WO2022264501A1 - レドックスフロー電池システム - Google Patents

レドックスフロー電池システム Download PDF

Info

Publication number
WO2022264501A1
WO2022264501A1 PCT/JP2022/005552 JP2022005552W WO2022264501A1 WO 2022264501 A1 WO2022264501 A1 WO 2022264501A1 JP 2022005552 W JP2022005552 W JP 2022005552W WO 2022264501 A1 WO2022264501 A1 WO 2022264501A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow battery
redox flow
charging
power
discharging
Prior art date
Application number
PCT/JP2022/005552
Other languages
English (en)
French (fr)
Inventor
敏康 木薮
昭男 佐藤
強志 若狭
慧 森山
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to AU2022294335A priority Critical patent/AU2022294335A1/en
Priority to EP22824502.3A priority patent/EP4340174A1/en
Publication of WO2022264501A1 publication Critical patent/WO2022264501A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to redox flow battery systems.
  • This application claims priority based on Japanese Patent Application No. 2021-100591 filed with the Japan Patent Office on June 17, 2021, the content of which is incorporated herein.
  • a redox flow battery is composed of a cell and a tank that stores an electrolytic solution, as described in Patent Document 1, for example, and is charged and discharged by circulating the electrolytic solution between the cell and the tank with a pump. It is a secondary battery that is used.
  • the cell responsible for output and the electrolyte (tank that stores the electrolyte) responsible for power storage are separated, so it is possible to design the output and electric capacity separately.
  • the redox flow battery is a system that stores electrical energy in the electrolyte, but the upper limit of charging and the lower limit of discharging differ depending on the storage rate of the electrolyte and the flow rate of the electrolyte inside the cell. This is because the concentration overvoltage of the electrolyte is strongly influenced by the charge storage rate and flow velocity of the electrolyte. will also grow. Therefore, it is necessary to optimize the charge/discharge operation of the redox flow battery.
  • At least one embodiment of the present disclosure aims to provide a redox flow battery system with improved operation regarding charging and discharging of the redox flow battery.
  • a redox flow battery system includes a redox flow battery and a power supply device that supplies power for charging the redox flow battery to the redox flow battery, wherein the power supply The device ramps down the power supplied to the redox flow battery towards the end of charging of the redox flow battery.
  • the redox flow battery system of the present disclosure by decreasing the power supplied to the redox flow battery toward the end of charging of the redox flow battery, the upper limit of charging of the redox flow battery can be increased. In addition, since the lower limit of discharge of the redox flow battery can be lowered, the operation of charging and discharging the redox flow battery can be improved.
  • FIG. 1 is a configuration schematic diagram of a redox flow battery system according to Embodiment 1 of the present disclosure
  • FIG. 4 is a graph showing the results of a study by the inventors of the present disclosure regarding the operation of charge and discharge of a redox flow battery. 4 is a graph showing the power generation state of the photovoltaic power generation device and the charge state of the redox flow battery.
  • FIG. 4 is a configuration schematic diagram of a modification of the redox flow battery system according to Embodiment 1 of the present disclosure
  • FIG. 2 is a configuration schematic diagram of a redox flow battery system according to Embodiment 2 of the present disclosure;
  • a redox flow battery system according to an embodiment of the present disclosure will be described below based on the drawings.
  • the embodiments described below represent one aspect of the present disclosure, do not limit the disclosure, and can be arbitrarily changed within the scope of the technical idea of the present disclosure.
  • a redox flow battery system 20 includes a redox flow battery 1 and a power supply electrically connected to the redox flow battery 1 via an AC-DC converter 16.
  • a device 17 is provided.
  • the power supply device 17 supplies power to the redox flow battery 1 in order to charge the redox flow battery 1, and may be a storage battery or power generation device of any configuration.
  • a load 18 that consumes power discharged from the redox flow battery 1 is electrically connected to the AC/DC converter 16 . If the current supplied from the power supply device 17 is a DC current and the load 18 operates on a DC current, the AC/DC converter 16 is not required.
  • the redox flow battery 1 includes a cell 2 having a first chamber 3 and a second chamber 4 separated by a diaphragm 5, a first tank 6 storing a first electrolytic solution 12 containing an active material, and a first chamber 3.
  • the first tank 6 and the first pump 7 are provided in a first electrolytic solution circulation path 10 having one end and the other end connected to the first chamber 3 .
  • the second tank 8 and the second pump 9 are provided in a second electrolytic solution circulation path 11 having one end and the other end connected to the second chamber 4 .
  • a first electrode 14 is provided in the first chamber 3 and a second electrode 15 is provided in the second chamber 4 .
  • the first electrode 14 and the second electrode 15 are each electrically connected to an AC/DC converter 16 .
  • the redox flow battery 1 may be a stack of two or more cells.
  • the output of the redox flow battery 1 can be designed according to the number of stacked cells 2 .
  • the electric capacity of the redox flow battery 1 can be designed according to the capacities of the first tank 6 and the second tank 8, that is, the amounts of the first electrolytic solution 12 and the second electrolytic solution 13.
  • Each of the first electrolytic solution 12 and the second electrolytic solution 13 is obtained by dissolving an active material in an aqueous solution containing a supporting electrolyte.
  • an aqueous solution an alkaline aqueous solution in which potassium hydroxide, sodium hydroxide, or the like is dissolved, a neutral aqueous solution in which potassium chloride, sodium chloride, or the like is dissolved, or an acidic aqueous solution in which hydrogen chloride or sulfuric acid is dissolved can be used.
  • the active material dissolved in either the first electrolytic solution 12 or the second electrolytic solution 13 may be metal ions such as vanadium, metal complexes, air, halogens, organic molecules such as quinone or hydroquinone, and the like.
  • the AC current from the power supply device 17 is converted to DC current by the AC/DC converter 16 , and this DC current flows between the first electrode 14 and the second electrode 15 .
  • the redox flow battery 1 when the first chamber 3 is on the positive electrode side and the second chamber 4 is on the negative electrode side, electrons flow to the second electrode 15 and are contained in the second electrolyte 13 from the second electrode 15. supplied to the active material.
  • electrons are supplied to the first electrode 14 from the active material contained in the first electrolytic solution 12 . As a result, charges are accumulated in the first electrolytic solution 12 and the redox flow battery 1 is charged.
  • FIG. 2 shows the redox flow battery 1 in each pattern when the redox flow battery 1 is charged with three different current patterns A, B, and C (the magnitude relationship of the current values is A ⁇ B ⁇ C). shows the upper limit of the charging rate (upper limit of charging). In addition, FIG. 2 shows the charge that can be discharged when the redox flow battery 1 is charged in each pattern and the charging rate reaches the respective upper limit, and then the redox flow battery 1 is discharged at the same constant current value. The lower limit of rate (lower limit of discharge) is also shown. According to FIG. 2, the lower the current value supplied during charging, that is, the higher the upper limit value of charging and the lower the lower limit value of discharging, in the order of pattern C, pattern B, and pattern A. rice field.
  • the amount of power generated by the photovoltaic power generation apparatus generally begins charging after sunrise (morning), increases toward noon, and then rises at sunset (night). , the amount of power generation decreases.
  • the vertical axis on the left side of the graph in FIG. 3 uses the current value (cell current) flowing through the cells of the photovoltaic power generation device as an index of the power generation amount of the photovoltaic power generation device.
  • the current value supplied to the redox flow battery 1 increases until noon. As indicated by the dashed line in FIG. 3, the charging rate of the redox flow battery 1 increases. After that, toward sunset, the power generated by the photovoltaic power generation device decreases, so the current value supplied to the redox flow battery 1 also decreases, but the charging rate of the redox flow battery 1 is high during this period. corresponds to the end of charging. As a result, the current value supplied to the redox flow battery 1 decreases at the end of charging of the redox flow battery 1 . The increase in the charge rate of the redox flow battery 1 during this period is slower than the increase in the charge rate from sunrise to noon.
  • a power supply device of any configuration can be used, such as a tidal current power generation device that generates power in cycles of ebb and flow (approximately 6 hours).
  • a current sensor 30, which is a detection device that detects the value of current supplied from the solar power generation device as the power supply device 17 to the redox flow battery 1, is provided. be set in advance.
  • the lower limit can be arbitrarily determined based on the shunt current specific to the redox flow battery 1. For example, it may be the same value as the shunt current, or may be a few percent higher than the shunt current. can be a value.
  • the current sensor 30 is electrically connected to the first pump 7 and the second pump 9 so that the first pump 7 and the second pump 9 can be stopped and started by commands from the current sensor 30. .
  • the current sensor 30 transmits a stop command to the first pump 7, the second pump 9, and the power supply device 17,
  • the first pump 7 and the second pump 9 and the power supply device 17 are stopped to stop the circulation of the first electrolytic solution 12 and the second electrolytic solution 13, and the charging of the redox flow battery 1 is stopped.
  • the current sensor 30 transmits a start command to the first pump 7, the second pump 9, and the power supply device 17.
