WO2017054484A1 - 嘧啶或吡啶并吡啶酮类化合物及其应用 - Google Patents

嘧啶或吡啶并吡啶酮类化合物及其应用 Download PDF

Info

Publication number
WO2017054484A1
WO2017054484A1 PCT/CN2016/084056 CN2016084056W WO2017054484A1 WO 2017054484 A1 WO2017054484 A1 WO 2017054484A1 CN 2016084056 W CN2016084056 W CN 2016084056W WO 2017054484 A1 WO2017054484 A1 WO 2017054484A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
methyl
alkyl
pyrimidine
Prior art date
Application number
PCT/CN2016/084056
Other languages
English (en)
French (fr)
Inventor
蔡雄
钱长庚
李军旗
卿远辉
王艳艳
薛伟才
游华金
Original Assignee
广州科擎新药开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2018536324A priority Critical patent/JP6556369B2/ja
Priority to SI201630949T priority patent/SI3357922T1/sl
Priority to AU2016333188A priority patent/AU2016333188B2/en
Priority to ES16850109T priority patent/ES2828984T3/es
Priority to EP16850109.6A priority patent/EP3357922B1/en
Priority to CA3000548A priority patent/CA3000548C/en
Application filed by 广州科擎新药开发有限公司 filed Critical 广州科擎新药开发有限公司
Priority to PL16850109T priority patent/PL3357922T3/pl
Priority to DK16850109.6T priority patent/DK3357922T3/da
Priority to US15/764,884 priority patent/US10183941B2/en
Publication of WO2017054484A1 publication Critical patent/WO2017054484A1/zh
Priority to HK18110804.5A priority patent/HK1251547A1/zh
Priority to HRP20201727TT priority patent/HRP20201727T1/hr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4545Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the invention relates to the technical field of pharmaceutical preparation, in particular to a pyrimidine or pyridopyridone compound and application thereof.
  • CDK Cyclin-dependent kinase
  • cyclin is important factors in cell cycle regulation.
  • CDK can form a heterodimer with cyclin, in which CDK is a catalytic subunit, cyclin is a regulatory subunit, and various cyclin-CDK complexes are formed, which phosphorylate different substrates and promote the phase of different cell cycle. Transformation.
  • CDK kinases that bind to G1 phase cyclins mainly include CDK2, CDK4 and CDK6.
  • Cyclin D mainly binds to CDK4 and CDK6 and regulates the latter activity;
  • cyclin E binds to CDK2 in G1/S phase, exhibiting CDK2 kinase activity and promoting cell entry into S phase.
  • the G2/M phase is mainly regulated by CDK1 kinase, Cyclin A and cyclin B bind to CDK1, and CDK1 phosphorylates the substrate protein.
  • M-phase triggering factor activates the late-promoting factor APC, which binds ubiquitin to cycli A and cyclin B, and is degraded by the proteasome by multi-ubiquitination to complete a cell cycle (Malumbres M. et al. Nat Cell Biol 11:1275, 2009; Malumbres M. et al. Nat Rev Cancer 9: 153, 2009).
  • Uncontrolled cell cycle is a common feature of human tumors.
  • Tumor cells typically undergo unconventional proliferation, genomic instability (increased DNA mutations and chromosomal aberrations) and chromosomal instability (increased number of chromosomes).
  • the cell cycle is regulated by the CDKs family kinase. Tumor cells cause abnormal CDKs activity due to changes in CDKs themselves or their modulators or mitogenic upstream pathway-related genes and tabular genes (Cicenas JJ Cancer Res Clin Oncol 147: 1409, 2011; Rizzolio F. et al. Curr Drug Targets 11:279, 2010).
  • CDK inhibitors have emerged as a new anti-tumor drug in the global pharmaceutical industry, with more than 20 CDK inhibitors entering clinical development. Despite the significant pre-clinical pharmacodynamics of CDK inhibitors, most of the previous clinical trials were unsatisfactory. The main problems include the lack of efficacy and toxicity in solid tumors. (Guha M. Nat Rev Drug Dis 11:892, 2012). CDK inhibitors AG-24322, ZK-304709, SNS-032, R547, Seliciclib, and AZD5438 terminated clinical studies due to efficacy and toxicity. However, after analyzing the causes of serious toxic side effects, these drugs were found to be insensitive to inhibition of CDK subtypes, thus causing serious side effects.
  • CDK1 is involved in normal cell cycle regulation. In the case where other CDKs are inhibited, the CDK1 activity is retained sufficient to maintain a normal cell cycle. The toxic side effects of CDK inhibitors are associated with inhibition of CDK1 and CDK2. In contrast, CDK4 and CDK6 subtypes are not required for the lactation cell cycle, they play an important role only in the proliferation of specific cell types, which are key targets for tumor suppression (Guha M. Nat Rev Drug Dis 11:892, 2012).
  • CDK4 and CDK6 are two closely related kinases that bind to Cyclin D during the tumor cell cycle and cause the G1 phase to enter the S phase, which is required for the cell cycle progression of DNA replication and cell division.
  • G1-S phase transition control mechanism changes through various genetic and biochemical adaptations.
  • P16 and human retina Retinoblastoma (Rb) is an important tumor suppressor protein that regulates the cell cycle.
  • the P16 gene protein inhibits the feedback loop of CDK4, CyclinD1 and Rb, and prevents the excessive proliferation of cells by regulating the protein activity of Rb to achieve tumor suppression.
  • CDK4 and CDK6 have been shown to cause cell cycle changes to occur in human tumors such as breast cancer and myeloma. Inhibition of CDK4 and CDK6 prevents the inactivation of the tumor suppressor protein Rb and interferes with tumor cell cycle progression (Choi YJ and Anders L, Oncogene 33: 1890-903, 2014).
  • CDK6 induces the expression of the tumor suppressor gene p16 INK4a and the pro-angiogenic factor VEGF-A as part of a transcriptional complex. CDK6 exerts its tumor promoting effect by enhancing cell proliferation and angiogenesis stimulation (Kollmann K. et al. Cancer Cell 24: 167, 2013).
  • Palbociclib (PD-0332991) selectively inhibits CDK4 and CDK6 and restores cell cycle control, thereby blocking tumor cell proliferation.
  • Pfizer filed an application for NDA with the US Food and Drug Administration (FDA) based on the results of its mid-term clinical trials.
  • palbociclib has a lower oral absorption of blood.
  • Phase I clinical results showed a single oral dose of 25-150 mg with a blood concentration of 10-91 mg/ml and an AUC of 58-641 ng h/ml. Due to the long elimination half-life (average 25.9 hours), repeated daily dosing resulted in drug accumulation (Keith T, et al. Clin Cancer Res 18: 568, 2011).
  • CDK4 and CDK6 inhibitors entered a phase III clinical trial for the treatment of advanced breast cancer. Because CDK4/6 plays a key role in the regulation of cell cycle control in various solid tumors and hematological tumors.
  • the clinical evaluation of these drugs also includes metastatic breast cancer, liposarcoma, non-small cell lung cancer, liver cancer, ovarian cancer, glioblastoma, melanoma, multiple myeloma and lymphoma.
  • the object of the present invention is to overcome the drawbacks of the prior art lack of selectivity of CDK inhibitors, and to provide a pyrimidine or pyridopyridone compound which selectively inhibits cell cycle-dependent kinases (Cdks).
  • CDK4 and CDK6 have almost no inhibitory activity against CDK2 kinase, and therefore, such compounds can be used in the treatment of various diseases caused by disorders of cell cycle control involving CDK4 and CDK6, particularly in the treatment of malignant tumors.
  • Y is selected from: C or N, and when Y is selected from N, there is no R 6 substitution;
  • R 1 is selected from the group consisting of: C 1 -C 6 alkyl, C 3 -C 6 cycloalkyl, C 3 -C 6 cycloalkyl substituted methyl;
  • R 2 is selected from the group consisting of halogen, COR 5 , COOR 5 ;
  • R 3 is selected from the group consisting of: H, C1-C6 alkyl
  • R 4 is selected from the group consisting of: C 1 -C 6 alkyl, hydroxy substituted C 1 -C 6 alkyl, alkoxy substituted C 1 -C 6 alkyl, phenyl, halogen substituted phenyl;
  • R 5 is selected from the group consisting of: H, C1-C6 alkyl, C1-C6 fluorine-containing alkyl; C3-C6 cycloalkyl;
  • R 6 is selected from the group consisting of: H, F, CN, CH 3 ;
  • n is selected from: 0, 1 or 2;
  • n is selected from: 1, 2 or 3;
  • p is selected from: 1, 2 or 3.
  • R 4 is selected from the group consisting of: C 1 -C 6 alkyl, hydroxy substituted C 1 -C 6 alkyl, alkoxy substituted C 1 -C 6 alkyl.
  • a hydroxy-substituted C1-C6 alkyl group is preferably a hydroxy-substituted ethyl group.
  • R 4 is selected from the group consisting of methyl, ethyl, propyl, and isopropyl.
  • R 4 is preferably a methyl group.
  • m is selected from the group consisting of: 1; n is selected from: 2; and p is selected from: 1 or 2.
  • Y is selected from the group consisting of: N.
  • R 1 is selected from the group consisting of: C 3 -C 6 cycloalkyl;
  • R 2 is selected from: COR 5 ;
  • R 3 is selected from: C 1 -C 6 alkyl;
  • R 5 is selected from: C 1 -C 6 alkyl;
  • 6 is selected from: H.
  • R 1 is selected from the group consisting of: cyclopentyl
  • R 2 is selected from: COR 5
  • R 3 is selected from: methyl
  • R 5 is selected from the group consisting of methyl, ethyl
  • R 5 is preferably methyl
  • 6 is selected from: H.
  • the compound is selected from the group consisting of:
  • the invention also discloses the use of the above pyrimidine or pyridopyridone compound or a pharmaceutically acceptable salt or stereoisomer thereof for preparing a medicament for controlling tumors.
  • the tumor is a solid tumor and a blood tumor.
  • the solid tumor and hematological tumor comprise breast cancer, liposarcoma, non-small cell lung cancer, liver cancer, ovarian cancer, glioblastoma, melanoma, multiple myeloma, and mantle cell lymphoma .
  • the breast cancer comprises: a locally advanced or metastatic breast cancer that is negative for estrogen receptor positive and/or negative for human epidermal growth factor receptor 2 in postmenopausal women.
  • the present invention also discloses a pharmaceutical composition for controlling tumors, comprising the pyrimidine or pyridopyridone compound according to any one of claims 1 to 9 as an active ingredient, or a pharmaceutically acceptable salt or stereoisomer thereof Body, and a pharmaceutically acceptable carrier.
  • the present invention has the following beneficial effects:
  • the pyrimidine or pyridopyridone compound of the formula I of the present invention is a novel series of compounds which selectively inhibit CDK4 and CDK6 and can be used for CDK4 and CDK6 involved in cell cycle control disorders.
  • the compound when the R 4 group is alkyl, the compound has high activity of CDK6 and CDK4; when the R 4 group is an aromatic group, the compound loses the activity of CDK6.
  • the compounds showed very superior characteristics in the pharmacokinetic experiments.
  • the AUC value of the compound of the present invention was higher than that of the positive control, especially the compound 2 therein. Its AUC is about 9 times that of the positive control and has a very good oral absorption effect.
  • Figure 1 is a schematic diagram showing the inhibition of Rb phosphorylation by MDA-MB-231 breast cancer cells by CDK4/6 inhibitor in Example 6;
  • Figure 2 is a graph showing the drug time of PD-0332991 in Example 7 after oral administration of rats;
  • Figure 3 is a graph showing the drug time of Compound 1 in Example 7 as a function of time after oral administration of the rat;
  • Figure 4 is a graph showing the drug time of Compound 2 in Example 7 after oral administration in rats;
  • Figure 5 is a graph showing changes in tumor volume after oral administration of a mouse in Example 8.
  • Fig. 6 is a graph showing changes in body weight after oral administration of a mouse in Example 8.
  • the compounds of the invention can be prepared using the reactions as shown in the scheme below.
  • the following illustrative exemplifications are not intended to limit the scope of the invention, and are not intended to limit the scope of the invention.
  • Step 1a Preparation of 5-iodine-2-chloro-4-cyclopentyl-aminopyrimidine (Compound 102).
  • Step 1b (E)-3-(2-Chloro-4-cyclopentylaminopyrimidin-5-yl)-2-butenoic acid ethyl ester ((E)-Ethyl-3-(2-chloro-4- Preparation of (cyclopentylamino)pyrimidin-5-yl)but-2-enoate) (Compound 104).
  • Step 1c 2-Chloro-8-cyclopentyl-5-methyl-8H-pyrido[2,3-d]pyrimidin-7-one (2-chloro-8-cyclopentyl-5-methyl-8H-pyrido Preparation of [2,3-d]pyrimidin-7-one) (Compound 105).
  • Ethyl (E)-3-(2-chloro-4-cyclopentylaminopyrimidin-5-yl)-2-butenoic acid ethyl ester (104) (20.00 g, 0.0647 mol, 1.0 eq.) was dissolved in dimethyl In a carboxamide (200 ml), cesium carbonate (42.16 g, 0.1294 mol, 2.0 eq.) was then added and stirred at room temperature. HPLC Monitoring The reaction was terminated when the peak area ratio of Compound 104 was less than 1%. The reaction solution was filtered, and the filtered cake was washed with m.
  • Step 1d 6-bromo-2-chloro-8-cyclopentyl-5-methyl-8H-pyrido[2,3-d]pyrimidin-7-one (6-br omo-2-chloro-8- Preparation of cyclopentyl-5-methyl-8H-pyrido[2,3-d]pyrimidin-7-one) (Compound 106).
  • Step 1e tert-butyl-4-(6-aminopyridin-3-yl)piperidine-1-carboxylate (tert-butyl-4-(6-amino) Preparation of pyridin-3-yl)piperidine-1-carboxylate) (Compound 107).
  • the above compound 107C (3.53 g, 11.6 mmol, 1.0 eq.) was dissolved in 100 ml of methanol, then palladium carbon (0.353 g) was added. The reaction was stirred at room temperature under hydrogen overnight. After completion of the reaction, filtration was carried out to remove palladium carbon in the reaction liquid, and the filter cake was washed with methanol several times, and the filtrate was concentrated under reduced pressure.
  • Step 1f 4-(6-(6-Bromo-8-cyclopentyl-5-methyl-7-oxo-7,8-dihydropyrido[2,3-d]pyrimidin-2-yl) Tert-butyl 4-(6-((6-bromo-8-cyclopentyl-5-methyl-7-oxo-7,8-dihydropyrido[2] , 3-d]pyrimidin-2-yl)amino)pyridin-3-yl)piperidine-1-carboxylate) (Compound 108).
  • Step 1g 4-(6-(8-Cyclopentyl-6-(1-ethoxyvinyl)-5-methyl-7-oxo-7,8-dihydropyrido[2,3- d]pyridin-2-amino)pyridin-3-yl)piperidine-1-carboxylic acid tert-butyl ester (tert-butyl 4-(6-((8-cyclopentyl-6-(1-ethoxyvinyl)-5-methyl) Preparation of -7-oxo-7,8-dihydropyrido[2,3-d]pyrimidin-2-yl)amino)pyridin-3-yl)piperidin-1-carboxylate) (Compound 109).
  • Step 1h 6-Acetyl-8-cyclopentyl-5-methyl-2-(5-(piperidin-4-yl)pyridin-2-amino)pyrido[2,3-d]pyrimidine- 7-(8H)-one (6-acetyl-8-cyclopentyl-5-methyl-2-((5-(piperidin-4-yl)pyridin-2-yl)amino)pyrido[2,3-d]pyrimidin- Preparation of 7(8H)-one) (Compound 110).
  • Step 1i Preparation of 2-(methylsulfonyl)ethylmethanesulfonate (Compound 111-1).
  • Step 1j 6-Acetyl-8-cyclopentyl-5-methyl-2-(5-(1-(2-(methylsulfonyl)ethyl)piperidin-4-yl)pyridin-2-amine Pyridyl[2,3-d]pyrimidin-7(8H)-one (6-acetyl-8-cyclopentyl-5-methyl-2-((5-(1-(2-(methylsulfonyl)ethyl)piperidin) Preparation of -4-yl)pyridin-2-yl)amino)pyrido[2,3-d]pyrimidin-7(8H)-one) (Compound 1).
