WO2017052189A9 - 화학흐름전지의 운전 제어 방법 - Google Patents

화학흐름전지의 운전 제어 방법 Download PDF

Info

Publication number
WO2017052189A9
WO2017052189A9 PCT/KR2016/010528 KR2016010528W WO2017052189A9 WO 2017052189 A9 WO2017052189 A9 WO 2017052189A9 KR 2016010528 W KR2016010528 W KR 2016010528W WO 2017052189 A9 WO2017052189 A9 WO 2017052189A9
Authority
WO
WIPO (PCT)
Prior art keywords
bromine
chemical flow
concentration
less
electrolyte
Prior art date
Application number
PCT/KR2016/010528
Other languages
English (en)
French (fr)
Other versions
WO2017052189A1 (ko
Inventor
최은미
배수연
김대식
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to US15/753,617 priority Critical patent/US20200220186A1/en
Priority to JP2018512608A priority patent/JP2018528585A/ja
Priority to EP16848915.1A priority patent/EP3355399A4/en
Priority to CN201680053367.7A priority patent/CN108028403A/zh
Priority to AU2016328063A priority patent/AU2016328063A1/en
Publication of WO2017052189A1 publication Critical patent/WO2017052189A1/ko
Publication of WO2017052189A9 publication Critical patent/WO2017052189A9/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04791Concentration; Density
    • H01M8/04798Concentration; Density of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04455Concentration; Density of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04791Concentration; Density
    • H01M8/0482Concentration; Density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method for controlling operation of a chemical flow cell.
  • the power storage technology is able to use a wider and wider range of renewable energy, which is greatly influenced by external conditions, and can increase the efficiency of power use.
  • Interest and research and development is increasing significantly.
  • Chemical flow battery refers to an oxidation / reduction battery that can convert chemical energy of active materials directly into electrical energy, and converts into high quality power by storing renewable energy with high output fluctuations depending on external environment such as sunlight and wind power. It is an edge storage system. Specifically, in the chemical flow battery, the electrolyte including the active material causing the oxidation / reduction reaction circulates between the counter electrode and the storage tank, thereby charging and discharging.
  • Such a chemical flow battery basically includes a tank in which active materials having different oxidation states are stored, a pump for circulating the active materials during charging / discharging, and a unit cell fractionated into a separator.
  • the unit cell comprises an electrode, an electrolyte, a current collector, and a separator.
  • the performance of the chemical flow battery indicates the efficiency of the battery and the capacity of the battery.
  • the open circuit voltage (CV) of the chemical flow cell is 0. If it is more than lV / cel l, the unbound material remains in the electrode, which may cause negative reaction and self-discharge in the next cycle, which may degrade the performance of the chemical flow cell.
  • the method of improving the performance of the chemical flow cell by increasing the reaction area of the electrode by removing the semi-reflection material in the electrode and the stable operation of the chemical flow cell is very important.
  • US Patent US5650239B1 describes a technique for restoring a deteriorated electrode during charging and discharging, and a technique for applying a reverse current to restore the performance of a battery by transferring a current in a direction opposite to the direction of current flow during a charging process. It is starting. However, after charging and discharging, the battery may be damaged due to the application of reverse current, and there is no mention of the amount and timing of the current.
  • US Patent US4691158B1 discloses a technique for introducing pul se immediately before and after charge and discharge to suppress zinc dendrite and to remove zinc remaining in the anode electrode. .
  • the technical problem to be achieved by the present invention is to add a bromine (Bromine, Br2) of the chemical flow cell when the efficiency and capacity of the chemical flow cell is lowered due to self discharge, other side reactions, decrease in reaction area in the electrode, etc. It is to provide a method for controlling the operation of a chemical flow cell that can restore performance.
  • a bromine Bromine, Br2
  • the method for controlling the operation of a chemical flow cell after complete discharge, measuring the concentration of bromine (Br2) in the electrolyte of the chemical flow cell, and the bromine (Br2) concentration is pre-defined Until the condition is satisfied And further introducing bromine (Br 2) into the electrolyte.
  • the bromine (Br2) may be further added until the bromine (Br2) concentration is included at 0.05M or more and 0.2M or less.
  • the operation control method of the chemical flow cell is a step of measuring the open circuit voltage (OCV) in the electrolyte of the chemical flow cell after discharge, the concentration of bromine (Br2) in the electrolyte Measuring, and when the open-circuit voltage (0CV) is less than the predefined voltage reference value and the bromine (Br2) concentration is less than the predefined concentration reference value, further adding bromine (Br2) into the electrolyte solution. Steps.
  • OCV open circuit voltage
  • the bromine (Br 2) concentration is less than 0.05 M
  • the bromine (Br 2) may be further added.
  • a method for controlling the operation of a chemical flow cell includes measuring an open circuit voltage (OCV) in an electrolyte of a chemical flow cell after discharge, and bromine (Br2) in the electrolyte. ) Measuring the concentration, and when the open-circuit voltage (0CV) is greater than or equal to a predefined voltage reference value and the bromine (Br2) concentration is less than a predefined concentration reference value, bromine (Br2) is further added into the electrolyte solution. Dosing.
  • the open circuit voltage (0CV) is O.
  • the bromine (Br 2) concentration is less than 0.05M, the bromine (Br 2) may be further added.
  • Performing a multi-step low current discharge may further comprise the step of applying a reverse current. Applying the reverse current,
  • the reverse current may be applied. .
  • the method may further include performing the step of applying the reverse current again, and ending the step if less than the voltage reference value defined above.
  • the current level range of the multi-level low current discharge may be set to 0.1% or more and 5 or less of the charge / discharge current range.
  • the current level range may be 1 mAh / cm 2 or more and 5 mAh / cm 2 or less, and a reverse current may be applied such that the state of charge (SOC) is included in 5 or more and 15 or less.
  • SOC state of charge
  • the reaction area of the electrode is increased by removing the remaining semi-aerated material in the electrode, and the zinc dendrite is removed to increase the stability of the chemical flow cell and to improve the performance of the chemical flow cell. You can recover.
  • the operation method of multi-stage low current discharge (striping), addition of bromine (Br2) and multi-stage low current discharge (striping) after application of reverse current remains in the electrode by changing the operation method and conditions according to the state of the battery. It is possible to increase the reaction area of the electrode by removing the unreacted material, and to increase the stability of the battery by removing zinc dendrites.
  • FIG. 1 is a schematic block diagram showing a configuration of an operation control apparatus of a chemical flow battery according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating an operation control method of a chemical flow battery according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a method for controlling operation of a chemical flow cell according to another embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a method for controlling operation of a chemical flow cell according to another embodiment of the present invention.
  • FIG. 5 is a graph showing the performance evaluation of the battery with or without bromine (Br2) in the electrolyte according to an embodiment of the present invention.
  • 6 and 7 are photographs showing micrographs after charge and discharge using an electrolyte solution without bromine (Br2) according to an embodiment of the present invention.
  • ... unit means a unit for processing at least one function or operation, which may be implemented in hardware or software or a combination of hardware and software.
  • the chemical flow cell 100 refers to an oxidation / reduction cell capable of converting chemical energy of an active material directly into electrical energy.
  • an electrolyte including an active material that causes oxidation / reduction reaction circulates between the opposite electrode and the storage tank, and charge and discharge proceed.
  • the oxidation state is basically
  • the tank includes a tank in which the active material is stored, a pump for circulating the active material during charging and discharging, and a unit cell fractionated into a separator, wherein the unit cell includes an electrode, an electrolyte, a current collector, and a separator.
  • the chemical flow cell 100 may be a zinc-bromine (Bromine, Br 2) redox flow battery (Flow Bat tery).
  • the open circuit voltage measurement unit 200 measures the open circuit voltage 0CV after discharge of the chemical flow battery 100 and transmits the open circuit voltage to the operation control apparatus 400.
  • the bromine (Br2) concentration measuring unit 300 measures the concentration of bromine (Br2) in the electrolyte of the chemical flow battery 100 after the discharge of the chemical flow battery 100 and transmits it to the operation control device 400.
  • the operation control device 400 adds bromine (Br 2) to the electrolyte to restore the performance of the chemical flow cell 100.