  • the first pump 7 and the second pump 9 are activated to restart circulation of the first electrolytic solution 12 and the second electrolytic solution 13, and charging of the redox flow battery 1 is restarted. Such an operation can prevent a reduction in the amount of charge due to power loss due to the shunt current of the redox flow battery 1 .
  • the operator of the redox flow battery system 20 may manually stop and start the first and second pumps 7 and 9 and the power supply device 17 based on the values detected by the current sensor 30 .
  • Embodiment 2 Next, a redox flow battery system according to Embodiment 2 will be described.
  • the redox flow battery system according to the second embodiment is different from the first embodiment in that it can cope with temporary fluctuations in power supplied from the power supply device 17 or power consumption in the load 18 .
  • the same reference numerals are given to the same components as those of the first embodiment, and detailed description thereof will be omitted.
  • the redox flow battery system 20 according to Embodiment 2 of the present disclosure includes, in addition to the redox flow battery 1, a charging redox flow battery 1A having the same configuration as the redox flow battery 1 and a discharging redox flow battery. It has a flow battery 1B.
  • the charging redox flow battery 1A and the discharging redox flow battery 1B each have the same configuration as the redox flow battery 1, but the output and capacity of the former are smaller than the output and capacity of the latter.
  • the output and capacity of the former may be about 10% of the output and capacity of the latter.
  • the output and capacity of the latter are set according to the required amount (output/capacity) exceeding the rating generated based on the transition of power consumption in the load 18 .
  • the first electrode 14 and the second electrode 15 of the charging redox flow battery 1A and the discharging redox flow battery 1B are electrically connected to an AC/DC converter 16, respectively.
  • the initial charging rate of the charging redox flow battery 1A is set to approximately the lower limit of the dischargeable charging rate, and the initial charging rate of the discharging redox flow battery 1B is set to approximately the upper limit.
  • Other configurations are the same as those of the first embodiment.
  • FIG. 5 illustrates a configuration in which one charging redox flow battery 1A and one discharging redox flow battery 1B are provided, the present invention is not limited to this configuration.
  • the charging redox flow battery 1A or the discharging redox flow battery 1B may be provided, or the number of each of the charging redox flow battery 1A and the discharging redox flow battery 1B provided may be two or more. Alternatively, the number of redox flow batteries 1A for charging and the number of redox flow batteries 1B for discharging may be different.
  • the current value supplied to the redox flow battery 1 is decreased.
  • the current value supplied to the redox flow battery 1 will not fall below the assumed value.
  • a part of the direct current converted in the AC-DC converter 16 is supplied to the charging redox flow battery 1A to supply power not only to the redox flow battery 1 but also to the charging redox flow battery 1A. to charge.
  • the remaining electric power can be stored in the charging redox flow battery 1 ⁇ /b>A while continuing to improve the operation of charging and discharging the redox flow battery 1 .
  • Such an operation is performed by providing the current sensor 30 (FIG. 4) provided in the modified example of the first embodiment in the second embodiment, and applying direct current to each of the redox flow battery 1 and the charging redox flow battery 1A.
  • the operator of the redox flow battery system 20 can manually switch between the redox flow battery 1 and the charging redox flow battery 1A based on the values detected by the current sensor 30.
  • the control device (not shown) may automatically adjust the ratio of the DC current distributed to the .
  • Such an operation may be performed by the operator of the redox flow battery system 20 manually starting discharge from the discharging redox flow battery 1B based on the electric power required by the load 18, or not shown.
  • the control device may automatically start discharging from the discharging redox flow battery 1B based on the power required by the load 18 .
  • the charging redox flow battery 1A When the charging redox flow battery 1A is charged by the above operation, the initial charging rate was low, but after charging, the charging rate increases. On the other hand, when the discharging redox flow battery 1B is discharged by the above-described operation, although the charging rate was high at the beginning, the charging rate becomes low after discharging. Therefore, after the charging redox flow battery 1A and the discharging redox flow battery 1B perform the above operations, the charging redox flow battery 1A is used as the discharging redox flow battery, and the discharging redox flow battery 1B is charged. can be used as a redox flow battery. According to such a usage pattern, the redox flow battery 1A for charging and the redox flow battery 1B for discharging can be alternately diverted, so that it is possible to save the trouble of preparing for their installation.
  • each of the charging redox flow battery 1A and the discharging redox flow battery 1B includes the first tank 6 and the second tank 8, but the invention is not limited to this form.
  • Each of the charging redox flow battery 1A and the discharging redox flow battery 1B does not include the first tank 6 and the second tank 8, and the first electrolytic solution circulation path 10 and the second electrolytic solution circulation path 11 are respectively The first electrolytic solution 12 and the second electrolytic solution may be shared by connecting to the first tank 6 and the second tank 8 of the redox flow battery 1 .
  • Embodiment 2 is premised on improving the operation related to charging and discharging of the redox flow battery 1, but is not limited to this form.
  • part of the power is charged when the power supplied to the redox flow battery 1 is more than necessary under the condition that the current value supplied to the redox flow battery 1 is not lowered.
  • power is also supplied to the load 18 from the redox flow battery 1B for discharge. You may do so.
  • a redox flow battery system includes: a redox flow battery (1); a power supply device (17) that supplies power for charging the redox flow battery (1) to the redox flow battery (1); The power supply device (17) decreases the power supplied to the redox flow battery (1) toward the end of charging of the redox flow battery (1).
  • the redox flow battery system of the present disclosure by decreasing the power supplied to the redox flow battery toward the end of charging of the redox flow battery, the upper limit of charging of the redox flow battery can be increased. In addition, since the lower limit of discharge of the redox flow battery can be lowered, the operation of charging and discharging the redox flow battery can be improved.
  • a redox flow battery system is the redox flow battery system of [1], Said power supply (17) is a photovoltaic power plant.
  • Photovoltaic power generation equipment generally exhibits a behavior in which the power output increases from morning to daytime and decreases from daytime to sunset. If the power output behavior of the solar power generation device from daytime to sunset is used to supply power to the redox flow battery at the end of charging, the power supplied to the redox flow battery will decrease toward the end of charging of the redox flow battery.
  • a redox flow battery system is the redox flow battery system of [1],
  • the power supply is a tidal current generator.
  • a tidal power generator generally generates power in the cycle of the ebb and flow of the tide (approximately 6 hours). If the behavior of power generation output at timings close to high tide and low tide is used for power supply at the end of charging of the redox flow battery, the power supplied to the redox flow battery can be reduced toward the end of charging of the redox flow battery. .
  • a redox flow battery system is the redox flow battery system according to any one of [1] to [3], A detection device (current sensor 30) for detecting a current value supplied from the power supply device (17) to the redox flow battery (1), Charging of the redox flow battery (1) is stopped when the value detected by the detection device (30) is equal to or lower than a predetermined lower limit.
  • the redox flow battery has power loss due to the inherent shunt current based on its configuration.
  • the current supplied to the redox flow battery at the end of charging of the redox flow battery becomes smaller than the shunt current, a phenomenon occurs in which the charge amount decreases even if charging is continued. Therefore, by stopping charging of the redox flow battery when the current supplied to the redox flow battery is equal to or lower than a predetermined lower limit, it is possible to prevent a reduction in the amount of charge due to power loss due to the shunt current. can.
  • a redox flow battery system is the redox flow battery system of [4], The lower limit value is determined based on the shunt current of the redox flow battery (1).
  • a redox flow battery system is the redox flow battery system of [1] to [5], It comprises at least one rechargeable redox flow battery (1A) that can be charged with power from said power supply (17).
  • the charging redox flow battery is charged with the surplus power. can be improved.
  • a redox flow battery system is the redox flow battery system of [1] to [6],
  • the redox flow battery (1) is electrically connected to a load (18) capable of consuming power discharged from the redox flow battery (1), At least one discharging redox flow battery (1B) electrically connected to supply power to the load (18).
  • a redox flow battery system is the redox flow battery system of [6],
  • the redox flow battery is electrically connected to a load capable of consuming power discharged from the redox flow battery,
  • the redox flow battery system comprises at least one discharging redox flow battery electrically connected to supply power to the load;
  • One of the at least one charging redox flow battery charged by power from the power supply becomes one of the at least one discharging redox flow battery and the at least one discharging redox flow battery.
  • the battery that powers the load is one of the at least one rechargeable redox flow battery.
  • the redox flow battery for charging and the redox flow battery for discharging can be alternately diverted, so that it is possible to save the trouble of preparing for their installation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Hybrid Cells (AREA)