  • Step 2a Preparation of 1-bromo-3-methylsulfonylpropane (Compound 112-2). 3-Methanesulfonylpropanol (50 mg, 0.36 mmol, 1.0 eq.) was dissolved in 10 mL of dichloromethane under N2, and then evaporated. , 1.2 equivalents). The reaction solution was then allowed to warm to room temperature and the reaction was stirred for 15 hours. The reaction solution was slowly added to ice water, extracted with dichloromethane, and the mixture was separated, and the organic phase was washed with water, dried and concentrated to give 1-bromo-3-methylsulfonyl-propane as a colorless oil (49 mg, yield :68%).
  • Step 2b 6-Acetyl-8-cyclopentyl-5-methyl-2-(5-(1-(3-(methylsulfonyl)propyl)piperidin-4-yl)pyridin-2-amine Pyridyl[2,3-d]pyrimidin-7(8H)-one (6-acetyl-8-cyclopentyl-5-methyl-2-((5-(1-(3-(methylsulfonyl)propyl)))) Preparation of -4-yl)pyridin-2-yl)amino)pyrido[2,3-d]pyrimidin-7(8H)-one) (Compound 2).
  • Step 3a Preparation of 1-((2-bromoethyl)sulfonyl)-4-chlorobenzene (Compound 112-4).
  • Step 3b 6-Acetyl-2-(5-(1-(2-(4-chlorophenylsulfonyl)ethyl)piperidin-4-yl)pyridin-2-yl)-8-cyclopentyl -5-methylpyrido[2,3-d]pyrimidin-7(8H)-one (6-acetyl-2-((5-(1-(2-(2-chlorophenyl)sulfonyl)ethyl)piperidin Preparation of -4-yl)pyridin-2-yl)amino)-8-cyclopentyl-5-methylpyrido[2,3-d]pyrimidin-7(8H)-one) (Compound 4).
  • Step 4a 2-Chloro-8-cyclopentyl-6-iodo-5-methylpyrido[2,3-d]pyrimidin-7(8H)-one (2-chloro-8-cyclopentyl-6-iodo Preparation of 5-5-methylpyrido[2,3-d]pyrimidin-7(8H)-one) (Compound 201).
  • Step 4b 2-Chloro-8-cyclopentyl-6-(1-ethoxyvinyl)-5-methylpyrido[2,3-d]pyrimidin-7(8H)-one (2-chloro Preparation of 8-cyclopentyl-6-(1-ethoxyvinyl)-5-methylpyrido[2,3-d]pyrimidin-7(8H)-one) (Compound 202).
  • Step 4c 3-(6-aminopyridin-3-yl)piperidine-1-carboxylate (203) Preparation of).
  • 2-Nitro-5-bromopyridine (107A) (1.0 g, 4.98 mmol, 1.0 eq.), bistriphenylphosphine palladium dichloride (174 mg, 0.25 mmol, 0.05 eq.). 2.43 g, 7.47 mmol, 1.5 eq.) mixed with 5 ml of water and 50 ml of N,N-dimethylformamide. Add compound 5-pinacol borate-3,4-dihydropyridine under nitrogen. -1 (2H)-tert-butyl carboxylate (203A) (2.13 g, 6.89 mmol, 1.4 eq.). After 1 hour. The mixture was cooled to rt.
  • Step 4d 3-(6-((8-Cyclopentyl-6-(1-ethoxyvinyl)-5-methyl-7-oxo-7,8-dihydropyrido[2,3 -d]pyrimidin-2-yl)amino)pyridin-3-yl)piperidine-1-carboxylic acid tert-butyl ester (tert-butyl 3-(6-((8-cyclopentyl-6-(1-ethoxyvinyl)-) Preparation of 5-methyl-7-oxo-7,8-dihydropyrido[2,3-d]pyrimidin-2-yl)amino)pyridin-3-yl)piperidine-1-carboxylate) (Compound 204).
  • Step 4e 6-Acetyl-8-cyclopentyl-5-methyl-2-(5-(1-(piperidin-3-yl)pyridin-2-yl)pyrido[2,3-d Pyrimidine-7(8H)-one (6-acetyl-8-cyclopentyl-5-methyl-2-((5-(piperidin-3-yl)pyridin-2-yl)amino)pyrido[2,3-d Preparation of pyrrimidin-7(8H)-one) (Compound 205).
  • Step 4f 6-Acetyl-8-cyclopentyl-5-methyl-2-(5-(1-(2-methanesulfonylethyl)piperidin-3-yl)pyridin-2-yl) Pyrido[2,3-d]pyrimidin-7(8H)-one (6-acetyl-8-cyclopentyl-5-methyl-2-((5-(1-(2-(methylsulfonyl)ethyl)piperidin-3) Preparation of -yl)pyridin-2-yl)amino)pyrido[2,3-d]pyrimidin-7(8H)-one) (Compound 5).
  • Step 5a Preparation of 2-chloro-5-iodopyridin-4-amine (Compound 302).
  • 2-Chloro-4-aminopyridine (301) (15 g, 0.116 mol, 1 eq.) was dissolved in acetonitrile (200 mL) under N2, and the mixture was heated to 70 ° C in an oil bath, slowly adding iodosuccinyl Imine (NIS) (33 g, 0.139 mol, 1.2 eq.) was stirred for 16 h. After cooling to room temperature, a saturated sodium thiosulfate solution was added until the reaction system was milky white, then the pH of the reaction system was adjusted to 9-10 by adding a saturated aqueous solution of sodium carbonate, and ethyl acetate (500 ml) was added to extract.
  • NMS iodosuccinyl Imine
  • Step 5b Preparation of 2-chloro-cyclopentylamino-5-iodopyridine (2-chloro-N-cyclopentyl-5-iodopyridin-4-amine (Compound 303).
  • Step 5c (E)-3-[6-Chloro-4-cyclopentylaminopyridin-3-yl]-2-butenoic acid ethyl ester (ethyl(E)-3-(6-chloro-4-( Preparation of cyclopentylamino)pyridin-3-yl)but-2-enoate) (Compound 304).
  • Step 5d 7-Chloro-1-cyclopentyl-4-methyl-1,6-naphthyridin-2(1H)-one (7-chloro-1-cyclope ntyl-4-methyl-1,6-naphthyridin Preparation of -2(1H)-one) (Compound 305).
  • Step 5e 3-bromo-7-chloro-1-cyclopentyl-4-methyl-1,6-naphthyridin-2(1H)-one (3-bromo-7-chloro-1-cyclopentyl-4- Preparation of methyl-1,6-naphthyridin-2(1H)-one) (Compound 306).
  • Step 5f 7-Chloro-1-cyclopentyl-3-(1-ethoxyvinyl)-4-methyl-1,6-naphthyridin-2(1H)-one (7-chloro-1- Preparation of cyclopentyl-3-(1-ethoxyvinyl)-4-methyl-1,6-naphthyridin-2(1H)-one) (Compound 307).
  • Step 5g 4-(6-(1-Cyclopentyl-3-(1-ethoxyvinyl)-4-methyl-2-oxo-1,2-dihydro-1,6-naphthyridine -7-Amino)pyridin-3-yl)piperidine-1-carboxylic acid tert-butyl ester (tert-butyl 4-(6-((1-cyclopentyl-3-(1-ethoxyvinyl)-4-methyl-2-) Preparation of oxo-1,2-dihydro-1,6-naphthyridin-7-yl)amino)pyridin-3-yl)piperidine-1-carboxylate) (Compound 308).
  • Step 5h 3-Acetyl-1-cyclopentyl-4-methyl-7-(5-(piperidin-4-yl)pyridin-2-yl)-1,6-naphthyridine-2 (1H -keto(3-acetyl-1-cyclopentyl-4-methyl-7-((5-(piperidin-4-yl)pyridin-2-yl)amino)-1,6-naphthyridin-2(1H)-one (Preparation of Compound 309).
  • Step 5i 3-acetyl-1-cyclopentyl-4-methyl-7-(5-(1-(2-(methylsulfonyl)ethyl) Pyridin-4-yl)pyridin-2-amino)-1,6-naphthyridin-2(1H)-one (3-acetyl-1-cyclopentyl-4-methyl-7-((5-(1-( Preparation of 2-(methylsulfonyl)ethyl)piperidin-4-yl)pyridin-2-yl)amino)-1,6-naphthyridin-2(1H)-one) (Compound 13).
  • CDK2 protein kinase activity was determined using the Caliper mobility shift assay (see J Biomol Screen 14:31, 2009).
  • the compound obtained above was dissolved in DMSO and diluted with kinase buffer (20 mM HEPES-pH 7.5, 0.01% Triton X-100, 10 mM MgCl 2 , 2 mM DTT), and 5 ⁇ l of 10% DMSO dissolved 5 was added to a 384-well plate.
  • the compound-free control well was 5 ⁇ l of 10% DMSO
  • the enzyme-free control well was 5 ⁇ l of kinase buffer.
  • CDK4 protein kinase activity was determined using the Caliper mobility shift assay (see J Biomol Screen 14:31, 2009).
  • the compound obtained above was dissolved in DMSO and diluted with kinase buffer (20 mM HEPES-pH 7.5, 0.01% Triton X-100, 10 mM MgCl2, 2 mM DTT), and 5 ⁇ l of 10% DMSO was added in 5 times in a 384-well plate.
  • the final concentration of the compound, the compound-free control well was 5 ⁇ l of 10% DMSO, and the enzyme-free control well was 5 ⁇ l of kinase buffer.
  • CDK6 protein kinase activity was determined using the Caliper mobility shift assay (see J Biomol Screen 14:31, 2009).
  • the compound obtained above was dissolved in DMSO and diluted with kinase buffer (20 mM HEPES-pH 7.5, 0.01% Triton X-100, 1OmM MgCl 2 , 2 mM DTT), and 5 ⁇ l of 10% DMSO dissolved 5 was added to a 384-well plate.
  • the compound-free control well was 5 ⁇ l of 10% DMSO
  • the enzyme-free control control well was 5 ⁇ l of kinase buffer.
  • I indicates IC 50 >500 nM
  • II indicates 500 nM ⁇ IC 50 >100 nM
  • III indicates 100 nM ⁇ IC 50 >50 nM
  • IV indicates 50 nM ⁇ IC 50 >10 nM
  • V indicates IC 50 ⁇ 10 nM.
  • the compounds provided by the present invention have an IC 50 for inhibition of CDK2 of 1, i.e., at least >500 nM, and have almost no inhibitory activity, while the IC 50 for inhibition of CDK6 is 50 nM or less (except compound 4), for CDK4.
  • inhibition IC 50 of 10nM or less i.e., such compounds can selectively inhibit CDK4 and CDK6, almost no inhibitory activity on the CDK2, and a higher inhibitory activity against CDK4 and CDK6, can reach 50 nM, 10nM or even less, having a high selectivity Characteristics of sexuality and high activity.
  • Cell viability was assessed by measuring the amount of adenosine triphosphate (ATP) using the CellTiter-Glo Luminescent Cell Viability Assay Kit (Promega, Madison, WI).
  • Tumor cell lines SW620, ZR-75-1, MDA-MB-231) were purchased from the Shanghai Fudan IBS Cell Resource Center and the American Type Culture Collection (ATCC). The cells were trypsinized from the cell culture plate and resuspended in DPBS medium, and the cell density was determined by counting with a Scepter automatic cell counter (Millipore #PHCC00000). The cells were diluted to a solution containing 44,000 cells per ml. The adjusted cell solution was added to the cell assay plate at 90 microliters per well.
  • ATP adenosine triphosphate
  • the plates were placed in a 37 ° C, 5% CO 2 incubator for 24 hours and then added with different concentrations of test compound.
  • the cells were incubated with the compound for 72 hours in the presence of 10% fetal bovine serum. use The Luminescent Cell Viability Assay kit (see manufacturer's instructions) was assayed for ATP content to assess cell growth inhibition. Briefly, add 30 ⁇ l to each well. The reagents were shaken for 10 minutes, cell lysis was induced, and fluorescent signals were recorded using Fluoroskan Ascent FL (Thermo).
  • the cells were treated with dimethyl sulfoxide for 72 hours to obtain the maximum signal value. The minimum signal value was obtained from a separate medium (zero cell number).
  • Inhibition rate % (maximum signal value - compound signal value) / (maximum signal value - minimum signal value) X 100.
  • I represent IC 50> 5 ⁇ M
  • II represents 5 ⁇ M ⁇ IC 50> 1 ⁇ M
  • III represents 1 ⁇ M ⁇ IC 50> 0.5 ⁇ M
  • IV represents 0.5 ⁇ M ⁇ IC 50> 0.1 ⁇ M
  • V represents the IC 50 ⁇ 0.1 ⁇ M.
  • the cell cycle and apoptosis assay kit (Beyotime, C1052) used in this experiment is a A kit for detecting cell cycle and apoptosis by the Propidium staining (PI staining) method.
  • Propidium (PI) is a fluorescent dye of double-stranded DNA.
  • the combination of propidium iodide and double-stranded DNA produces fluorescence, and the fluorescence intensity is directly proportional to the amount of double-stranded DNA.
  • the DNA content of the cells can be measured by flow cytometry, and then the cell cycle and apoptosis analysis can be performed according to the distribution of the DNA content.
  • MDA-MB-231 cells were seeded in a 6-well culture plate at 3 ⁇ 10 5 cells per well, and cultured for 24 hours. After adding the test compound or reference substance (PD-0332991 or LY2835219) for 24 hours, the cells were collected by centrifugation at 1000 rcf for 3 min, washed twice with PBS (phosphate buffer solution); fixed by pre-cooled 70% ethanol at 4 ° C overnight, centrifuged at 1000 rcf for 10 min, Wash twice with 1 ⁇ PBS; stain with PI staining solution for 30 min; detect and analyze cell cycle G1 block by flow cytometry.
  • PBS phosphate buffer solution
  • CDK4 and CDK6 bind to cyclin D during the tumor cell cycle, causing the G1 phase to enter the S phase.
  • CDK4/6 inhibitors selectively block the G1 phase of tumor cells into the S phase.
  • Flow cytometry detection of MDA-MB-231 breast cancer cell cycle results showed that the CDK4/6 inhibitor compound provided by the present invention stopped G1 phase cell growth and S phase cell decrease in a concentration-dependent manner, as shown in the following table.
  • test compound or reference compound PD-0332991 or LY2835219
  • test compound or reference compound PD-0332991 or LY2835219
  • washing twice with pre-cooled PBS collecting cells
  • homogenizing with biological sample homogenizer 2-3 times centrifuged at 13,000 rpm for 10 min at 4 ° C, and the supernatant was taken.
  • the protein concentration was determined by Branfor method, and the sample buffer (Beyotime, #P0015L) was added to cook at 100 ° C for 8 min, and the protein was separated by 8%-10% SDS-PAGE and transferred to a PVDF membrane with 5% skim milk powder.
  • CDK4/6 can cause the Rb protein to lose its cell cycle arrest by phosphorylating the tumor suppressor protein Rb protein.
  • the CDK4/6 inhibitor prevents the inactivation of the tumor suppressor protein Rb and restores the cell cycle arrest effect of Rb.
  • the compounds 1, 2 provided by the present invention act on MDA-MB-231 breast cancer cells, and can effectively reduce the phosphorylation of Rb at the Ser780 site.
  • T max refers to the peak time
  • C max refers to the maximum blood concentration
  • T 1/2 is the half life
  • AUC last refers to the area under the 0-24 hour time-concentration curve
  • AUC inf refers to the 0-Inf time. - Area under the concentration curve.
  • the compounds 1 and 2 provided by the present invention have good absorption and high blood exposure after intragastric administration.
  • the compound Cmax was about 4-7 times higher and the AUC was about 3-9 times larger.
  • Phase I clinical results showed that palbociclib (PD-0332991) had a lower oral blood exposure, and due to a long elimination half-life (average 25.9 hours), repeated daily dosing resulted in drug accumulation (Keith T, et al. Clin Cancer Res 18: 568, 2011).
  • Compounds 1 and 2 were well absorbed orally, Cmax and AUC were significantly increased, and half-life was relatively short.
  • MDA-MB-435 breast cancer cells were obtained from the Shanghai Cell Bank of the Chinese Academy of Sciences.
  • the frozen cells were thawed in a 37 ° C water bath and placed in RPMI 1640 medium supplemented with 10% fetal bovine serum (FBS) and 1% insulin (Shanghai Baoman Biotechnology Co., Ltd.) in tissue culture at 5% CO 2 . Incubate in an incubator incubator. When the cell culture reached the desired amount, the cells were collected and washed with serum-free Dulbecco's phosphate buffer (DPBS).
  • DPBS serum-free Dulbecco's phosphate buffer
  • PD-0332991 showed a significant decrease in mean body weight after oral administration at 150 mg/kg once daily, and then the dose was adjusted to 100 mg/kg once daily.
  • Compound 1 was orally administered twice daily at 75 mg/kg, and administration of PD-0332991 and Compound 1 was stopped 2 weeks after administration, and tumor size and body weight change were continuously observed.
  • Fig. 5 is a graph showing changes in tumor volume size
  • Fig. 6 is a graph showing changes in body weight of mice.
  • PD-0332991 and Compound 1 inhibited tumor growth, and after 14 days of administration, the T/C values of PD-0332991 and Compound 1 were 41% and 25%, respectively.
  • Compound 1 was suggested to have higher anti-cancer activity and greater safety than PD-0332991 at the maximum tolerated dose.
  • the T/C values of PD-0332991 and Compound 1 were 35% and 32%, respectively. Prompt both have a longer effect.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种式(I)所示的嘧啶或吡啶并吡啶酮类化合物及其应用,属于药物制备技术领域。该类化合物能够选择性的抑制细胞周期依赖性激酶(Cdks)CDK4和CDK6,而对CDK2激酶几乎无抑制活性,因此,该类化合物可用于CDK4和CDK6所参与的细胞周期控制失调导致各种疾病,特别是恶性肿瘤的治疗中。