  • the operation control apparatus 400 may perform multi-step low current discharge (striping) and addition of bromine (Br 2) and multi-step low current discharge (striping) after application of reverse current. At this time, the operating method and conditions are changed according to the state of the chemical flow battery (100) . The remaining unreacted material can be removed to increase the reaction area of the electrode, and zinc dendrites are removed to increase the stability of the cell.
  • the operation control device 400 preferably maintains the concentration of 0.05 M or more and 0.2 M or less bromine (Br2) in the electrolytic solution.
  • the open circuit voltage (0 CV) after discharge is preferably less than 0.01 V per unit cell.
  • bromine (Br 2) ol is included in the electrolyte of the chemical flow cell 100, the charge / discharge efficiency and long-term cycle performance are superior to those of the chemical flow cell 100, and the non-ungung remaining in the anode electrode after discharge of the chemical flow cell 100 is performed.
  • Substance It serves to remove.
  • bromine (Br2) is easily vaporized due to its low vapor pressure, and is easily evaporated unless the complexing agent and bromine (Br2) formed during filling are directly bonded.
  • the operation control device 400 may charge and discharge the bromine (Br2) by further adding the electrolyte.
  • the operation control device 400 has an open circuit voltage (0CV) of 0. If less than lV / cel l, it is determined that there is no uncoated substance in the electrode. If unaccompanied substances remain in the electrode, the open circuit voltage (0 CV) is 0 after complete discharge. lV / cel l will be displayed.
  • Multi-stage low current discharge is a method of stripping and removing the residual water droplets in the electrode by giving a current lower than the charge / discharge current in stages. At this time, the current level changes from a high current to a low current to drop the cell voltage to 0V.
  • the operation control apparatus 400 may repeat a plurality of times by setting the multi-stage low current discharge as a set.
  • the current level range of the multistage low current discharge can be set at 0.1-50% of the layer discharge current range.
  • the operation control device 400 performs a multi-step low current discharge (striping) to remove unreacted substances by adding bromine (Br 2), and then the open circuit voltage (0CV) of the chemical flow battery 100 is 0. If more than lV / cel l and zinc residue remains in the anode, bromine (Br2) is added to the electrolyte to remove zinc residue. Zinc glass ' trough and bromine (Br2) react to form zinc-bromine (ZnBr2), which in turn can act as a reactant active material. And bromine (Br2) added to the aqueous electrolyte solution also has the effect of lowering the pH of the electrolyte in the following reaction. Br2 + 2H20 ⁇ 2H + + 2HbrO
  • the operation control device 400 After the multi-stage low current discharge and the addition of bromine (Br 2) are performed, the operation control device 400 has an open circuit voltage (0 CV) of 0. If more than lV / cel l is maintained, ⁇ remove uncoated substances by application of current.In this case, the reverse current application method removes uncoated substances remaining in the electrode by multi-step low current discharge and addition of bromine (Br2). If not, the bromine (Br2) is adsorbed in the Act ivat ion layer of the cathode electrode can be applied to remove the adsorbed bromine (Br2).
  • the current opposite to the current flow direction of the conventional charging process is to generate zinc in the cathode to allow zinc and bromine to react.
  • the current level range is 1 mAh / cm2 or more and 5 mAh / cm2 or less and the state of charge (SOC) is preferably 5 or more and 15 or less.
  • SOC state of charge
  • the operation control device 400 switches the current direction to the existing direction so that the cell voltage is 0. Multi-level low current discharge is carried out so that it is below lV / cel l.
  • the reverse current when the current level range exceeds 5 mAh / cm 2 or when S0C exceeds 15, the electrode is damaged and it is difficult to expect the battery to recover.
  • Bromine (Br2) has a characteristic of being easily vaporized due to its low vapor pressure, so it can easily escape through the membrane, or be easily adsorbed to a flow frame or pipe. It is preferable that the electrolyte solution of the zinc bromine (Br2) battery contains bromine (Br2) of a certain concentration or more in the electrolyte solution.
  • the concentration of bromine (Br2) in the electrolyte should be maintained at 0.05M or above and 0.2M or below. More preferably, the bromine (Br 2) concentration should be at least 0.05M and at most 0.1M. If the concentration of bromine (Br2) is less than 0.05M, bromine (Br2) is further added. Additional bromine (Br 2) can be added to maintain the concentration of 0.05M or more and 2M or less.
  • FIG. 2 is a flowchart illustrating an operation control method of a chemical flow battery according to an embodiment of the present invention.
  • the operation control apparatus 400 determines whether the S0C is a complete discharge after the discharge of the chemical flow cell 100 (S101) (S103).
  • the operation control apparatus 400 determines the concentration of the bromine (Br 2) (S105) and determines whether the predetermined condition is met (S105).
  • bromine (Br 2) is further added to the electrolyte of the chemical flow cell 100 (S109).
  • the injection of bromine (Br2) may use a device in which the positive electrolyte and the negative electrolyte tank is connected by a valve.
  • the operation control device 400 is placed in the electrolyte until the bromine (Br2) concentration satisfies a predetermined condition, for example, until the bromine (Br2) concentration is contained in the electrolyte at 0.05 M or more and 0.2 M or less. Add bromine (Br2) further.
  • FIG. 3 is a flowchart illustrating a method for controlling operation of a chemical flow cell according to another embodiment of the present invention.
  • the operation control device 400 after the discharge (S201) of the chemical flow cell 100, the operation control device 400 has an open circuit voltage (0CV) of less than 0.1V / cell and a bromine (Br2) concentration of 0.05. It is determined whether it is less than M (S203). If the open circuit voltage (0CV) is less than 0.1 V / cell and the bromine (Br2) concentration is less than 0.05 M, the operation and control apparatus 400 additionally introduces bromine (Br2) into the electrolyte (S205).
  • FIG. 4 is a flowchart illustrating a method for controlling operation of a chemical flow cell according to another embodiment of the present invention.
  • the operation control unit 400 is discharged (S301) Then, the voltage (0CV) within the open-circuit the electrolytic solution of the chemical flow cell 100 is more than O.lV/cell, Bromine (Br2) concentration If less than 0.05M (S303), bromine (Br2) is further added to the electrolyte (S305).
  • the operation control device 400 causes the multi-phase low current discharge of the chemical flow battery 100 (S307).
  • the current level range of the multi-level low current discharge may be set to 0.1% or more and 50% or less of the charge / discharge current range.
  • Open circuit voltage O. If lV / cel l or more and bromine (Br2) concentration is 0.2 M or more (S309), a reverse current is applied to the chemical cell 100 (S311).
  • the current level range is in the range of 1 mAh / cm 2 or more and 5 mAh / cm 2 or less
  • the state of charge (State of charge, S0C) can be applied to the reverse current to be included in 5 or more and 15 or less.
  • the operation control device 400 After applying the reverse current (S311), the operation control device 400 causes the multi-phase low current discharge of the chemical flow cell 100 (S313). And if the open circuit voltage (0CV) in the electrolyte of the chemical flow battery (100) is not less than 0.1V / cel l, it starts again from step S311.
  • 5 is a graph showing the performance evaluation of the battery with or without bromine (Br2) in the electrolyte according to an embodiment of the present invention.
  • W / Br2 is meant to include bromine (Br2) as wi th Br2
  • W / 0 Br2 is meant to include bromine (Br2) as wi thout Br2.
  • the reaction rate of the cathode in the zinc-bromine (zinc_Br2) cell is slower than the reaction rate of the anode. Since bromine (Br2) generated after charging is capable of self-discharge, bromine (Br2) is added to consume zinc remaining in the anode electrode after discharge.
  • the initial charge efficiency showed the same efficiency regardless of the presence or absence of bromine (Br2), but in the following cycle, the charge efficiency of the electrolyte containing bromine (Br2) was higher.
  • 6 and 7 are photographs showing micrographs after charge and discharge using an electrolyte without bromine (Br2) according to an embodiment of the present invention.
  • Example 1 Opening voltage (OCV) after discharge ⁇ O. lV / cel l and bromine (Br2) concentration is less than 0.05M
  • the bromine (Br 2) concentration can be visually determined first. Electrolyte without bromine (Br2) is colorless. As the amount of bromine (Br2) increases, yellow to orange and vagina become red.
  • the bromine (Br 2) concentration is less than 0.05 M and the open circuit voltage (0 CV) is more than 0.1 V / cell, the cathode reactant does not remain and the zinc reactant remains on the anode electrode.
  • the self-discharge may be induced, and if the stripping process proceeds, the open circuit voltage (0CV) may be lowered to less than 0.1V / cell.
  • the bromine (Br2) concentration of the anode and cathode electrolytes is measured, and the bromine (Br2) concentration is further added to maintain the range of 0.05M or more and 0.2M or less.
  • the reverse current application method should be used to solve this problem.
  • the current level range is 1 mAh / cni 2 or more and 5 mAh / cm 2 or less, and SOC is preferably 5 or more and 15 or less. If it is out of this range, it is difficult to expect to recover the performance of the electrode by damaging the electrode.
  • the application of reverse current has an effect when applied to less than 10% of the initial efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Cells (AREA)
  • Secondary Cells (AREA)

