example of feedforward control, the focusing position of the pulse laser beam with respect to the target supplied to the plasma generation region 25 during the burst period is indicated by the arrows shown in FIGS. The case where it is gradually shifted in the Y direction will be described with reference to FIGS.
  • the tilt of the first reflecting mirror 341 in the ⁇ 1 direction, the tilt of the second reflecting mirror 343 in the ⁇ 2 direction, and the position of the plate 223 in the Y direction may be set as targets for feedforward control.
  • the EUV energy becomes substantially constant in each burst period after the start of the burst operation.
  • the inclination of ⁇ 1 of the first reflection mirror 341, the inclination of ⁇ 2 of the second reflection mirror 343, and the position of the plate 223 in the Y direction during the burst period are represented in the control pattern. So it is changing.
  • the tilts of the first and second reflecting mirrors 341 and 343 and the position of the plate 223 are greatly changed according to the control pattern corresponding to the output of the first EUV light in the burst period starting next. Yes.
  • the control amount of the control pattern for feedforward control of the first and second actuators 345 and 346 and the actuator 225 may be created in advance in association with the burst pattern.
  • a plurality of different control patterns may be created according to the burst pattern, and a plurality of different control patterns may be stored in the storage unit 66. Further, only one control pattern may be stored in the storage unit 66 according to the burst pattern. The burst pattern may be instructed by the exposure apparatus 6.
  • the control pattern determined in association with the burst pattern may include the following data.
  • the control amount of the control pattern may be the control amount of each actuator associated with the number of repeated outputs of EUV light from the start of the burst operation.
  • the number of EUV light repetition outputs may be the number of pulses of EUV light that is output in pulses.
  • the control amount of the control pattern may be the control amount of each actuator associated with the number of burst periods from the start of the burst operation.
  • the control pattern may be a control amount of each actuator associated with the number of burst periods from the start of the burst operation and the number of EUV light outputs repeated during the burst period.
  • the control pattern may be a control amount of each actuator associated with the passage of time from the start of the burst operation.
  • the direction in which the condensing position is shifted is not limited to the Y direction.
  • the burst pattern is also applied to the control axes other than the rotation axis corresponding to the control of the first and second reflection mirrors 341 and 343 shown in FIG. 6 and the linear axis corresponding to the control of the plate 223.
  • a control pattern associated with can be created and applied during a burst operation.
  • the case where the focused position of the pulse laser beam is shifted in the Y direction will be described as an example.
  • a control pattern may be similarly created and applied during a burst operation.
  • a control pattern is created using the tilt in the ⁇ 1 direction for the first reflecting mirror 341, the tilt in the direction orthogonal to the ⁇ 2 direction for the second reflecting mirror 343, and the position in the X and Y directions for the plate 223 as parameters.
  • the first reflection mirror 341 has a tilt in a direction orthogonal to the ⁇ 1 direction
  • the second reflection mirror 343 has a tilt in the ⁇ 2 direction
  • the plate 223 has a control pattern as parameters in the X direction, the Y direction, and the Z direction. May be created.
  • the EUV light generation controller 5a may allocate a code for each burst pattern instructed from the exposure apparatus 6 and hold it in the storage unit 66 in the manner shown in Table 1.
  • the parameters constituting the burst pattern listed in Table 1 may be as shown below. That is, it may be the target value of EUV energy to be generated, the repetition frequency of the output of EUV light repeated during the burst period, and the length of the burst pause period.
  • the burst pattern corresponding to the uppermost reference numeral 111 in Table 1 is EUV energy target value: E1, burst period repetition frequency: 100 (kHz), and burst pause period length: T1 (ms).
  • the actuator controller 65 may store the control amount of the control pattern corresponding to the sign of the burst pattern in the storage unit 66.
  • a sequence of control amounts associated with the burst pattern may be stored as a control pattern.
  • the control amounts of the tilt ⁇ 1 of the first reflecting mirror 341 and the tilt ⁇ 2 of the second reflecting mirror 343 are associated with “burst No.” and “pulse No. from the head of the burst” as a control pattern. You may memorize as.
  • burst No.” indicates the ordinal number of the burst from the start of the burst operation
  • pulse number from the burst head indicates the pulse ordinal number from the burst head in each burst period.
  • the sequence of control amounts of the control pattern corresponding to the code 111 is the burst number. “1”, pulse No. from the beginning of the burst. Data “ ⁇ 111-1-1” is shown as the control amount of ⁇ 1 at “1”. In addition, burst No. “1”, pulse No. from the beginning of the burst. Data “ ⁇ 111-1-2” is shown as the control amount of ⁇ 1 at “2”. Furthermore, burst No. “1”, pulse No. from the beginning of the burst. Data “ ⁇ 111-1-3” is shown as the control amount of ⁇ 1 at “3”.
  • FIG. 9 is a diagram illustrating a configuration of an EUV light generation system according to the second embodiment.
  • the EUV light generation system 11b according to the second embodiment may further include a condensing position detection unit 55 that detects a shift in the condensing position with respect to the EUV light generation system 11 according to the first embodiment. Further, the EUV light generation system 11b may be configured such that the control pattern is obtained from the deviation of the condensing position detected by the condensing position detection unit 55. Other configurations may be the same as those in the first embodiment.
  • the EUV light generation controller 5b may create a control pattern from the deviation of the condensing position detected by the condensing position detection unit 55. Further, the condensing position detection unit 55 may detect the plasma radiation 251 emitted from the target 27 that has been irradiated with the pulsed laser light 33 as a plasma. The condensing position detection unit 55 may detect the light energy of the plasma radiation light 251.
  • the light energy detected by the condensing position detection unit 55 may be EUV light energy included in the plasma radiation light 251.
  • the condensing position detection unit 55 may be EUV sensors 551 and 552 that detect the magnitude of EUV energy from different positions.
  • the condensing position of the pulsed laser beam 33 may be regarded as a plasma generation position by irradiating the target 27 with the pulsed laser beam 33.
  • the generation position of plasma may be regarded as the generation position of EUV light forming part of the plasma radiation light 251. Therefore, the focal position of the pulse laser beam 33 may be obtained by calculating the generation position of this EUV light based on the detection results of a plurality of EUV sensors. The deviation amount of the focused position of the pulse laser beam 33 may be calculated based on the difference between the focused position of the pulse laser beam 33 and a predetermined position of the plasma generation region 25.
  • the EUV light generation controller 5b creates a control pattern by obtaining the amount of deviation of the focused position of the pulsed laser light 33 based on the EUV energy detected by the EUV sensors 551 and 552 when the EUV light is repeatedly output based on the burst pattern. May be. Further, the EUV light generation controller 5b may store the control pattern created in association with the burst pattern in the storage unit 66 of the actuator controller 65.
  • FIGS. 10A to 10E show that the EUV light generation controller 5b shifts the focused position of the pulsed laser light 33 in the Y direction based on the detection of EUV energy by the EUV sensors 551 and 552. It is a figure which shows a mode that quantity is calculated
  • the EUV light generation system 11b repeatedly emits the EUV light a predetermined number of times by repeatedly irradiating the target 27 with the pulse laser light 33 during the burst period in accordance with a predetermined burst pattern without performing control by the actuator controller 65. Also good.
  • the tilts of the first and second reflecting mirrors 341 and 343 and the position of the plate 223 may be fixed over the entire period during the burst operation.
  • a shutter (not shown) may be closed so that EUV light is not output from the chamber 2 to the exposure apparatus 6.
  • Each of the plurality of EUV sensors 551 and 552 may detect the energy of the EUV light included in the plasma radiation light 251 during the burst period and output the detected value to the EUV light generation controller 5b.
  • the EUV energy detected at this time can gradually decrease during the burst period, as shown in FIG.
  • the EUV light generation controller 5b may calculate the EUV light generation position based on the detection values of the EUV energy by the EUV sensors 551 and 552, and obtain the change of the plasma generation position in the burst period. This calculation method will be described later.
  • the EUV light generation controller 5b determines the condensing position of the pulsed laser light 33 based on the difference between the plasma generation position obtained from the detection value of the EUV energy and the position of the predetermined plasma generation region 25. The amount of deviation may be calculated. This deviation amount may gradually increase during the burst period as shown in FIG. 10B.
  • the positional difference between the plasma generation position and the position of the plasma generation area 25 on the spatial coordinate is the deviation amount of the focused position of the pulse laser beam 33 with respect to the target 27 supplied to the plasma generation area 25. It is good.
  • the EUV light generation controller 5b may obtain a control pattern for performing feedforward control that suppresses the deviation of the condensing position from the amount of deviation of the condensing position thus obtained. That is, the control pattern for adjusting the tilt of the first and second reflecting mirrors 341 and 343 and the position of the plate 223 by the actuators 345, 346, and 225 to suppress the deviation of the condensing position is obtained as an EUV light generation controller. 5b may be obtained.
  • the control pattern obtained by the EUV light generation controller 5b may be stored in the storage unit 66 of the actuator controller 65 in association with a predetermined burst pattern.
  • the actuator controller 65 may perform feedforward control using the control pattern during a burst operation according to the predetermined burst pattern.
  • the feedforward control performed based on such a control pattern may be the same as the control already described with reference to FIGS.
  • the EUV light generation controller 5b may calculate a deviation amount based on detection of EUV energy in order to check whether or not the deviation amount of the condensing position during the burst operation is within an allowable range. When the amount of deviation of the condensing position is within the allowable range, the control pattern may be determined.
  • the control pattern is corrected, and the burst pattern is again converted to the burst pattern using the corrected control pattern.
  • a corresponding EUV light output may be executed.
  • the EUV light output at the time of the burst operation may be detected, and it may be checked again whether the deviation amount of the condensing position is within an allowable range. This operation may be repeated until the deviation amount is within the allowable range to determine the control pattern.
  • the EUV light generation controller 5b can store the control pattern in the storage unit 66 in association with the predetermined burst pattern.
  • the actuator controller 65 may acquire a control pattern associated with the burst pattern from the storage unit 66.
  • the actuator controller 65 may perform feedforward control of the first and second actuators 345 and 346 and the actuator 225 according to the control amount indicated by this control pattern.
  • a shutter (not shown) may be opened.
  • control patterns are created for the controllable axes other than the rotation axes of the first and second reflection mirrors 341 and 343 and the movement axis of the plate 223 in the Y direction by the same method as described above. May be.
  • FIG. 11 is a diagram showing a calculation example for obtaining the center of gravity of plasma emitting EUV light.
  • the measurement values of the EUV sensors may be assumed to be the following values.
  • This measured value may be a value of EUV energy.
  • the angle formed by the X axis and the X ′ axis is ⁇ [rad]
  • the above equations (1) and (2) are converted to obtain the center
  • the YX coordinates may be a coordinate system that serves as a mechanical reference for a stage or the like that adjusts the position of the EUV sensor.
  • FIGS. 12A to 12E show creation of a control pattern when the EUV sensor cannot detect EUV energy due to a decrease in EUV energy during a burst period.
  • FIG. 12A shows a laser oscillation trigger signal during the burst period.
  • B to E in FIG. 12 are diagrams illustrating a state in which a period during which control using a control pattern is possible during a burst operation is extended.
  • the value of EUV energy detected during the burst period may fall below the detection limit of the EUV sensor. possible.
  • the cause is that the condensing position of the pulse laser beam 33 is too shifted from the position of the plasma generation region 25, and the generation of plasma is not generated even if the target 27 is not irradiated to the pulse laser beam 33 or even if it is irradiated. It may be possible that this is sufficient.
  • a control pattern over the entire burst period may be created as follows.
  • the EUV light generation system 11b applies the target 27 supplied to the plasma generation region 25 without control from the start of the burst period.
  • the pulse laser beam 33 may be irradiated one after another. That is, the EUV light generation system 11b may repeatedly irradiate the target 27 supplied continuously without performing control to adjust the condensing position of the pulse laser light 33. The irradiation of the target 27 with the pulse laser beam 33 may be continued until the condensing position of the pulse laser beam 33 gradually shifts from the target 27 and the EUV sensors 551 and 552 cannot detect the EUV energy.
  • the EUV light generation controller 5b may calculate the amount of deviation of the condensing position from the value of the EUV energy detected by the condensing position detector 55 from the start of the burst period until the EUV energy cannot be detected. . Furthermore, the EUV light generation controller 5b may obtain the first control pattern used in the first period G1 from the start of the burst period until the EUV energy cannot be detected, using the calculated shift amount.
  • the target 27 is irradiated with the pulsed laser light 33 while performing feedforward control using the first control pattern. May be repeated.
  • the irradiation of the pulse laser beam 33 to the target 27 may be repeated again without control.
  • the repeated irradiation may be continued until the condensing position of the pulse laser beam 33 is shifted from the target 27 supplied to the plasma generation region 25 and the EUV sensor cannot detect the EUV energy.
  • the amount of deviation of the condensing position may be calculated from the value of the EUV energy detected until the EUV energy cannot be detected. Using the calculated deviation amount, a second control pattern used in the second period G2 after the end of the first period G1 until the EUV energy cannot be detected may be obtained.
  • the irradiation of the pulse laser beam 33 to the target 27 may be repeated again without control.
  • the repeated irradiation may be continued until the condensing position of the pulse laser beam 33 is shifted from the target 27 and the EUV sensor cannot detect the EUV energy.
  • the amount of deviation of the condensing position may be calculated from the value of the EUV energy detected until the EUV energy cannot be detected. Using the calculated deviation amount, a third control pattern used in the third period G3 after the end of the second period G2 until the EUV energy cannot be detected may be obtained.
  • FIG. 13 may be a diagram illustrating a configuration of Modification 2 of Embodiment 2.
  • the modification 2 of this Embodiment 2 may be provided with the condensing position detection part 55b provided with the following structures instead of the condensing position detection part 55 of Embodiment 2.
  • FIG. Other configurations in the second modification may be the same as those in the already described second embodiment.
  • the condensing position detection unit 55b disposed in the chamber 2 may be an imaging device that captures plasma emission of the target 27 that has been irradiated with pulsed laser light.
  • the imaging wavelength by the imaging device may include a visible light wavelength.
  • a plurality of the imaging devices may be arranged so as to image plasma emission from different positions.
  • the imaging device may be two of the first imaging unit 553 and the second imaging unit 554, and may be arranged so that the two imaging directions at the time of imaging plasma emission form 90 degrees.
  • the first and second imaging units 553 and 554 transmit an image obtained by imaging plasma emission repeated during the burst period to the EUV light generation controller 5b. Also good.
  • the EUV light generation controller 5b calculates the plasma emission position from the plasma emission images captured by the first and second imaging units 553 and 554, and changes the emission position of the plasma generated continuously during the burst period. You may ask for.
  • the EUV light generation controller 5b calculates a deviation amount of the condensing position of the pulsed laser light 33 with respect to the plasma generation region 25 from the plasma emission position obtained from the image and a predetermined position of the plasma generation region 25. Also good.
  • the subsequent operation may be the same as in the second embodiment in which the amount of deviation of the condensing position is calculated using the EUV sensors 551 and 552 described above.
  • Embodiment 3 8.1 Configuration of Embodiment 3
  • the EUV light generation system 11c of Embodiment 3 may be the same as that of Embodiment 2 except for the EUV light generation controller and actuator controller.
  • the third embodiment can be described with reference to FIG. 9 used in the description of the second embodiment.
  • the actuator controller 65c may perform feedback control of each actuator with respect to the output of the tail side EUV light during the burst period following the output of the head side EUV light during the burst period in which the feedforward control is performed.
  • the actuators 345, 346, and 225 may be feedback-controlled so as to correct the deviation of the condensing position already detected by the condensing position detection unit 55 during the burst period.
  • the first and second reflection mirrors 341 and 343 and the plate 223 may be adjusted so that the deviation of the condensing position of the pulse laser beam 33 is compensated.
  • the feedforward control is omitted and is also referred to as FF control.
  • feedback control is omitted and is also referred to as FB control.
  • the actuator controller 65c uses the control pattern stored in the storage unit 52 in advance before moving to the first burst period, and uses the first and second actuators 345 and 346 and the actuator.
  • 225 may be FF controlled. By this FF control, the positions of the reflecting surfaces of the first and second reflecting mirrors 341 and 343 and the plate 223 may be adjusted to a predetermined state according to the control pattern.
  • the target 27 supplied to the plasma generation region 25 may be irradiated with the pulsed laser light 33 output from the laser device 3 and condensed through the laser light condensing system 70a.
  • the leading EUV light may be output by converting the target 27 into plasma by irradiation with the pulse laser beam 33.
  • the EUV light output while suppressing the deviation of the light collection position by FF control may be only the first EUV light.
  • the EUV light output by the FF control may be output of EUV light up to several times including the output of the leading EUV light.
  • the EUV energy in each burst period can be substantially constant by the combination of the FF control and the FB control.
  • the amount of misalignment in the Y direction between the target 27 supplied to the plasma generation region 25 and the focused position of the pulse laser beam 33 can be always kept within a predetermined range.
  • control pattern of FF control may be determined in advance by experiments.
  • control pattern may be obtained by the EUV light generation controller 5c also in the third embodiment.
  • the actuator controller 65c may prepare for the FF control for the output of the EUV light at the head of the next burst period at any time during the pause period after the end of the burst period. That is, the first and second reflecting mirrors 341 and 343 and the plate 223 may be adjusted to the inclination and position determined at the time of outputting the EUV light at the head of the next burst period at any time during the pause period.
  • the control amount of the control pattern in FF control may include the following data.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)

