WO2019103371A1 - 레독스 흐름전지용 전해액 및 이를 포함하는 레독스 흐름전지 - Google Patents

레독스 흐름전지용 전해액 및 이를 포함하는 레독스 흐름전지 Download PDF

Info

Publication number
WO2019103371A1
WO2019103371A1 PCT/KR2018/013640 KR2018013640W WO2019103371A1 WO 2019103371 A1 WO2019103371 A1 WO 2019103371A1 KR 2018013640 W KR2018013640 W KR 2018013640W WO 2019103371 A1 WO2019103371 A1 WO 2019103371A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
redox flow
electrolyte
redox
flow battery
Prior art date
Application number
PCT/KR2018/013640
Other languages
English (en)
French (fr)
Inventor
배수연
정현진
최원석
김태언
정진교
서동균
김진후
김대식
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Publication of WO2019103371A1 publication Critical patent/WO2019103371A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrolyte for a redox flow battery and a redox flow battery including the same.
  • the redox flow cell is an oxidation / reduction cell that can convert the chemical energy of the active material directly into electrical energy.
  • the redox flow cell stores renewable energy with high output fluctuation depending on the external environment such as solar and wind, Energy storage systems.
  • the electrolyte containing the active material causing the oxidation / reduction reaction is circulated between the electrode and the storage tank, and charging / discharging proceeds.
  • Such a redox flow cell basically includes a tank storing different active materials in oxidation states, a pump circulating the active material during charging / discharging, and a unit cell divided by a separator.
  • the unit cell includes an electrode, A collector and a separator.
  • the halide flow cell chemical reaction such as 2Br _ ® Br 2 + 2e _ between the separator and the cathode during charging of the redox couple in the cathode electrolyte Bromine is generated, and the bromine is stored in the cathode electrolyte tank.
  • a chemical reaction such as Zn 2+ + 2e? Zn occurs between the separation membrane and the anode electrode, and zinc contained in the anode electrolyte is deposited and stored on the anode electrode.
  • the zinc is not uniformly deposited on the electrode during the deposition of the zinc on the anode, the pH of the electrolyte, the cell efficiency and the battery shortage may be caused, and zinc dendrites may be generated excessively have.
  • a stripping process is performed to remove the remaining Zn (s) and to make a clean electrode. In this case, .
  • the present invention is to provide a redox flow cell using the redox flow battery electrolyte.
  • chromium ions Cr 3+
  • zinc / halide Zn / hal ide
  • a redox couple wherein the concentration of the chromium ions is 0.015 to 0.2 M.
  • a redox-flow battery comprising the electrolyte solution.
  • a chromium ion (Cr 3+ ) and a zinc / halide redox couple are included, and the concentration of the chromium ion is 0.015 to 0.2M.
  • An electrolytic solution for a redox flow battery can be provided.
  • the present inventors have found that when metal ions are added to an electrolyte solution for a redox flow battery, the metal dendrite generation phenomenon that may occur during redox flow battery operation is prevented, and a more uniform metal thin film is deposited on the anode during charging, It has been experimentally demonstrated that the stability can be improved, the yield of Zn (s) produced during charging can be increased to improve the charge efficiency, and the redox flow battery can achieve higher energy efficiency, current efficiency and voltage efficiency. And completed the invention.
  • the metal ion according to an embodiment of the present invention may be a chromium ion (striking 3 + ).
  • the effective reduction potential of the metal (electrolyte / charge potential) of the redox battery including the zinc / halide redox couple is compared with the standard reduction potential (-0.76 V) of zinc Relatively low and relatively high metal ions relative to the standard reduction potential (-0.83 V) of the water decomposition reaction at a relatively low concentration relative to the zinc concentration in the electrolytic solution, the zinc (Zn s), increase the efficiency of the dissolution reaction, suppress the zinc dendrite, make the zinc thin film of uniform thickness and filling possible, and improve the operation efficiency and stability of the redox flow cell.
  • the metal ion is relatively in relative to the zinc concentration in the electrolytic solution so that the effective reduction potential is relatively low relative to the standard reduction potential (-0.76 V) of zinc and relatively higher than the standard reduction potential (-0.83 V) (S) deposition is selectively promoted by suppressing the generation of hydrogen due to the metal ions interfering with the electron transfer before the generation of hydrogen, so that the Zn (s) So that a thin film can be formed. This improves the charge efficiency and allows the redox flow cell to achieve higher energy efficiency, current efficiency and voltage efficiency.