Description

嘧啶或吡啶并吡啶酮类化合物及其应用 技术领域
本发明涉及药物制备技术领域,特别是涉及一种嘧啶或吡啶并吡啶酮类化合物及其应用。
背景技术
周期蛋白依赖性蛋白激酶(cyclin-dependent kinase,CDK)和周期蛋白(cyclin)是细胞周期调控中的重要因子。CDK可以和cyclin结合形成异二聚体,其中CDK为催化亚基,cyclin为调节亚基,形成各种cyclin-CDK复合物,使不同底物磷酸化,对细胞周期不同的时相起推进和转化作用。
在哺乳动物中至少存在9种CDK。细胞由G1期向S期转化主要受G1期CDK激酶控制。与G1期细胞周期蛋白(cycling)结合的CDK激酶主要包括CDK2、CDK4和CDK6。cyclin D主要与CDK4和CDK6结合并调节后者活性;cyclin E在G1/S期与CDK2结合,呈现CDK2的激酶活性促进细胞进入S期。G2/M期主要受CDK1激酶调控,Cyclin A、cyclin B与CDK1结合,CDK1使底物蛋白磷酸化,如将组蛋白H1磷酸化则导致染色体凝缩,如将核纤层蛋白磷酸化则使核膜解体。在M期,M期促发因子(MPF)激活后期促进因子APC,将泛素连接在cycli A和cyclin B上,通过多泛素化作用,使它们被蛋白酶体降解,完成一个细胞周期(Malumbres M.et al.Nat Cell Biol 11:1275,2009;Malumbres M.et al.Nat Rev Cancer 9:153,2009)。
细胞周期失控是人体肿瘤的一大共同特征。肿瘤细胞通常发生非常规增殖,基因组不稳定性(DNA突变增加和染色体畸变)和染色体不稳定性(增加染色体数量)。细胞周期受CDKs家族激酶调控。肿瘤细胞由于CDKs本身或它们的调制物或促有丝分裂的上游通路相关基因和表格遗传基因改变,导致CDKs活性异常(Cicenas J.J.Cancer Res Clin Oncol 147:1409,2011;Rizzolio F.et al.Curr Drug Targets 11:279,2010)。
过去十年来,CDK抑制剂作为抗肿瘤新药开发成为全球药业的一个热点,有超过20个CDK抑制剂进入临床开发。尽管CDK抑制剂抗肿瘤临床前药效学结果显著,但是早前多数临床试验结果不尽人意。主要问题包括在实体瘤缺乏疗效和毒性较大。(Guha M.Nat Rev Drug Dis 11:892,2012)。CDK抑制剂AG-24322、ZK-304709、SNS-032、R547、Seliciclib和AZD5438因为疗效和毒性原因导致临床研究终止。而在分析产生严重毒副作用的原因后发现,这些药物对CDK亚型抑制缺乏选择性,因此产生了严重的毒副作用。
近年来研究表明,CDK1参与正常细胞周期调控。在其它CDKs被抑制的情况下,保留CDK1活性足以维持正常细胞周期。CDK抑制剂的毒副作用与CDK1和CDK2的抑制有关。与此相反,CDK4和CDK6亚型不是哺乳细胞周期所必需,它们仅仅在特殊细胞类型增殖起重要作用,其成为抑制肿瘤的关键靶点(Guha M.Nat Rev Drug Dis 11:892,2012)。
CDK4和CDK6是两个密切相关的激酶,在肿瘤细胞周期中与Cyclin D结合促使G1期进入S期,是DNA复制和细胞分裂的细胞周期进程所必需的。而超过90%的人类肿瘤中,均发现通过各种的基因和生化适应导致G1-S期的过渡控制机制改变。P16和人视网膜母细 胞瘤抑制蛋白(retinoblastoma,Rb)是重要的肿瘤抑制蛋白,其能调控细胞周期。P16基因蛋白抑制CDK4、CyclinD1和Rb的反馈回路,并通过调节Rb的蛋白活性,从而防止细胞过度增殖,以达到抑制肿瘤的目的。已经证明在人体肿瘤中(如乳腺癌和骨髓瘤),CDK4和CDK6激活导致细胞周期改变发生。而抑制CDK4和CDK6,可阻止肿瘤抑制蛋白Rb的失活和干扰肿瘤细胞周期进展(Choi YJ and Anders L,Oncogene 33:1890-903,2014)。
最近的研究还发现,CDK6作为转录复合物的一部分诱导肿瘤抑制基因p16INK4a和促血管生成因子VEGF-A的表达。CDK6可以通过增强细胞增殖和血管生成刺激发挥其肿瘤的促进作用(Kollmann K.et al.Cancer Cell 24:167,2013)。
Palbociclib(PD-0332991)能够选择性的抑制CDK4和CDK6,恢复细胞周期控制,从而阻断肿瘤细胞增殖。辉瑞(Pfizer)公司于今年5月根据其中期临床试验结果向美国食品药品监督管理局(FDA)提出申请NDA。根据辉瑞II期研究,在绝经后女性雌激素受体阳性(ER+)、人表皮生长因子受体2阴性(HER2 -)局部晚期或转移性乳腺癌患者中,与标准治疗药物曲唑(letrozole)治疗组相比,palbociclib和letrozole联合用药组的疾病无进展生存期(PFS)取得了统计学意义上的显著延长(20.2个月vs 10.2个月,p=0.0004),达到了研究的主要终点。与非选择性CDK抑制剂不同,CDK4/6抑制剂PD-0332991的副作用较少。主要包括白细胞减少和疲劳(Pfizer Press Release 2014.4.6)的副作用较少。在药代动力学方面,palbociclib口服吸收血液暴露量较低。一期临床结果显示,单次口服剂量25-150mg后血液浓度为10-91mg/ml和AUC为58-641ng h/ml。由于消除半衰期长(平均值25.9小时),重复每天给药导致药物蓄积(Keith T,et al.Clin Cancer Res 18:568,2011)。
选择性CDK4和CDK6抑制剂Palbociclib、LY2835219和LEE011进入用于治疗晚期乳腺癌的三期临床试验。由于CDK4/6在各种实体肿瘤和血液肿瘤的细胞周期控制失调中起关键作用。目前,这些药物的临床评价还包括转移性乳腺癌,脂肪肉瘤,非小细胞肺癌,肝癌,卵巢癌,胶质母细胞瘤,黑素瘤,多发性骨髓瘤和淋巴瘤等。
发明内容
基于此,本发明的目的在于克服现有技术中CDK抑制剂缺乏选择性的缺陷,提供一种嘧啶或吡啶并吡啶酮类化合物,该类化合物能够选择性的抑制细胞周期依赖性激酶(Cdks)CDK4和CDK6,而对CDK2激酶几乎无抑制活性,因此,该类化合物可用于CDK4和CDK6所参与的细胞周期控制失调导致的各种疾病,特别是恶性肿瘤的治疗中。
式I所示的嘧啶或吡啶并吡啶酮类化合物或者其药学上可接受的盐或立体异构体:
Figure PCTCN2016084056-appb-000001
其中:Y选自:C或N,且当Y选取N,则无R6取代;
R1选自:C1-C6烷基,C3-C6环烷基,C3-C6环烷基取代甲基;
R2选自:卤素,COR5,COOR5
R3选自:H,C1-C6烷基;
R4选自:C1-C6烷基,羟基取代C1-C6烷基,烷氧基取代C1-C6烷基,苯基,卤素取代苯基;
R5选自:H,C1-C6烷基,C1-C6含氟烷基;C3-C6环烷基;
R6选自:H,F,CN,CH3
m选自:0,1或2;
n选自:1,2或3;
p选自:1,2或3。
在其中一些实施例中,R4选自:C1-C6烷基,羟基取代C1-C6烷基,烷氧基取代C1-C6烷基。其中,羟基取代C1-C6烷基优选羟基取代乙基。
在其中一些实施例中,R4选自:甲基,乙基,丙基,异丙基。R4优选甲基。
在其中一些实施例中,m选自:1;n选自:2;p选自:1或2。
在其中一些实施例中,Y选自:N。
在其中一些实施例中,R1选自:C3-C6环烷基;R2选自:COR5;R3选自:C1-C6烷基;R5选自:C1-C6烷基;R6选自:H。
在其中一些实施例中,R1选自:环戊基;R2选自:COR5;R3选自:甲基;R5选自:甲基,乙基;R5优选甲基;R6选自:H。
在其中一些实施例中,选自如下化合物:
Figure PCTCN2016084056-appb-000002
本发明还公开了上述的嘧啶或吡啶并吡啶酮类化合物或者其药学上可接受的盐或立体异构体在制备防治肿瘤药物中的应用。
在其中一些实施例中,所述肿瘤为实体肿瘤和血液肿瘤。
在其中一些实施例中,所述实体肿瘤和血液肿瘤包括乳腺癌,脂肪肉瘤,非小细胞肺癌,肝癌,卵巢癌,胶质母细胞瘤,黑素瘤,多发性骨髓瘤和套细胞淋巴瘤。
在其中一些实施例中,所述乳腺癌包括:在绝经后女性雌激素受体阳性和/或人表皮生长因子受体2阴性的局部晚期或转移性乳腺癌。
本发明还公开了一种防治肿瘤的药物组合物,包括作为活性成份的权利要求1-9任一项所述的嘧啶或吡啶并吡啶酮类化合物或者其药学上可接受的盐或立体异构体,以及药学上可接受的载体。
与现有技术相比,本发明具有以下有益效果:
本发明的式I所示的嘧啶或吡啶并吡啶酮类化合物,是一系列新的化合物,该类化合物可以选择性抑制CDK4和CDK6,能够用于CDK4和CDK6所参与细胞周期控制失调导致 各种疾病,特别适用于恶性肿瘤的治疗。
本发明中的当R4基团烷基时,化合物的CDK6和CDK4的活性高;当R4基团是芳香基时,化合物则失去CDK6的活性。
特别是其中部分化合物具有选择性高、活性高和抗肿瘤细胞增殖作用强的特点,在酶活性抑制实验中,对CDK4和CDK6抑制的IC50能达到10nM(10纳摩尔/升)以下,而对CDK2抑制的IC50大于500nM,几乎无抑制活性。在肿瘤细胞增殖抑制实验中,对SW620、ZR-75-1、MDA-MB-231肿瘤细胞株的IC50能达到0.5μM,甚至0.1μM以下。在细胞周期抑制实验中,以浓度依赖方式使G1期细胞生长停止和S期细胞减少,其IC50约为40nM,稍优于阳性对照物。在蛋白免疫印迹(Western Blot)实验中,作用于MDA-MB-231乳腺癌细胞后,能有效降低Rb在Ser780位点的磷酸化。
并且,其中部分化合物在药代动力学实验中显示出了非常优越的特性,给予受试动物相同剂量的药物后,本发明的化合物的AUC值高于阳性对照物,特别是其中的化合物2,其AUC约为阳性对照物的9倍,具有非常好的口服吸收效果。
附图说明
图1为实施例6中CDK4/6抑制剂阻止MDA-MB-231乳腺癌细胞Rb磷酸化示意图;
图2为实施例7中PD-0332991在大鼠口服给药后血药浓度随时间变化的药时曲线图;
图3为实施例7中化合物1在大鼠口服给药后血药浓度随时间变化的药时曲线图;
图4为实施例7中化合物2在大鼠口服给药后血药浓度随时间变化的药时曲线图;
图5为实施例8中小鼠口服给药后肿瘤体积大小变化曲线图;
图6为实施例8中小鼠口服给药后体重变化曲线图。
具体实施方式
除在文献中已知的或在实验室程序中例证的标准方法外,可采用如下列方案中显示的反应制备本发明化合物。因此,下列说明性方案是为说明的目的而不是局限于所列化合物或任何特定的取代基,所述的方法仅仅意在进行描述,并且并不构成对本发明所具有的范围的限制。
方案一
Figure PCTCN2016084056-appb-000003
Figure PCTCN2016084056-appb-000004
方案二
Figure PCTCN2016084056-appb-000005
方案三
Figure PCTCN2016084056-appb-000006
Figure PCTCN2016084056-appb-000007
实施例1
6-乙酰基-8-环戊基-5-甲基-2-(5-(1-(2-(甲磺酰基)乙基)哌啶-4-基)吡啶-2-胺基)吡啶并[2,3-d]嘧啶-7(8H)-酮,(6-acetyl-8-cyclopentyl-5-methyl-2-((5-(1-(2-(methylsulfonyl)ethyl)piperidin-4-yl)pyridin-2-yl)amino)pyrido[2,3-d]pyrimidin-7(8H)-one)(化合物1)的制备。
步骤1a:5-碘-2-氯-4-环戊胺基嘧啶(5-iodine-2-chloro-4-cyclopentyl-aminopyrimidine)(化合物102)的制备。
将2,4-二氯-5-碘嘧啶(化合物101)(80.00克,0.291摩尔,1.0当量)溶解在乙醇(800毫升)中,加入三乙胺(88.18克,0.873摩尔,3.0当量),然后将混合物置于冰浴下搅拌,当温度降至0℃-5℃时,开始滴加环戊胺(49.50克,0.582摩尔,2.0当量),30分钟滴加完毕,然后保持温度在5℃左右搅拌。HPLC监控,当2,4-二氯-5-碘嘧啶的峰面积比小于1%时,终止反应。将反应液浓缩后加入乙酸乙酯(300毫升)稀释,加入水(300毫升),萃取,分液。水相用乙酸乙酯(200毫升×2)萃取。合并有机相,有机相用饱和食盐水(200毫升)萃取后,用无水硫酸钠干燥。真空浓缩有机相,将残留物用硅胶柱分离(洗脱剂∶石油醚/乙酸乙酯=50∶1)后得到化合物5-碘-2-氯-4-环戊胺基嘧啶(87.88克,收率:93.5%)。LCMS(ESI):m/z 324[M+1]+
步骤1b:(E)-3-(2-氯-4-环戊胺基嘧啶-5-基)-2-丁烯酸乙酯((E)-Ethyl-3-(2-chloro-4-(cyclopentylamino)pyrimidin-5-yl)but-2-enoate)(化合物104)的制备。
将5-碘-2-氯-4-环戊胺基嘧啶(化合物102)(20.00克,0.0619摩尔,1.0当量)溶解在二甲基甲酰胺(200毫升)中,然后依次加入水(20毫升),碳酸钠(16.40克,0.1547摩尔,2.5当量),双三苯基磷二氯化钯(2.17克,0.0031摩尔,0.05当量)。在氮气的保护下,将混合物置于90℃油浴下搅拌,当温度升至90℃时,开始滴加(Z)-3-(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)-2-丁烯酸乙酯(103)(19.32克,0.0805摩尔,1.3当量),30分钟滴加完毕,然后保持温度在90℃左右搅拌。HPLC监控当5-碘-2-氯-4-环戊胺基嘧啶的峰面积比小于1%时,终止反应。将反应液冷却至室温,过滤,滤饼用甲基叔丁基醚(100毫升)洗涤。往滤液加入甲基叔丁基醚(200毫升)和水(400毫升),萃取,分液。水相用甲基叔丁基醚(200毫升×2)萃取。合并有机相,有机相用饱和食盐水(200毫升)萃取后,用无水硫酸钠干燥。真空浓缩有机相,将残留物用硅胶柱分离后(洗脱剂∶石油醚/乙酸乙酯=20∶1)得到化合物(E)-3-(2-氯-4-环戊胺基嘧啶-5-基)-2-丁烯酸乙酯(13.85克,收率:72.4%)。LCMS(ESI):m/z 310[M+1]+
步骤1c:2-氯-8-环戊基-5-甲基-8H-吡啶并[2,3-d]嘧啶-7-酮(2-chloro-8-cyclopentyl-5-methyl-8H-pyrido[2,3-d]pyrimidin-7-one)(化合物105)的制备。
将化合物(E)-3-(2-氯-4-环戊胺基嘧啶-5-基)-2-丁烯酸乙酯(104)(20.00克,0.0647摩尔,1.0当量)溶解在二甲基甲酰胺(200毫升)中,然后加入碳酸铯(42.16克,0.1294摩尔,2.0当量),在室温下搅拌。HPLC监控当化合物104的峰面积比小于1%时,终止反应。将反应液过滤,滤饼用甲基叔丁基醚(100毫升)洗涤。往滤液加入甲基叔丁基醚(200毫升)和水(400毫升),萃取,分液。水相用甲基叔丁基醚(200毫升×2)萃取。合并有机相,有机相用饱和食盐水(200毫升)萃取后,用无水硫酸钠干燥。真空浓缩有机相,将残留物用硅胶柱分离后(洗脱剂∶石油醚/乙酸乙酯=10∶1)得到化合物2-氯-8-环戊基-5-甲基-8H-吡啶并[2,3-d]嘧啶-7-酮(13.94克,收率:81.9%)。LCMS(ESI):m/z 264[M+1]+