Abstract

【課題】極端紫外光生成システムに関し、パルスレーザ光の集光位置のずれを抑制する。 【解決手段】パルスレーザ光の照射を受けてプラズマ化したターゲットから発せられる極端紫外光を繰り返し出力する極端紫外光生成システムであって、チャンバと、チャンバ内に設定されたプラズマ生成領域へターゲットを順次供給するターゲット供給部と、パルスレーザ光を出力するレーザ装置と、レーザ装置から出力されたパルスレーザ光を集光させるレーザ光集光システムと、レーザ光集光システムに接続されてパルスレーザ光の集光位置を調整するアクチュエータと、バーストパターンに基づいて極端紫外光を出力するよう極端紫外光生成システムを制御する極端紫外光生成コントローラと、バースト動作中にパルスレーザ光の集光位置のずれを補償するようにアクチュエータをフィードフォワード制御するアクチュエータコントローラとを備えてもよい。

Description

極端紫外光生成システム
 本開示は、極端紫外光生成システムに関する。
 近年、半導体プロセスの微細化に伴って、半導体プロセスの光リソグラフィにおける転写パターンの微細化が急速に進展している。次世代においては、20nm以下の微細加工が要求されるようになる。このため、波長13nm程度の極端紫外(EUV)光を生成するための装置と縮小投影反射光学系とを組み合わせた露光装置の開発が期待されている。EUV光生成装置としては、ターゲット物質にレーザ光を照射することによって生成されるプラズマが用いられるLPP(Laser Produced Plasma)式の装置と、放電によって生成されるプラズマが用いられるDPP(Discharge Produced Plasma)式の装置と、軌道放射光が用いられるSR(Synchrotron Radiation)式の装置との3種類の装置が提案されている。
特開2000-311845号公報 特表2014-531743号公報 特開2011-210704号公報
概要
 本開示の一態様による極端紫外光生成システムは、パルスレーザ光の照射を受けてプラズマ化したターゲットから発せられる極端紫外光を繰り返し出力する極端紫外光生成システムであって、チャンバと、チャンバ内に設定されたプラズマ生成領域へターゲットを順次供給するターゲット供給部と、パルスレーザ光を出力するレーザ装置と、レーザ装置から出力されたパルスレーザ光を集光させるレーザ光集光システムと、レーザ光集光システムに接続されてパルスレーザ光の集光位置を調整するアクチュエータと、バーストパターンに基づいて極端紫外光を出力するよう極端紫外光生成システムを制御する極端紫外光生成コントローラと、バーストパターンに基づいた極端紫外光の出力中に生じる、プラズマ生成領域に供給されたターゲットに対するパルスレーザ光の集光位置のずれを補償するように前記アクチュエータをフィードフォワード制御するアクチュエータコントローラとを備えてもよい。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、例示的なLLP式の極端紫外光生成システムの概略構成を示す図である。 図2は、バースト動作を構成する各期間を示す図である。 図3は、比較例に係る極端紫外光生成システムの概略構成を示す一部断面図である。 図4は、比較例に係る極端紫外光生成システムにおけるパルスレーザ光を集光させる構成の一部を拡大して示す図である。 A、Bは、比較例に係るバースト動作中に生じるパルスレーザ光の集光位置のずれとEUV光のエネルギとの関係を示す図である。 図6は、実施形態1に係る極端紫外光生成システムの概略構成を示す一部断面図である。 図7は、実施形態1に係る極端紫外光生成システムにおけるパルスレーザ光を集光する構成の一部を拡大して示す図である。 A~Eは、実施形態1に関しバースト動作中のEUV光のエネルギとレーザ集光位置のY方向のずれ量と各アクチュエータの制御量との関係を示す図である。 図9は、実施形態2、3に係る極端紫外光生成システムの概略構成を示す一部断面図である。 A~Eは、実施形態2に関しバースト動作中のEUV光のエネルギとレーザ集光位置のY方向のずれ量と各アクチュエータの制御量との関係を示す図である。 図11は、プラズマの重心を求める計算例を示す図である。 A~Eは、実施形態2の変形例1に関しバースト期間中にEUV光のエネルギを検出できなくなる場合の制御パターンの作成について示す図である。 実施形態2の変形例2に関し集光位置検出部として撮像装置を採用した場合について示す図である。 A~Eは、実施形態3に関しバースト動作中のEUV光のエネルギとレーザ集光位置のY方向のずれ量と各アクチュエータの制御量との関係を示す図である。
実施形態
<目次>
1.EUV光生成システムの全体説明
1.1 構成
1.2 動作
2.用語の説明
3.比較例
3.1 比較例の構成
3.2 比較例の動作
3.3 比較例の課題
4.実施形態1
4.1 実施形態1の構成
4.2 実施形態1の動作
4.3 実施形態1の作用・効果
4.4 実施形態1の補足の動作例
5.実施形態2
5.1 実施形態2の構成
5.2 実施形態2の動作
5.3 実施形態2の作用、効果
5.4 プラズマ位置(プラズマの重心)の計算例
6.実施形態2の変形例1
6.1 実施形態2の変形例1における制御パターンの作成例
6.2 実施形態2の変形例1の動作
6.3 実施形態2の変形例1の作用、効果
7.実施形態2の変形例2
7.1 実施形態2の変形例2における集光位置検出部の構成
7.2 実施形態2の変形例2の動作
8.実施形態3
8.1 実施形態3の構成
8.2 実施形態3の動作
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。
 以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
 以下の説明においては、「極端紫外光」を省略して「EUV光」とも言う。
  1.EUV光生成システムの全体説明
  1.1 構成
 図1に、例示的なLPP式のEUV光生成システムの構成を概略的に示す。図1に示すEUV光生成装置1は、少なくとも1つのレーザ装置3と共に用いられてもよい。本願においては、EUV光生成装置1及びレーザ装置3を含むシステムを、EUV光生成システム11と称する。図1に示し、かつ、以下に詳細に説明するように、EUV光生成装置1は、チャンバ2、ターゲット供給部26を含んでもよい。チャンバ2は、密閉可能であってもよい。ターゲット供給部26は、例えば、チャンバ2の壁を貫通するように取り付けられてもよい。ターゲット供給部26から供給されるターゲット27の材料は、スズ、テルビウム、ガドリニウム、リチウム、キセノン、又は、それらの内のいずれか2つ以上の組合せを含んでもよいが、これらに限定されない。
 チャンバ2の壁には、少なくとも1つの貫通孔が設けられていてもよい。その貫通孔には、ウィンドウ21が設けられてもよく、ウィンドウ21をレーザ装置3から出力されるパルスレーザ光32が透過してもよい。チャンバ2の内部には、例えば、回転楕円面形状の反射面を有するEUV集光ミラー23が配置されてもよい。EUV集光ミラー23は、第1及び第2の焦点を有し得る。EUV集光ミラー23の表面には、例えば、モリブデンとシリコンとが交互に積層された多層反射膜が形成されていてもよい。EUV集光ミラー23は、例えば、その第1の焦点がプラズマ生成領域25に位置し、その第2の焦点が中間集光点(IF)292に位置するように配置されるのが好ましい。EUV集光ミラー23の中央部には貫通孔24が設けられていてもよく、貫通孔24をパルスレーザ光33が通過してもよい。
 EUV光生成装置1は、EUV光生成コントローラ5、ターゲットセンサ4等を含んでもよい。ターゲットセンサ4は、撮像機能を有してもよく、ターゲット27の存在、軌跡、位置、速度等を検出するよう構成されてもよい。
 また、EUV光生成装置1は、チャンバ2の内部と露光装置6の内部とを連通させる接続部29を含んでもよい。接続部29内部には、アパーチャ293が形成された壁291が設けられてもよい。壁291は、そのアパーチャ293がEUV集光ミラー23の第2の焦点位置に位置するように配置されてもよい。
 さらに、EUV光生成装置1は、レーザ光進行方向コントローラ34、レーザ光集光ミラー22、ターゲット27を回収するためのターゲット回収器28等を含んでもよい。レーザ光進行方向コントローラ34は、レーザ光の進行方向を規定するための光学素子と、この光学素子の位置、姿勢等を調整するためのアクチュエータとを備えてもよい。
  1.2 動作
 図1を参照に、レーザ装置3から出力されたパルスレーザ光31は、レーザ光進行方向コントローラ34を経て、パルスレーザ光32としてウィンドウ21を透過してチャンバ2内に入射してもよい。パルスレーザ光32は、少なくとも1つのレーザ光経路に沿ってチャンバ2内を進み、レーザ光集光ミラー22で反射されて、パルスレーザ光33として少なくとも1つのターゲット27に照射されてもよい。
 ターゲット供給部26は、ターゲット27をチャンバ2内部のプラズマ生成領域25に向けて出力するよう構成されてもよい。ターゲット27には、パルスレーザ光33に含まれる少なくとも1つのパルスが照射されてもよい。パルスレーザ光が照射されたターゲット27はプラズマ化し、そのプラズマからプラズマ放射光251が放射され得る。プラズマ放射光251に含まれるEUV光252は、EUV集光ミラー23によって選択的に反射されてもよい。EUV集光ミラー23によって反射されたEUV光252は、中間集光点292で集光され、露光装置6に出力されてもよい。なお、1つのターゲット27に、パルスレーザ光33に含まれる複数のパルスが照射されてもよい。
 EUV光生成コントローラ5は、EUV光生成システム11全体の制御を統括するよう構成されてもよい。EUV光生成コントローラ5は、ターゲットセンサ4によって撮像されたターゲット27のイメージデータ等を処理するよう構成されてもよい。また、EUV光生成コントローラ5は、例えば、ターゲット27が出力されるタイミング、ターゲット27の出力方向等を制御するよう構成されてもよい。さらに、EUV光生成コントローラ5は、例えば、レーザ装置3の発振タイミング、パルスレーザ光32の進行方向、パルスレーザ光33の集光位置等を制御するよう構成されてもよい。上述の様々な制御は単なる例示に過ぎず、必要に応じて他の制御が追加されてもよい。
  2.用語の説明
 図2は、バースト動作を構成する各期間を示す図であり、縦軸はEUV光のエネルギの大きさ、横軸は経過時間を示している。なお、「EUV光のエネルギ」は、省略して、「EUVエネルギ」ともいう。
 本開示において使用される用語は以下のように定義される。
 バースト動作:EUV光生成システムは、バースト動作によってEUV光を出力することがある。図2に示すように、バースト動作は、ある期間一定繰返し周波数でEUV光を出力するバースト期間と、所定の期間EUV光を出力しない休止期間とを繰り返す動作である。バースト期間中は、パルスレーザ光が出力される。休止期間中はパルスレーザ光の出力が停止されるか、またはプラズマ生成領域へのパルスレーザ光の伝搬が抑制される。バーストパターン:バーストパターンは、以下のうち、いずれか、または複数を含んだデータによって定義される。バースト期間中の目標となるEUV光のエネルギ、バースト期間中のEUV光の出力の繰り返し周波数、バースト期間中のEUV光の出力パルス数またはバースト期間の長さ、バースト期間の数、バースト休止期間の長さ。なお、バーストパターンは露光装置によって指示される。
 プラズマ生成領域:EUV光を出力するためのプラズマの生成が開始される領域を意味する。プラズマ生成領域においてプラズマの生成が開始されるためには、プラズマ生成領域にターゲットが供給され、かつ、ターゲットがプラズマ生成領域に到達するタイミングでプラズマ生成領域にパルスレーザ光が集光される必要がある。以下の説明においては、プラズマ生成領域にパルスレーザ光が照射されるタイミングでターゲットがプラズマ生成領域に供給されているものとする。