  • the concentration of metal ions in the redox flow battery electrolyte may be 0.015 to 0.2 M, more specifically 0.03 to 0.15 M, and more particularly 0.05 to 0.10 M.
  • concentration of the metal ion in the electrolyte for the redox-flowable battery exceeds the concentration range, there arises a problem that the metal ion is deposited instead of zinc on the anode.
  • the concentration of the metal ion in the electrolyte for redox- If it is less than the above range, it is difficult to inhibit the generation of hydrogen, so that selective deposition of Zn (s) becomes difficult, and thus the effect of inhibiting the formation of metal dendrites is insignificant, and formation of a uniform Zn (s) thin film may become difficult. As a result, energy efficiency, current efficiency, and voltage efficiency are inferior, and it is difficult to expect an improvement in flow cell performance.
  • the specific example of the redox flow battery is not limited, the redox flow battery may be a zinc / halide redox flow battery.
  • the redox flow cell may use a zinc / bromine (Zn / Br) redox couple, and the concentration of the zinc / bromine Un / Br redox couples in the electrolyte of the redox flow battery is specifically 1 To 10 days.
  • the electrolytic solution for a redox flow battery may include a zinc / bromine (Zn / Br) redox couple. More specifically, zinc / bromine ) records the concentration of the redox couple is 1 to 10 M may be a, the redox flow battery electrolyte is zinc bromide as a starting material of an electrolyte in addition to the above-mentioned metal ion (ZnBr 2), chlorinated zinc U11CI 2), pure bromine (Br 2 ) And 1-ethyl-1-methyl-pyrrol idinium bromide (MEP-Br)).
  • ZnBr 2 zinc / bromine
  • MEP-Br 1-ethyl-1-methyl-pyrrol idinium bromide
  • the electrolytic solution for a redox flow battery according to an embodiment of the present invention may further include at least one selected from the group consisting of a surfactant, a complex agent and a conductive agent in addition to the metal ion described above, You can also include it.
  • the electrolytic solution for the redox-flowable battery contains one or more complexing agents selected from the group consisting of ammonium bromide (NH 4 Br) and 1-ethyl-1-methylpyrrolidinium bromide .
  • the complexing agent serves to prevent evaporation of bromine (Br 2) and crossover from the cathode to the anode.
  • the electrolytic solution for the redox-flow battery may further include a conductive material for improving conduction.
  • the conductive material include potassium chloride, ammonium chloride, and the like.
  • the redox flow battery may be a zinc / halide redox flow battery 2019/103371 1 »(: 1 ⁇ 1 ⁇ 2018/013640
  • the redox flow cell may be a zinc / bromododox flow cell using zinc / bromine ⁇ 11 / as a redox couple and may be a zinc / bromododeps flow cell using a zinc (8/1) redox couple It may be an iodine redox flow battery.
  • the concentration of the electrolytic solution neutral / bromine (3 ⁇ 4 /) redox couple may be 1 to 10.
  • the redox flow cell may have a conventionally known structure.
  • the redox flow cell may include a unit cell including a separator and an electrode; A tank in which different active materials are stored in oxidation states; And a pump for circulating the active material between the unit cell and the tank at the time of charging and discharging.
  • the redox flow cell may include a module 1110 ( 1116 ) including one or more unit cells.
  • the redox flow cell may be a flow-frame (1 ⁇ muscle damage) including euldeo.
  • the flow-frame is able to provide an even distribution of electrolyte between, as well as to serve as flow channels of the electrolyte solution, the electrochemical reaction of the cell actually take place well, to make the electrode and the separator.
  • the flow frame may have a thickness of 0.1 to 10.0, and may be made of a polymer such as polyethylene, polypropylene, or polyvinyl chloride.
  • the present invention it is possible to prevent the occurrence of metal dendrite that may occur during the operation of the redox flow cell and to improve the stability of the battery by depositing a more uniform metal thin film on the anode at the time of charging, To improve the charge efficiency, and to allow the redox flow cell to achieve higher energy efficiency, current efficiency and voltage efficiency.
  • FIG. 1 is a perspective view illustrating a schematic configuration of a zinc / bromodex flow cell according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the results of a case where a redox flow cell is constituted by using electrolytes according to Examples and Comparative Examples of the present invention, It is a photograph.