步骤1d:6-溴-2-氯-8-环戊基-5-甲基-8H-吡啶并[2,3-d]嘧啶-7-酮(6-br omo-2-chloro-8-cyclopentyl-5-methyl-8H-pyrido[2,3-d]pyrimidin-7-one)(化合物106)的制备。
将化合物2-氯-8-环戊基-5-甲基-8H-吡啶并[2,3-d]嘧啶-7-酮(105)(19.84克,0.0754摩尔,1.0当量)溶解在乙酸(200毫升)中,加入乙酸钠(24.75克,0.3017摩尔,4.0当量),在室温下搅拌,缓慢滴加溴素(48.26克,0.3017摩尔,4.0当量),20分钟滴加完毕,然后将混合物置于50℃的油浴下搅拌。HPLC监控当化合物105的峰面积比小于1%时,终止反应。将反应液冷却至室温后加入饱和亚硫酸钠水溶液(200毫升),加入二氯甲烷(300毫升),萃取,分液。水相用二氯甲烷(150毫升×2)萃取。合并有机相,有机相用饱和碳酸氢钠水溶液(200毫升×3)萃取后,用无水硫酸钠干燥。真空浓缩有机相,将残留物用硅胶柱分离后(洗脱剂∶石油醚/乙酸乙酯=30∶1至10∶1)得到化合物6-溴-2-氯-8-环戊基-5-甲基-8H-吡啶并[2,3-d]嘧啶-7-酮(21.50克,收率:83.1%)。LCMS(ESI):m/z 344[M+1]+
步骤1e:4-(6-胺基吡啶-3-基)哌啶-1-甲酸叔丁酯(tert-butyl-4-(6-amino  pyridin-3-yl)piperidine-1-carboxylate)(化合物107)的制备。
将5-溴-2硝基吡啶(107A)(2.6克,12.8毫摩尔,1.0当量),4-(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)-5,6-二氢吡啶-1(2H)-甲酸叔丁酯(107B)(tert-butyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydropyridine-1(2H)-carboxylate)(4.8克,15.5毫摩尔,1.2当量),双三苯基磷二氯化钯(0.9克,1.28毫摩尔,0.1当量),碳酸铯(8.4克,25.8毫摩尔,2当量)溶解于15毫升水和150毫升N,N-二甲基甲酰胺中。在氮气保护下,将反应体系置于预先加热的90℃油浴中,加热反应1小时。反应完成后,将反应体系冷却至室温,乙酸乙酯萃取,将有机相用饱和食盐水洗涤多次,然后用无水硫酸钠干燥,减压浓缩。最后用硅胶柱层析纯化(洗脱剂∶石油醚/乙酸乙酯=10∶1至3∶1)得到黄色固体,即6-硝基吡啶-3’,6’-二氢-[3,4’-吡啶]-1’(2’H)-甲酸叔丁酯(107C)(3.53克,收率:90%)。
LCMS(ESI):m/z 306[M+H]+
将上述化合物107C(3.53克,11.6毫摩尔,1.0当量)溶解于100毫升甲醇中,然后加入钯碳(0.353克)。在氢气条件下,室温搅拌反应过夜。反应完成后,过滤,以除去反应液中的钯碳,用甲醇洗涤滤饼多次,将滤液减压浓缩。最后用硅胶柱层析纯化(洗脱剂∶二氯甲烷/甲醇=100∶1至30∶1)得到黄色固体,即4-(6-胺基吡啶-3-基)哌啶-1-甲酸叔丁酯(2.5克,收率:78%)。LCMS(ESI):m/z 278[M+H]+
步骤1f:4-(6-(6-溴-8-环戊基-5-甲基-7-氧代-7,8-二氢吡啶并[2,3-d]嘧啶-2-胺基)吡啶-3-基)哌啶-1-甲酸叔丁酯(tert-butyl 4-(6-((6-bromo-8-cyclopentyl-5-methyl-7-oxo-7,8-dihydropyrido[2,3-d]pyrimidin-2-yl)amino)pyridin-3-yl)piperidine-1-carboxylate)(化合物108)的制备。
将化合物4-(6-胺基吡啶-3-基)哌啶-1-甲酸叔丁酯(107)(2.5克,9毫摩尔,2.25当量)溶解于80毫升无水四氢呋喃中,然后置于冰水混合浴中。在氮气保护下,加入氢化钠(0.452克,10.8毫摩尔,2.7当量),冰浴下搅拌15分钟。然后往反应体系中滴加化合物6-溴-2-氯-8-环戊基-5-甲基-8H-吡啶并[2,3-d]嘧啶-7-酮(106)(1.4克,4毫摩尔,1.0当量)的30毫升四氢呋喃溶液,室温下搅拌反应过夜,加水淬灭,减压浓缩。最后用硅胶柱层析纯化(洗脱剂∶二氯甲烷/甲醇=100∶1至30∶1)得到黄色固体,即4-(6-(6-溴-8-环戊基-5-甲基-7-氧代-7,8-二氢吡啶并[2,3-d]嘧啶-2-胺基)吡啶-3-基)哌啶-1-甲酸叔丁酯(2.145克)。LCMS(ESI):m/z 583[M+1]+
步骤1g:4-(6-(8-环戊基-6-(1-乙氧基乙烯基)-5-甲基-7-氧代-7,8-二氢吡啶并[2,3-d]吡啶-2-胺基)吡啶-3-基)哌啶-1-甲酸叔丁酯(tert-butyl 4-(6-((8-cyclopentyl-6-(1-ethoxyvinyl)-5-methyl-7-oxo-7,8-dihydropyrido[2,3-d]pyrimidin-2-yl)amino)pyridin-3-yl)piperidin-1-carboxylate)(化合物109)的制备。
将化合物4-(6-(6-溴-8-环戊基-5-甲基-7-氧代-7,8-二氢吡啶并[2,3-d]嘧啶-2-胺基)吡啶-3-基)哌啶-1-甲酸叔丁酯(108)(300毫克,0.515毫摩尔,1.0当量),四三苯基磷钯(54毫克,0.051毫摩尔,0.1当量)和三丁基-1-乙氧基乙烯基锡(371毫克,1.03毫摩尔,2.0当量)溶解于40毫升甲苯中。在氮气保护下,加热至130℃,回流反应过夜。反应完成后,将反应体系冷却至室温,减压浓缩。最后用硅胶柱层析纯化(洗脱剂∶ 二氯甲烷/甲醇=100∶1至30∶1)得到黄色固体,即4-(6-(8-环戊基-6-(1-乙氧基乙烯基)-5-甲基-7-氧代-7,8-二氢吡啶并[2,3-d]吡啶-2-胺基)吡啶-3-基)哌啶-1-甲酸叔丁酯(150毫克,收率:51%)。LCMS(ESI):m/z575[M+1]+
步骤1h:6-乙酰基-8-环戊基-5-甲基-2-(5-(哌啶-4-基)吡啶-2-胺基)吡啶并[2,3-d]嘧啶-7(8H)-酮(6-acetyl-8-cyclopentyl-5-methyl-2-((5-(piperidin-4-yl)pyridin-2-yl)amino)pyrido[2,3-d]pyrimidin-7(8H)-one)(化合物110)的制备。
将4-(6-(8-环戊基-6-(1-乙氧基乙烯基)-5-甲基-7-氧代-7,8-二氢吡啶并[2,3-d]吡啶-2-胺基)吡啶-3-基)哌啶-1-甲酸叔丁酯(109)(150毫克,0.261毫摩尔)溶解于100毫升二氯甲烷中,加入4毫升6摩尔/升的盐酸,室温下搅拌反应2小时。反应完成后,加入饱和碳酸氢钠溶液,使pH调为8-9,过滤以除去产生的无机盐,将滤液减压浓缩。最后用硅胶柱层析纯化(洗脱剂∶二氯甲烷/甲醇=100∶1至15∶1)得到白色固体,即6-乙酰基-8-环戊基-5-甲基-2-(5-(哌啶-4-基)吡啶-2-胺基)吡啶并[2,3-d]嘧啶-7(8H)-酮(80毫克,收率:62%)。LCMS(ESI):m/z 447[M+H]+.1H NMR(500MHz,DMSO-d6):δ10.21(s,1H),8.99(s,1H),8.22(s,1H),7.98(d,J=8.5Hz,1H),7.69(d,J=8.6Hz,1H),5.84(m,1H),3.03(d,J=11.9Hz,2H),2.60(dd,J=23.9,11.9Hz,3H),2.43(s,3H),2.32(s,3H),2.26(s,3H),1.90(s,2H),1.79(s,2H),1.70(d,J=12.0Hz,2H),1.55(ddd,J=21.3,11.3,7.0Hz,4H)。
步骤1i:2-(甲磺酰基)乙基甲磺酸酯(2-methylsulfonyl)ethylmethanesulfonate)(化合物111-1)的制备。
在氮气保护下,2-甲磺酰基乙醇(143毫克,1.15毫摩尔,1.0当量)溶于20毫升二氯甲烷中,室温下滴加甲磺酰氯(144毫克,1.26毫摩尔,1.1当量),随后再加入三乙胺(349毫克,3.45毫摩尔,3.0当量)。最后混合物在40度下搅拌20小时。冷却至室温,反应液用碳酸氢钠水溶液清洗,干燥得到2-(甲磺酰基)乙基甲磺酸酯的二氯甲烷溶液(0.056M,20毫升)直接用于下一步。
步骤1j:6-乙酰基-8-环戊基-5-甲基-2-(5-(1-(2-(甲磺酰基)乙基)哌啶-4-基)吡啶-2-胺基)吡啶并[2,3-d]嘧啶-7(8H)-酮(6-acetyl-8-cyclopentyl-5-methyl-2-((5-(1-(2-(methylsulfonyl)ethyl)piperidin-4-yl)pyridin-2-yl)amino)pyrido[2,3-d]pyrimidin-7(8H)-one)(化合物1)的制备。
将化合物6-乙酰基-8-环戊基-5-甲基-2-(5-(哌啶-4-基)吡啶-2-胺基)吡啶并[2,3-d]嘧啶-7(8H)-酮(110)(100毫克,0.22毫摩尔,1.0当量)溶于乙腈(30毫升)中,加入碳酸钾(30毫克,0.22毫摩尔,1.0当量),氮气保护下升温到80度后缓慢滴入2-(甲磺酰基)乙基甲磺酸酯(111-1)溶液(50毫升,0.28毫摩尔,1.2当量),然后在80℃条件下搅拌4小时。冷却至室温,反应液在二氯甲烷和水中萃取分层,有机相用水洗,用无水硫酸钠干燥,浓缩后得到的黄色固体粗品通过硅胶柱层析分离提纯(洗脱剂∶二氯甲烷/甲醇=100∶1至10∶1)得到化合物6-乙酰基-8-环戊基-5-甲基-2-(5-(1-(2-(甲磺酰基)乙基)哌啶-4-基)吡啶-2-胺基)吡啶并[2,3-d]嘧啶-7(8H)-酮为白色固体(80毫克,收率:65.8%)。
LCMS(ESI):m/z 553[M+1]+。熔点:256.3-260.2℃;1H NMR(500MHz,DMSO-d6)δ10.21(s,1H),8.99(s,1H),8.24(s,1H),7.98(d,J=8.5Hz,1H),7.73(d,J= 8.5Hz,1H),5.84(p,J=9.0Hz,1H),3.31(d,J=6.5Hz,2H),3.03(m,5H),2.75(t,J=6.5Hz,2H),2.55(d,J=14.9Hz,1H),2.43(s,3H),2.32(s,3H),2.26(s,2H),2.09(t,J=11.3Hz,2H),1.90(s,2H),1.79(d,J=10.2Hz,4H),1.65(m,4H)。
实施例2
6-乙酰基-8-环戊基-5-甲基-2-(5-(1-(3-(甲磺酰基)丙基)哌啶-4-基)吡啶-2-胺基)吡啶并[2,3-d]嘧啶-7(8H)-酮,(6-acetyl-8-cyclopentyl-5-methyl-2-((5-(1-(3-(methylsulfonyl)propyl)piperidin-4-yl)pyridin-2-yl)amino)pyrido[2,3-d]pyrimidin-7(8H)-one)(化合物2)的制备。
步骤2a:1-溴-3-甲磺酰基-丙烷(1-bromo-3-(methylsulfonyl)propane)(化合物112-2)的制备。在氮气保护下,将3-甲磺酰基丙醇(50毫克,0.36毫摩尔,1.0当量)溶于10毫升二氯甲烷中,冰浴条件下滴加三溴化磷(0.04毫升,0.43毫摩尔,1.2当量)。然后反应液升至室温搅拌反应15小时。将反应液缓慢加到冰水中,再加入二氯甲烷萃取,分液,有机相用水洗,干燥后浓缩得到1-溴-3-甲磺酰基-丙烷,无色油状液体(49毫克,收率:68%)。
步骤2b:6-乙酰基-8-环戊基-5-甲基-2-(5-(1-(3-(甲磺酰基)丙基)哌啶-4-基)吡啶-2-胺基)吡啶并[2,3-d]嘧啶-7(8H)-酮(6-acetyl-8-cyclopentyl-5-methyl-2-((5-(1-(3-(methylsulfonyl)propyl)piperidin-4-yl)pyridin-2-yl)amino)pyrido[2,3-d]pyrimidin-7(8H)-one)(化合物2)的制备。
将化合物6-乙酰基-8-环戊基-5-甲基-2-(5-(哌啶-4-基)吡啶-2-胺基)吡啶并[2,3-d]嘧啶-7(8H)-酮(110)(30毫克,0.067毫摩尔,1.0当量)溶于乙腈(20毫升)中,加入碳酸钾(18毫克,0.134毫摩尔,2.0当量),然后缓慢滴入1-溴-3-甲磺酰基-丙烷(112-2)溶液(20毫克,0.1毫摩尔,1.5当量),氮气保护下升温到80℃搅拌4小时。冷却至室温,反应液在二氯甲烷和水中萃取分层,有机相用水洗,用无水硫酸钠干燥,浓缩后得到的粗品通过硅胶柱层析分离提纯(洗脱剂∶二氯甲烷/甲醇=100∶1至10∶1)得到化合物6-乙酰基-8-环戊基-5-甲基-2-(5-(1-(3-(甲磺酰基)丙基)哌啶-4-基)吡啶-2-胺基)吡啶并[2,3-d]嘧啶-7(8H)-酮为白色固体(10毫克,收率:26.4%)。LCMS(ESI):m/z 567[M+1]+1H NMR(500MHz,DMSO-d6)δ10.21(s,1H),8.99(s,1H),8.24(d,J=2.3Hz,1H),7.99(d,J=8.6Hz,1H),7.73(dd,J=8.6,2.4Hz,1H),5.84(m,1H),3.13(m,2H),2.97(d,J=13.3Hz,5H),2.55(dd,J=9.6,6.0Hz,1H),2.43(m,5H),2.32(s,3H),2.27(m,2H),2.03(t,J=10.8Hz,2H),1.87(m,4H),1.78(d,J=10.4Hz,4H),1.70(td,J=12.3,3.3Hz,2H),1.60(m,2H)。
实施例3
6-乙酰基-2-(5-(1-(2-(4-氯苯磺酰基)乙基)哌啶-4-基)吡啶-2-胺基)-8-环戊基-5-甲基吡啶并[2,3-d]嘧啶-7(8H)-酮,(6-acetyl-2-((5-(1-(2-((4-c hlorophenyl)sulfonyl)ethyl)piperidin-4-yl)pyridin-2-yl)amino)-8-cyclopentyl-5-methylpyrido[2,3-d]pyrimidin-7(8H)-one)(化合物4)的制备。
步骤3a:1-((2-溴乙基)磺酰基)-4-氯苯(1-((2-bromoethyl)sulfonyl)-4-chlorobenzene)(化合物112-4)的制备。