  3.比較例
  3.1 比較例の構成
 図3に比較例のEUV光生成システムを示す。この比較例についても、実施形態と同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
 EUV光生成システム11hは、EUV光を内部で生成するチャンバ2を備えてもよい。
 チャンバ2の内部には、レーザ光集光ユニット22hと、EUV集光ミラー23と、ターゲット回収器28とが備えられてもよい。
 また、チャンバ2は、ターゲット27を導入するためのターゲット供給部26を備えてもよい。ターゲット供給部26はチャンバ2を貫通するように備えられてもよい。
 ターゲット供給部26の内部には、溶融されたターゲット物質が貯蔵されてもよい。加圧ガス源61から供給されたガスは、圧力調節器62を通して圧力が調節され、ターゲット供給部26に提供されてもよい。加圧ガス源61から供給されたアルゴンガスの圧力によりターゲット供給部26からターゲット27が放出されるように構成してもよい。
 さらに、チャンバ2は、ターゲット供給部26から順次供給されるターゲット27が所定位置を通過するタイミングを検出するターゲットセンサ4を備えてもよい。ターゲットセンサ4は、照明部40と受光部45とを備えてもよい。
 照明部40は、CWレーザ光源41と照明光学系42を含んでもよい。この照明部40は、ターゲット軌道上の所定位置Rに照明光Skを出力するように構成・配置されてもよい。
 なお、ターゲット軌道は、ターゲット供給部26から出力されるターゲット27の理想的な進行経路、あるいは、ターゲット供給部26の設計に従ったターゲット27の進行経路であってもよい。このターゲット軌道の延長線上にターゲット回収器28を備えてもよい。
 受光部45は、受光光学系46と光センサ47を含んでもよく、照明部40から出力されてターゲット軌道上の所定位置Rを通過した照明光Skを受光するように構成・配置されてもよい。
 CWレーザ光源41から出力されて照明光学系42およびチャンバ2の壁面に設けられたウィンドウ21aを透過した照明光Skは、ターゲット軌道上の所定位置Rを通るように伝搬する。所定位置Rを通った照明光Skは、ウィンドウ21aに対向するチャンバ2の壁面に設けられたウィンドウ21b及び受光光学系46を透過して光センサ47に到達し受光されてもよい。
 チャンバ2の外部には、ターゲット27をプラズマ化してEUV光を生成するためのレーザ装置3を備えてもよい。
 また、チャンバ2の外部には、レーザ装置3から出力されたパルスレーザ光31を伝搬しその進行方向を定めるレーザ光進行方向コントローラ34hを備えてもよい。
 また、チャンバ2の内部に備えられた上記レーザ光集光ユニット22hは、レーザ光進行方向コントローラ34hから出力されたパルスレーザ光32を集光してもよい。
 レーザ光集光システム70hは、チャンバ2の外部に配されたレーザ光進行方向コントローラ34hと、チャンバ2の内部に配されたレーザ光集光ユニット22hとを備えてもよい。
 レーザ装置3から出力されたパルスレーザ光31は、レーザ光進行方向コントローラ34hに入射して、チャンバ2の壁面に配されたウィンドウ21を透過しレーザ光集光ユニット22hを介することでプラズマ生成領域25へ向けて集光されてもよい。
 なお、ターゲットセンサ4の受光部45、レーザ装置3、ターゲット供給部26、圧力調節器62等に接続されるEUV光生成コントローラ5hを備えてもよい。
  3.2 比較例の動作
 EUV光生成コントローラ5hの指令によりターゲット供給部26はプラズマ生成領域25に向けてターゲット27を出力してもよい。ここで、ターゲット27は、液滴であってもよい。なお、この液滴状のターゲットをドロップレットともいう。ターゲット27が所定位置Rを通過して照明光Skの一部を遮ることにより、受光部45による照明光Skの受光光量が低下するように構成してもよい。
 EUV光生成コントローラ5hは、受光部45による照明光Skの受光光量が閾値以下となったタイミングに対して所定の遅延時間を付加したレーザ発振トリガ信号Trを出力してよい。
 この遅延時間は、ターゲット27の速度と、所定位置Rからプラズマ生成領域25までの距離と、レーザ装置3へのレーザ発振トリガ信号Trの入力から、それにより出力されたパルスレーザ光31がプラズマ生成領域25に到達するまでの時間とに基づいて定めてもよい。
 レーザ発振トリガ信号Trが入力されたレーザ装置3はパルスレーザ光31を出力してもよい。
 パルスレーザ光31は、レーザ光進行方向コントローラ34h、レーザ光集光ユニット22hを介して、プラズマ生成領域25に供給されたターゲット27に集光照射されてもよい。
 パルスレーザ光33の照射を受けたターゲット27はプラズマ化してEUV光を放射し得る。
  3.3 比較例の課題
 図4は、レーザ光集光ユニットの構成を拡大して示す図である。
 レーザ光集光システム70hを構成するレーザ光進行方向コントローラ34h、およびレーザ光集光ユニット22hの備える光学素子は、パルスレーザ光32の照射によって生じた熱で変形したり変位したりし得る。
 例えば、レーザ光集光ユニット22hが、図4に示すように構成される場合があってもよい。すなわち、レーザ光集光ユニット22hは、パルスレーザ光32を集光する凹面ミラー222を含んでもよく、この凹面ミラー222は軸外放物面ミラーでもよい。レーザ光集光ユニット22hはさらに、凹面ミラー222に対向する位置に凸面ミラー221を含んでもよく、凸面ミラー221は楕円ミラーであってもよい。
 凸面ミラー221と凹面ミラー222とに反射されることで、パルスレーザ光33は高いNAでプラズマ生成領域25に向けて集光されてもよい。レーザ光集光ユニット22hは、凸面ミラー221と凹面ミラー222とが配置されたプレート223を含んでもよい。プレート223は、チャンバ2に保持されてもよい。
 また、レーザ光進行方向コントローラ34hは、第1反射ミラー341、中間の反射ミラー342、第2反射ミラー343を含んでもよい。
 レーザ装置3から出力されたパルスレーザ光31は、第1、中間、第2反射ミラー341、342、343、凸面ミラー221、凹面ミラー222をこの順に通ってもよい。
 プラズマ生成領域25に連続して供給されるターゲット27の各々にパルスレーザ光33を次々と照射することでプラズマが連続して生成されてよい。連続して生成されるプラズマからは、EUV光252を含むプラズマ放射光251が連続して放射され得る。EUV集光ミラー23の貫通孔24を通過したプラズマ放射光251は、凹面ミラー222を連続して加熱することがあり得る。
 この凹面ミラー222は、パルスレーザ光32の波長に対して高い反射率を持つよう構成されてよい。凹面ミラー222は、プラズマ放射光251に含まれる、パルスレーザ光32の波長以外の光に対しては低い反射率を持つ場合があり、これらの光を吸収して加熱され得る。
 加熱された凹面ミラー222は熱変形するため、その反射面を通って集光されたパルスレーザ光33の集光位置がプラズマ生成領域25からずれてしまうことがあり得る。例えば、プラズマ生成領域25に供給されるターゲット27に対して、パルスレーザ光33の集光位置が、次第に離れて行くことがあり得る。そのため、パルスレーザ光33の照射を受けたターゲット27のプラズマ化により放射されるEUV光252のエネルギが低下することがあり得る。この現象は、バースト動作の継続中に顕著に現われ得る。
 図5のA、Bは、プラズマ生成領域に供給されたターゲットに対するパルスレーザ光の集光位置のずれと、そのずれを伴って放射されたEUVエネルギとの関係を示す図である。図5のAにおける縦軸はEUVエネルギ、横軸は時間経過を示す。また、図5のBにおける縦軸はプラズマ生成領域に供給されたターゲットとパルスレーザ光の集光位置とのずれ量、横軸は時間を示す。
 図5のA、Bに示すように、第1回目のバースト期間の先頭のEUV光の出力時には、プラズマ生成領域25に供給されたターゲット27に対してパルスレーザ光33が適正に照射されるので所定のEUVエネルギが出力され得る。しかしながら、時間の経過とともに、供給されたターゲット27に対するパルスレーザ光33の集光位置のずれが大きくなり、それに応じてEUVエネルギが低下し得る。特にバースト期間の後半にはEUVエネルギが大きく低下し得る。
 休止期間を間に挟んで実施される第2回目のバースト期間の先頭のEUV光のエネルギは、第1回目のバースト期間の先頭のEUV光のエネルギよりも小さくなり得る。
 休止期間中には、加熱された凹面ミラー222等の温度が低下するので、次のバースト期間が始まるまでに、プラズマ生成領域25に供給されたターゲットとパルスレーザ光の集光位置とのずれが元の状態に近づき得る。
 しかしながら、休止期間中に、上記のずれが完全には元の状態に戻らない場合、次のバースト期間の先頭のEUVエネルギは、前のバースト期間の先頭のEUVエネルギよりも低下し得る。
 集光位置のずれは、予め定められたプラズマ生成領域に供給されたターゲットの位置に対するパルスレーザ光の集光位置のずれとしてもよい。また、この集光位置のずれは、予め定められたプラズマ生成領域の位置に対するパルスレーザ光の集光位置のずれとしてもよい。さらに、この集光位置のずれは、予め定められたプラズマ生成領域の位置に対する、パルスレーザ光の照射を受けたターゲットのプラズマ化により放射されるEUV光の生成位置のずれとしてもよい。なお、ターゲットの位置は、ターゲットの重心位置としてもよい。また、プラズマ生成領域の位置はプラズマ生成領域の中心位置としてもよい。
 なお、レーザ光集光ユニット22hを構成する光学素子のみならず、その光学素子の保持部は、光学素子の場合と同様にプラズマ放射光251やパルスレーザ光32の散乱光等により熱せられて、変形したり変位したりし得る。
 レーザ光進行方向コントローラ34hについても、レーザ光集光ユニット22hの場合と同様に、光学素子やその保持部が熱せられて変形したり変位したりし得る。なお、上記変位は、位置や傾き等の姿勢の変化であってもよい。
 以上説明したように、レーザ光集光システム70hを構成する光学素子やその保持部が熱せられて変形したり変位したりするため、パルスレーザ光31を伝搬させる光路が適正な光路から外れ得る。
 そのような原因により、パルスレーザ光の照射を受けたターゲットから発生するEUVエネルギが低下するという課題があり得る。
  4.実施形態1
  4.1 実施形態1の構成
 図6は、実施形態1に係るEUV光生成システムの概略構成を示す一部断面図である。図7は、実施形態1に係るレーザ光集光ユニットの構成を拡大して示す図である。
 実施形態1のEUV光生成システム11aは、比較例のEUV光生成システム11hにおけるEUV光生成コントローラ5h、レーザ光集光システム70hの構成を変更したものでよい。その他のEUV光生成システム11aの構成については、比較例のEUV光生成システム11hの構成と同様としてもよい。
 このEUV光生成システム11aは、パルスレーザ光の照射を受けてプラズマ化したターゲットから発せられるEUV光を繰り返し出力させるEUV光生成システムとしてもよい。
 EUV光生成システム11aは、チャンバ2と、チャンバ2内に設定されたプラズマ生成領域25へターゲット27を順次供給するターゲット供給部26と、パルスレーザ光31を出力するレーザ装置3とを備えてもよい。