  • FIG. 3 is a photograph of the deposition of a zinc thin film at a magnification of 20000 when a redox-flow battery is constituted using an electrolyte according to Examples and Comparative Examples of the present invention.
  • FIG. 3 is a photograph of the deposition of a zinc thin film at a magnification of 20000 when a redox-flow battery is constituted using an electrolyte according to Examples and Comparative Examples of the present invention.
  • FIG. 4 is a graph showing a charging voltage curve in a redox flow cell implemented using an electrolyte according to an embodiment of the present invention and a comparative example.
  • FIG. 5 is a graph showing changes in cycle of a redox flow cell implemented using an electrolyte according to an embodiment of the present invention and a comparative example.
  • a zinc-bromodeoxane flow cell was fabricated by assembling the anode, the flow frame, the separator, the flow frame, and the cathode in this order using the components shown in Table 1 below.
  • Electrolyte for Redox Flow Battery Having Metal Ion Added Electrolyte for the redox flow battery was prepared by adding the metal ion of Table 2 to the electrolyte of Table 1 above.
  • FIG. 2 is a photograph of a magnification of 5000 magnifications
  • FIG. 3 is a photograph of a magnification of 20,000 magnifications.
  • Residual loss (charge amount [Ah] / charge capacity [Ah] generated in the stripping step after discharge process) X100
  • Transport loss 100 - (CE + Residual loss)
  • the transport inefficiency is a value obtained by subtracting the charge efficiency (CE) generated in the middle stage from the total inductance efficiency 100 and the residual inefficiency which is the charge efficiency generated in the stripping stage. In other words, it refers to the lost efficiency that can not be recovered by discharging and stripping, which is caused by cell resistance, crossover, and shunt current. Therefore, the smaller the value, the smaller the amount of loss that is not used. 2019/103371 1 »(: 1 ⁇ 1 ⁇ 2018/013640
  • the use of the electrolytic solution according to the present embodiment improves the yield of charge during charging and improves the charge quantity efficiency as the difference in current density is improved for each zinc portion plated on the anode electrode.
  • 1 (1 1 1 1 03 %) is smaller than that of the comparative example. This is because the uniformly formed zinc thin film can use the surface of the electrode evenly during discharge and the loss due to the zinc residual amount is reduced, Is increased.
  • the graph of FIG. 5 is obtained by measuring the time of electrolyte after each cycle under the charge / discharge condition. Referring to the graph of FIG.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 아연 /할라이드 (Zn/halide) 레독스 커플을 포함하고, 전해액 내 아연 농도 (ZN2+) 대비 상대적으로 적은 농도의 금속 이온을 포함하며, 상기 금속의 유효환원전위는 아연의 표준환원전위 (-0.76V) 대비 상대적으로 낮고, 물분해 반응의 표준환원전위 (-0.83V) 대비 상대적으로 높은 레독스 흐름전지용 전해액 및 이를 포함하는 레독스 흐름전지에 관한 것이다.

Description

2019/103371 1»(그1^1{2018/013640
【발명의설명】
【발명의 명칭】
레독스흐름전지용전해액 및이를포함하는레독스흐름전지 【기술분야】
관련춤워(들)과의상호인용
본 출원은 2017 년 11 월 21 일자 한국특허출원 제 10-2017- 0155823호에 기초한우선권의 이익을주장하며, 해당한국특허 출원들의 문헌에 개시된모든내용은본명세서의 일부로서포함된다. 본 발명은 레독스 흐름전지용 전해액 및 이를 포함하는 레독스 흐름전지에 관한것이다.
【발명의 배경이 되는기술】
화석 연료를 사용하여 대량의 온실 가스 및 환경 오염 문제를 야기하는 화력 발전이나 시설 자체의 안정성이나 폐기물 처리의 문제점을 갖는원자력 발전등의 기존발전시스템들이 다양한한계점을드러내면서, 보다 친환경적이고 높은 효율을 갖는 에너지의 개발과 이를 이용한 전력 공급시스템의 개발에 대한 연구가크게 증가하고 있다. 특히, 전력 저장 기술은 외부 조건에 큰 영향을 받는 재생 에너지를 보다 다양하고 넓게 이용할수 있도록 하며 전력 이용의 효율을보다높일 수 있어쓰ᄂ °1괸한 기술 분야에 대한 개발이 집중되고 있으며 이들 중 2차전지에 대한관심 및연구개발이크게증가하고있는실정이다.