Abstract

レドックスフロー電池の充放電に関する運用を改善したレドックスフロー電池システムを提供する。レドックスフロー電池システムは、レドックスフロー電池と、レドックスフロー電池を充電するための電力をレドックスフロー電池に供給する電力供給装置とを備え、電力供給装置は、レドックスフロー電池の充電終了に向かって、レドックスフロー電池に供給する電力を低下していく。

Description

レドックスフロー電池システム
 本開示は、レドックスフロー電池システムに関する。
 本願は、2021年6月17日に日本国特許庁に出願された特願2021-100591号に基づき優先権を主張し、その内容をここに援用する。
 レドックスフロー電池は、例えば特許文献1に記載されるように、セルと、電解液を貯蔵するタンクとから構成され、ポンプによって電解液をセルとタンクとの間で循環させることで充放電が行われる二次電池である。レドックスフロー電池では、出力を担うセルと、蓄電を担う電解液(電解液を貯蔵するタンク)とが分かれているため、出力と電気容量とを個別に設計することが可能である。
特開2019-161755号公報
 上述したように、レドックスフロー電池は電気的エネルギーを電解液に貯めるシステムであるが、電解液の蓄電率やセル内部における電解液の流速によって、充電の上限値及び放電の下限値が異なる。これは、電解液の濃度過電圧が電解液の蓄電率や流速に強い影響を受けることが原因であり、濃度過電圧が大きな領域、すなわち、抵抗が大きい領域で充放電を行った場合にはエネルギー損失も大きくなる。このため、レドックスフロー電池の充放電に関して運用の最適化が必要である。
 上述の事情に鑑みて、本開示の少なくとも1つの実施形態は、レドックスフロー電池の充放電に関する運用を改善したレドックスフロー電池システムを提供することを目的とする。
 上記目的を達成するため、本開示に係るレドックスフロー電池システムは、レドックスフロー電池と、前記レドックスフロー電池を充電するための電力を前記レドックスフロー電池に供給する電力供給装置とを備え、前記電力供給装置は、前記レドックスフロー電池の充電終了に向かって、前記レドックスフロー電池に供給する前記電力を低下していく。
 本開示のレドックスフロー電池システムによれば、レドックスフロー電池の充電終了に向かって、レドックスフロー電池に供給する電力を低下していくことにより、レドックスフロー電池の充電の上限値を上昇させることができるとともにレドックスフロー電池の放電の下限値を低下させることができるので、レドックスフロー電池の充放電に関する運用を改善することができる。
本開示の実施形態1に係るレドックスフロー電池システムの構成模式図である。 本開示の発明者らによるレドックスフロー電池の充放電の運用に関する検討結果を示すグラフである。 太陽光発電装置の発電状態と、レドックスフロー電池の充電状態とを示したグラフである。 本開示の実施形態1に係るレドックスフロー電池システムの変形例の構成模式図である。 本開示の実施形態2に係るレドックスフロー電池システムの構成模式図である。
 以下、本開示の実施形態によるレドックスフロー電池システムについて、図面に基づいて説明する。以下で説明する実施形態は、本開示の一態様を示すものであり、この開示を限定するものではなく、本開示の技術的思想の範囲内で任意に変更可能である。
(実施形態1)
<本開示の実施形態1に係るレドックスフロー電池システムの構成>
 図1に示されるように、本開示の実施形態1に係るレドックスフロー電池システム20は、レドックスフロー電池1と、交流直流変換器16を介してレドックスフロー電池1に電気的に接続された電力供給装置17を備えている。電力供給装置17は、レドックスフロー電池1を充電するためにレドックスフロー電池1に電力を供給するものであり、任意の構成の蓄電池や発電装置であってもよい。また、交流直流変換器16には、レドックスフロー電池1から放電された電力を消費する負荷18が電気的に接続されている。尚、電力供給装置17から供給される電流が直流電流であるとともに負荷18が直流電流で稼働するものである場合には、交流直流変換器16は必要ない。
 レドックスフロー電池1は、隔膜5で仕切られた第1室3及び第2室4を有するセル2と、活物質を含む第1電解液12を貯蔵する第1タンク6と、第1室3と第1タンク6との間で第1電解液12を循環させる第1ポンプ7と、活物質を含む第2電解液13を貯蔵する第2タンク8と、第2室4と第2タンク8との間で第2電解液13を循環させる第2ポンプ9とを備えている。第1タンク6及び第1ポンプ7は、一端及び他端が第1室3に接続された第1電解液循環経路10に設けられている。第2タンク8及び第2ポンプ9は、一端及び他端が第2室4に接続された第2電解液循環経路11に設けられている。第1室3内には第1電極14が設けられ、第2室4内には第2電極15が設けられている。第1電極14及び第2電極15はそれぞれ、交流直流変換器16に電気的に接続されている。
 尚、図1には、セル2が1つのみ描かれているが、2つ以上のセルが積層されたレドックスフロー電池1であってもよい。セル2の積層数によって、レドックスフロー電池1の出力を設計することができる。一方で、第1タンク6及び第2タンク8の容量、すなわち、第1電解液12及び第2電解液13の量によって、レドックスフロー電池1の電気容量を設計することができる。
 第1電解液12及び第2電解液13のそれぞれは、支持電解質を含む水溶液に活物質を溶解させたものである。この水溶液は、水酸化カリウムや水酸化ナトリウム等が溶解したアルカリ性水溶液、塩化カリウムや塩化ナトリウム等が溶解した中性水溶液、塩化水素や硫酸が溶解した酸性水溶液を用いることができる。第1電解液12又は第2電解液13のうちの一方に溶解する活物質は、バナジウム等の金属イオン、金属錯体、空気、ハロゲン、キノン又はヒドロキノンのような有機分子等であってもよい。
<本開示の実施形態1に係るレドックスフロー電池システムの動作>
 次に、本開示の実施形態1に係るレドックスフロー電池システム20の動作について説明する。第1ポンプ7を稼働することにより、第1タンク6内に貯留する第1電解液12を、第1電解液循環経路10を介して第1室3に供給する。第1室3内に第1電解液12が充満した後、第1電解液12が第1室3から流出し、第1電解液循環経路10を介して第1タンク6に戻される。このようにして、第1電解液12は、第1室3と第1タンク6との間を循環する。一方、第2ポンプ9を稼働することにより、上述した動作と同様の動作によって、第2電解液13は、第2室4と第2タンク8との間を循環する。