Abstract

화학흐름전지의 운전 제어 방법이 개시된다. 여기서, 화학흐름전지의 운전 제어 방법은 완전 방전 이후, 화학흐름전지의 전해액 내 브로민 (Br2) 농도를 측정하는 단계, 그리고 상기 브로민(Br2) 농도가 기 정의된 조건을 충족할 때까지 브로민(Br2)을 상기 전해액 내에 추가로 투입시키는 단계를 포함한다.

Description

【명세서】
【발명의 명칭】
화학흐름전지의 운전 제어 방법
【기술분야】
관련 출원과의 상호 인용
본 출원은 2015년 9월 23일자 한국 특허 출원 제 10-2015-0134974호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 화학흐름전지의 운전 제어 방법에 대한 것이다.
【배경기술】
화석 연료를 사용하여 대량의 은실 가스 및 환경 오염 문제를 야기하는 화력 발전이나 시설 자체의 안정성이나 폐기물 처리의 문제점을 갖는 원자력 발전 둥의 기존 발전 시스템들이 다양한 한계점을 들어내면서 보다 친환경적이고 높은 효율을 갖는 에너지의 개발과 이를 이용한 전력 공급 시스템의 개발에 대한 연구가 크게 증가하고 있다.
특히, 전력 저장 기술은 외부 조건에 큰 영향을 받는 재생 에너지를 보다 다양하고 넓게 이용할 수 있도록 하며 전력 이용의 효율을 보다 높일 수 있어서, 이러한 기술분야에 대한 개발이 집중되고 있으며, 이들 중 2차 전지에 대한 관심 및 연구 개발이 크게 증가하고 있는 실정이다.
화학흐름전지는 활성 물질의 화학적 에너지를 직접 전기 에너지로 전환할 수 있는 산화 /환원 전지를 의미하며, 태양광,풍력 등 외부 환경에 따라 출력변동성이 심한 신재생 에너지를 저장하여 고품질 전력으로 변환할 수 있는 에 M지 저장시스템이다. 구체적으로, 화학흐름전지에서는 산화 /환원 반웅을 일으키는 활물질을 포함한 전해액이 반대 전극과 저장 탱크 사이를 순환하며 충방전이 진행된다.
이러한 화학흐름전지는 기본적으로 산화 상태가 각각 다른 활물질이 저장된 탱크와 충 /방전 시 활물질을 순환시키는 펌프, 그리고 분리막으로 분획되는 단위셀을 포함하며, 단위셀은 전극, 전해질, 집전체 및 분리막을 포함한다.
화학흐름전지의 성능으로는 전지의 효율 및 전지의 용량 등을 나타낸다. 화학흐름전지의 완전 방전 후, 화학흐름전지의 개로전압 (Open circui t vol tage , 0CV)이 O . lV/cel l 이상일 경우, 전극 내에 미반웅 물질이 남아 있는 것으로 다음 사이클에서 부반옹 및 자가 방전을 일으켜 화학흐름전지의 성능을 저하시킬 수 있다.
이러한 미반웅 물질을 제거하지 못하면 징크 덴드라이트 (Zinc dendr i te)가 형성되어 전해액의 pH 증가 및 반웅활물질의 감소로 인하여 전지의 성능 감소를 유발할 수 있기 때문이다. 따라서, 전극 내 미반웅 물질을 제거하여 전극의 반웅 면적을 증가시켜 화학흐름전지의 성능을 향상시키고 화학흐름전지를 안정적으로 운영할 수 있는 방법은 매우 중요하다.
미국특허 US5650239B1에는 충방전이 진행되는 동안 성능이 저하된 전극을 회복시키기 위한 기술로서, 충전 과정에서 전류 흐름 방향에 반대되는 방향으로 전류를 홀려주어 전지의 성능을 회복하는 역전류 인가에 대한 기술을 개시하고 있다. 그러나 충방전 진행 후, 역전류 인가로 인하여 전지에 손상을 줄 수 있고, 전류량 및 시점에 대한 언급이 없다.
미국특허 US4691158B1에는 징크 덴드라이트 (Zinc dendr i te) 억제 및 애노드 (Anode) 전극에 남아 있는 징크 (Zinc)를 제거하기 위해 필스 (pul se)를 충방전 직전 및 직후에 도입하는 기술을 개시하고 있다.
그러나 펄스 (Pul se) 크기를 배터리 시스템 및 충방전 기계상 도입이 어려우며, 펄스 (pul se) 도입 시간이 길어 총 전지 운용 시간이 길어져 전지 운영 효율이 저하되는 문제가 있다.
【발명의 상세한 설명】
[기술적 과제]
따라서, 본 발명이 이루고자 하는 기술적 과제는 자가 방전, 기타 부반응, 전극 내 반웅 면적 감소 등의 이유로 화학흐름전지의 효율 및 용량이 저하된 경우, 브로민 (Bromine , Br2)을 첨가하여 화학흐름전지의 성능을 회복할 수 있는 화학흐름전지의 운전 제어 방법을 제공하는 것이다.
【기술적 해결방법】
본 발명의 하나의 특징에 따르면, 화학흐름전지의 운전 제어 방법은 완전 방전 이후, 화학흐름전지의 전해액 내 브로민 (Br2)농도를 측정하는 단계, 그리고 상기 브로민 (Br2) 농도가 기 정의된 조건을 층족할 때까지 브로민 (Br2)을 상기 전해액 내에 추가로투입시키는 단계를 포함한다.
상기 투입시키는 단계는,
상기 브로민 (Br2) 농도가 0.05M이상 그리고 0.2M이하에 포함될 때까지 상기 브로민 (Br2)을 추가로 투입시킬 수 있다.
상기 화학흐름전지는,
징크 (Zinc)-브로민 (Br2) 레독스 (redox) 흐름전지를 포함할 수 있다. 본 발명의 다른 특징에 따르면, 화학흐름전지의 운전 제어 방법은 방전 이후, 화학흐름전지의 전해액 내 개로전압 (Open circui t vol tage , OCV)을 측정하는 단계, 상기 전해액 내 브로민 (Br2) 농도를 측정하는 단계, 그리고 상기 개로전압 (0CV)이 기 정의된 전압 기준치 미만이고, 상기 브로민 (Br2) 농도가 기 정의된 농도 기준치 미만인 경우, 브로민 (Br2)을 상기 전해액 내에 추가로 투입시키는 단계를 포함한다.
상기 투입시키는 단계는,
상기 개로전압 (0CV)이 O. lV/cel l 미만이고, 상기 브로민 (Br2) 농도가 0.05M 미만인 경우, 상기 브로민 (Br2)을 추가로 투입시킬 수 있다.
본 발명의 또 다른 특징에 따르면, 화학흐름전지의 운전 제어 방법은 방전 이후, 화학흐름전지의 전해액 내 개로전압 (Open ci rcui t vol tage , OCV)을 측정하는 단계, 상기 전해액 내 브로민 (Br2) 농도를 측정하는 단계, 그리고 상기 개로전압 (0CV)이 기 정의된 전압 기준치 이상이고, 상기 브로민 (Br2) 농도가 기 정의된 농도 기준치 미만인 경우, 브로민 (Br2)을 상기 전해액 내에 추가로 투입시키는 단계를포함한다.
상기 투입시키는 단계는,
상기 개로전압 (0CV)이 O . lV/cel l 이상이고, 상기 브로민 (Br2) 농도가 0.05M 미만인 경우, 상기 브로민 (Br2)을 추가로 투입시킬 수 있다.
상기 투입시키는 단계 이후,
다단계 저전류 방전을 시키는 단계, 상기 화학흐름전지의 전해액 내 개로전압 (0CV)을 측정하는 단계, 상기 전해액 내 브로민 (Br2) 농도를 측정하는 단계, 그리고 상기 개로전압 (0CV)이 기 정의된 전압 기준치 이상이고, 상기 브로민 (Br2) 농도가 기 정의된 농도 기준치 이상인 경우, 역전류를 인가하는 단계를 더 포함할 수 있다. 상기 역전류를 인가하는 단계는,