레독스흐름전지는활성물질의화학적 에너지를직접 전기 에너지로 전환할수 있는산화/환원 전지를의미하며, 태양광, 풍력 등외부환경에 따라출력변동성이 심한신재생 에너지를저장하여 고품질 전력으로변환할 수 있는 에너지 저장 시스템이다. 구체적으로, 레독스 흐름전지에서는 산화/환원 반응을 일으키는 활물질을 포함한 전해액이 전극과 저장 탱크 사이를순환하며충방전이진행된다.
이러한 레독스 흐름전지는 기본적으로 산화상태가 각각 다른 활물질이 저장된 탱크와 충/방전 시 활물질을 순환시키는 펌프, 그리고 분리막으로 분획되는 단위셀을 포함하며, 상기 단위셀은 전극, 전해액 , 집전체 및 분리막을 포함한다. 레독스 흐름전지의 구체적인 예로서 아연/브롬 (Zn/Br)을 레독스쌍 (Redox-Couple)으로혹은 아연/요오드 (Zn/I )를 레독스쌍으로사용하는아연/할라이드흐름전지가있다.
구체적으로, 상기 아연/브롬 (Zn/Br)을 레독스쌍으로 하는 아연/할라이드 흐름전지의 경우 충전 시 분리막과 캐소드 전극 사이에서 2Br_ ® Br2 + 2e_ 와 같은 화학 반응이 일어나 캐소드 전해액에 브롬이 생성되고, 상기 브롬은 캐소드 전해액 탱크에 저장된다. 또한, 분리막과 애노드 전극 사이에서는 Zn2+ + 2e ® Zn 과 같은 화학 반응이 일어나 애노드전해액에포함된아연이 애노드전극에증착되어 저장된다.
상기 아연이 애노드 전극에 증착되는 과정에서 전극에 아연을 균일하게 증착시키지 못하면 전해액의 pH증가, 전지 효율 감소 및 전지 단락이 유발될 우려가 있으며, 아연 덴드라이트 (Zn dendr i te)가 과량 발생할 수 있다. 또한, 레독스 흐름전지에서는 방전이 끝난 후 스트리핑 (Str ipping) 과정을 도입하여 미처 다 반응하지 못하고 남아있는 Zn(s)을 벗겨내어 깨끗한 전극을 만들어주는 작업을 거치게 되는데 이에 따라시간이소요되는문제점이 있었다.
【발명의 내용】
【해결하고자하는과제】
본발명은상기와같은문제점을해결하고자, 레독스흐름전지 운전 시 발생할 수 있는 금속 덴드라이트 발생 현상을 방지하고, 충전 시 애노드에서 보다 균일한 금속 박막을 형성하게 하여 전지의 안정성을 향상시킬 수 있으며, 충전 시 생성되는 Zn(s)의 수율을 증가시켜 전하량 효율을향상시키고, 레독스흐름전지가보다높은 에너지 효율, 전류효율 및 전압 효율을 구현할 수 있도록 하는 레독스 흐름전지용 전해액을 제공하기위한것이다.
본 발명은 상기 레독스 흐름전지용 전해액을 사용하는 레독스 흐름전지를제공하기위한것이다.
【과제의 해결수단】
본 명세서에서는, 크롬 이온 (Cr3+)과 아연/할라이드 (Zn/hal ide) 레독스 커플을 포함하며, 상기 크롬 이온의 농도가 0.015 내지 0.2M인, 레독스흐름전지용전해액이 제공된다.
또한, 본명세서에서는, 상기 전해액을포함하는 레독스흐름전지가 제공된다.
이하발명의 구체적인 구현예에 따른 레독스흐름전지용 전해액 및 레독스흐름전지에 대하여보다상세하게설명하기로한다. 상술한바와같이, 본발명의 일실시예에 따르면, 크롬이온 (Cr3+)과 아연/할라이드 (Zn/hal ide) 레독스 커플을 포함하며, 상기 크롬 이온의 농도가 0.015내지 0.2M인, 레독스흐름전지용전해액이 제공될수있다. 본 발명자들은 레독스 흐름전지용 전해액에 상술한 금속 이온을 첨가하는경우, 레독스흐름전지 운전시 발생할수 있는금속 덴드라이트 발생 현상을 방지하고, 충전시 애노드에서 보다 균일한 금속 박막을 석출시켜 전지의 안정성을향상시킬수있으며, 충전시 생성되는 Zn(s)의 수율을증가시켜 전하량효율을향상시키고, 레독스흐름전지가보다높은 에너지 효율, 전류 효율 및 전압 효율을 구현하게 할 T 있다는 점을 실험을통하여 확인하고발명을완성하였다.