 レドックスフロー電池1を充電するとき、電力供給装置17からの交流電流は、交流直流変換器16で直流電流に変換され、第1電極14及び第2電極15間にこの直流電流が流れる。レドックスフロー電池1において、第1室3を正極側とするとともに第2室4を負極側とすると、電子が第2電極15に電子が流れ、第2電極15から第2電解液13に含まれる活物質に供給される。一方、第1電解液12に含まれる活物質から第1電極14に電子が供給される。これにより、第1電解液12に電荷が蓄積され、レドックスフロー電池1が充電される。
 レドックスフロー電池1から放電するとき、第2電解液13に含まれる活物質から第2電極15に電子が供給されるとともに第1電極14から第1電解液12に含まれる活物質に電子が供給されることで、第1電極14及び第2電極15間に直流電流が流れる。この直流電流は交流直流変換器16によって交流電流に変換されて、負荷18に電力が供給され、消費される。
<本開示の発明者らによるレドックスフロー電池の充放電の運用に関する検討>
 本開示の発明者らは、図1に示される構成を有するレドックスフロー電池システム20において、第1電解液12及び第2電解液13の流量を一定にした条件で、電力供給装置17からレドックスフロー電池1に供給される電流値が異なる場合に、レドックスフロー電池1における充電の上限値及び放電の下限値にどのような影響があるかを検討した。その結果を図2に示す。
 図2は、異なる3つのパターンA,B,Cの電流(電流値の大小関係はA<B<Cである)でレドックスフロー電池1を充電したときに、それぞれのパターンでのレドックスフロー電池1の充電率の上限値(充電の上限値)を示している。また、図2は、それぞれのパターンでレドックスフロー電池1を充電して充電率がそれぞれの上限値に達した後、一定の同じ電流値でレドックスフロー電池1から放電したときに、放電可能な充電率の下限値(放電の下限値)も示している。図2によれば、充電時に供給される電流値が小さいほど、すなわち、パターンC、パターンB、パターンAの順序で、充電の上限値が大きくなるとともに、放電の下限値が小さくなることがわかった。
 この検討によって得られた上記知見によれば、レドックスフロー電池1の充電時に供給される電流値の運用を見直すことで、レドックスフロー電池1に充電された電力の使用可能範囲を広げられると言うことができる。具体的に言えば、レドックスフロー電池1の充電末期、すなわち、充電率が高い状態での充電時には、電流値を低下させていくことで、充電の上限値を上昇することができる。そして、このような条件で充電を行うことにより、レドックスフロー電池1の放電の下限値を低下することもできる。
<本開示の実施形態1に係るレドックスフロー電池システムの充放電に関する運用>
 レドックスフロー電池1の充放電に関する運用を改善するため、具体的には、レドックスフロー電池1に充電された電力の使用可能範囲を広げるためのレドックスフロー電池システム20の動作の具体例を説明する。上記知見に基づけば、レドックスフロー電池1の充電末期に充電電流を低下させていけば、レドックスフロー電池1の充放電に関する運用を改善することができる。このような充電条件を実現するために、電力供給装置17(図1参照)として太陽光発電装置を使用することができる。
 図3において実線で示されるように、太陽光発電装置における発電量は一般的に、日の出(朝)後から充電開始となり、正午にかけては発電量が上昇していき、その後、日没(夜)にかけて発電量が低下するように推移する。もちろん、その日の天候によっては、このような推移から一時的に又は長い期間にわたってずれることはあるものの、1日中発電可能な天候であれば、このような発電傾向を示すものと考えられる。尚、図3のグラフの左側の縦軸には、太陽光発電装置の発電量の指標として、太陽光発電装置のセルに流れる電流値(セル電流)を採用している。
 レドックスフロー電池1を充電するために、太陽光発電装置で発電された電力をレドックスフロー電池1に供給すると、正午まではレドックスフロー電池1に供給される電流値が上昇していき、それに伴い、図3において破線で示されるように、レドックスフロー電池1の充電率が上昇する。その後は日没にかけて、太陽光発電装置で発電される電力が低下していくのでレドックスフロー電池1に供給される電流値も低下していくが、この期間はレドックスフロー電池1の充電率が高いとき、すなわち充電末期に相当する。これにより、レドックスフロー電池1の充電末期に、レドックスフロー電池1に供給される電流値が低下していくことになる。この期間におけるレドックスフロー電池1の充電率の上昇は、日の出から正午までの間の充電率の上昇に比べて緩慢になる。
 このように、太陽光発電装置で発電された電力でレドックスフロー電池1を充電することにより、レドックスフロー電池1の充電末期に、レドックスフロー電池1に供給される電流値を低下させる運用が可能になる。その結果、レドックスフロー電池1の充放電に関する運用を改善することができる。尚、太陽光発電装置を用いなければこのような運用ができないわけではなく、レドックスフロー電池1の充電末期にレドックスフロー電池1に供給される電流値を低下させることができるものであれば、潮の満ち引きの周期(約6時間)で発電を行う潮流発電装置等のように任意の構成の電力供給装置が使用可能である。
<本開示の実施形態1に係るレドックスフロー電池システムの変形例>
 日没まで太陽光発電装置からレドックスフロー電池1に電力供給を継続していくと、充電中にもかかわらず、ある時点(図3では16時くらい)からレドックスフロー電池1の充電率が低下する現象が見られることがある。これは、レドックスフロー電池1には、その構成に基づく固有のシャント電流による電力損失が存在するため、レドックスフロー電池1の充電末期においてレドックスフロー電池1に供給される電流がシャント電流よりも小さくなると、充電を続けても充電量が低下するからである。
 そこで、図4に示されるように、電力供給装置17としての太陽光発電装置からレドックスフロー電池1に供給される電流値を検出する検出装置である電流センサ30を設け、下限値を電流センサ30に予め設定しておく。ここで、下限値は、レドックスフロー電池1に固有のシャント電流に基づいて任意に決定することができ、例えば、シャント電流と同じ値であってもよいし、シャント電流に対して数パーセント上乗せした値であってもよい。電流センサ30と第1ポンプ7及び第2ポンプ9とを電気的に接続させて、電流センサ30からの指令で第1ポンプ7及び第2ポンプ9の停止及び起動ができるように構成されている。