 また、EUV光生成システム11aは、出力されたパルスレーザ光31を集光させるレーザ光集光システム70aと、レーザ光集光システム70aに接続されてパルスレーザ光33の集光位置を調整する各アクチュエータ345、346、225とを備えてもよい。なお、第1アクチュエータ345、第2アクチュエータ346、アクチュエータ225をまとめて各アクチュエータ345、346、225ともいう。また、第1アクチュエータ345と、第2アクチュエータ346とをミラーアクチュエータともいう。また、アクチュエータ225をユニットアクチュエータともいう。
 さらに、EUV光生成システム11aは、このEUV光生成システム11aをバーストパターンに基づいて制御するEUV光生成コントローラ5aを備えてもよい。また、EUV光生成システム11aは、バースト動作中に生じる、プラズマ生成領域25に対するパルスレーザ光33の集光位置のずれを補償するように各アクチュエータをフィードフォワード制御するアクチュエータコントローラ65を備えてもよい。
 前記集光位置のずれは、プラズマ生成領域25に供給されたターゲットに対するパルスレーザ光33の集光位置のずれとしてもよい。
 また、アクチュエータコントローラ65は、予め、ずれを補償するための制御パターンを上記バーストパターンに対応付けて記憶部66に記憶してもよい。この記憶部66はアクチュエータコントローラ65が備えるものとしてもよい。さらに、アクチュエータコントローラ65は、バーストパターンに基づいてEUV光生成システム11aが制御される際に、バーストパターンに対応付けられた上記制御パターンを用いてずれを補償するように上記各アクチュエータをフィードフォワード制御してもよい。
 レーザ光集光システム70aは、パルスレーザ光32の進行方向を規定するための反射ミラーを含むレーザ光進行方向コントローラ34aを備えてもよい。また、レーザ光集光システム70aは、パルスレーザ光32を集光させるための反射ミラーを含むレーザ光集光ユニット22aを備えてもよい。レーザ光進行方向コントローラ34aは、レーザ光集光ユニット22aの上流側に配置されてもよい。アクチュエータ225は、レーザ光集光ユニット22aに接続されてレーザ光の集光位置を調整してよい。第1、第2アクチュエータ345、346は、レーザ光進行方向コントローラ34aに接続されて、パルスレーザ光の集光位置を調整してよい。ミラーアクチュエータである第1、第2アクチュエータ345、346の応答速度は、ユニットアクチュエータであるアクチュエータ225の応答速度よりも高速でよい。
 アクチュエータ225は、レーザ光集光ユニット22aのプレート223を移動可能に保持してもよい。アクチュエータ225を駆動することで、レーザ光集光ユニット22aの凸面ミラー221と凹面ミラー222とは、例えば図7におけるX、Y、Z軸それぞれに平行に移動するよう構成されてもよい。アクチュエータ225はチャンバに保持されてもよい。
 第1、第2アクチュエータ345、346は、それぞれレーザ光進行方向コントローラ34aの第1、第2反射ミラー341,343に接続されてもよい。第1、第2アクチュエータ345、346を駆動することで、第1、第2反射ミラー341,343の反射面の位置および/または傾きを調整するよう構成されてもよい。第1、第2反射ミラー341,343は、いずれも平面反射ミラーとしてもよい。
 また、レーザ光進行方向コントローラ34aは、第1、第2反射ミラー341,343を通る光路中に、光路の向きを変えるための中間反射ミラー342を含んでもよい。
 第1、第2アクチュエータ345、346は、第1、第2反射ミラー341,343それぞれの傾きを個別に調整して、パルスレーザ光33の集光位置を、互いに異なる方向へ独立して移動させるものとしてもよい。
 すなわち、第1、第2アクチュエータ345、346は、プラズマ生成領域25内を通るターゲット27の軌道を含む平面上(図6中のX―Y平面)の互いに異なる方向へ、パルスレーザ光33の集光位置を移動させるものとしてよい。さらに、その異なる向きは、互いに直交するY方向とX方向としてもよい。なお、図6中に示すY方向は、プラズマ生成領域25内を通るターゲット27の軌道に対して平行となるように設定してもよい。
 アクチュエータ225は,レーザ光集光ユニット22aのプレート223の位置および/または傾きを変更することで、プレート223に保持された凸面ミラー221と凹面ミラー222とによって反射されたパルスレーザ光の集光位置を移動してもよい。
 アクチュエータ225は、プレート223の位置を図7中の矢印Y方向に移動させるとともに、X-Y平面に対するプレート223の傾きを変更可能とするX-Y-θステージとしてもよい。なお、X-Y-θステージを駆動するアクチュエータには、ピエゾ素子、ロータリアクチュエータ、リニアモータ等を用いてもよい。
 また、アクチュエータ225は、プレート223を図6中のX-Y平面に対して平行移動させることで、パルスレーザ光33の集光位置をX―Y平面上で移動させてもよい。X―Y平面は、プラズマ生成領域25内を通るターゲット27の軌道を含む平面であってもよい。また、アクチュエータ225は、プレート223を図7のY方向に平行移動することで、パルスレーザ光33の集光位置をY方向に移動させてもよい。Y方向は、プラズマ生成領域25内を通るターゲット27の軌道と平行なY方向であってもよい。
 レーザ光進行方向コントローラ34aに接続された第1、第2アクチュエータ345、346、および、レーザ光集光ユニット22aに接続されたアクチュエータ225それぞれは、アクチュエータコントローラ65に接続されてもよい。
 なお、記憶部66には、外部から入力される制御パターンが記憶されてもよい。また、この制御パターンは特定のバーストパターンに対応付けられたものとしてもよい。
  4.2 実施形態1の動作
 露光装置等の外部装置は、EUV光生成コントローラ5aに対してEUV光を生成する際に用いるバーストパターンを指定してもよい。このバーストパターンは、EUV光生成コントローラ5aに記憶されたバーストパターンから選択されてもよい。あるいは、そのバーストパターンはオペレータがEUV光生成コントローラ5aに入力したものでもよい。
 アクチュエータコントローラ65の備える記憶部66は、パルスレーザ光33の集光位置のずれを抑制するための制御パターンと、所定のバーストパターンとを対応付けて予め記憶していてもよい。記憶部66に記憶される制御パターンの制御量は、実験や計算機シミュレーションによって得られたものでもよい。
 なお、EUV光生成コントローラ5aが指定されるバーストパターンは1つでもよく、それに対応付けられた制御パターン1つが記憶部66に記憶されていてもよい。また、EUV光生成コントローラ5aが指定されるバーストパターンは複数でもよく、そのそれぞれに対応付けられた制御パターンが記憶部66に記憶されていてもよい。
 EUV光生成コントローラ5aは、アクチュエータコントローラ65に対して指定されたバーストパターンを通知してもよい。アクチュエータコントローラ65は通知されたバーストパターンに対応付けられた制御パターンを記憶部66から取得してもよい。
 EUV光生成システム11aがバーストパターンに基づく動作を実行する際に、アクチュエータコントローラ65が、そのバーストパターンに対応付けられた制御パターンの制御量に応じて第1、第2アクチュエータ345、346、およびアクチュエータ225をフィードフォワード制御してもよい。
 このフィードフォワード制御によって、バースト期間を開始する前に、第1、第2反射ミラー341,343の各反射面の位置および/または傾きが制御パターンの制御量に応じた所定の状態に調整されてもよい。同様に、バースト期間開始前に、凸面ミラー221と凹面ミラー222とが配置されたプレート223の位置および/または傾きが制御パターンの制御量に応じた所定の状態に調整されてもよい。
 その後、バースト期間に移ると、レーザ装置3から出力されたパルスレーザ光31が、レーザ光集光システム70aを通り、プラズマ生成領域25に供給されたターゲット27を照射してもよい。
 この照射によりターゲット27はプラズマ化してEUV光が放射されてもよい。
 バースト期間中、アクチュエータコントローラ65は、制御パターンに従って各アクチュエータ345、346、225をフィードフォワード制御してもよい。
 アクチュエータコントローラ65は、少なくともバースト動作に含まれる各バースト期間中の先頭のEUV光出力時にフィードフォワード制御を実施してもよい。アクチュエータコントローラ65は、バースト動作に含まれる各バースト期間中の先頭から複数回のEUV光出力時にフィードフォワード制御を実施してもよい。
 アクチュエータコントローラ65は、バースト動作に含まれる各バースト期間中の先頭の極端紫外光の出力時にのみフィードフォワード制御を実施してもよい。なお、アクチュエータコントローラ65は、上記のような種々のフィードフォワード制御を実施するために必要な同期信号をEUV光生成コントローラ5aから取得してもよい。
  4.3 実施形態1の作用・効果
 このような構成、動作により、プラズマ生成領域に対するパルスレーザ光の集光位置の位置ずれが抑制されるので、安定したEUV光を得ることができる。
  4.4 実施形態1の補足の動作例
 フィードフォワード制御の一例として、バースト期間中に、プラズマ生成領域25に供給されたターゲットに対するパルスレーザ光の集光位置が、図6,7中に示す矢印Y方向に徐々にずれる場合について図8のA~Eを参照して説明する。
 図8のA~Eは、所定のバーストパターンに応じて実行されるバースト動作中の様子を示す。ここでは、第1反射ミラー341のθ1方向の傾き,第2反射ミラー343のθ2方向の傾き、およびプレート223のY方向における位置を3つのパラメータとしてフィードフォワード制御の対象としてもよい。
 図8のAに示すように、バースト動作開始後の各バースト期間において、EUVエネルギは略一定となる。
 また、図8のBに示すように、プラズマ生成領域に供給されたターゲット27に対するパルスレーザ光33の集光位置のY方向のずれ量には多少の変動が認められるが、そのずれ量は小さく抑えられている。
 また、図8のC~Eに示すように、バースト期間中の第1反射ミラー341のθ1の傾き、第2反射ミラー343のθ2の傾き、およびプレート223のY方向の位置は、制御パターンにしたがって変化している。
 また、休止期間中には、次に始まるバースト期間の先頭のEUV光の出力に対応する制御パターンに従って、第1、第2反射ミラー341、343の傾き、およびプレート223の位置が大きく変更されている。
 このような第1、第2アクチュエータ345、346、およびアクチュエータ225をフィードフォワード制御するための制御パターンの制御量は、バーストパターンに対応付けられて予め作成されてよい。
 なお、制御パターンは、バーストパターンに応じて異なるものが複数作成されてもよく、互いに異なる複数の制御パターンが記憶部66に記憶されてもよい。また、バーストパターンに応じて1つの制御パターンだけが記憶部66に記憶されてもよい。また、バーストパターンは露光装置6によって指示されるものとしてもよい。
 バーストパターンに対応付けて定められる制御パターンは、以下のようなデータを含むものであってもよい。
 1)制御パターンの制御量は、バースト動作開始からのEUV光の繰り返し出力数に対応付けられた各アクチュエータの制御量としてもよい。なお、EUV光の繰り返し出力数は、パルス出力されるEUV光のパルス数としてもよい。
 2)制御パターンの制御量は、バースト動作開始からのバースト期間の数に対応付けられた各アクチュエータの制御量としてもよい。
 3)制御パターンは、バースト動作開始からのバースト期間の数と、バースト期間中に繰り返されるEUV光の出力数に対応付けられた各アクチュエータの制御量としてもよい。
 4)制御パターンは、バースト動作開始からの時間経過に対応付けた各アクチュエータの制御量としてもよい。