将1,2-二溴乙烷(4.7克,25毫摩尔,5.0当量)溶于100毫升乙腈中,室温下加 入碳酸钾(828毫克,6.0毫摩尔,1.2当量),然后缓慢加入对氯苯硫酚(720毫克,5.0毫摩尔,1.0当量)的乙腈(10毫升)溶液,在室温下搅拌2小时。反应液在乙酸乙酯和水中萃取分层,有机相用水洗,无水硫酸钠干燥,浓缩后得到的粗品通过硅胶柱层析分离提纯(洗脱剂∶石油醚/乙酸乙酯=100∶1)得到化合物得到(2-溴乙基)(4-氯苯基)硫烷(1.0克,收率:80%)。将得到的(2-溴乙基)(4-氯苯基)硫烷(1.0克,4毫摩尔,1.0当量)溶于100毫升二氯甲烷中,冰浴下分批加入间氯过氧苯甲酸(2.06毫克,12毫摩尔,3.0当量),在室温下搅拌2小时。反应液在二氯甲烷和水中萃取分层,有机相用水洗,无水硫酸钠干燥,浓缩后得到的粗品通过硅胶柱层析分离提纯(洗脱剂∶石油醚/乙酸乙酯=100∶1至30∶1)得到化合物得到1-((2-溴乙基)磺酰基)-4-氯苯(500毫克,收率:44%)。
步骤3b:6-乙酰基-2-(5-(1-(2-(4-氯苯磺酰基)乙基)哌啶-4-基)吡啶-2-胺基)-8-环戊基-5-甲基吡啶并[2,3-d]嘧啶-7(8H)-酮(6-acetyl-2-((5-(1-(2-((4-chlorophenyl)sulfonyl)ethyl)piperidin-4-yl)pyridin-2-yl)amino)-8-cyclopentyl-5-methylpyrido[2,3-d]pyrimidin-7(8H)-one)(化合物4)的制备。
将化合物6-乙酰基-8-环戊基-5-甲基-2-(5-(哌啶-4-基)吡啶-2-胺基)吡啶并[2,3-d]嘧啶-7(8H)-酮(110)(100毫克,0.22毫摩尔,1.0当量)溶于N,N-二甲酰胺(30毫升)中,氮气保护下升温到80℃后待固体全部溶解后,再将反应液冷却至室温,加入碳酸钾(30毫克,0.22毫摩尔,1.0当量)。然后缓慢滴入1-((2-溴乙基)磺酰基)-4-氯苯(112-4)(80毫克,0.28毫摩尔,1.2当量)的乙腈溶液2毫升,然后在40℃条件下搅拌4小时。冷却至室温,反应液在二氯甲烷和水中萃取分层,有机相用水洗,用无水硫酸钠干燥,浓缩后得到的黄色固体粗品通过硅胶柱层析分离提纯(洗脱剂∶二氯甲烷/甲醇=100∶1至10∶1)得到化合物6-乙酰基-2-(5-(1-(2-(4-氯苯磺酰基)乙基)哌啶-4-基)吡啶-2-胺基)-8-环戊基-5-甲基吡啶并[2,3-d]嘧啶-7(8H)-酮为白色固体(20毫克,收率:14%)。
LCMS(ESI):m/z 649[M+1]+1H NMR(500MHz,DMSO-d6)δ10.22(s,1H),8.99(s,1H),8.14(d,J=2.2Hz,1H),7.96(m,3H),7.75(d,J=8.6Hz,2H),7.56(dd,J=8.6,2.3Hz,1H),5.85(m,1H),3.58(t,J=6.3Hz,2H),2.75(d,J=11.0Hz,2H),2.64(t,J=6.3Hz,2H),2.43(s,3H),2.38(s,1H),2.32(s,3H),2.26(dd,J=11.4,7.9Hz,2H),1.90(dd,J=13.4,8.0Hz,4H),1.80(m,2H),1.59(m,4H),1.15(dd,J=12.2,3.0Hz,2H)。
实施例4
6-乙酰基-8-环戊基-5-甲基-2-(5-(1-(2-甲磺酰基乙基)哌啶-3-基)吡啶-2-胺基)吡啶并[2,3-d]嘧啶-7(8H)-酮(6-acetyl-8-cyclopentyl-5-methyl-2-((5-(1-(2-(methylsulfonyl)ethyl)piperidin-3-yl)pyridin-2-yl)amino)pyrido[2,3-d]pyrimidin-7(8H)-one)(化合物5)的制备。
步骤4a:2-氯-8-环戊基-6-碘-5-甲基吡啶并[2,3-d]嘧啶-7(8H)-酮(2-chloro-8-cyclopentyl-6-iodo-5-methylpyrido[2,3-d]pyrimidin-7(8H)-one)(化合物201)的制备。
将2-氯-8-环戊基-5-甲基吡啶并[2,3-d]嘧啶-7(8H)-酮(105)(20克,76毫摩尔,1.0当量),溶于250毫升三氟乙酸和10毫升的三氟乙酸酐中,氮气保护下加入碘代丁 二酰亚胺(68.5克,304毫摩尔,4.0当量),加热至80℃。1小时后,将反应液减压浓缩,加入亚硫酸氢钠溶液除去剩余的碘代丁二酰亚胺,用二氯甲烷萃取,饱和食盐水洗涤两次,有机相用无水硫酸钠干燥,减压浓缩后得到白色固体,即化合物2-氯-8-环戊基-6-碘-5-甲基吡啶并[2,3-d]嘧啶-7(8H)-酮(29克,收率:98.5%)。LCMS(ESI):m/z 390[M+1]+
步骤4b:2-氯-8-环戊基-6-(1-乙氧基乙烯基)-5-甲基吡啶并[2,3-d]嘧啶-7(8H)-酮(2-chloro-8-cyclopentyl-6-(1-ethoxyvinyl)-5-methylpyrido[2,3-d]pyrimidin-7(8H)-one)(化合物202)的制备。
氮气保护下,将2-氯-8-环戊基-6-碘-5-甲基吡啶并[2,3-d]嘧啶-7(8H)-酮(201)(15克,38.56毫摩尔,1.0当量),三丁基(1-乙氧基乙烯)锡(13.8克,42.4毫摩尔,1.1当量)溶解在150毫升甲苯中,加热至120℃,加入双三苯基磷二氯化钯(2.43克,3.8毫摩尔,0.1当量),在125℃下反应3小时。将反应液减压浓缩后所得的粗品通过柱层析纯化(洗脱剂:乙酸乙酯/石油醚=1/10至1/5)得到棕色固体,即化合物2-氯-8-环戊基-6-(1-乙氧基乙烯基)-5-甲基吡啶并[2,3-d]嘧啶-7(8H)-酮(282毫克,收率:18.5%)。LCMS(ESI):m/z 334[M+1]+
步骤4c:3-(6-胺基吡啶-3-基)哌啶-1-羧酸叔丁基酯(tert-butyl 3-(6-aminopyridin-3-yl)piperidine-1-carboxylate)(203)的制备。
将2-硝基-5溴吡啶(107A)(1.0克,4.98毫摩尔,1.0当量),双三苯基磷二氯化钯(174毫克,0.25毫摩尔,0.05当量),无水碳酸铯(2.43克,7.47毫摩尔,1.5当量)混合于5毫升水和50毫升N,N-二甲基甲酰胺中,氮气保护下加入化合物5-频哪醇硼酸酯-3,4-二氢吡啶-1(2H)-羧酸叔丁基酯(203A)(2.13克,6.89毫摩尔,1.4当量)后加热至85℃。1小时后。冷却至室温,用乙酸乙酯萃取,饱和食盐水洗涤两次,有机相用无水硫酸钠干燥,减压浓缩。粗品通过柱层析纯化(洗脱剂:乙酸乙酯/石油醚=10/100至50/100)得到黄色固体,即化合物6’-硝基-5,6-二氢-[3,3’-联吡啶]-1(4H)-羧酸叔丁基酯(203B)(282毫克,收率:18.5%)。LCMS(ESI):m/z 306[M+1]+
在氢气环境下,将上述制备的化合物203B(100毫克,0.33毫摩尔,1.0当量)和钯碳(10毫克,10%)加入到装有甲醇(10毫升)的反应瓶中,在30℃下搅拌过夜。过滤后滤液在真空下浓缩得到化合物3-(6-胺基吡啶-3-基)哌啶-1-羧酸叔丁基酯(89毫克,粗品,直接用于下一步)。LCMS(ESI):m/z 278[M+1]+
步骤4d:3-(6-((8-环戊基-6-(1-乙氧基乙烯基)-5-甲基-7-氧代-7,8-二氢吡啶并[2,3-d]嘧啶-2-基)胺基)吡啶-3-基)哌啶-1-甲酸叔丁酯(tert-butyl 3-(6-((8-cyclopentyl-6-(1-ethoxyvinyl)-5-methyl-7-oxo-7,8-dihydropyrido[2,3-d]pyrimidin-2-yl)amino)pyridin-3-yl)piperidine-1-carboxylate)(化合物204)的制备。
在氮气保护下,将化合物3-(6-胺基吡啶-3-基)哌啶-1-羧酸叔丁基酯(203)(89毫克,0.32毫摩尔,1.0当量),化合物2-氯-8-环戊基-6-(1-乙氧基乙烯基)-5-甲基吡啶并[2,3-d]嘧啶-7(8H)-酮(202)(106毫克,0.32毫摩尔,1.0当量),4,5-双二苯基膦-9,9-二甲基氧杂蒽(17毫克,0.029毫摩尔,0.09当量),碳酸铯(156毫克,0.48毫摩尔,2.0当量)和三(二亚苄基丙酮)二钯(15毫克,0.016毫摩尔,0.05当量)加入到装有甲苯的反应瓶中,加热到90℃,搅拌5小时后,反应液在真空下浓缩得到的粗品通过硅胶柱层 析分离纯化(洗脱剂:甲醇/二氯甲烷=0/100至5/100)得到黄色胶状体3-(6-((8-环戊基-6-(1-乙氧基乙烯基)-5-甲基-7-氧代-7,8-二氢吡啶并[2,3-d]嘧啶-2-基)胺基)吡啶-3-基)哌啶-1-甲酸叔丁酯(96毫克,收率:52.2%)。LCMS(ESI):m/z 575[M+1]+
步骤4e:6-乙酰基-8-环戊基-5-甲基-2-(5-(1-(哌啶-3-基)吡啶-2-胺基)吡啶并[2,3-d]嘧啶-7(8H)-酮(6-acetyl-8-cyclopentyl-5-methyl-2-((5-(piperidin-3-yl)pyridin-2-yl)amino)pyrido[2,3-d]pyrimidin-7(8H)-one)(化合物205)的制备。
将化合物3-(6-((8-环戊基-6-(1-乙氧基乙烯基)-5-甲基-7-氧代-7,8-二氢吡啶并[2,3-d]嘧啶-2-基)胺基)吡啶-3-基)哌啶-1-甲酸叔丁酯(204)(96毫克,0.167毫摩尔,1.0当量)溶于二氯甲烷(50毫升)中,缓慢滴入盐酸甲醇溶液(5毫升),搅拌3小时后,减压除去溶剂得到化合物6-乙酰基-8-环戊基-5-甲基-2-(5-(1-(哌啶-3-基)吡啶-2-胺基)吡啶并[2,3-d]嘧啶-7(8H)-酮(83毫克,粗品),直接用于下一步反应。LCMS(ESI):m/z 447[M+1]+
步骤4f:6-乙酰基-8-环戊基-5-甲基-2-(5-(1-(2-甲磺酰基乙基)哌啶-3-基)吡啶-2-胺基)吡啶并[2,3-d]嘧啶-7(8H)-酮(6-acetyl-8-cyclopentyl-5-methyl-2-((5-(1-(2-(methylsulfonyl)ethyl)piperidin-3-yl)pyridin-2-yl)amino)pyrido[2,3-d]pyrimidin-7(8H)-one)(化合物5)的制备。
将化合物6-乙酰基-8-环戊基-5-甲基-2-(5-(1-(哌啶-3-基)吡啶-2-胺基)吡啶并[2,3-d]嘧啶-7(8H)-酮(205)(60毫克,0.134毫摩尔,1.0当量)溶于乙腈(30毫升)中,加入碳酸钾(18毫克,0.134毫摩尔,1.0当量),氮气保护下升温到70℃后缓慢滴入2-(甲磺酰基)乙基甲磺酸酯(111-1)的二氯甲烷溶液(3毫升,0.161毫摩尔,1.2当量),然后在70℃条件下搅拌3小时。冷却至室温,反应液在二氯甲烷和水中萃取分层,有机相用水洗,用无水硫酸钠干燥,浓缩后得到的黄色固体粗品通过硅胶柱层析分离提纯(洗脱剂∶二氯甲烷/甲醇=100∶1至10∶1)得到化合物6-乙酰基-8-环戊基-5-甲基-2-(5-(1-(2-甲磺酰基乙基)哌啶-3-基)吡啶-2-胺基)吡啶并[2,3-d]嘧啶-7(8H)-酮为黄色固体(58毫克,收率:78.4%)。
LCMS(ESI):m/z 553[M+1]+。熔点:109-113℃;1H NMR(500MHz,DMSO-d6)δ10.24(s,1H),9.00(s,1H),8.27(d,J=2.2Hz,1H),8.01(d,J=8.6Hz,1H),7.75(dd,J=8.6,2.3Hz,1H),5.85(m,1H),3.31(dd,J=6.6,2.8Hz,2H),3.03(s,3H),2.93(dd,J=23.9,11.2Hz,2H),2.77(m,3H),2.43(s,3H),2.32(s,3H),2.27(m,2H),2.07(d t,J=11.3,10.0Hz,2H),1.92(dd,J=7.6,5.5Hz,2H),1.78(m,4H),1.60(dd,J=13.8,8.9Hz,3H),1.47(dd,J=12.2,3.5Hz,1H)。
实施例5
3-乙酰基-1-环戊基-4-甲基-7-(5-(1-(2-(甲磺酰基)乙基哌啶-4-基)吡啶-2-胺基)-1,6-萘啶-2(1H)-酮,(3-acetyl-1-cyclopentyl-4-methyl-7-((5-(1-(2-(methylsulfonyl)ethyl)piperidin-4-yl)pyridin-2-yl)amino)-1,6-naphthyridin-2(1H)-one)(化合物13)的制备。
步骤5a:2-氯-4-胺基-5-碘吡啶(2-chloro-5-iodopyridin-4-amine)(化合物302)的制备。
在氮气保护下,将2-氯-4-胺基吡啶(301)(15克,0.116摩尔,1当量)溶解于乙 腈(200毫升),油浴加热到70℃,缓慢加入碘代丁二酰亚胺(NIS)(33克,0.139摩尔,1.2当量),搅拌16小时。冷却至室温,加入饱和硫代硫酸钠溶液至反应体系呈乳白色,然后加入饱和碳酸钠水溶液将反应体系pH值调节至9-10,再加入乙酸乙酯(500毫升)萃取。分出有机相,并用饱和食盐水(100毫升)洗2次,用无水硫酸钠干燥后,真空下浓缩后经硅胶柱层析(洗脱剂:石油醚/乙酸乙酯=20/1)分离纯化得2-氯-4-胺基-5-碘吡啶(23克,收率:78.1%)。LCMS(ESI):m/z 255[M+1]+
步骤5b:2-氯-4-环戊胺基-5-碘吡啶(2-chloro-N-cyclopentyl-5-iodopyridin-4-amine(化合物303)的制备。
在氮气保护下,将2-氯-4-胺基-5-碘吡啶(302)(23克,90.6毫摩尔,1当量),碳酸铯(177克,0.544摩尔,6当量),溴代环戊烷(81克,0.544摩尔,6当量)加入到反应瓶中,二氯亚砜(500毫升)作溶剂加热到90℃搅拌反应36小时。过滤,乙酸乙酯萃取,有机相用水(500毫升)洗三次,饱和食盐水(400毫升)洗三次,无水硫酸钠干燥,真空浓缩后经硅胶柱层析(洗脱剂:石油醚/乙酸乙酯=10/1)分离纯化得2-氯-4-环戊胺基-5-碘吡啶(6克,收率:20.5%)。LCMS(ESI):m/z 323[M+1]+
步骤5c:(E)-3-[6-氯-4-环戊胺基吡啶-3-基]-2-丁烯酸乙酯(ethyl(E)-3-(6-chloro-4-(cyclopentylamino)pyridin-3-yl)but-2-enoate)(化合物304)的制备。
在氮气保护下,将2-氯-4-环戊胺基-5-碘吡啶(303)(6克,18.6毫摩尔,1当量),碳酸钠(4.93克,46.5毫摩尔,2.5当量),(Z)-3-(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)-2-丁烯酸乙酯(103)(5.8克,24.2毫摩尔,1.3当量)和双三苯基磷二氯化钯(1.31克,1.86毫摩尔,0.1当量)放入反应瓶中DMF和水(10∶1)作溶剂,加热到90℃,反应3.5小时。加入乙酸乙酯(400毫升),水(200毫升)洗3次,盐水(100毫升)洗1次,浓缩后得粗品,通过硅胶柱层析(洗脱剂:石油醚/乙酸乙酯=4/1)分离纯化得(E)-3-[6-氯-4-环戊胺基吡啶-3-基]-2-丁烯酸乙酯(5.2克,收率:90.9%)。LCMS(ESI):m/z 309[M+1]+