 この変形例において、電流センサ30による検出値が、予め決められた下限値以下となったら、電流センサ30から第1ポンプ7及び第2ポンプ9及び電力供給装置17へ停止指令を送信し、第1ポンプ7及び第2ポンプ9及び電力供給装置17を停止して第1電解液12及び第2電解液13の循環を停止するとともに、レドックスフロー電池1の充電を停止する。レドックスフロー電池1の充電を停止した後に、電流センサ30による検出値が下限値を上回ったら、電流センサ30から第1ポンプ7及び第2ポンプ9及び電力供給装置17へ起動指令を送信し、第1ポンプ7及び第2ポンプ9を起動して第1電解液12及び第2電解液13の循環を再開するとともに、レドックスフロー電池1の充電を再開する。このような動作により、レドックスフロー電池1のシャント電流による電力損失に起因する充電量の低下を防ぐことができる。尚、レドックスフロー電池システム20のオペレータが、電流センサ30による検出値に基づいて、第1ポンプ7及び第2ポンプ9及び電力供給装置17の停止及び起動を手動で行うようにしてもよい。
(実施形態2)
 次に、実施形態2に係るレドックスフロー電池システムについて説明する。実施形態2に係るレドックスフロー電池システムは、実施形態1に対して、電力供給装置17からの供給電力または負荷18における消費電力の一次的な変動に対応可能にしたものである。尚、実施形態2において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
<本開示の実施形態2に係るレドックスフロー電池システムの構成>
 図5に示されるように、本開示の実施形態2に係るレドックスフロー電池システム20は、レドックスフロー電池1に加えて、レドックスフロー電池1と同じ構成を有する充電用レドックスフロー電池1A及び放電用レドックスフロー電池1Bを備えている。充電用レドックスフロー電池1A及び放電用レドックスフロー電池1Bはそれぞれレドックスフロー電池1と同じ構成を有しているが、前者の出力及び容量は後者の出力及び容量よりも小さい小型のレドックスフロー電池(例えば前者の出力及び容量は後者の出力及び容量の10%程度)が用いられてもよい。尚、後者の出力及び容量は、負荷18における消費電力の推移に基づき、発生する定格以上の要求量(出力・容量)に合わせて設定される。
 充電用レドックスフロー電池1A及び放電用レドックスフロー電池1Bのそれぞれの第1電極14及び第2電極15はそれぞれ、交流直流変換器16に電気的に接続されている。充電用レドックスフロー電池1Aの当初の充電率は放電可能な充電率の下限値程度にしておくとともに、放電用レドックスフロー電池1Bの当初の充電率は上限値程度にしておく。その他の構成は実施形態1と同じである。尚、図5には、充電用レドックスフロー電池1A及び放電用レドックスフロー電池1Bがそれぞれ1基ずつ設けられる構成が図示されているが、この形態に限定するものではない。充電用レドックスフロー電池1A又は放電用レドックスフロー電池1Bのいずれかのみが設けられていてもよいし、充電用レドックスフロー電池1A及び放電用レドックスフロー電池1Bそれぞれの設けられる数が2基以上であってもよいし、充電用レドックスフロー電池1A及び放電用レドックスフロー電池1Bそれぞれの設けられる数が異なっていてもよい。
<本開示の実施形態2に係るレドックスフロー電池システムの動作>
 電力供給装置17からの供給電力または負荷18における消費電力が安定している場合は、電力供給装置17からの供給電力でレドックスフロー電池1が充電され、レドックスフロー電池1から負荷18へ規定の電力が供給されるので、この場合の実施形態2における動作は実施形態1と同じである。
 実施形態1で説明したようにレドックスフロー電池1の充電末期には、レドックスフロー電池1に供給される電流値を低下させていくが、電力供給装置17として太陽光発電装置を使用した場合に、天候によってはレドックスフロー電池1に供給される電流値が想定値よりも下がらない可能性も存在する。このような場合には、交流直流変換器16において変換された直流電流の一部を充電用レドックスフロー電池1Aに供給して、レドックスフロー電池1だけではなく充電用レドックスフロー電池1Aにも電力を充電する。これにより、レドックスフロー電池1の充放電に関する運用の改善を継続しながら、残りの電力を充電用レドックスフロー電池1Aに蓄電することができる。
 尚、このような動作は、例えば、実施形態1の変形例で設けられた電流センサ30(図4)を実施形態2に設け、レドックスフロー電池1と充電用レドックスフロー電池1Aとのそれぞれに直流電流を分配する機構を交流直流変換器16に設けることで、レドックスフロー電池システム20のオペレータが、電流センサ30による検出値に基づいて手動でレドックスフロー電池1と充電用レドックスフロー電池1Aとのそれぞれに分配される直流電流の比率を調整してもよいし、図示しない制御装置によって自動で調整を行ってもよい。
 一方、レドックスフロー電池1から負荷18へ電力を供給している間に、負荷18における消費電力が一時的に急増し、レドックスフロー電池1から放電される電力では賄えない状態になる可能性も存在する。このような場合には、放電用レドックスフロー電池1Bからも放電を行い、レドックスフロー電池1及び放電用レドックスフロー電池1Bのそれぞれから放電された電力を負荷18に供給する。これにより、負荷18の消費電力の変動に適切に対応することができる。
 尚、このような動作は、レドックスフロー電池システム20のオペレータが、負荷18で要求されている電力に基づいて、手動で放電用レドックスフロー電池1Bからの放電を開始してもよいし、図示しない制御装置が、負荷18が要求する電力に基づいて、自動で放電用レドックスフロー電池1Bからの放電を開始するようにしてもよい。
 上述の動作で充電用レドックスフロー電池1Aに充電を行った場合は、当初の充電率は低かったものの、充電後は、充電率が高くなる。一方、上述の動作で放電用レドックスフロー電池1Bから放電を行った場合は、当初の充電率は高かったものの、放電後は、充電率が低くなる。このため、充電用レドックスフロー電池1A及び放電用レドックスフロー電池1Bが上述の動作を行った後は、充電用レドックスフロー電池1Aを放電用レドックスフロー電池として使用し、放電用レドックスフロー電池1Bを充電用レドックスフロー電池として使用することができる。このような使用形態によれば、充電用レドックスフロー電池1Aと放電用レドックスフロー電池1Bとが交互に転用可能になるので、それらの設置準備の手間を省くことができる。
<本開示の実施形態2に係るレドックスフロー電池システムの変形例>