상기 개로전압 (0CV)이 O.lV/cell 이상이고, 상기 브로민 (Br2) 농도가 0.2M 이상인 경우, 상기 역전류를 인가할 수 있다. .
상기 역전류를 인가하는 단계 아후,
다단계 저전류 방전을 수행하는 단계, 상기 화학흐름전지의 전해액 내 개로전압 (0CV)을 측정하는 단계, 상기 개로전압 (0CV)이 기 정의된 전압 기준치 이하인지 판단하는 단계, 상기 기 정의된 전압 기준치 이하가 아니라면, 역전류를 인가하는 단계를 다시 수행하는 단계, 그리고 상기 정의된 전압 기준치 이하이면, 단계를 종료하는 단계를 더 포함할 수 있다.
상기 개로전압 (0CV)이 기 정의된 전압 기준치 이하인지 판단하는 단계는,
상기 개로전압 (0CV)이 O.lV/cell 이하인지 판단할 수 있다.
상기 다단계 전류 방전을 수행하는 단계는,
상기 다단계 저전류 방전의 전류 수준 범위를 충방전 전류 범위의 0.1% 이상 그리고 5 이하로 설정할 수 있다.
상기 역전류를 인가하는 단계는,
전류 수준 범위는 1 mAh/cm2 이상 그리고 5mAh/cm2 이하에 속하고, 충전 상태 (State of charge, S0C)는 5 이상 그리고 15 이하에 포함되도록 역전류를 인가할 수 있다.
상기 화학흐름전지는,
징크 (Zinc)-브로민 (Br2) 레독스 (redox) 흐름전지를 포함할 수 있다. [발명의 효과】
본 발명의 실시예에 따르면, 전극 내 남아 있는 미반웅 물질을 제거하여 전극의 반웅 면적을 증가시키며, 징크 덴드라이트 (zinc dendrite)를 제거하여 화학흐름전지의 안정성을 증가시키고 화학흐름전지의 성능을 회복할 수 있다. 또한,다단계 저전류 방전 (스트리핑, stripping)및 브로민 (Br2)의 첨가, 역전류 인가 후 다단계 저전류 방전 (스트리핑)의 운영방법은 전지의 상태에 따라 운전방법 및 조건을 변경하여 전극 내 남아 있는 미반응 물질을 제거하여 전극의 반웅 면적을 증가시킬 수 있고, 징크 덴드라이트를 제거하여 전지의 안정성을 증가시킬 수 있다. 【도면의 간단한 설명】
도 1은 본 발명의 한 실시예에 따른 화학흐름전지의 운전 제어 장치의 구성을 나타낸 개략적인 블록도이다.
도 2는 본 발명의 한 실시예에 따른 화학흐름전지의 운전 제어 방법을 나타낸 순서도이다.
도 3은 본 발명의 다른 실시예에 따른 화학흐름전지의 운전 제어 방법을 나타낸 순서도이다.
도 4는 본 발명의 또 다른 실시예에 따른 화학흐름전지의 운전 제어 방법을 나타낸 순서도이다.
도 5는 본 발명의 실시예에 따른 전해액내 브로민 (Br2) 유무에 따른 전지의 성능 평가를 나타낸 그래프이다.
도 6 및 도 7은 본 발명의 실시예에 따른 브로민 (Br2)이 없는 전해액을 이용하여 충방전 후 현미경 사진을 도시한사진이다.
【발명의 실시를 위한 형태】
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시'예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다. 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서에 기재된 "...부" , "…모들" 의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
이하, 도면을 참조로 하여 본 발명의 실시예에 따른 화학흐름전지의 운전 제어 방법에 대하여 상세히 설명한다.
도 1은 본 발명의 한 실시예에 따른 화학흐름전지꾀 운전 제어 장치의 구성을 나타낸 개략적인 블록도이다. 도 1을 참조하면, 화학흐름전지 ( 100)는 활성 물질의 화학적 에너지를 직접 전기 에너지로 전환할 수 있는 산화 /환원 전지를 의미한다.
구체적으로, 화학흐름전지에서는 산화 /환원 반웅을 일으키는 활물질을 포함한 전해액이 반대 전극과 저장 탱크 사이를 순환하며 충방전이 진행된다ᅳ 이러한 화학흐름전지 ( 100)는 도시하지는 않았지만, 기본적으로 산화 상태가 각각 다른 활물질이 저장된 탱크와 충 /방전시 활물질을 순환시키는 펌프, 그리고 분리막으로 분획되는 단위셀을 포함하며, 상기 단위셀은 전극, 전해질, 집전체 및 분리막을 포함한다. 여기서, 화학흐름전지 ( 100)는 징크 (Zinc)-브로민 (Bromine , Br2) 레독스 (redox) 흐름전지 (Flow Bat tery)일 수 있다.
개로전압 (Open circui t ^ vol tage , 0CV) 측정부 (200)는 화학흐름전지 ( 100)의 방전 후 개로 전압 (0CV)을 측정하여 운전 제어 장치 (400)로 전달한다.
브로민 (Br2) 농도 측정부 (300)는 화학흐름전지 ( 100)의 방전 후 화학흐름전지 ( 100)의 전해액 내 브로민 (Br2) 농도를 측정하여 운전 제어 장치 (400)로 전달한다.
운전 제어 장치 (400)는 화학흐름전지 ( 100)의 성능 및 용량이 저하된 경우, 전해액 내에 브로민 (Br2)를 첨가하여 화학흐름전지 ( 100)의 성능을 회복시킨다.
운전 제어 장치 (400)는 다단계 저전류 방전 (스트리핑)및 브로민 (Br2)의 첨가, 역전류 인가 후 다단계 저전류 방전 (스트리핑)를 수행할 수 있다. 이때, 화학흐름전지 ( 100)의 상태에 따라 운전방법 및 조건을 변경하여 전극 내. 남아 있는 미반응 물질을 제거하여 전극의 반웅 면적을 증가시킬 수 있고, 징크 덴드라이트를 제거하여 전지의 안정성을 증가시킨다.
운전 제어 장치 (400)는 완전방전 (SOC=0) 상태의 전해액의 경우, 전해액 내에 0.05M 이상 0.2M 이하 브로민 (Br2)의 농도를 유지하는 것이 바람직하다. 방전 후의 개로전압 (0CV)은 단위 셀 당 0. 1V 미만 나타내는 것이 바람직하다. 화학흐름전지 ( 100)의 전해액 내에 브로민 (Br2)올 포함하는 경우,그렇지 않은 경우보다 충방전 효율 및 장기 싸이클 성능이 우수하고, 화학흐름전지 ( 100)의 방전 후 애노드 전극 내에 남아있는 미반웅 물질을 제거하는 역할을 한다. 그러나 브로민 (Br2)은 증기압이 낮아 쉽게 기화하며, 착제 (complexing agent )와 충전 중 생성된 브로민 (Br2)이 바로 결합하지 않으면 기화되기 쉬운 물질이다.
화학흐름전지 ( 100)의 충방전이 진행될수록 스택 내부 및 전해액의 온도가 상승하여 프리 ( free) 브로민 (Br2) 및 착제와 결합한 브로민 (Br2)도 결합력에 약해져 기화할 가능성이 높다. .