步骤5d:7-氯-1-环戊基-4-甲基-1,6-萘啶-2(1H)-酮(7-chloro-1-cyclope ntyl-4-methyl-1,6-naphthyridin-2(1H)-one)(化合物305)的制备。
将7-氯-1-环戊基-4-甲基-1,6-萘啶-2(1H)-酮(304)(5.2克,16.9毫摩尔,1当量)溶于甲苯(20毫升),加入DBU(1,8-二氮杂环[5,4,0]十一烯-7)(2.57克,1.69毫摩尔,0.1当量),加热至回流,搅拌16小时。降至室温,浓缩,通过柱层析(洗脱剂:石油醚/乙酸乙酯=15/1)分离纯化得7-氯-1-环戊基-4-甲基-1,6-萘啶-2(1H)-酮(3.7克,收率:83.4%)。LCMS(ESI):m/z 263[M+1]+
步骤5e:3-溴-7-氯-1-环戊基-4-甲基-1,6-萘啶-2(1H)-酮(3-bromo-7-chloro-1-cyclopentyl-4-methyl-1,6-naphthyridin-2(1H)-one)(化合物306)的制备。
将化合物7-氯-1-环戊基-4-甲基-1,6-萘啶-2(1H)-酮(305)(3.7克,14.1毫摩尔,1当量)溶于冰醋酸(10毫升),加入醋酸钠(4.62克,56.4毫摩尔,4当量),加热到50℃,将溴素(4.9克,15.5毫摩尔,1.1当量)溶于醋酸,缓慢滴入反应瓶。搅拌3.5小时。冷却至室温,缓慢加入饱和硫代硫酸钠水溶液至澄清,滴入饱和碳酸钠水溶液将反应体系pH值调节至9-10,加入二氯甲烷(200毫升)萃取,浓缩后得粗品,通过硅胶柱层析(洗脱剂:石油醚/乙酸乙酯=10/1)分离纯化得3-溴-7-氯-1-环戊基-4-甲基-1,6-萘 啶-2(H)-酮(3克,收率:62.6%)。LCMS(ESI):m/z 341[M+1]+
步骤5f:7-氯-1-环戊基-3-(1-乙氧基乙烯基)-4-甲基-1,6-萘啶-2(1H)-酮(7-chloro-1-cyclopentyl-3-(1-ethoxyvinyl)-4-methyl-1,6-naphthyridin-2(1H)-one)(化合物307)的制备。
在氮气保护下,将3-溴-7-氯-1-环戊基-4-甲基-1,6-萘啶-2(1H)-酮(306)(1.5克,4.41毫摩尔,1当量),四三苯基磷钯(509毫克,0.44毫摩尔,0.1当量)和三丁基(1-乙氧基乙烯)锡(2.07克,5.73毫摩尔,1.3当量)置于反应瓶溶于甲苯(20毫升),加热至回流反应16小时。减压浓缩得粗品,通过硅胶柱层析(洗脱剂:石油醚/乙酸乙酯=10/1)分离提纯得7-氯-1-环戊基-3-(1-乙氧基乙烯基)-4-甲基-1,6-萘啶-2(1H)-酮(1.0克,收率:68.3%)。LCMS(ESI):m/z 333[M+1]+
步骤5g.4-(6-(1-环戊基-3-(1-乙氧基乙烯基)-4-甲基-2-氧代-1,2-二氢-1,6-萘啶-7-胺基)吡啶-3-基)哌啶-1-甲酸叔丁酯(tert-butyl 4-(6-((1-cyclopentyl-3-(1-ethoxyvinyl)-4-methyl-2-oxo-1,2-dihydro-1,6-naphthyridin-7-yl)amino)pyridin-3-yl)piperidine-1-carboxylate)(化合物308)的制备。
将7-氯-1-环戊基-3-(1-乙氧基乙烯基)-4-甲基-1,6-萘啶-2(1H)-酮(307)(150毫克,0.45毫摩尔,1.0当量),4-(6-胺基吡啶-3-基)哌啶-1-甲酸叔丁酯(107)(165毫克,0.585毫摩尔,1.3当量),碳酸铯(300毫克,0.9毫摩尔,2.0当量),4,5-双二苯基磷-9,9-二甲基氧杂蒽(21毫克,0.036毫摩尔,0.08当量)分散于30毫升甲苯中。在氮气保护下,加入Pd2(dba)3(三(二亚苄基丙酮)二钯,16毫克,0.018毫摩尔,0.04当量)。将该反应体系置于预先加热的130℃油浴中加热回流,搅拌反应6小时。反应完成后,冷却至室温,减压浓缩。最后用硅胶柱层析(洗脱剂∶二氯甲烷/甲醇=100∶1至15∶1)纯化得到黄色固体,即4-(6-(1-环戊基-3-(1-乙氧基乙烯基)-4-甲基-2-氧代-1,2-二氢-1,6-萘啶-7-胺基)吡啶-3-基)哌啶-1-甲酸叔丁酯(176毫克,收率:68%)。LCMS(ESI):m/z 574[M+1]+
步骤5h.3-乙酰基-1-环戊基-4-甲基-7-(5-(哌啶-4-基)吡啶-2-胺基)-1,6-萘啶-2(1H)-酮(3-acetyl-1-cyclopentyl-4-methyl-7-((5-(piperidin-4-yl)pyridin-2-yl)amino)-1,6-naphthyridin-2(1H)-one)(化合物309)的制备。
将4-(6-(1-环戊基-3-(1-乙氧基乙烯基)-4-甲基-2-氧代-1,2-二氢-1,6-萘啶-7-胺基)吡啶-3-基)哌啶-1-甲酸叔丁酯(308)(176毫克,0.307毫摩尔)溶于30毫升二氯甲烷中,加入6毫升6摩尔/升的盐酸,在室温下搅拌反应2小时。往反应液加入饱和碳酸氢钠溶液,使pH值调为8-9。然后过滤,以除去产生的无机盐,将滤液减压浓缩。最后用硅胶柱层析(洗脱剂∶二氯甲烷/甲醇=100∶1至10∶1)纯化得到黄色固体,即3-乙酰基-1-环戊基-4-甲基-7-(5-(哌啶-4-基)吡啶-2-胺基)-1,6-萘啶-2(1H)-酮(62毫克,收率:45%)。LCMS(ESI):m/z 446[M+1]+。熔点:190.5-191.7;1H NMR(500MHz,DMSO-d6)δ10.08(d,J=17.5Hz,1H),8.77(d,J=11.5Hz,1H),8.30(s,1H),8.14(d,J=9.4Hz,1H),7.61(m,1H),7.41(d,J=8.6Hz,1H),5.70(m,1H),3.36(m,3H),2.98(t,J=11.5Hz,1H),2.86(t,J=11.9Hz,1H),2.43(s,3H),2.36(d,J=8.5Hz,3H),2.26(m,4H),1.85(m,8H)。
步骤5i:3-乙酰基-1-环戊基-4-甲基-7-(5-(1-(2-(甲磺酰基)乙基哌 啶-4-基)吡啶-2-胺基)-1,6-萘啶-2(1H)-酮(3-acetyl-1-cyclopentyl-4-methyl-7-((5-(1-(2-(methylsulfonyl)ethyl)piperidin-4-yl)pyridin-2-yl)amino)-1,6-naphthyridin-2(1H)-one)(化合物13)的制备。
将化合物3-乙酰基-1-环戊基-4-甲基-7-(5-(哌啶-4-基)吡啶-2-胺基)-1,6-萘啶-2(1H)-酮(309)(140毫克,0.31毫摩尔,1.0当量)溶于乙腈(50毫升)中,加入碳酸钾(43毫克,0.31毫摩尔,1.0当量),升温到50℃后缓慢滴入2-(甲磺酰基)乙基甲磺酸酯(111-1)溶液(20.7毫升,0.37毫摩尔,1.2当量),然后在80℃条件下搅拌2小时。冷却至室温,反应液在二氯甲烷和水中萃取分层,有机相用食盐水洗两遍,用无水硫酸钠干燥,浓缩后得到的黄色固体通过硅胶柱层析分离纯化(洗脱剂∶二氯甲烷/甲醇=100∶1至10∶1)得到化合物3-乙酰基-1-环戊基-4-甲基-7-(5-(1-(2-(甲磺酰基)乙基哌啶-4-基)吡啶-2-胺基)-1,6-萘啶-2(1H)-酮为黄色固体(117毫克,收率:68.4%)。LCMS(ESI):m/z 552[M+1]+。熔点:140.7-144.9摄氏度;1H NMR(500MHz,DMSO-d6)δ10.03(s,1H),8.77(s,1H),8.28(s,1H),8.13(s,1H),7.63(d,J=8.5Hz,1H),7.37(d,J=8.5Hz,1H),5.68(p,J=9.1Hz,1H),3.31(d,J=6.6Hz,2H),3.05(s,3H),3.01(d,J=10.2Hz,2H),2.74(t,J=6.2Hz,2H),2.51(s,1H),2.43(s,3H),2.34(s,3H),2.24(d,J=15.0Hz,2H),2.18(s,2H),2.08(t,J=11.2Hz,2H),1.89(d,J=9.3Hz,2H),1.76(d,J=11.9Hz,4H),1.63(dd,J=22.7,11.5Hz,2H)。
实施例6生物活性试验
一、酶活性抑制实验
1、实验方法
(1)、CDK2活性抑制实验
采用Caiiper迁移率变动检测技术(Caliper mobility shift assay)测定CDK2蛋白激酶活性(参见J Biomol Screen 14:31,2009)。将上述得到的化合物用DMSO溶解后用激酶缓冲液(20mM HEPES-pH 7.5,0.01%Triton X-100,10mM MgCl2,2mM DTT)稀释,在384孔板中加入5μl的10%DMSO溶解的5倍反应终浓度的化合物,无化合物对照孔是5μl的10%DMSO,无酶活性对照孔是5μl激酶缓冲液。加入10μl的稀释2.5倍后的CDK2酶溶液(Carna,Cat.No 04-103)后在室温下孵育10分钟,再加入10μl的稀释2.5倍后的底物溶液Peptide FAM-P18(GL Biochem,Cat.No.114202)。28℃下孵育60分钟后加25μl终止液终止反应。Caliper EZ Reader II(Caliper Life Sciences)上读取转化率数据。把转化率转化成抑制率数据。其中max是指DMSO无化合物对照孔的转化率,min是指无酶活对照的转化率。以化合物浓度和抑制率为横纵坐标,绘制曲线,使用XLFit excel add-inversion 4.3.1软件拟合曲线并计算IC50。抑制率%=(max-转化率)/(max-min)×100。
(2)、CDK4活性抑制实验
采用Caliper迁移率变动检测技术(Caliper mobility shift assay)测定CDK4蛋白激酶活性(参见J Biomol Screen 14:31,2009)。将上述得到的化合物用DMSO溶解后用激酶缓冲液(20mM HEPES-pH 7.5,0.01%Triton X-100,10mM MgCl2,2mM DTT)稀释,在384孔板中加入5μl的10%DMSO溶解的5倍反应终浓度的化合物,无化合物对照孔是5μl的10%DMSO,无酶活性对照孔是5μl的激酶缓冲液。加入10μl稀释2.5倍后的CDK4酶溶液(GST-CDK4(1-303end)/GST-CycD3(1-292end;Carna,Cat.No 04-105)) 后在室温下孵育10分钟,再加入10μl的稀释2.5倍后的底物溶液Peptide FAM-P8(GL Biochem,Cat.No.112396)。28℃下孵育3小时后加25μl终止液终止反应。Caliper EZ Reader II(Caliper Life Sciences)上读取转化率数据。按照上述方法把转化率转化成抑制率数据。其中,抑制率%=(max-转化)/(max-min)×100。
(3)、CDK6活性抑制实验
采用Caliper迁移率变动检测技术(Caliper mobility shift assay)测定CDK6蛋白激酶活性(参见J Biomol Screen 14:31,2009)。将上述得到的化合物用DMSO溶解后用激酶缓冲液(20mM HEPES-pH 7.5,0.01%Triton X-100,1OmM MgCl2,2mM DTT)稀释,在384孔板中加入5μl的10%DMSO溶解的5倍反应终浓度的化合物,无化合物对照孔是5μl的10%DMSO,无酶活性对照对照孔是5μl的激酶缓冲液。加入10μl的稀释2.5倍后的CDK6酶溶液(GST-CDK6(1-326end);Carna,Cat.No 04-107)后在室温下孵育10分钟,再加入10μl的稀释2.5倍后的底物溶液Peptide FAM-P8(GL Biochem,Cat.No.112396)。28℃下孵育40分钟后加25μl终止液终止反应。Caliper EZ Reader II(Caliper Life Sciences)上读取转化率数据。把转化率转化成抑制率数据。其中max是指DMSO对照(无化合物)的转化率,min是指无酶活对照的转化率。按照上述方法把转化率转化成抑制率数据。其中,抑制率%一(max-转化)/(max-min)×100。
2、实验结果
上述实验结果如下表所示。
表1 酶活性抑制结果
化合物 CDK6 CDK4 CDK2 化合物 CDK6 CDK4 CDK2
1 IV V I 2 IV V I
4 I     5 IV IV I
13 IV V I        
PD-0332991 V V I        
LY2835219 IV V IV        
LEE011 III            
注:I表示IC50>500nM,II表示500nM≥IC50>100nM,III表示100nM≥IC50>50nM,IV表示50nM≥IC50>10nM,V表示IC50≤10nM。
从上述结果我们可以看出,本发明提供的化合物对CDK2抑制的IC50为I,即至少>500nM,几乎无抑制活性,而对CDK6抑制的IC50为50nM以下(化合物4除外),对CDK4抑制的IC50为10nM以下,即该类化合物可以选择性抑制CDK4和CDK6,对CDK2几乎无抑制活性,而对CDK4和CDK6有较高的抑制活性,能达到50nM,甚至10nM以下,具有高选择性和高活性的特点。
二、肿瘤细胞增殖抑制实验
1、实验方法
采用CellTiter-Glo发光细胞活力检测试剂盒法(Promega,Madison,WI)测定三磷酸腺苷(ATP)的含量来评估细胞活力。肿瘤细胞株(SW620、ZR-75-1、MDA-MB-231)购买自上海复旦IBS细胞资源中心和美国菌种保藏中心(ATCC)。将胰酶将细胞从细胞培养盘上消化和DPBS培养基重悬后用Scepter自动细胞计数仪(Millipore#PHCC00000)计数测定细胞密度。将细胞稀释成每毫升含44,000个细胞的溶液。调整密度后的细胞溶液以每孔90微升加入细胞实验板中。孔板置于37℃、5%CO2培养箱培养24小时后加入不同浓度的待试化合物。细胞在10%胎牛血清存在下与化合物一起培养72小时。使用
Figure PCTCN2016084056-appb-000008
Luminescent Cell Viability Assay kit(见厂家说明书)测定ATP的含量来评估细胞生长抑制。简要来讲,每个孔中加入30μl
Figure PCTCN2016084056-appb-000009
试剂,摇板10分钟,诱导细胞裂解,用Fluoroskan Ascent FL(Thermo)检测记录萤光信号。从二甲基亚砜处理72小时的细胞得到最大的信号值。从单独的培养基(细胞数为零)得到最小信号值。抑制率%=(最大信号值-化合物信号值)/(最大信号值-最小信号值)X 100。使用GraphPad Prism V5.0(GraphPad Software,San Diego,CA)软件处理数据。通过S形剂量-反应曲线拟合计算IC50值。