 実施形態2では、充電用レドックスフロー電池1A及び放電用レドックスフロー電池1Bのそれぞれが第1タンク6及び第2タンク8を備えているが、この形態に限定するものではない。充電用レドックスフロー電池1A及び放電用レドックスフロー電池1Bのそれぞれが第1タンク6及び第2タンク8を備えずに、それぞれの第1電解液循環経路10及び第2電解液循環経路11がそれぞれ、レドックスフロー電池1の第1タンク6及び第2タンク8に接続されるように構成して、第1電解液12及び第2電解液のそれぞれを共通化させてもよい。
 実施形態2は、実施形態1で説明したように、レドックスフロー電池1の充放電に関する運用の改善を行うことを前提としているが、この形態に限定するものではない。レドックスフロー電池1の充電末期に、レドックスフロー電池1に供給される電流値を低下させる運用をしない条件で、レドックスフロー電池1に供給される電力が必要以上に多いときに電力の一部を充電用レドックスフロー電池1Aに供給し、負荷18で必要とされる電力をレドックスフロー電池1から放電される電力のみでは賄えない場合に、放電用レドックスフロー電池1Bからも負荷18へ電力を供給するようにしてもよい。
 上記各実施形態に記載の内容は、例えば以下のように把握される。
[1]一の態様に係るレドックスフロー電池システムは、
 レドックスフロー電池(1)と、
 前記レドックスフロー電池(1)を充電するための電力を前記レドックスフロー電池(1)に供給する電力供給装置(17)と
を備え、
 前記電力供給装置(17)は、前記レドックスフロー電池(1)の充電終了に向かって、前記レドックスフロー電池(1)に供給する前記電力を低下していく。
 本開示のレドックスフロー電池システムによれば、レドックスフロー電池の充電終了に向かって、レドックスフロー電池に供給する電力を低下していくことにより、レドックスフロー電池の充電の上限値を上昇させることができるとともにレドックスフロー電池の放電の下限値を低下させることができるので、レドックスフロー電池の充放電に関する運用を改善することができる。
[2]別の態様に係るレドックスフロー電池システムは、[1]のレドックスフロー電池システムであって、
 前記電力供給装置(17)は太陽光発電装置である。
 太陽光発電装置は一般的に、朝から日中にかけて発電出力が上昇していき、日中から日没にかけて発電出力が低下する挙動を示す。太陽光発電装置における日中から日没にかけての発電出力の挙動を、レドックスフロー電池の充電末期の電力供給に用いれば、レドックスフロー電池の充電終了に向かって、レドックスフロー電池に供給する電力を低下させることができる。
[3]さらに別の態様に係るレドックスフロー電池システムは、[1]のレドックスフロー電池システムであって、
 前記電力供給装置は潮流発電装置である。
 潮流発電装置は一般的に、潮の満ち引きの周期(約6時間)で発電を行うものである。満潮及び干潮に近いタイミングでの発電出力の挙動を、レドックスフロー電池の充電末期の電力供給に用いれば、レドックスフロー電池の充電終了に向かって、レドックスフロー電池に供給する電力を低下させることができる。
[4]さらに別の態様に係るレドックスフロー電池システムは、[1]~[3]のいずれかのレドックスフロー電池システムであって、
 前記電力供給装置(17)から前記レドックスフロー電池(1)に供給される電流値を検出する検出装置(電流センサ30)を備え、
 前記検出装置(30)による検出値が予め決められた下限値以下の場合に、前記レドックスフロー電池(1)の充電を停止する。
 レドックスフロー電池には、その構成に基づく固有のシャント電流による電力損失が存在する。レドックスフロー電池の充電末期においてレドックスフロー電池に供給される電流がシャント電流によりも小さくなると、充電を続けても充電量が低下する現象が生じる。このため、レドックスフロー電池に供給される電流が予め決められた下限値以下の場合に、レドックスフロー電池の充電を停止することにより、シャント電流による電力損失に起因する充電量の低下を防ぐことができる。
[5]さらに別の態様に係るレドックスフロー電池システムは、[4]のレドックスフロー電池システムであって、
 前記下限値は前記レドックスフロー電池(1)のシャント電流に基づいて決定される。
 このような構成によれば、レドックスフロー電池のシャント電流に基づいて決定された下限値以下の場合に、電力供給装置からレドックスフロー電池への電力の供給を停止することにより、シャント電流による電力損失に起因する充電量の低下を防ぐことができる。
[6]さらに別の態様に係るレドックスフロー電池システムは、[1]~[5]のレドックスフロー電池システムであって、
 前記電力供給装置(17)からの電力によって充電可能な少なくとも1つの充電用レドックスフロー電池(1A)を備える。
 このような構成によれば、電力供給装置から供給される電力が充電に必要な電力よりも大きい場合に、充電用レドックスフロー電池に余剰の電力を充電することにより、レドックスフロー電池の充電に関する運用を改善することができる。
[7]さらに別の態様に係るレドックスフロー電池システムは、[1]~[6]のレドックスフロー電池システムであって、
 前記レドックスフロー電池(1)は、該レドックスフロー電池(1)から放電される電力を消費可能な負荷(18)に電気的に接続され、
 前記負荷(18)に電力を供給可能に電気的に接続された少なくとも1つの放電用レドックスフロー電池(1B)を備える。
 このような構成によれば、負荷の消費電力が変動して、負荷で必要とされる電力をレドックスフロー電池の出力量では賄えない場合に、放電用レドックスフロー電池に充電されている電力からも負荷に供給することにより、負荷の消費電力の変動に適切に対応することができる。
[8]さらに別の態様に係るレドックスフロー電池システムは、[6]のレドックスフロー電池システムであって、
 前記レドックスフロー電池は、該レドックスフロー電池から放電される電力を消費可能な負荷に電気的に接続され、
 前記レドックスフロー電池システムは、前記負荷に電力を供給可能に電気的に接続された少なくとも1つの放電用レドックスフロー電池を備え、
 前記少なくとも1つの充電用レドックスフロー電池のうち、前記電力供給装置からの電力によって充電されたものは、前記少なくとも1つの放電用レドックスフロー電池のうちの1つとなり、前記少なくとも1つの放電用レドックスフロー電池のうち、前記負荷に電力を供給したものは、前記少なくとも1つの充電用レドックスフロー電池のうちの1つとなる。
 このような構成によれば、充電用レドックスフロー電池と放電用レドックスフロー電池とが交互に転用可能になるので、それらの設置準備の手間を省くことができる。
1 レドックスフロー電池
1A 充電用レドックスフロー電池
1B 放電用レドックスフロー電池
17 電力供給装置
18 負荷
20 レドックスフロー電池システム
30 電流センサ(検出装置)