 実施形態1のフィードフォワード制御の説明として、ターゲットに対するパルスレーザ光の集光位置が、バースト期間中に図6,7中に示す矢印Y方向にずれる場合について例示したが、実際にパルスレーザ光の集光位置がずれる方向はY方向のみでなくてよい。従って、図6に図示した第1、第2反射ミラー341,343の制御に対応する回転軸やプレート223の制御に対応する直進軸以外の制御軸についても、上記の場合と同様に、バーストパターンに対応付けた制御パターンを作成して、バースト動作時に適用してもよい。理解を容易にするために、以降説明する他の実施形態に於いても、パルスレーザ光の集光位置がY方向にずれる場合を例示して説明するが、Y方向に加えてX方向やZ方向にもずれる場合についても、同様に制御パターンを作成して、バースト動作時に適用するとよい。例えば、第1反射ミラー341についてはθ1方向の傾き,第2反射ミラー343についてはθ2方向と直交する方向の傾き、そしてプレート223についてはX方向およびY方向における位置をパラメータとして制御パターンを作成してもよい。または、第1反射ミラー341についてはθ1方向と直交する方向の傾き,第2反射ミラー343についてはθ2方向の傾き、そしてプレート223についてはX方向およびY方向及びZ方向における位置をパラメータとして制御パターンを作成してもよい。
 また、表1に示すように、EUV光生成コントローラ5aは、露光装置6から指示されるバーストパターン毎に符号を割り振って表1のような態様で記憶部66に保持してもよい。
 表1に記載のバーストパターンを構成するパラメータは以下に示すようなものでもよい。すなわち、発生させるEUVエネルギの目標値、バースト期間中に繰り返されるEUV光の出力の繰り返し周波数、バースト休止期間の長さであってもよい。
 例えば、表1中の最上部の符号111に対応するバーストパターンは、EUVエネルギ目標値:E1、バースト期間の繰り返し周波数:100(kHz)、バースト休止期間の長さ:T1(ms)である。
Figure JPOXMLDOC01-appb-T000001
 また、アクチュエータコントローラ65は、表2に示すように、バーストパターンの符号に対応する制御パターンの制御量を記憶部66に記憶してもよい。
 各バーストパターンにおいて、バーストパターンに対応付けられた制御量の並びを、制御パターンとして記憶していてもよい。
 ここでは、1例として、「バーストNo.」と「バースト先頭からのパルスNo.」とに対応付けて、第1反射ミラー341の傾きθ1,第2反射ミラー343傾きθ2の制御量を制御パターンとして記憶していてもよい。ここで、「バーストNo.」はバースト動作開始からのバーストの序数、「バースト先頭からのパルスNo.」は各バースト期間におけるバースト先頭からのパルス序数を示す。
 表2中のθ1の制御パターンを示す表の最上部には符号111のバーストパターンに対応する制御パターンの制御量が示されている。
 より詳しくは、この符号111に対応する制御パターンの制御量の並びは、バーストNo.「1」、バースト先頭からのパルスNo.「1」におけるθ1の制御量としてデータ「α111-1-1」が示されている。また、バーストNo.「1」、バースト先頭からのパルスNo.「2」におけるθ1の制御量としてデータ「α111-1-2」が示されている。さらに、バーストNo.「1」、バースト先頭からのパルスNo.「3」におけるθ1の制御量としてデータ「α111-1-3」が示されている。
 このような「バーストNo.」、「バースト先頭からのパルスNo.」に対応する制御パターンの制御量を順次適用して、第1、第2アクチュエータ345、346を制御し、第1、第2反射ミラー341、343それぞれの傾きを調整し得る。これにより、第1、第2反射ミラー341、343を介した第1、第2アクチュエータ345、346の制御により、パルスレーザ光の集光位置をフィードフォワード制御し得る。
Figure JPOXMLDOC01-appb-T000002
  5.実施形態2
  5.1 実施形態2の構成
 図9は、実施形態2のEUV光生成システムの構成を示す図である。
 実施形態2のEUV光生成システム11bは、実施形態1のEUV光生成システム11に対して、集光位置のずれを検出する集光位置検出部55をさらに備えたものとしてよい。さらに、このEUV光生成システム11bは、集光位置検出部55により検出した集光位置のずれから制御パターンが求められるようにしたものであってもよい。
他の構成については実施形態1の場合と同様であってもよい。
 EUV光生成コントローラ5bは、集光位置検出部55が検出した集光位置のずれから制御パターン作成するものとしてもよい。また、集光位置検出部55は、パルスレーザ光33の照射を受けたターゲット27のプラズマ化により放射されるプラズマ放射光251を検出するものとしてもよい。集光位置検出部55は、プラズマ放射光251の光エネルギを検出するものとしてもよい。
 集光位置検出部55が検出する光エネルギは、プラズマ放射光251に含まれるEUV光のエネルギでもよい。例えば、集光位置検出部55は、互いに異なる位置からEUVエネルギの大きさを検出するEUVセンサ551、552としてもよい。
 ここで、パルスレーザ光33の集光位置は、ターゲット27へのパルスレーザ光33照射によるプラズマの生成位置とみなしてもよい。また、プラズマの生成位置は、プラズマ放射光251の一部をなすEUV光の生成位置とみなしてよい。したがって、このEUV光の生成位置を複数のEUVセンサの検出結果に基づいて算出することにより、パルスレーザ光33の集光位置を求めるようにしてもよい。そして、パルスレーザ光33の集光位置と、予め定められたプラズマ生成領域25の位置との差に基づいて、パルスレーザ光33の集光位置のずれ量を算出してもよい。
 EUV光生成コントローラ5bは、バーストパターンに基づくEUV光の繰り返し出力時にEUVセンサ551、552で検出したEUVエネルギに基づいて、パルスレーザ光33の集光位置のずれ量を求めて、制御パターンを作成してもよい。さらに、このEUV光生成コントローラ5bは、上記バーストパターンに対応付けて作成した制御パターンを、アクチュエータコントローラ65の記憶部66に記憶させるようにしてもよい。
  5.2 実施形態2の動作
 図10のA~Eは、EUVセンサ551,552によるEUVエネルギの検出に基づいて、EUV光生成コントローラ5bが、パルスレーザ光33の集光位置のY方向のずれ量を求める様子を示す図である。
 1)EUV光生成システム11bは、アクチュエータコントローラ65による制御を行なうことなく、所定のバーストパターンに従って、バースト期間中にパルスレーザ光33を繰り返しターゲット27に照射してEUV光を所定回数繰り返し出力させてもよい。
 図10のC~Eに示すように、バースト動作中の全期間に亘って、第1、第2反射ミラー341、343の傾き、およびプレート223の位置は、固定したままにしてもよい。また、この時、チャンバ2から露光装置6へEUV光を出力しないように、不図示のシャッタは閉じてもよい。
 2)複数のEUVセンサ551,552それぞれは、バースト期間中に、プラズマ放射光251に含まれるEUV光のエネルギを検出して、その検出値をEUV光生成コントローラ5bに出力してもよい。このとき検出されるEUVエネルギは、図10のAに示すように、バースト期間中に徐々に低下するものとなり得る。
 3)EUV光生成コントローラ5bは、各EUVセンサ551,552によるEUVエネルギの検出値に基づいて、EUV光の生成位置を計算し、バースト期間におけるプラズマの生成位置の変化を求めてもよい。この計算方式については後述する。
 4)EUV光生成コントローラ5bは、上記EUVエネルギの検出値から求めたプラズマの生成位置と、予め定められたプラズマ生成領域25の位置との差に基づいて、パルスレーザ光33の集光位置のずれ量を算出してもよい。このずれ量は、図10のBに示すようにバースト期間中に徐々に増加するものとなり得る。
 なお、上述のようにプラズマの生成位置とプラズマ生成領域25の位置との空間座標上における位置の差を、プラズマ生成領域25に供給されたターゲット27に対するパルスレーザ光33の集光位置のずれ量としてもよい。
 5)EUV光生成コントローラ5bは、このようにして求めた集光位置のずれ量から、この集光位置のずれを抑制するフィードフォワード制御を行なうための制御パターンを求めてもよい。すなわち、第1、第2反射ミラー341、343の傾き、およびプレート223の位置を各アクチュエータ345、346、225で調整して集光位置のずれを抑制するための制御パターンを、EUV光生成コントローラ5bが求めてもよい。
 6)EUV光生成コントローラ5bが求めた制御パターンは、所定のバーストパターンに対応付けられてアクチュエータコントローラ65の記憶部66に記憶されてもよい。
 7)アクチュエータコントローラ65は、上記所定のバーストパターンに従うバースト動作時に、上記制御パターンを用いたフィードフォワード制御を行ってよい。このような制御パターンに基づいて行うフィードフォワード制御は、既に、実施形態1において図8のA~E等を参照して説明した制御と同様のものであってもよい。
 8)EUV光生成コントローラ5bは、バースト動作時における集光位置のずれ量が許容範囲以内か否かを調べるために、EUVエネルギの検出に基づいてずれ量を算出してもよい。集光位置のずれ量が許容範囲以内である場合には、制御パターンを確定してもよい。
 一方、制御パターンを用いてフィードフォワード制御を行なったにもかかわらず、ずれ量が許容範囲を超えた場合には、制御パターンを修正し、再度、この修正した制御パターンを用いて上記バーストパターンに応じたEUV光の出力を実行してもよい。このバースト動作時に出力されたEUV光を検出して、再度、集光位置のずれ量が許容範囲以内か否かを調べてもよい。この動作を、ずれ量が許容範囲以内となるまで繰り返して制御パターンを確定してもよい。
 9)制御パターンが確定したら、EUV光生成コントローラ5bは、この制御パターンを上記所定のバーストパターンに対応付けて、記憶部66に記憶させ得る。
 10)次のバースト動作時には、アクチュエータコントローラ65が、そのバーストパターンに対応付けられた制御パターンを記憶部66から取得してもよい。アクチュエータコントローラ65はこの制御パターンの示す制御量に応じて第1、第2アクチュエータ345、346、およびアクチュエータ225をフィードフォワード制御してもよい。
 なお、チャンバ2から露光装置6へEUV光を出力する際には、不図示のシャッタを開としてもよい。
 制御パターンによる制御に関し、第1、第2反射ミラー341,343の回転軸や、プレート223のY方向への移動軸以外の制御可能な軸について、上記の場合と同様の手法により制御パターンを作成してもよい。
  5.3 実施形態2の作用、効果
 EUV光生成システム11bが、自身で制御パターンを作成し得る。そのため、露光装置6によって様々なバーストパターンが指定されたときにも、各バーストパターンについて適切な制御パターンを容易に作成し得る。
  5.4 プラズマ位置(プラズマの重心)の計算例
 図11は、EUV光を放射するプラズマの重心を求める計算例を示す図である。
 例えば、図11のように3つのEUVセンサをZ軸と直交するY-X平面内に配置した場合の、各EUVセンサの計測値が以下のような値であったと仮定してもよい。この計測値は、EUVエネルギの値としてもよい。
第1EUVセンサ55e1による計測値:E1
第2EUVセンサ55e2による計測値:E2
第3のEUVセンサ55e3による計測値:E3
 ここで、Y′-X′座標を、上記3つのEUVセンサの位置を通る座標系とする場合、Y′-X′座標におけるEUV光を放射するプラズマの重心(CentX′,CentY′)は以下のように表現し得る。
CentX′=(E2-E3)/(E2+E3)・・・(1)
CentY′=(E1-E3)/(E1+E3)・・・(2)
 