화학흐름전지 ( 100)의 충방전 후, 개로전압 (0CV)을 측정하여 전극 내에 남아있는 미반웅 물질 유무와 전해액 내 브로민 (Br2) 포함 여부는 매우 중요하다. 운전 제어 장치 (400)는 전해액 내 브로민 (Br2)이 모두 소진되어 남아있지 않다면, 전해액 내에 브로민 (Br2)을 추가 투입하여 충방전을 진행할 수 있다.
운전 제어 장치 (400)는 완전 방전을 실시한 화학흐름전지의 개로전압 (0CV)이 O . lV/cel l 미만을 나타내면, 전극 내 미반웅 물질이 없는 것으로 판단한다. 전극 내에 미반웅 물질이 잔존할 경우, 완전 방전 후 개로전압 (0CV)이 O . lV/cel l 이상으로 나타나게 된다.
다단계 저전류 방전은 스트리핑과 같은 개념으로 단계적으로 충방전 전류보다 낮은 전류를 홀려주어 전극 내 남아있는 미반웅 물잘을 제거하는 방법이다. 이때, 전류 수준은 고전류에서 저전류로 변화시켜 셀 전압을 0V까지 떨어뜨린다.
운전 제어 장치 (400)는 다단계 저전류 방전을 세트로 하여 여러 번 반복할 수 있다. 다단계 저전류 방전의 전류 수준 범위는 층방전 전류 범위의 0. 1-50%수준으로 설정할 수 있다.
운전 제어 장치 (400)는 브로민 (Br2) 첨가에 의한 미반웅 물질 제거를 위해 다단계 저전류 방전 (스트리핑 ) 실시 후, 화학흐름전지 ( 100)의 개로전압 (0CV)이 O . lV/cel l 이상이고, 애노드 전극 내에 징크 (Zinc) 잔여물이 남아있는 경우 브로민 (Br2)를 전해액 내에 첨가하여 징크 (Zinc) 잔여물을 제거한다. 징크 (Zinc) 잔'여물과 브로민 (Br2)은 반웅하여 징크-브로민 (ZnBr2)을 형성하고 이는 다시 반웅 활물질로 작용할 수 있다. 그리고 수계 전해액에 첨가된 브로민 (Br2)은 아래 반웅식으로 전해액의 pH를 낮추는 효과도 나타낸다. Br2 + 2H20→ 2H+ + 2HbrO
운전 제어 장치 (400)는 다단계 저전류 방전 및 브로민 (Br2) 첨가 실시 후, 화학흐름전지 ( 100)의 개로전압 (0CV)이 O . lV/cel l 이상을 유지할 경우 멱전류 인가에 의한 미반웅 물질 제거를 수행한다ᅳ 여기서, 역전류 인가 방식은 다단계 저전류 방전 및 브로민 (Br2) 첨가에 의해 전극 내 남아있는 미반웅 물질이 제거되지 않는다면, 캐소드 전극의 활성층 (Act ivat ion layer) 내에 브로민 (Br2)이 흡착되어 있는 것으로 흡착된 브로민 (Br2)을 제거하기 위해 적용할 수 있는 방법이다.
이러한 역전류 인가 방법은 기존 충전 과정의 전류흐름 방향에 반대되는 전류를 홀려주는 것으로 캐소드 전극 내에 징크 (Zinc)를 생성하여 징크 (Zinc)와 브로민 (Br2)이 반웅하도록 하는 것이다.
역전류 인가 시, 전류 수준 범위는 1 mAh/cm2 이상 그리고 5mAh/cm2 이하이고 충전 상태 (State Of Charge , S0C)가 5 이상 그리고 15 이하가 바람직하다ᅳ 이 범위가 전극 내에 남아있는 미반웅 물질을 제거하고 전극 손상을 최소화할 수 있는 조건이다.
운전 제어 장치 (400)는 역전류 인가 후, 전류 방향을 기존 방향으로 전환하여 셀전압이 O . lV/cel l 이하가 되도록 다단계 저전류 방전을 실시한다. 역전류 인가시, 전류 수준 범위가 5mAh/cm2을 초과하거나 S0C가 15 초과 진행하는 경우에는 오히려 전극에 손상을 주어 전지의 성능 회복을 기대하기 어렵다.
브로민 (Br2)은 증기압이 낮아 쉽게 기화되기 쉬워 분리막을 통해 빠져나가거나, 플로우프레임, 배관 등에 쉽게 흡착되는 특징을 가지고 있다. 징크 (Zinc)브로민 (Br2) 전지의 전해액은 전해액 내에 일정농도 이상의 브로민 (Br2)을 함유하는 것이 바람직하다.
S0C=0인 전해액의 경우, 전해액 내에 브로민 (Br2)의 농도가 0.05M 이상 그리고 0.2M 이하를 유지하도록 하여야 한다. 더욱 바람직하게 브로민 (Br2) 농도가 0.05M이상 그리고 0. 12M이하가 되도록 해야한다. 만약, 브로민 (Br2)의 농도가 0.05M 미만인 경우에는 브로민 (Br2)을 추가 투입한다. 브로민 (Br2) 농도가 0.05M 이상으 2M 이하로 유지할 수 있도록 추가 투입할 수 있다.
전술한 구성에 기초하여 화학흐름전지 ( 100)의 운전을 제어하는 일련의 과정에 대해 설명하면 다음과 같다 .
도 2는 본 발명의 한 실시예에 따른 화학흐름전지의 운전 제어 방법을 나타낸 순서도이다.
도 2를 참조하면 , 운전 제어 장치 (400)는 화학흐름전지 (100)를 방전 (S101)시칸 후, S0C가 0인 완전 방전인지 판단한다 (S103).
완전 방전 상태라면, 운전 제어 장치 (400)는 브로민 (Br2) 농도를 측정 (S105)하여 기 정의된 조건을 충족하는지 판단한다 (S105).
기 정의된 조건을 충족하지 않으면, 화학흐름전지 (100)의 전해액 내에 브로민 (Br2)을 추가 투입시킨다 (S109). 이때, 브로민 (Br2)의 투입은 양극 전해질과 음극 전해질 탱크가 밸브로 연결된 장치를 사용할 수 있다.
여기서, 운전 제어 장치 (400)는 브로민 (Br2) 농도가 기 정의된 조건을 충족할 때까지, 예를 들면, 브로민 (Br2) 농도가 0.05M이상 그리고 0.2M이하에 포함될 때까지 전해액 내에 브로민 (Br2)을 추가로 투입시킨다.
도 3은 본 발명의 다른 실시예에 따른 화학흐름전지의 운전 제어 방법을 나타낸 순서도이다.
도 3을 참조하면, 운전 제어 장치 (400)는 화학흐름전지 (100)의 방전 (S201) 이후, 전해액 내 개로전압 (0CV)이 O.lV/cell 미만이고, 브로민 (Br2) 농도가 0.05M 미만인지 판단한다 (S203). 그리고 개로전압 (0CV)이 0.1V/cell 미만이고, 브로민 (Br2) 농도가 0.05M 미만이라면, 운전 .제어 장치 (400)는 브로민 (Br2)을 전해액 내에 추가로 투입시킨다 (S205).
도 4는 본 발명의 또 다른 실시예에 따른 화학흐름전지의 운전 제어 방법을 나타낸 순서도이다.
도 4를 ,참조하면, 운전 제어 장치 (400)는 방전 (S301) 이후, 화학흐름전지 (100)의 전해액 내 개로전압 (0CV)이 O.lV/cell 이상이고, 브로민 (Br2) 농도가 0.05M 미만인 경우 (S303), 전해액 내에 브로민 (Br2)을 추가로 투입시킨다 (S305).
다음, 운전 제어 장치 (400)는 화학흐름전지 (100)의 다단계 저전류 방전을 시킨다 (S307). 여기서, 다단계 저전류 방전의 전류 수준 범위를 충방전 전류 범위의 0.1% 이상 그리고 50% 이하로 설정할 수 있다.
그리고 운전 제어 장치 (400)는 화학흐름전지 (100)의 전해액 내 개로전압 (OCV)이 O . lV/cel l 이상이고, 브로민 (Br2) 농도가 0.2M 이상인 경우 (S309) , 화학흐 ^전지 ( 100)에 역전류를 인가한다 (S311) .