Claims (8)

  1.  レドックスフロー電池と、
     前記レドックスフロー電池を充電するための電力を前記レドックスフロー電池に供給する電力供給装置と
    を備え、
     前記電力供給装置は、前記レドックスフロー電池の充電終了に向かって、前記レドックスフロー電池に供給する前記電力を低下していく、レドックスフロー電池システム。
  2.  前記電力供給装置は太陽光発電装置である、請求項1に記載のレドックスフロー電池システム。
  3.  前記電力供給装置は潮流発電装置である、請求項1に記載のレドックスフロー電池システム。
  4.  前記電力供給装置から前記レドックスフロー電池に供給される電流値を検出する検出装置を備え、
     前記検出装置による検出値が予め決められた下限値以下の場合に、前記レドックスフロー電池の充電を停止する、請求項1~3のいずれか一項に記載のレドックスフロー電池システム。
  5.  前記下限値は前記レドックスフロー電池のシャント電流に基づいて決定される、請求項4に記載のレドックスフロー電池システム。
  6.  前記電力供給装置からの電力によって充電可能な少なくとも1つの充電用レドックスフロー電池を備える、請求項1~5のいずれか一項に記載のレドックスフロー電池システム。
  7.  前記レドックスフロー電池は、該レドックスフロー電池から放電される電力を消費可能な負荷に電気的に接続され、
     前記負荷に電力を供給可能に電気的に接続された少なくとも1つの放電用レドックスフロー電池を備える、請求項1~6のいずれか一項に記載のレドックスフロー電池システム。
  8.  前記レドックスフロー電池は、該レドックスフロー電池から放電される電力を消費可能な負荷に電気的に接続され、
     前記レドックスフロー電池システムは、前記負荷に電力を供給可能に電気的に接続された少なくとも1つの放電用レドックスフロー電池を備え、
     前記少なくとも1つの充電用レドックスフロー電池のうち、前記電力供給装置からの電力によって充電されたものは、前記少なくとも1つの放電用レドックスフロー電池のうちの1つとなり、前記少なくとも1つの放電用レドックスフロー電池のうち、前記負荷に電力を供給したものは、前記少なくとも1つの充電用レドックスフロー電池のうちの1つとなる、請求項6に記載のレドックスフロー電池システム。
PCT/JP2022/005552 2021-06-17 2022-02-14 レドックスフロー電池システム WO2022264501A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2022294335A AU2022294335A1 (en) 2021-06-17 2022-02-14 Redox flow battery system
EP22824502.3A EP4340174A1 (en) 2021-06-17 2022-02-14 Redox flow battery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-100591 2021-06-17
JP2021100591A JP2023000025A (ja) 2021-06-17 2021-06-17 レドックスフロー電池システム