 例えば、X軸とX′軸とのなす角度がθ[rad]である場合、上記式(1)、(2)を変換してY-X座標におけるEUV光の重心(CentX,CentY)を得てもよい。
 なお、Y-X座標は、EUVセンサの位置を調整するステージ等の機械的な基準となる座標系であってよい。
  6.実施形態2の変形例1
  6.1 実施形態2の変形例1における制御パターンの作成例
 図12のA~Eは、バースト期間中のEUVエネルギの低下によりEUVセンサがEUVエネルギを検出できなくなる場合における制御パターンの作成について示す図である。図12のAは、バースト期間中のレーザ発振トリガ信号を示す図である。図12のB~Eは、バースト動作時に制御パターンを用いた制御を可能にする期間を延ばす様子を示す図である。
 バースト期間が長い場合、あるいはバースト期間中におけるパルスレーザ光33の集光位置のずれが大きい場合には、バースト期間中に検出されるEUVエネルギの値がEUVセンサの検出限界を下回ってしまう場合があり得る。その原因は、パルスレーザ光33の集光位置がプラズマ生成領域25の位置からずれ過ぎてしまい、ターゲット27がパルスレーザ光33に照射されなくなる場合、あるいは照射されていたとしてもプラズマの生成が不十分である場合が考えられ得る。
 そのような場合には、以下のようにしてバースト期間の全体に亘る制御パターンを作成するようにしてもよい。
  6.2 実施形態2の変形例1の動作
 1)図12のBに示すように、EUV光生成システム11bは、バースト期間の開始から制御なしで、プラズマ生成領域25に供給されたターゲット27に対してパルスレーザ光33を次々と照射してもよい。すなわち、EUV光生成システム11bは、パルスレーザ光33の集光位置を調整する制御を行なわずに、連続して供給されるターゲット27に対してパルスレーザ光33を繰り返し照射してもよい。パルスレーザ光33の集光位置が徐々にターゲット27からずれてEUVセンサ551,552がEUVエネルギを検出できなくなるまで、パルスレーザ光33によるターゲット27の照射が継続されてもよい。
 2)EUV光生成コントローラ5bは、バースト期間の開始からEUVエネルギを検出できなくなるまでに集光位置検出部55で検出されたEUVエネルギの値から、集光位置のずれ量を算出してもよい。さらに、EUV光生成コントローラ5bは、その算出したずれ量を用いて、バースト期間の開始からEUVエネルギを検出できなくなるまでの第1の期間G1に用いる第1の制御パターンを求めてもよい。
 3)次に、図12のCに示すように、第1の期間G1内は、上記第1の制御パターンを用いたフィードフォワード制御等を実行しつつ、ターゲット27へのパルスレーザ光33の照射を繰り返してもよい。
 4)その後、第1の期間G1よりも後のバースト期間については、再度、制御なしでターゲット27へのパルスレーザ光33の照射を繰り返してもよい。パルスレーザ光33の集光位置がプラズマ生成領域25に供給されたターゲット27からずれてEUVセンサがEUVエネルギを検出できなくなるまで、その繰り返し照射を継続してもよい。
 5)第1の期間G1よりも後のバースト期間について、EUVエネルギを検出できなくなるまでに検出されたEUVエネルギの値から集光位置のずれ量を算出してもよい。その算出したずれ量を用いて、第1の期間G1の終了後からEUVエネルギを検出できなくなるまでの第2の期間G2に用いる第2の制御パターンを求めてもよい。
 6)次に、図12のDに示すように、第1の期間G1および第2の期間G2内は上記の第1の制御パターンおよび第2の制御パターンを用いたフィードフォワード制御等を実行しつつ、ターゲット27へのパルスレーザ光33の照射を繰り返してもよい。
 7)その後、第2の期間G2よりも後のバースト期間については、再度、制御なしでターゲット27へのパルスレーザ光33の照射を繰り返してもよい。パルスレーザ光33の集光位置がターゲット27からずれて、EUVセンサがEUVエネルギを検出できなくなるまで、その繰り返し照射を継続してもよい。
 8)第2の期間G2よりも後のバースト期間について、EUVエネルギを検出できなくなるまでに検出されたEUVエネルギの値から集光位置のずれ量を算出してもよい。その算出したずれ量を用いて、第2の期間G2の終了後からEUVエネルギを検出できなくなるまでの第3の期間G3に用いる第3の制御パターンを求めてもよい。
 このような手法により、図12のEに示すように、バースト期間の全期間に亘ってフィードフォワード制御を実行するための制御パターンを取得し得る。
  6.3 実施形態2の変形例1の作用、効果
 このように、バースト期間内においてパルスレーザ光33の集光位置が大きくずれてEUVセンサがEUVエネルギを検出できなくなるような場合でも、バースト期間の全期間に亘って制御パターンを作成することができ得る。
  7.実施形態2の変形例2
  7.1 実施形態2の変形例2における集光位置検出部の構成
 図13は、実施形態2の変形例2の構成を示す図としてもよい。この実施形態2の変形例2は、実施形態2の集光位置検出部55に替えて以下の構成を備えた集光位置検出部55bを備えてもよい。この変形例2におけるその他の構成は、説明済みの実施形態2と同様の構成としてもよい。
 チャンバ2に配置された集光位置検出部55bは、パルスレーザ光の照射を受けたターゲット27のプラズマ化によるプラズマ発光を撮像する撮像装置としてもよい。撮像装置による撮像波長は可視光波長を含んでもよい。
 この撮像装置は、プラズマ発光を異なる位置から撮像するように複数配置されてもよい。例えば、撮像装置は、第1撮像部553、第2撮像部554の2つでもよく、プラズマ発光を撮像する際の2つの撮像方向が互いに90度をなすように配置してもよい。
  7.2 実施形態2の変形例2の動作
 第1、第2撮像部553、554は、バースト期間中に繰り返されるプラズマ発光を撮像して得られた画像をEUV光生成コントローラ5bに送信してもよい。
 EUV光生成コントローラ5bは、第1、第2撮像部553、554によって撮像されたプラズマ発光の画像からプラズマの発光位置を算出し、バースト期間中に連続して生成されるプラズマの発光位置の変化を求めてもよい。
 EUV光生成コントローラ5bは、上記画像から求めたプラズマの発光位置と予め定められたプラズマ生成領域25の位置とから、プラズマ生成領域25に対するパルスレーザ光33の集光位置のずれ量を算出してもよい。
 その後の作用については、上述のEUVセンサ551,552を用いて集光位置のずれ量を算出する実施形態2の場合と同様であってもよい。
  8.実施形態3
  8.1 実施形態3の構成
 実施形態3のEUV光生成システム11cは、EUV光生成コントローラ、アクチュエータコントローラ以外の構成については実施形態2の場合と同様であってもよい。ここでは、実施形態2の説明において用いた図9を参照して実施形態3について説明し得る。
 アクチュエータコントローラ65cは、フィードフォワード制御が実施されたバースト期間中の先頭側のEUV光の出力に続く、バースト期間中の後尾側のEUVの出力について、各アクチュエータをフィードバック制御してもよい。この制御は、このバースト期間中に集光位置検出部55によって既に検出された集光位置のずれを補正するように、各アクチュエータ345、346、225をフィードバック制御するものであってもよい。このアクチュエータコントローラ65cによるフィードバック制御により、パルスレーザ光33の集光位置のずれが補償されるように、第1、第2反射ミラー341,343、およびプレート223が調整されてもよい。
 以後の説明において、フィードフォワード制御を省略してFF制御ともいう。また、フィードバック制御を省略してFB制御ともいう。
  8.2 実施形態3の動作
 1)アクチュエータコントローラ65cは、最初のバースト期間に移る前に、予め記憶部52に記憶された制御パターンを用いて、第1、第2アクチュエータ345、346、およびアクチュエータ225をFF制御してもよい。このFF制御により、第1、第2反射ミラー341,343の各反射面、およびプレート223の位置が制御パターンに応じた所定の状態に調整されてもよい。
 2)その後、バースト期間に移ると、レーザ装置3から出力されレーザ光集光システム70aを通って集光されたパルスレーザ光33が、プラズマ生成領域25に供給されたターゲット27へ照射され得る。このパルスレーザ光33の照射によるターゲット27のプラズマ化により先頭のEUV光が出力されてもよい。
 FF制御により集光位置のずれを抑制しつつ出力されるEUV光は、先頭のEUV光のみであってもよい。あるいは、図14のA~Eに示すように、FF制御により出力されるEUV光は、先頭のEUV光の出力を含む数回までのEUV光の出力としてもよい。
 3)FF制御による先頭側のEUV光の出力に続く、バースト期間中の後続側のEUV光は、図14のA~Eに示すようにFB制御により集光位置のずれが抑制されて出力されてもよい。
 4)図14のA~Eに示すよう、休止期間を間に挟む3回のバースト期間それぞれにおいて、先頭側のEUV光の出力はFF制御により出力され、後続側のEUV光の出力はFB制御により出力されてもよい。
 5)結果として、図14のAに示すように、FF制御とFB制御の組み合わせにより各バースト期間におけるEUVエネルギはいずれも略一定となり得る。また、図14のBに示すように、プラズマ生成領域25に供給されたターゲット27とパルスレーザ光33の集光位置とのY方向の位置ずれ量は、常に所定範囲内に抑えられ得る。
 以下に、上記作用に係る種々の態様について示す。
 FF制御の制御パターンは、予め実験によって決定されてもよい。あるいは実施形態2のように、実施形態3においてもEUV光生成コントローラ5cにより制御パターンを求めるようにしてもよい。
 アクチュエータコントローラ65cは、バースト期間終了後の休止期間中の何時でも、次のバースト期間の先頭のEUV光の出力に対するFF制御の準備を行なってもよい。すなわち、第1、第2反射ミラー341,343、およびプレート223は、休止期間中の何時でも、次のバースト期間の先頭のEUV光の出力時に定められた傾きや位置に調整されてもよい。
 なお、バースト期間中にFF制御とFB制御を組み合わせてEUV光の出力を繰り返す際、FF制御における制御パターンの制御量は、以下の様なデータを含むものであってよい。
 a.特定のバースト期間の先頭のEUV光の出力に対応付けられた各アクチュエータの制御量。
 b.特定のバースト期間の先頭のEUV光の出力、及びその後の数回のEUV光の出力に対応付けられた各アクチュエータの制御量。
 c.バースト動作開始からの各バースト期間の先頭のEUV光の出力に対応付けられた各アクチュエータの制御量。
 d.バースト動作開始からの各バースト期間の先頭のEUV光の出力、及びその後の数回のEUV光の出力に対応付けられた各アクチュエータの制御量。
 e.バースト動作開始からの時間経過に対応付けられた各アクチュエータの制御量。
 上記の説明は、制限ではなく単なる例示を意図したものである。従って、添付の特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかであろう。
 本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書、及び添付の特許請求の範囲に記載される不定冠詞「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。
1  EUV光生成装置
2  チャンバ
3  レーザ装置
4  ターゲットセンサ
5、5h、5a、5b、5c  EUV光生成コントローラ
6  露光装置
11、11h、11a、11b、11c  EUV光生成システム
21、21a、21b  ウィンドウ
22  レーザ光集光ミラー
22h、22a  レーザ光集光ユニット
23  EUV集光ミラー
24  貫通孔
25  プラズマ生成領域
26  ターゲット供給部
27  ターゲット
28  ターゲット回収器
29  接続部
31、32、33  パルスレーザ光
34、34h、34a  レーザ光進行方向コントローラ
40  照明部
41  CWレーザ光源
42  照明光学系
45  受光部
46  受光光学系
47  光センサ
52  記憶部
55、55b  集光位置検出部
55e1  第1EUVセンサ
55e2  第2EUVセンサ
55e3  第3EUVセンサ
61  加圧ガス源
62  圧力調節器
65、65c  アクチュエータコントローラ
66  記憶部
70、70h、70aレーザ光集光システム
223  プレート
222  凹面ミラー
221  凸面ミラー
251  プラズマ放射光
252  EUV光
291  壁
292  中間集光点
293  アパーチャ 
341  第1反射ミラー
342  中間の反射ミラー
343  第2反射ミラー
345  第1アクチュエータ
346  第2アクチュエータ
551  EUVセンサ
552  EUVセンサ
553  第1撮像装置
554  第2撮像装置
R  所定位置
Sk  照明光
Tr  レーザ発振トリガ信号
 