2、实验结果
上述实验结果如下表所示。
表2 肿瘤细胞增殖抑制结果
化合物 SW620 ZR-75-1 MDA-MB-231
1 IV IV IV
2 IV V IV
5 IV IV III
13 II III III
PD-0332991 IV IV IV
LY2835219 IV V IV
LEE011 III V II
注:I表示IC50>5μM,II表示5μM≥IC50>1μM,III表示1μM≥IC50>0.5μM,IV表示0.5μM≥IC50>0.1μM,V表示IC50≤0.1μM。
从上述结果我们可以看出,本发明提供的化合物对SW620、ZR-75-1、MDA-MB-231肿瘤细胞株均有抑制活性,且部分化合物活性较高。
三、细胞周期抑制实验
1、实验方法
本实验采用的细胞周期与细胞凋亡检测试剂盒(Beyotime,C1052)是一种采用经 典的碘化丙啶染色(Propidium staining,即PI staining)方法进行细胞周期与细胞凋亡分析的检测试剂盒。碘化丙啶(Propidium,简称PI)是一种双链DNA的荧光染料。碘化丙啶和双链DNA结合后可以产生荧光,并且荧光强度和双链DNA的含量成正比。细胞内的DNA被碘化丙啶染色后,可以用流式细胞仪对细胞进行DNA含量测定,然后根据DNA含量的分布情况,可以进行细胞周期和细胞凋亡分析。
将MDA-MB-231细胞按每孔3×105个接种于6孔培养板,培养24小时。加入待试化合物或参照物(PD-0332991或LY2835219)24h后,1000rcf离心3min收集细胞,PBS(磷酸盐缓冲溶液)洗两次;加入预冷的70%乙醇4℃固定过夜,1000rcf离心10min,1×PBS洗两次;加入PI染色液染色30min;用流式细胞仪检测并分析细胞周期G1阻滞。
2、实验结果
CDK4和CDK6在肿瘤细胞周期中与cyclin D结合促使G1期进入S期。CDK4/6抑制剂选择性阻滞肿瘤细胞G1期进入S期。流式细胞术检测MDA-MB-231乳腺癌细胞周期结果表明,本发明提供的CDK4/6抑制剂化合物以浓度依赖方式使G1期细胞生长停止和S期细胞减少,如下表所示。
表3 细胞周期实验结果
Figure PCTCN2016084056-appb-000010
四、蛋白免疫印迹(Western Blot)实验
1、实验方法
MDA-MB-231单层培养生长,加入待试化合物或参考化合物(PD-0332991或LY2835219)培养培养16小时后,用预冷的PBS洗两次,收集细胞,用生物样品均质器匀浆2-3次,13,000rpm于4℃离心10min,取上清液。采用Branfor法测定蛋白浓度,加入上样缓冲液(Beyotime,#P0015L)于100℃煮8min,以8%-10%SDS-PAGE电泳分离蛋白后转移至PVDF膜,膜用含5%的脱脂奶粉封闭45min,加一抗β-actin(CST,#4970)、Rb(D20)RabbitmAb(CST,#9313)、Phospho-Rb(Ser780)(D59B7)Rabbit mAb(CST,#8180)于4℃下孵育过夜,然后用TBST液洗膜3×10min。以荧光二抗IRDye@680CW Goat(polyclonal)Anti-Rabbit lgG(H+L),Highly Cross Adsorbed(LI-COR,#926-68071)室温下避光孵育2h后再洗膜,洗涤条件同上。最后将膜置于LI-COR Odyssey红外荧光扫描成像系统上检测成像,结果如图1所示。
2、实验结果
CDK4/6可通过将肿瘤抑制蛋白Rb蛋白磷酸化而使Rb蛋白失去对细胞周期的阻滞作用。CDK4/6抑制剂可阻止肿瘤抑制蛋白Rb的失活从而恢复Rb对细胞周期的阻滞作用。 由图1中可以看出,本发明提供的化合物1、2作用于MDA-MB-231乳腺癌细胞,能有效降低Rb在Ser780位点的磷酸化。
实施例7药代动力学(PK)实验
1、实验方法
雄性SD大鼠,体重300-350克,试验前过夜禁食。待试化合物溶解在30%磺丁基-β-环糊精(SBE-β-CD)中,以20mg/kg灌胃给药。给药后15分钟、30分钟和1、2、3、4、6、8及24小时尾端断口取血,每时间点约0.3ml,置于含K2-EDTA的离心管中,离心处理(2,000g,10分钟,4℃)取血浆,储存在-80℃的超低温冰箱中。取50μL的血浆样品与5微升内标(IS)混合,用乙酸乙酯萃取。真空干燥后残留物重新溶于乙腈中。对样品进行过滤,并注入到LC-MS/MS分析,测定待试化合物的浓度。
2、实验结果
结果如下表和图2-4所示。
表4 药代动力学实验结果:
Figure PCTCN2016084056-appb-000011
表中:Tmax是指达峰时间,Cmax是指最大血药浓度,T1/2为半衰期,AUClast是指0-24小时时间-浓度曲线下面积,AUCinf是指0-Inf时间-浓度曲线下面积。
从上述结果中可以看出,本发明提供的化合物1、2经灌胃给药后,吸收良好,血液暴露量高。与对照物PD-0332991比较,该类化合物Cmax高了约4-7倍,AUC大了约3-9倍。一期临床结果显示,palbociclib(PD-0332991)口服吸收血液暴露量较低,由于消除半衰期长(平均值25.9小时),重复每天给药导致药物蓄积(Keith T,et al.Clin Cancer Res 18:568,2011)。化合物1、2口服吸收好,Cmax和AUC显著提高,而半衰期相对较短。
实施例8药效学实验
1、实验方法
从中国科学院上海细胞库获取MDA-MB-435乳腺癌细胞。冻存的细胞在37℃的水浴中解冻后放置加入10%胎牛血清(FBS)、1%胰岛素(上海宝曼生物科技有限公司)的RPMI 1640培养基中,在5%CO2的组织培养孵化器培养箱内培养。当细胞培养达到所需的数量,细胞收集后,用不含血清的Dulbecco磷酸盐缓冲液(DPBS)清洗。将悬浮在0.1毫升的RPMI 1640中3.5×106个细胞和0.1毫升ECM gel(Sigma-Aldrich)注入每只小鼠右后侧翼皮下区域并小心避开血管。成功移植的提示是在皮肤下形成一个圆形凸出的团块。在植入两周左右即可测量出肿瘤大小。使用卡尺测量肿瘤的大小。并用以下公式计算肿瘤体积:肿瘤体积=(长×宽2)/2,肿瘤生长变化率(T/C%)=100×ΔT/ΔC。
2、实验结果
PD-0332991以150mg/kg每日一次口服给药第6天后平均体重明显下降,随后将剂量调整为100mg/kg,每日一次口服给药。化合物1以75mg/kg每日两次口服给药,PD-0332991和化合物1给药2周后停止给药,并继续观察肿瘤大小和体重变化。
结果如图5和图6所示,图5为肿瘤体积大小变化曲线图,图6为小鼠体重变化曲线图。PD-0332991和化合物1抑制肿瘤生长,给药14天后,PD-0332991和化合物1的T/C值分别为41%和25%。提示最大耐受量时化合物1比PD-0332991抗癌活性更高和安全性更大。停药后第6天(即D20),PD-0332991和化合物1的T/C值分别为35%和32%。提示两者作用较长。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 式I所示的嘧啶或吡啶并吡啶酮类化合物或者其药学上可接受的盐或立体异构体:
    Figure PCTCN2016084056-appb-100001
    其中:Y选自:C或N,且当Y选取N,则无R6取代;
    R1选自:C1-C6烷基,C3-C6环烷基,C3-C6环烷基取代甲基;
    R2选自:卤素,COR5,COOR5
    R3选自:H,C1-C6烷基;
    R4选自:C1-C6烷基,羟基取代C1-C6烷基,烷氧基取代C1-C6烷基,苯基,卤素取代苯基;
    R5选自:H,C1-C6烷基,C1-C6含氟烷基;C3-C6环烷基;
    R6选自:H,F,CN,CH3
    m选自:0,1或2;
    n选自:1,2或3;
    p选自:1,2或3。
  2. 根据权利要求1所述的嘧啶或吡啶并吡啶酮类化合物或者其药学上可接受的盐或立体异构体,其特征在于,
    R4选自:C1-C6烷基,羟基取代C1-C6烷基,烷氧基取代C1-C6烷基。
  3. 根据权利要求2所述的嘧啶或吡啶并吡啶酮类化合物或者其药学上可接受的盐或立体异构体,其特征在于,
    R4选自:甲基,乙基,丙基,异丙基。
  4. 根据权利要求1所述的嘧啶或吡啶并吡啶酮类化合物或者其药学上可接受的盐或立体异构体,其特征在于,
    m选自:1;
    n选自:2;
    p选自:1或2。
  5. 根据权利要求1所述的嘧啶或吡啶并吡啶酮类化合物或者其药学上可接受的盐或立体异构体,其特征在于,
    Y选自:N。
  6. 根据权利要求1-5任一项所述的嘧啶或吡啶并吡啶酮类化合物或者其药学上可接受的盐或立体异构体,其特征在于,
    R1选自:C3-C6环烷基;
    R2选自:COR5
    R3选自:C1-C6烷基;
    R5选自:C1-C6烷基;
    R6选自:H。
  7. 根据权利要求6所述的嘧啶或吡啶并吡啶酮类化合物或者其药学上可接受的盐或立体异构体,其特征在于,
    R1选自:环戊基;
    R2选自:COR5
    R3选自:甲基;
    R5选自:甲基,乙基;
    R6选自:H。
  8. 根据权利要求1所述的嘧啶或吡啶并吡啶酮类化合物或者其药学上可接受的盐或立体异构体,其特征在于,选自如下化合物:
    Figure PCTCN2016084056-appb-100002
  9. 权利要求1-8任一项所述的嘧啶或吡啶并吡啶酮类化合物或者其药学上可接受的盐或立体异构体在制备防治肿瘤药物中的应用。
  10. 根据权利要求9所述的应用,其特征在于:所述肿瘤为实体肿瘤和血液肿瘤。
  11. 根据权利要求10所述的应用,其特征在于:所述实体肿瘤和血液肿瘤包括乳腺癌,脂肪肉瘤,非小细胞肺癌,肝癌,卵巢癌,胶质母细胞瘤,黑素瘤,多发性骨髓瘤和套细胞淋巴瘤。
  12. 根据权利要求11所述的应用,其特征在于:所述乳腺癌包括:在绝经后女性雌激素受体阳性和/或人表皮生长因子受体2阴性的局部晚期或转移性乳腺癌。
  13. 一种防治肿瘤的药物组合物,其特征在于,包括作为活性成份的权利要求1-8任一项所述的嘧啶或吡啶并吡啶酮类化合物或者其药学上可接受的盐或立体异构体,以及药学上可接受的载体。
PCT/CN2016/084056 2015-09-30 2016-05-31 嘧啶或吡啶并吡啶酮类化合物及其应用 WO2017054484A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
SI201630949T SI3357922T1 (sl) 2015-09-30 2016-05-31 2-((5-(1-(3-(metilsulfonil)propil)piperidin-4-il)piridin-2-il)amino) pirido(2,3-D)pirimidin-7(8H)-on derivati in sorodne spojine kot CDK4 inhibitorji za zdravljenje tumorjev
AU2016333188A AU2016333188B2 (en) 2015-09-30 2016-05-31 Pyrimidine or pyridopyridone compound and application thereof
ES16850109T ES2828984T3 (es) 2015-09-30 2016-05-31 Derivados de 2-((5-(1-(3-(metilsulfonil)propil)piperidin-4-il)piridin-2-il)amino)pirido[2,3-D]pirimidin-7(8H)-ona y compuestos relacionados como inhibidores de CDK4 para tratar tumores
EP16850109.6A EP3357922B1 (en) 2015-09-30 2016-05-31 2-((5-(1-(3-(methylsulfonyl)propyl)piperidin-4-yl)pyridin-2-yl)amino)pyrido[2,3-d]pyrimidin-7(8h)-one derivatives and related compounds as cdk4 inhibitors for treating tumors
CA3000548A CA3000548C (en) 2015-09-30 2016-05-31 Pyrimido- or pyridopyridone compound and use as a cyclin-dependent kinase inhibitor
JP2018536324A JP6556369B2 (ja) 2015-09-30 2016-05-31 ピリミジン又はピリドピロドン類化合物、及びその応用
PL16850109T PL3357922T3 (pl) 2015-09-30 2016-05-31 Pochodne 2-((5-(1-(3-(metylosulfonylo)propylo)piperydyn-4-ylo)pirydyn-2-ylo)amino)pirydo[2,3-d]pirymidyn-7(8h)-onu i związki pokrewne jako inhibitory cdk4 do leczenia nowotworów
DK16850109.6T DK3357922T3 (da) 2015-09-30 2016-05-31 2-((5-(1-(3-(methylsulfonyl)propyl)piperidin-4-yl)pyridin-2-yl)amino)pyrido[2,3-d]pyrimidin-7(8h)-on-derivater og relaterede forbindelser som cdk4-inhibitorer til behandling af tumorer
US15/764,884 US10183941B2 (en) 2015-09-30 2016-05-31 Pyrimidine or pyridopyridone compound and application thereof
HK18110804.5A HK1251547A1 (zh) 2015-09-30 2018-08-22 嘧啶或吡啶並吡啶酮類化合物及其應用
HRP20201727TT HRP20201727T1 (hr) 2015-09-30 2020-10-26 2-((5-(1-(3-(metilsulfonil)propil)piperidin-4-il)piridin-2-il)amino)pirido[2,3-d]pirimidin-7(8h)-on derivati i srodni spojevi kao cdk4 inhibitori za liječenje tumora