Publications (1)

Publication Number Publication Date
WO2022264501A1 true WO2022264501A1 (ja) 2022-12-22

Family

ID=84526998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005552 WO2022264501A1 (ja) 2021-06-17 2022-02-14 レドックスフロー電池システム

Country Status (4)

Country Link
EP (1) EP4340174A1 (ja)
JP (1) JP2023000025A (ja)
AU (1) AU2022294335A1 (ja)
WO (1) WO2022264501A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205237U (ja) * 1985-06-12 1986-12-24
JP2018152943A (ja) * 2017-03-10 2018-09-27 住友電気工業株式会社 制御装置、制御方法およびコンピュータプログラム
JP2019161755A (ja) 2018-03-08 2019-09-19 株式会社大原興商 レドックスフロー型二次電池システム
JP2020047397A (ja) * 2018-09-15 2020-03-26 SAIKO Innovation株式会社 電力調整システム
US20200144641A1 (en) * 2018-11-02 2020-05-07 Ess Tech, Inc. System and method for determining state of charge for an electric energy storage device
JP2021044252A (ja) * 2019-07-29 2021-03-18 株式会社岐阜多田精機 レドックスフロー電池
JP2021100591A (ja) 2019-05-30 2021-07-08 株式会社コナミデジタルエンタテインメント プログラム、情報処理装置及び情報処理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205237U (ja) * 1985-06-12 1986-12-24
JP2018152943A (ja) * 2017-03-10 2018-09-27 住友電気工業株式会社 制御装置、制御方法およびコンピュータプログラム
JP2019161755A (ja) 2018-03-08 2019-09-19 株式会社大原興商 レドックスフロー型二次電池システム
JP2020047397A (ja) * 2018-09-15 2020-03-26 SAIKO Innovation株式会社 電力調整システム
US20200144641A1 (en) * 2018-11-02 2020-05-07 Ess Tech, Inc. System and method for determining state of charge for an electric energy storage device
JP2021100591A (ja) 2019-05-30 2021-07-08 株式会社コナミデジタルエンタテインメント プログラム、情報処理装置及び情報処理方法
JP2021044252A (ja) * 2019-07-29 2021-03-18 株式会社岐阜多田精機 レドックスフロー電池

Also Published As

Publication number Publication date
AU2022294335A1 (en) 2023-12-07
EP4340174A1 (en) 2024-03-20
JP2023000025A (ja) 2023-01-04

Similar Documents

Publication Publication Date Title
JP5100008B2 (ja) 燃料電池システムの運転方法及び燃料電池システム
EP2581976B1 (en) Redox flow battery
JP2007330057A (ja) 二次電池付太陽光システムの充電制御方法
KR101829311B1 (ko) 주파수 조정용 친환경 에너지 저장 시스템
JP2019047721A (ja) 太陽光充電システム及びその制御方法 この出願は、2017年9月1日に中国特許局に出願された出願特許公開第201710780286.3号、「太陽光充電補助システム及び制御方法」である中国特許出願の優先権を主張し、その開示内容の全ては参照により本出願に組み込まれる。
JPS62200668A (ja) 蓄電装置
CN210881698U (zh) 一种燃料电池与锂电池混合电力系统
CN102354761A (zh) 液流电池系统及其停机保护方法和装置
CN114899913B (zh) 一种混合储能逆变器离网模式下电池充放电电流控制方法
JP2011233372A (ja) レドックスフロー電池
JP2007280741A (ja) 燃料電池装置
CN114243782B (zh) 一种基于波浪能发电的混合储能能源路由管理系统
CN203760568U (zh) 一种用于抑制钒电池储能系统冲击电流的电路结构
JP2016116435A (ja) 電力変換システム
WO2022264501A1 (ja) レドックスフロー電池システム
JP2006310246A (ja) 燃料電池システム
CN105186602B (zh) 控制供电系统输出的方法、装置及系统
WO2018155442A1 (ja) 直流給電システム
JPH01278239A (ja) 燃料電池用補助電池の充電制御装置
CN202231453U (zh) 基于太阳能电池的无线传感器网络节点的电源系统
CN217789379U (zh) 电解装置
JPS6286667A (ja) 電解液流通型電池システム及びその運転方法
JP2012015128A (ja) レドックスフロー電池
KR101651022B1 (ko) 에너지 저장 시스템 및 그 운전 방법
WO2023027643A2 (en) Flow battery charging initiation method, controller for flow battery system and flow battery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824502

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022294335

Country of ref document: AU

Ref document number: AU2022294335

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 18567366

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022294335

Country of ref document: AU

Date of ref document: 20220214

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022824502

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022824502

Country of ref document: EP

Effective date: 20231212

NENP Non-entry into the national phase

Ref country code: DE