이때, 전류 수준 범위는 l mAh/cm2이상 그리고 5mAh/cm2이하에 속하고, 충전 상태 (State of charge , S0C)는 5 이상 그리고 15 이하에 포함되도록 역전류를 인가할 수 있다.
역전류를 인가하는 단계 (S311) 이후, 운전 제어 장치 (400)는 화학흐름전지 ( 100)의 다단계 저전류 방전을 시킨다 (S313) . 그리고 화학흐름전지 ( 100)의 전해액 내 개로전압 (0CV)이 O. lV/cel l 이하가 아니라면, S311 단계부터 다시 시작한다.
반면, O . lV/cel l 이하라면, 단계를 종료한다.
또한, S303단계 , S309단계를 만족하지 않는 경우에도 단계를 종료한다. 도 5는 본 발명의 실시예에 따른 전해액내 브로민 (Br2) 유무에 따른 전지의 성능 평가를 나타낸 그래프이다.
여기서, W/Br2는 wi th Br2로써 브로민 (Br2) 포함의 의미이고, W/0 Br2는 wi thout Br2로써 브로민 (Br2) 미포함의 의미이다.
도 5를 참조하면, 징크-브로민 (zinc_Br2) 전지에서 캐소드의 반웅 속도가 애노드의 반응 속도에 비해 느리다. 그리고 충전 후 생성되는 브로민 (Br2)이 자가 방전 할 수 있는 가능성이 있기 때문에 방전 후 애노드 전극에 남아있는 징크 (Zinc)를 소모하기 위해 브로민 (Br2)을 첨가한다.
브로민 (Br2) 유무에 따른 전지의 전하량 효율 (Coulombic Ef f iciency,
CE)올 비교 보았을때 초기 전하량 효율은 브로민 (Br2) 유무에 관계없이 동일한 효율을 나타내었으나, 다음 싸이클에서는 브로민 (Br2)을 함유한 전해액의 전하량 효율이 더 높은 것을 확인할 수 있다.
위 실험을 통해 브로민 (Br2)을 함유한 전해액이 애노드 전극에 남아있는 징크 (Zinc)를 모두 방전시켜 다음 사이클에서 징크 (Zinc)가 고르게 성장할 수 있는 전극 표면을 제공하여 효율이 더 높게 나타내는 것을 확인할 수 있다.
도 6 및 도 7은 본 발명의 실시예에 따른 브로민 (Br2)이 없는 전해액을 이용하며 충방전 후 현미경 사진을 도시한사진이다.
도 6 및 도 7을 참조하면, 브로민 (Br2)이 없는 전해액을 이용하여 충방전을 50사어클 (cycle) 이상 지속한 경우, 징크 덴드라이트 (zinc dendr i te)가 형성된 모습을 현미경 사진에서 확인할 수 있다. 징크 덴드라이트 (zinc dendr i te)가 분.리막에 손상을 주어 전지의 장기 성능이 저하되었음을 확인할 수 있다ᅳ
브로민 (Br2) 농도가 0.05M 이상 0.2M 이하 유지할 수 있도록 추가 투입한다.
하기 실시예 및 비교예에서,충방전 사이클은 정전류 모드로 진행하였고, 방전 완료 후 개로전압 (0CV)과 브로민 (Br2) 농도를 측정하여 브로민 (Br2) 추가 투입 시험을 진행하여 성능을 비교하였다.
1) 실시예 1 : 방전 후 개로전압 (OCV) < O . lV/cel l 이고, 브로민 (Br2) 농도가 0.05M 미만인 경우
【표 1】
Figure imgf000013_0001
표 1에 나타난 바와 같이, 브로민 (Br2) 농도는 육안으로 1차 판별이 가능하다. 브로민 (Br2)이 없는 전해액은 무색을 나타내며, 브로민 (Br2)의 양이 많아질수록 노란색에서 주황색, 질은 붉은색을 나타낸다.
브로민 (Br2)농도가 0.05M미만인 경우는 전해액 내 브로민 (Br2)이 거의 없는 상태로 전해액 색이 거의 무색을 나타낸다.
방전 후, 개로전압 (OCV) < O . lV/cel l인 경우, 애노드 및 캐소드 전극 내에 반웅잔여물이 남아있지 않은 상태로서, 다음 싸이클 (Cyc le)에서 징크 (Zinc)를 고르게 성장시킬 수 있는 상태이다. 그러나 전해액 내 브로민 (Br2) 농도가 거의 없는 상태로 초기 사이클에서는 브로민 (Br2) 유무에 대한 영향을 볼 수 없으나, 장기 사이클에서는 브로민 (Br2)이 없는 경우, 징크 덴드라이트 (zinc dendrite)가 형성되어 분라막 및 전극에 손상을 줄 수 있다. 브로민 (Br2)의 농도를 유지하는 것이 장기 사이클을 지속하는데 유리하다.
2)실시예 2: 방전 후 개로전압 (0CV)≥0.1V/cell이고,브로민 (Br2)농도가 0.05M 미만인 경우
【표 2】
Figure imgf000014_0001
브로민 (Br2) 농도가 0.05M미만이고, 개로전압 (0CV)이 O.lV/cell 이상을 나타내는 경우는, 캐소드 반응물은 남아있지 않고, 애노드 전극에 징크 반응물이 남아있는 경우이다. 이러한 경우에는 브로민 (Br2) 추가 투입 후, 자가방전을 유도한 뒤, 스트리핑 과정올 진행하면 개로전압 (0CV)을 O.lV/cell 미만으로 떨어뜨릴 수 있다. 이후에 애노드 및 캐소드 전해액의 브로민 (Br2) 농도를 측정하여 브로민 (Br2) 농도를 0.05M 이상 0.2M 이하 범위를 유지할 수 있도록 추가 투입해준다.
3)실시예 3:방전 후 개로전압 (OCV)≥0.1V/cell이고,브로민 (Br2)농도가
0.05M 미만인 경우
【표 3】
Cycle 충전용량 방전용량 에너지효 전하량효 방전 후 0CV방전 후 Br2
(Ahr/cell) (Ahr/cell) ᄋ ᄋ
¾: (V/,cell) 농도 (M) (%) ( )
1-4 2.98 2.60 69.2 87.3 1.12 0.21
5-8 2.98 2.62 69.4 87.8 1.08 0.22 역전류 인가
9-12 2.98 2.65 72.1 88.8 0.075 0.12 13-16 2.98 2.66 71.8 89.3 0.003 0.08.
브로민 (Br2) 농도가 0.2M 초과이고, 개로전압 (0CV)이 O. lV/cel l 이상을 나타내는 경우는, 애노드 반웅물은 남아있지 않고, 캐소드 활성층 (Act ivat ion layer )에 반웅물이 남아있는 경우이다. 이러한 경우에는 1차 스트리핑, 2차 브로민 추가 투입 후에도 개로전압 (0CV)이 O . lV/ce l 미만으로 떨어지지 않는 경우로, 이를 해결하기 위해서는 역전류 인가 방법을 이용해야 한다. 역전류 인가시, 전류 수준 범위는 lmAh/cni2 이상 그리고 5mAh/cm2 이하이고, S0C가 5 이상 그리고 15 이하가 바람직하다. 이 범위를 벗어나는 경우에는 전극에 손상을 주어 전극의 성능 회복을 기대하기 어렵다. 역전류 인가는 초기 효율의 10% 미만 효율 저하가 일어난 경우에 적용해야 효과를 나타낸다.
이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있다. 이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.