본발명의 일실시예에 따른상기 금속 이온은크롬 이온 (打3 +)일 수 있다.
구체적으로, 상기 아연/할라이드 (Zn/hal ide) 레독스커플을포함한 레독스 흐름전지용 전해액에 금속의 유효환원전위 (Ef fect ive reduct ion potent ial )가 아연의 표준환원전위 (-0.76V) 대비 상대적으로 낮고, 물분해 반응의 표준환원전위 (-0.83V) 대비 상대적으로높은금속이온을전해액 내 아연 농도 대비 상대적으로 적은 농도로 포함시킴으로써, 아연/할라이드 레독스흐름전지에서 수반되는 아연 (Zn(s))의 생성 및 용해 반응의 효율을 증가시키고, 아연 덴드라이트를 억제하며, 균일한 두께 및 채움성의 아연 박막 석줄을 가능하게 하여 레독스 흐름전지의 운전 효율을 높이고 안정성을확보할수있게된다.
일반적으로흐름전지 충전 시 애노드에서 나온 ·전자가 아연 이온을 환원시키고, 또한 수소를 발생시키는데도 사용되므로 상기 아연 환원 반응과 수소발생 반응이 경쟁적으로 진행되어 Zn(s) 생성이 불균일하고 채움성도 낮게 되는 문제점이 있었다. 그러나, 본 발명에 따라 유효환원전위가아연의 표준환원전위 (-0.76V) 대비 상대적으로낮고물분해 반응의 표준환원전위 (-0.83V) 대비 상대적으로 높게 되도록 금속 이온을 전해액 내 아연 농도대비 상대적으로 적은특정 농도로포함시키는경우, 수소발생 전에 상기 금속이온이 전자 이동을방해하게 되어 수소발생을 억제하고, 이에 따라 Zn(s) 증착을 선택적으로 촉진하여, 높은 채움성과 균일한 Zn(s) 박막을 형성할 수 있게 한다. 이에 따라, 전하량 효율을 향상시키고, 레독스흐름전지가보다높은에너지 효율, 전류효율및 전압 효율을구현할수있게된다.
또한 아연/할라이드 레독스 흐름전지에서는 충전/방전 반응 외에 잔여 생성물 Un, Halogen)를완전히 제거하여 다음사이클을위한깨끗한 상태의 애노드를 만드는 스트리핑 (Str ipping) 과정이 수반되는데, 이러한 스트리핑 (Str ipping)과정을생략하는경우애노드상에 계속적으로아연이 쌓이게 되어 전지의 수명 감소를 초래하게 된다. 그러나 본 발명의 일실시예에 따른 레독스 흐름전지용 전해액의 경우 아연의 균일한 증착 반응이 가능하므로, 이에 따라 스트리핑 (Str ipping) 과정의 일부를 생략하거나 스트리핑 (Str ipping) 과정 없는 충전 및 방전 사이클을 진행하여 충방전 외의 시간 소모를 감소시키고, 안정적인 선능 증가를 가능하게할수있다.
구체적으로, 상기 레독스흐름전지용전해액 내 금속이온의 농도는 0.015내지 0.2M, 상세하게는 0.03내지 0.15M, 더욱상세하게는 0.05내지 0.10M 일 수 있다. 상기 레독스 흐름전지용 전해액 내 금속 이온이 상기 농도 범위를 초과하여 농도가과다해지는 경우, 애노드에 아연 대신 금속 이온이 증착되는 문제가 발생하며, 이와 반대로 상기 레독스 흐름전지용 전해액 내 금속 이온의 농도가상기 범위 미만인 경우 수소 발생 억제가 어려워 Zn(s)의 선택적 증착이 어려워지며, 이에 따라 금속 덴드라이트 형성 억제 효과가미미하고, 균일한 Zn(s) 박막형성이 어려워질 수있다. 이에 따라, 에너지 효율, 전류 효율, 전압 효율이 떨어져 흐름전지 성능 향상효과를기대하기 어려울수있다. 상기 레독스 흐름전지의 구체적인 예가 한정되는 것은 아니나, 일례로상기 레독스흐름전지는아연/할라이드레독스흐름전지일수있다. 보다구체적으로, 상기 레독스흐름전지는아연/브롬 (Zn/Br) 레독스커플을 사용할 수 있으며, 상기 레독스 흐름전지의 전해액 중 아연/브롬 Un/Br) 레독스커플의농도는구체적으로 1내지 10 일수있다.