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510646418.4A CN105130986B (zh) 2015-09-30 2015-09-30 嘧啶或吡啶并吡啶酮类化合物及其应用
CN201510646418.4 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017054484A1 true WO2017054484A1 (zh) 2017-04-06

Family

ID=54716613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084056 WO2017054484A1 (zh) 2015-09-30 2016-05-31 嘧啶或吡啶并吡啶酮类化合物及其应用

Country Status (15)

Country Link
US (1) US10183941B2 (zh)
EP (1) EP3357922B1 (zh)
JP (1) JP6556369B2 (zh)
CN (1) CN105130986B (zh)
AU (1) AU2016333188B2 (zh)
CA (1) CA3000548C (zh)
DK (1) DK3357922T3 (zh)
ES (1) ES2828984T3 (zh)
HK (1) HK1251547A1 (zh)
HR (1) HRP20201727T1 (zh)
HU (1) HUE052454T2 (zh)
PL (1) PL3357922T3 (zh)
PT (1) PT3357922T (zh)
SI (1) SI3357922T1 (zh)
WO (1) WO2017054484A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019238088A1 (zh) * 2018-06-13 2019-12-19 基石药业 吡啶并吡啶酮衍生物的盐型及晶型
JP2020510083A (ja) * 2016-12-16 2020-04-02 シーストーン・ファーマスーティカルズCstone Pharmaceuticals Cdk4/6阻害剤
WO2021170076A1 (en) * 2020-02-28 2021-09-02 Fochon Pharmaceuticals, Ltd. Compounds as cdk2/4/6 inhibitors
WO2022113003A1 (en) 2020-11-27 2022-06-02 Rhizen Pharmaceuticals Ag Cdk inhibitors
WO2022149057A1 (en) 2021-01-05 2022-07-14 Rhizen Pharmaceuticals Ag Cdk inhibitors
US11697648B2 (en) 2019-11-26 2023-07-11 Theravance Biopharma R&D Ip, Llc Fused pyrimidine pyridinone compounds as JAK inhibitors

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016169422A1 (zh) * 2015-04-22 2016-10-27 江苏恒瑞医药股份有限公司 一种周期素依赖性蛋白激酶抑制剂的结晶形式及其制备方法
US11225492B2 (en) * 2015-12-13 2022-01-18 Hangzhou Innogate Pharma Co., Ltd. Heterocycles useful as anti-cancer agents
CN106083844B (zh) * 2016-06-05 2017-11-10 陈志明 一种制备抗乳腺癌药物帕博西尼中间体的方法
WO2019015593A1 (zh) * 2017-07-19 2019-01-24 江苏奥赛康药业股份有限公司 嘧啶并吡啶酮或者吡啶并吡啶酮类化合物及其应用
CN109320511A (zh) * 2018-10-26 2019-02-12 广安凯特制药有限公司 一种高纯度帕博西尼中间体产品及其制备方法
CN112457311B (zh) * 2020-12-04 2022-07-12 江苏豪森药业集团有限公司 一种含有氯溴吡咯嘧啶酮结构化合物的制备方法
CN112778303A (zh) * 2020-12-31 2021-05-11 武汉九州钰民医药科技有限公司 Cdk4/6激酶抑制剂shr6390的制备方法
CN114751909B (zh) * 2022-03-17 2023-10-27 杭州福斯特药业有限公司 一种瑞博西尼中间体的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103288824A (zh) * 2012-02-23 2013-09-11 上海师范大学 四氢吡啶并吡啶酮衍生物、其制备方法及应用
WO2014183520A1 (zh) * 2013-05-17 2014-11-20 上海恒瑞医药有限公司 吡啶并嘧啶类衍生物、其制备方法及其在医药上的应用
CN104812756A (zh) * 2012-09-26 2015-07-29 曼凯德公司 多激酶通路抑制剂

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GEP20063909B (en) * 2002-01-22 2006-08-25 Warner Lambert Co 2-(PYRIDIN-2-YLAMINO)-PYRIDO[2,3d] PYRIMIDIN-7-ONES
ATE439361T1 (de) * 2006-01-31 2009-08-15 Hoffmann La Roche 7h-pyridoä3,4-düpyrimidin-8-one, ihre herstellung und ihre verwendung als proteinkinaseinhibitoren
PE20080695A1 (es) * 2006-04-27 2008-06-28 Banyu Pharma Co Ltd Derivados de dihidropirazolopirimidinona como inhibidores de quinasa weel
US20080114007A1 (en) * 2006-10-31 2008-05-15 Player Mark R 5-oxo-5,8-dihydro-pyrido-pyrimidines as inhibitors of c-fms kinase
TW200942537A (en) * 2008-02-01 2009-10-16 Irm Llc Compounds and compositions as kinase inhibitors
US9828373B2 (en) * 2014-07-26 2017-11-28 Sunshine Lake Pharma Co., Ltd. 2-amino-pyrido[2,3-D]pyrimidin-7(8H)-one derivatives as CDK inhibitors and uses thereof
WO2016169422A1 (zh) * 2015-04-22 2016-10-27 江苏恒瑞医药股份有限公司 一种周期素依赖性蛋白激酶抑制剂的结晶形式及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103288824A (zh) * 2012-02-23 2013-09-11 上海师范大学 四氢吡啶并吡啶酮衍生物、其制备方法及应用
CN104812756A (zh) * 2012-09-26 2015-07-29 曼凯德公司 多激酶通路抑制剂
WO2014183520A1 (zh) * 2013-05-17 2014-11-20 上海恒瑞医药有限公司 吡啶并嘧啶类衍生物、其制备方法及其在医药上的应用

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020510083A (ja) * 2016-12-16 2020-04-02 シーストーン・ファーマスーティカルズCstone Pharmaceuticals Cdk4/6阻害剤
JP7044801B2 (ja) 2016-12-16 2022-03-30 シーストーン・ファーマスーティカルズ・(スージョウ)・カンパニー・リミテッド Cdk4/6阻害剤
WO2019238088A1 (zh) * 2018-06-13 2019-12-19 基石药业 吡啶并吡啶酮衍生物的盐型及晶型
CN112292379A (zh) * 2018-06-13 2021-01-29 基石药业(苏州)有限公司 吡啶并吡啶酮衍生物的盐型及晶型
CN112292379B (zh) * 2018-06-13 2022-03-04 基石药业(苏州)有限公司 吡啶并吡啶酮衍生物的盐型及晶型
US11697648B2 (en) 2019-11-26 2023-07-11 Theravance Biopharma R&D Ip, Llc Fused pyrimidine pyridinone compounds as JAK inhibitors
WO2021170076A1 (en) * 2020-02-28 2021-09-02 Fochon Pharmaceuticals, Ltd. Compounds as cdk2/4/6 inhibitors
WO2022113003A1 (en) 2020-11-27 2022-06-02 Rhizen Pharmaceuticals Ag Cdk inhibitors
WO2022149057A1 (en) 2021-01-05 2022-07-14 Rhizen Pharmaceuticals Ag Cdk inhibitors

Also Published As

Publication number Publication date
EP3357922A4 (en) 2019-06-05
DK3357922T3 (da) 2020-11-02
HRP20201727T1 (hr) 2020-12-25
HK1251547A1 (zh) 2019-02-01
AU2016333188A1 (en) 2018-05-17
AU2016333188B2 (en) 2018-10-25
ES2828984T3 (es) 2021-05-28
US20180297995A1 (en) 2018-10-18
SI3357922T1 (sl) 2020-12-31
PL3357922T3 (pl) 2021-02-08
JP2018534352A (ja) 2018-11-22
US10183941B2 (en) 2019-01-22
EP3357922A1 (en) 2018-08-08
CA3000548A1 (en) 2017-04-06
CN105130986A (zh) 2015-12-09
JP6556369B2 (ja) 2019-08-07
EP3357922B1 (en) 2020-08-26
HUE052454T2 (hu) 2021-04-28
CN105130986B (zh) 2017-07-18
PT3357922T (pt) 2020-10-29
CA3000548C (en) 2020-09-22

Similar Documents

Publication Publication Date Title
WO2017054484A1 (zh) 嘧啶或吡啶并吡啶酮类化合物及其应用
JP6964343B2 (ja) ユビキチン特異的プロテアーゼ1阻害剤としてのプリノン
WO2020239077A1 (zh) 含氮杂环类衍生物调节剂、其制备方法和应用
KR102292811B1 (ko) 아릴퀴나졸린
US9157077B2 (en) Aminopyrimidine kinase inhibitors
JP6248123B2 (ja) 塩誘導性キナーゼ2(SIK2)阻害剤としての置換された1H−ピロロ[2,3−b]ピリジン及び1H−ピラゾロ[3,4−b]ピリジン誘導体
JP2021138754A (ja) Hpk1阻害剤およびそれを用いる方法
JP5031760B2 (ja) プロテインキナーゼインヒビターとしてのイミダゾピラジン
CA2809553C (en) Imidazo[4,5-c]quinolines as dna-pk inhibitors
KR102038462B1 (ko) Pi3k의 활성 또는 기능의 억제제의 용도
KR20180132629A (ko) 글리코시다제 저해제
MX2010008421A (es) Compuestos y composiciones como inhbidores de cinasa.
MX2013000617A (es) Derivados sustituidos de imidazoquinolina como inhibidores de quinasa.
KR20120063515A (ko) Pi3 키나제 억제제 및 이들의 용도
JP2013515736A (ja) キナーゼ調節のための化合物及び方法ならびにそれらの適応症
KR20150065191A (ko) 헤테로방향족 화합물 및 도파민 d1 리간드로서 이의 용도
US9181238B2 (en) N-(pyridin-2-yl)sulfonamides and compositions thereof as protein kinase inhibitors
MX2012009475A (es) Hetarilaminonaftiridinas.
US20130310374A1 (en) Substituted Imidazoquinoline Derivatives
US9321762B2 (en) Quinazoline compounds, method for preparing the same and use thereof
WO2010135568A1 (en) Benzoxazepines as inhibitors of mtor and their use to treat cancer
KR20220085735A (ko) 아이소옥사졸리딘 유도체 화합물 및 이의 용도
US20030195189A1 (en) Oxindole derivatives
CN108727368A (zh) 含氮稠杂环化合物、其制备方法、中间体、组合物和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850109

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3000548

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15764884

Country of ref document: US

Ref document number: 2018536324

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016850109

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016333188

Country of ref document: AU

Date of ref document: 20160531

Kind code of ref document: A