Claims

【청구의 범위】
【청구항 1】
완전 방전 이후, 화학흐름전지의 전해액 내 브로민 (Br2) 농도를 측정하는 단계 , 그리고
상기 브로민 (Br2) 농도가 기 정의된 조건을 충족할 때까지 브로민 (Br2)을 상기 전해액 내에 추가로 투입시키는 단계
를 포함하는 화학흐름전지의 운전 제어 방법 .
[청구항 2
제 1항에 있어서,
상기 투입시키는 단계는,
상기 브로민 (Br2) 농도가 0.05M 이상 그리고 으 2M 이하에 포함될 때까지 상기 브로민 (Br2)을 추가로 투입시키는 화학흐름전지의 운전 제어 방법.
【청구항 3]
제 1항에 있어서,
상기 화학흐름전지는,
징크 (Zinc)-브로민 (Br2) 레독스 (redox) 흐름전지를 포함하는 화학흐름전지의 운전 제어 방법.
【청구항 4】
방전 이후, 화학흐름전지의 전해액 내 개로전압 (Open circui t vol tage , 0CV)을 측정하는 단계,
상기 전해액 내 브로민 (Br2) 농도를 측정하는 단계, 그리고
상기 개로전압 (0CV)이 기 정의된 전압 기준치 미만이고, 상기 브로민 (Br2) 농도가 기 정의된 농도 기준치 미만인 경우, 브로민 (Br2)을 상기 전해액 내에 추가로 투입시키는 단계
를 포함하는 화학흐름전지의 운전 제어 방법.
【청구항 5】
제 4항에 있어서,
상기 투입시키는 단계는
상기 개로전압 (0CV)이 O . lV/cel l 미만이고, 상기 브로민 (Br2) 농도가 0.05M 미만인 경우, 상기 브로민 (Br2)을 추가로 투입시키는 화학흐름전지의 운전 제어 방법 .
【청구항 6】
방전 이후, 화학흐름전지의 전해액 내 개로전압 (Open ci rcui t vol tage , OCV)을 측정하는 단계,
상기 전해액 내 브로민 (Br2) 농도를 측정하는 단계 , 그리고
상기 개로전압 (0CV)이 기 정의된 전압 기준치 이상이고, 상기 브로민 (Br2) 농도가 기 정의된 농도 기준치 미만인 경우, 브로민 (Br2)을 상기 전해액 내에 추가로 투입시키는 단계
를 포함하는 화학흐름전지의 운전 제어 방법 .
【청구항 7】
제 6항에 있어서,
상기 투입시키는 단계는,
상기 개로전압 (0CV)이 O. lV/cel l 이상이고, 상기 브로민 (Br2) 농도가 0.05M 미만인 경우, 상기 브로민 (Br2)을 추가로 투입시키는 화학흐름전지의 운전 제어 방법.
【청구항 8】
제 6항에 있어서,
상기 투입시키는 단계 이후,
다단계 저전류 방전을 시키는 단계,
상기 화학흐름전지의 전해액 내 개로전압 (0CV)을 측정하는 단계, 상기 전해액 내 브로민 (Br2) 농도를 측정하는 단계, 그리고
상기 개로전압 (0CV)이 기 정의된 전압 기준치 이상이고, 상기 브로민 (Br2) 농도가 기 정의된 농도 기준치 이상인 경우, 역전류를 인가하는 단계
를 더 포함하는 화학흐름전지의 운전 제어 방법 .
【청구항 9】
거 18항에 있어서,
상기 역전류를 인가하는 단계는,
상기 개로전압 (0CV)이 O. lV/cel l 이상이고, 상기 브로민 (Br2) 농도가 0.2M 이상인 경우, 상기 역전류를 인가하는 화학흐름전지의 운전 제어 방법.
【청구항 10]
제 8항에 있어서,
상기 역전류를 인가하는 단계 이후,
다단계 저전류 방전을 수행하는 단계,
상기 화학흐름전지의 전해액 내 개로전압 (0CV)을 측정하는 단계, 상기 개로전압 (0CV)이 기 정의된 전압 기준치 이하인지 판단하는 단계, 상기 기 정의된 전압 기준치 이하가 아니라면, 역전류를 인가하는 단계를 다시 수행하는 단계, 그리고
상기 정의된 전압 기준치 이하이면, 단계를 종료하는 단계
를 더 포함하는 화학흐름전지의 운전 제어 방법 .
[청구항 11】
제 10항에 있어서,
상기 개로전압 (0CV)이 기 정의된 전압 기준치 이하인지 판단하는 단계는,
상기 개로전압 (0CV)이 O . lV/ce l l 이하인지 판단하는 화학흐름전지의 운전 제어 방법.
【청구항 12】
제 10항에 있어서,
상기 다단계 전류 방전을 수행하는 단계는,
상기 다단계 저전류 방전의 전류 수준 범위를 충방전 전류 범위의 0. 1% 이상 그리고 50% 이하로 설정하는 화학흐름전지의 운전 제어 방법 .
【청구항 13]
제 10항에 있어서,
상기 역전류를 인가하는 단계는,
전류 수준 범위는 1 mAh/cm2 이상 그리고 5mAh/cm2 이하에 속하고, 충전 상태 (St at e of charge , S0C)는 5 이상 그리고 15 이하에 포함되도록 역전류를 인가하는 화학흐름전지의 운전 제어 방법.
【청구항 14]
제 10항에 있어서,
상기 화학흐름전지는, 징크 (Zinc)-브로민 (Br2) 레독스 (redox) 흐름전지를 포함하는 화학흐름전지의 운전 제어 방법.
PCT/KR2016/010528 2015-09-23 2016-09-21 화학흐름전지의 운전 제어 방법 WO2017052189A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/753,617 US20200220186A1 (en) 2015-09-23 2016-09-21 Method for controlling operation of chemical flow battery
JP2018512608A JP2018528585A (ja) 2015-09-23 2016-09-21 化学フロー電池の運転制御方法
EP16848915.1A EP3355399A4 (en) 2015-09-23 2016-09-21 METHOD FOR CONTROLLING THE OPERATION OF A CHEMICAL STREAM BATTERY
CN201680053367.7A CN108028403A (zh) 2015-09-23 2016-09-21 用于控制化学液流电池的驱动的方法
AU2016328063A AU2016328063A1 (en) 2015-09-23 2016-09-21 Method for controlling operation of chemical flow battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150134974A KR101815281B1 (ko) 2015-09-23 2015-09-23 화학흐름전지의 운전 제어 방법
KR10-2015-0134974 2015-09-23