Claims (20)

  1.  パルスレーザ光の照射を受けてプラズマ化したターゲットから発せられる極端紫外光を繰り返し出力する極端紫外光生成システムであって、
    チャンバと、
    前記チャンバ内に設定されたプラズマ生成領域へターゲットを順次供給するターゲット供給部と、
     前記パルスレーザ光を出力するレーザ装置と、
     前記レーザ装置から出力されたパルスレーザ光を集光させるレーザ光集光システムと、
     前記レーザ光集光システムに接続されて前記パルスレーザ光の集光位置を調整するアクチュエータと、
     バーストパターンに基づいて極端紫外光を出力するよう前記極端紫外光生成システムを制御する極端紫外光生成コントローラと、
    前記バーストパターンに基づいた極端紫外光の出力中に生じる、前記プラズマ生成領域に供給されたターゲットに対する前記パルスレーザ光の集光位置のずれを補償するように前記アクチュエータをフィードフォワード制御するアクチュエータコントローラと、
    を備えた極端紫外光生成システム。
  2.  前記アクチュエータコントローラは、前記集光位置のずれを補償するための制御パターンを前記バーストパターンに対応付けて記憶する記憶部を備え、
    極端紫外光生成コントローラが前記バーストパターンに基づいて極端紫外光を出力する際に、前記アクチュエータコントローラは、前記記憶部が記憶した前記制御パターンを用いて前記集光位置のずれを補償するように前記アクチュエータをフィードフォワード制御するよう構成される
    請求項1記載の極端紫外光生成システム。
  3.  前記集光位置のずれを検出して前記極端紫外光生成コントローラに出力する集光位置検出部をさらに備え、
    前記極端紫外光生成コントローラは、前記集光位置検出部の出力に基づいて前記制御パターンを求めるよう構成される
    請求項1記載の極端紫外光生成システム。
  4.  前記集光位置検出部は、極端紫外光のエネルギの大きさを検出し、互いに異なる位置に配置された2つ以上のセンサを含む
    請求項3記載の極端紫外光生成システム。
  5.  前記集光位置検出部は、互いに異なる位置に配置された2つ以上の撮像装置を含む
    請求項3記載の極端紫外光生成システム。
  6.  前記アクチュエータコントローラは、バースト期間中の先頭の極端紫外光の出力を含む先頭側の極端紫外光の出力時にのみ前記フィードフォワード制御を実施するよう構成される
    請求項1記載の極端紫外光生成システム。
  7.  前記アクチュエータコントローラは、バースト期間中の先頭の極端紫外光の出力時にのみ前記フィードフォワード制御を実施するよう構成される
    請求項1記載の極端紫外光生成システム。
  8.  前記アクチュエータコントローラは、前記フィードフォワード制御が実施されたバースト期間中の先頭側の極端紫外光の出力に続く、前記バースト期間中の後尾側の極端紫外光の出力について、前記集光位置検出部の出力に基づいて前記バースト期間中に既に検出した集光位置のずれに基づいて前記アクチュエータをフィードバック制御するよう構成される
    請求項3記載の極端紫外光生成システム。
  9.  前記レーザ光集光システムは、
    前記パルスレーザ光の進行方向を規定するための反射ミラーを含むレーザ光進行方向コントローラと
    前記パルスレーザ光を集光させるための反射ミラーを含むレーザ光集光ユニットと、
    を備え、
    前記レーザ光進行方向コントローラは、前記レーザ光集光ユニットの上流側に配置される
    請求項1記載の極端紫外光生成システム。
  10.  前記アクチュエータは、
    前記レーザ光進行方向コントローラに接続されるミラーアクチュエータと、
    前記レーザ光集光ユニットに接続されるユニットアクチュエータと、
    を含み、
    前記ミラーアクチュエータの応答速度は、前記ユニットアクチュエータの応答速度よりも高速である
    請求項9記載の極端紫外光生成システム。
  11.  前記記憶部は、前記制御パターンにおける前記アクチュータの制御量と、前記バーストパターンにおけるバースト動作開始からの極端紫外光の繰り返し出力の数とを対応付けて記憶するよう構成される
    請求項2記載の極端紫外光生成システム。
  12.  前記記憶部は、前記制御パターンにおける前記アクチュータの制御量と、前記バーストパターンにおけるバースト動作開始からのバースト期間の数とをに対応付て記憶するよう構成される
    請求項2記載の極端紫外光生成システム。
  13.  前記記憶部は、前記制御パターンにおける前記アクチュータの制御量と、前記バーストパターンにおけるバースト動作開始からのバースト期間の数と、各バースト期間における極端紫外光の繰り返し出力の数とを対応付けて記憶するよう構成される
    請求項2記載の極端紫外光生成システム。
  14.  前記記憶部は、前記制御パターンにおける前記アクチュータの制御量と、前記バーストパターンにおけるバースト開始からの経過時間とを対応付けて記憶するよう構成される
    請求項2記載の極端紫外光生成システム。
  15.  前記集光位置のずれを検出して前記極端紫外光生成コントローラに出力する集光位置検出部をさらに備え、
    前記極端紫外光生成コントローラは、前記集光位置検出部の出力に基づいて前記制御パターンを求めるよう構成される
    請求項2記載の極端紫外光生成システム。
  16.  前記アクチュエータコントローラは、バースト期間中の先頭の極端紫外光の出力を含む先頭側の極端紫外光の出力時にのみ前記フィードフォワード制御を実施するよう構成される
    請求項2記載の極端紫外光生成システム。
  17.  前記アクチュエータコントローラは、バースト期間中の先頭の極端紫外光の出力時にのみ前記フィードフォワード制御を実施するよう構成される
    請求項2記載の極端紫外光生成システム。
  18.  前記アクチュエータコントローラは、前記フィードフォワード制御が実施されたバースト期間中の先頭側の極端紫外光の出力に続く、前記バースト期間中の後尾側の極端紫外光の出力について、前記集光位置検出部の出力に基づいて前記バースト期間中に既に検出した集光位置のずれに基づいて前記アクチュエータをフィードバック制御するよう構成される
    請求項2記載の極端紫外光生成システム。
  19.  前記レーザ光集光システムは、
    前記パルスレーザ光の進行方向を規定するための反射ミラーを含むレーザ光進行方向コントローラと
    前記パルスレーザ光を集光させるための反射ミラーを含むレーザ光集光ユニットと、
    を備え、
    前記レーザ光進行方向コントローラは、前記レーザ光集光ユニットの上流側に配置される
    請求項2記載の極端紫外光生成システム。
  20.  前記アクチュエータは、
    前記レーザ光進行方向コントローラに接続されるミラーアクチュエータと、
    前記レーザ光集光ユニットに接続されるユニットアクチュエータと、
    を含み、
    前記ミラーアクチュエータの応答速度は、前記ユニットアクチュエータの応答速度よりも高速である
    請求項19記載の極端紫外光生成システム。
     