Publications (2)

Publication Number Publication Date
WO2017052189A1 WO2017052189A1 (ko) 2017-03-30
WO2017052189A9 true WO2017052189A9 (ko) 2017-11-02

Family

ID=58386408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010528 WO2017052189A1 (ko) 2015-09-23 2016-09-21 화학흐름전지의 운전 제어 방법

Country Status (7)

Country Link
US (1) US20200220186A1 (ko)
EP (1) EP3355399A4 (ko)
JP (1) JP2018528585A (ko)
KR (1) KR101815281B1 (ko)
CN (1) CN108028403A (ko)
AU (1) AU2016328063A1 (ko)
WO (1) WO2017052189A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102650133B1 (ko) * 2018-11-21 2024-03-21 롯데케미칼 주식회사 아연-브롬 레독스 흐름 전지의 전해액 회복방법
US20240088462A1 (en) * 2022-09-09 2024-03-14 Ascend Elements, Inc. Forced discharge for batteries

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987781A (ja) * 1982-11-11 1984-05-21 Meidensha Electric Mfg Co Ltd 亜鉛―臭素二次電池
JPS60124372A (ja) 1983-12-07 1985-07-03 Meidensha Electric Mfg Co Ltd 二次電池の運転方法
JPH02135671A (ja) * 1988-11-16 1990-05-24 Toyota Motor Corp 金属−ハロゲン電池
AT399246B (de) * 1992-12-23 1995-04-25 Elin Energieanwendung Verfahren zum laden und entladen von zink/brom-batterien
US5650239A (en) 1995-06-07 1997-07-22 Zbb Technologies, Inc. Method of electrode reconditioning
US8980484B2 (en) * 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
KR101649249B1 (ko) * 2011-08-22 2016-08-18 엔싱크, 아이엔씨. 공통 dc 버스에 연결된 아연-브롬 유동 배터리를 위한 가역 극성 작동 및 스위칭 방법
KR101491300B1 (ko) * 2012-08-21 2015-02-10 현대중공업 주식회사 이차 전지
KR101609907B1 (ko) * 2013-07-11 2016-04-07 오씨아이 주식회사 레독스 흐름 전지 시스템 및 그 제어방법
KR101491784B1 (ko) 2013-11-05 2015-02-23 롯데케미칼 주식회사 화학흐름전지의 운전 방법
KR101574410B1 (ko) * 2014-02-12 2015-12-11 오씨아이 주식회사 레독스 플로우 전지 평가 방법 및 장치
WO2015196052A1 (en) * 2014-06-19 2015-12-23 Massachusetts Institute Of Technology Lubricant-impregnated surfaces for electrochemical applications, and devices and systems using same
WO2016191551A1 (en) * 2015-05-26 2016-12-01 Massachusetts Institute Of Technology A lithium-bromine rechargeable electrochemical system and applications thereof

Also Published As

Publication number Publication date
CN108028403A (zh) 2018-05-11
AU2016328063A1 (en) 2018-03-29
EP3355399A1 (en) 2018-08-01
WO2017052189A1 (ko) 2017-03-30
KR101815281B1 (ko) 2018-01-04
KR20170035723A (ko) 2017-03-31
EP3355399A4 (en) 2019-05-29
US20200220186A1 (en) 2020-07-09
JP2018528585A (ja) 2018-09-27

Similar Documents

Publication Publication Date Title
Zhang et al. The performance of a soluble lead-acid flow battery and its comparison to a static lead-acid battery
Ontiveros et al. Modeling of a vanadium redox flow battery for power system dynamic studies
CN108963193B (zh) 人工sei移植
CN102354761B (zh) 液流电池系统及其停机保护方法和装置
Leung et al. High-potential zinc–lead dioxide rechargeable cells
CN104795564B (zh) 一种水溶液二次电池的正极材料、极片、二次电池和用途
EP2869383B1 (en) Large-capacity power storage device
CN109860658A (zh) 一种锌溴单液流电池性能的恢复方法
WO2017052189A9 (ko) 화학흐름전지의 운전 제어 방법
WO2019103371A1 (ko) 레독스 흐름전지용 전해액 및 이를 포함하는 레독스 흐름전지
KR102334440B1 (ko) 수소 생산을 위한 이차 전지
CN107565151B (zh) 一种全钒液流电池电极活性的再生方法
WO2015068979A1 (ko) 화학흐름전지의 운전 방법
CN105702980B (zh) 一种在线恢复液流电池系统性能的控制方法及其系统
CN101267055A (zh) 一种锂离子电池化成方法
KR102098510B1 (ko) 전극의 신속한 형성
CN104134814A (zh) 一种高比能液流电池正极电解液及其制备方法与应用
KR20140123337A (ko) 레독스 플로우 이차전지 시스템
CN104852033A (zh) 一种三维复合钛酸锂负极材料的制备方法
KR102225660B1 (ko) 이차 전지의 잔류 아연 측정 및 제거 방법
Ghufron et al. Relationship Between Current Discharge to Static and Dynamic Lead Acid Battery Performance
CN219979631U (zh) 一种新型铁离子储能电池
CN115275407B (zh) 一种镍锌电池的充电方法
WO2022264501A1 (ja) レドックスフロー電池システム
CN104882633A (zh) 一种降低锂离子电池自放电的化成流程

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848915

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018512608

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016328063

Country of ref document: AU

Date of ref document: 20160921

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016848915

Country of ref document: EP