PCT/JP2015/078110 2015-10-02 2015-10-02 極端紫外光生成システム WO2017056324A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2015/078110 WO2017056324A1 (ja) 2015-10-02 2015-10-02 極端紫外光生成システム
JP2017542664A JP6649958B2 (ja) 2015-10-02 2015-10-02 極端紫外光生成システム
US15/912,628 US10085334B2 (en) 2015-10-02 2018-03-06 Extreme ultraviolet light generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/078110 WO2017056324A1 (ja) 2015-10-02 2015-10-02 極端紫外光生成システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/912,628 Continuation US10085334B2 (en) 2015-10-02 2018-03-06 Extreme ultraviolet light generating system

Publications (1)

Publication Number Publication Date
WO2017056324A1 true WO2017056324A1 (ja) 2017-04-06

Family

ID=58422939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078110 WO2017056324A1 (ja) 2015-10-02 2015-10-02 極端紫外光生成システム

Country Status (3)

Country Link
US (1) US10085334B2 (ja)
JP (1) JP6649958B2 (ja)
WO (1) WO2017056324A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI713413B (zh) * 2017-09-20 2020-12-11 荷蘭商Asml荷蘭公司 輻射源
JPWO2020170362A1 (ja) * 2019-02-20 2021-12-16 ギガフォトン株式会社 極端紫外光生成システム及び電子デバイスの製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154111A1 (ja) * 2016-03-08 2017-09-14 ギガフォトン株式会社 極端紫外光生成装置
WO2017208340A1 (ja) * 2016-05-31 2017-12-07 ギガフォトン株式会社 極端紫外光生成装置及び極端紫外光生成装置の制御方法
US10925142B2 (en) * 2018-07-31 2021-02-16 Taiwan Semiconductor Manufacturing Co., Ltd. EUV radiation source for lithography exposure process
EP3949691A1 (en) * 2019-04-04 2022-02-09 ASML Netherlands B.V. Laser focussing module
KR20210131798A (ko) 2020-04-24 2021-11-03 삼성전자주식회사 Euv 노광 장치, 및 그 노광 장치를 이용한 오버레이 보정 방법과 반도체 소자 제조방법
JP7426299B2 (ja) * 2020-06-26 2024-02-01 ギガフォトン株式会社 極端紫外光生成システム及び電子デバイスの製造方法
DE102022205360A1 (de) 2022-05-30 2023-11-30 Trumpf Lasersystems For Semiconductor Manufacturing Gmbh EUV-Strahlungserzeugung nach einer Laserstrahlrotation
JP2023183776A (ja) 2022-06-16 2023-12-28 ギガフォトン株式会社 Euv光生成システム、及び電子デバイスの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210704A (ja) * 2010-03-11 2011-10-20 Komatsu Ltd 極端紫外光生成装置
JP2013030546A (ja) * 2011-07-27 2013-02-07 Gigaphoton Inc チャンバ装置、極端紫外光生成装置および極端紫外光生成装置の制御方法
JP2013105725A (ja) * 2011-11-16 2013-05-30 Gigaphoton Inc 極端紫外光生成装置および極端紫外光生成方法
JP2015506565A (ja) * 2012-01-18 2015-03-02 カール・ツァイス・エスエムティー・ゲーエムベーハー 高電力レーザ光源からターゲット上への放射線のフォーカス誘導のためのビーム誘導系及びレーザ光源とそのようなビーム誘導系とを有するlppx線ビーム源

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311845A (ja) 1999-04-27 2000-11-07 Nikon Corp 露光方法及び露光装置
US8653437B2 (en) * 2010-10-04 2014-02-18 Cymer, Llc EUV light source with subsystem(s) for maintaining LPP drive laser output during EUV non-output periods
JP5864949B2 (ja) * 2010-11-29 2016-02-17 ギガフォトン株式会社 極端紫外光生成システム
JP2013065804A (ja) * 2010-12-20 2013-04-11 Gigaphoton Inc レーザ装置およびそれを備える極端紫外光生成システム
JP5641958B2 (ja) * 2011-01-31 2014-12-17 ギガフォトン株式会社 チャンバ装置およびそれを備える極端紫外光生成装置
JP2012191171A (ja) * 2011-02-25 2012-10-04 Gigaphoton Inc レーザ装置、それを備える極端紫外光生成装置およびレーザ光出力制御方法
JP2012199512A (ja) * 2011-03-10 2012-10-18 Gigaphoton Inc 極端紫外光生成装置及び極端紫外光生成方法
US8993976B2 (en) 2011-08-19 2015-03-31 Asml Netherlands B.V. Energy sensors for light beam alignment
US8598552B1 (en) * 2012-05-31 2013-12-03 Cymer, Inc. System and method to optimize extreme ultraviolet light generation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210704A (ja) * 2010-03-11 2011-10-20 Komatsu Ltd 極端紫外光生成装置
JP2013030546A (ja) * 2011-07-27 2013-02-07 Gigaphoton Inc チャンバ装置、極端紫外光生成装置および極端紫外光生成装置の制御方法
JP2013105725A (ja) * 2011-11-16 2013-05-30 Gigaphoton Inc 極端紫外光生成装置および極端紫外光生成方法
JP2015506565A (ja) * 2012-01-18 2015-03-02 カール・ツァイス・エスエムティー・ゲーエムベーハー 高電力レーザ光源からターゲット上への放射線のフォーカス誘導のためのビーム誘導系及びレーザ光源とそのようなビーム誘導系とを有するlppx線ビーム源

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI713413B (zh) * 2017-09-20 2020-12-11 荷蘭商Asml荷蘭公司 輻射源
US11140765B2 (en) 2017-09-20 2021-10-05 Asml Netherlands B.V. Radiation source
JPWO2020170362A1 (ja) * 2019-02-20 2021-12-16 ギガフォトン株式会社 極端紫外光生成システム及び電子デバイスの製造方法

Also Published As

Publication number Publication date
US20180199422A1 (en) 2018-07-12
JPWO2017056324A1 (ja) 2018-07-19
US10085334B2 (en) 2018-09-25
JP6649958B2 (ja) 2020-02-19

Similar Documents

Publication Publication Date Title
WO2017056324A1 (ja) 極端紫外光生成システム
JP6763015B2 (ja) 極端紫外光生成装置
US10531551B2 (en) Extreme ultraviolet light generating apparatus
JP6775606B2 (ja) 極端紫外光生成システム
JP6715259B2 (ja) 極端紫外光生成装置
US20140191108A1 (en) Alignment system and extreme ultraviolet light generation system
KR20140043067A (ko) 극자외선광 생성 장치
US20190289707A1 (en) Extreme ultraviolet light generation system
JP6378355B2 (ja) 極端紫外光生成装置及び極端紫外光の生成方法
US10712666B2 (en) Extreme ultraviolet light generation device
US11374379B2 (en) Laser system, extreme ultraviolet light generation apparatus, and extreme ultraviolet light generation method
US9578730B2 (en) Extreme ultraviolet light generation apparatus and extreme ultraviolet light generation system
WO2017051454A1 (ja) 極端紫外光生成装置
JP6866471B2 (ja) Euv光生成装置
US11226565B2 (en) Extreme ultraviolet light generating system and electronic device manufacturing method
US11828952B2 (en) Light source and extreme ultraviolet light source system using the same
JP6990701B2 (ja) レーザ装置、及びeuv光生成システム
JP6616427B2 (ja) 極端紫外光生成装置
JPWO2020170362A1 (ja) 極端紫外光生成システム及び電子デバイスの製造方法
US20150346457A1 (en) Mirror unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017542664

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15905477

Country of ref document: EP

Kind code of ref document: A1