한편, 상술한 바와 같이, 본 발명의 일실시예에 따른 레독스 흐름전지용 전해액은 아연/브롬 (Zn/Br) 레독스 커플을 포함할 수 있으며, 구체적으로상기 전해액 상에서 아연/브롬 (Zn/Br) 레독스커플의 농도는 1 내지 10 M일 수 있는데, 상기 레독스 흐름전지용 전해액은 상술한 금속 이온이외에 전해액의 출발물질로서 브롬화아연 (ZnBr2) , 염소화아연 U11CI2) , 순수 브롬 (Br2) 및 1-에틸- 1-메틸-피롤리디니움 브로마이드 (1-ethyl-l- methyl-pyrrol idinium bromide(MEP-Br))로 이루어진 군에서 선택되는 1종 이상을더포함할수있다.
또한, 본 발명의 일실시예에 따른 레독스 흐름전지용 전해액은 상술한금속이온이외에 계면활성제, 착화제 (Complex Agent ) 및도전재중 선택되는 1종 이상을더 포함할수 있고, 기타의 첨가제를더 포함할수도 있다.
구체적으로, 레독스흐름전지용전해액은브롬화암모늄 (NH4Br)및 1- 에틸- 1_메틸 피롤리디늄 브로마이드 (l-Ethyl-lnethylpyrrol idini· bromide)로 이루어진 군에서 선택된 1종 이상의 착화제를 더 포함할 수 있다. 상기 착화제는 브롬 (Br2)의 증발 및 캐소드에서 애노드로의 크로스오버를방지하는역할을한다.
한편, 상기 레독스흐름전지용전해액은전도향상을위한도전재를 더 포함할수 있는데, 상기 도전재의 일례로는 염화칼륨, 염화암모늄등을 들수있다. 한편 , 본 발명의 다른 일 실시예에 따르면 상기 레독스흐름전지용 전해액을사용하는레독스흐름전지가제공될수있다.
상기 레독스 흐름전지의 구체적인 예가 한정되는 것은 아니나, 상세하게는 상기 레독스 흐름전지는 아연/할라이드 레독스 흐름전지일 수 2019/103371 1»(:1^1{2018/013640
있다. 보다 구체적으로, 상기 레독스 흐름전지는 아연/브롬 ^11/ )을 레독스 커플로 사용하는 아연/브롬 레독스 흐름전지일 수 있으며, 아연八 오드(¾/1) 레독스커플을사용하는아연八요오드레독스흐름전지일 수도 있다. 상기 레독스 흐름전지가 아연/브롬 레독스 커플을 사용하는 경우전해액 중아연/브롬(¾/ ) 레독스커플의 농도가 1내지 10 일 수 있다.
한편, 상기 레독스 흐름전지는 통상적으로 알려진 구조를 가질 수 있으며, 예를들어 상기 레독스흐름전지는분리막과전극을포함하는단위 셀; 산화상태가각각다른활물질이 저장된탱크; 및충전및방전시 상기 단위셀과탱크사이에서활물질을순환시키는펌프;를포함할수있다. 상기 레독스 흐름전지는 상기 단위셀을 1이상 포함하는 모듈(1110(11116)을포함할수있다.
상기 레독스흐름전지는플로우프레임 ( 1이¥ 대미근)을더 포함할수 있다. 상기 플로우프레임은 전해액의 이동통로 역할을할뿐만 아니라, 실제 전지의 전기 화학반응이 잘일어날 '수 있도록전극과분리막사이로 전해액의 고른 분포를 제공할수 있다. 상기 플로우 프레임은 0.1 내지 10.0 _의 두께를 가질 수 있고, 폴리 에틸렌, 폴리프로필렌, 또는 폴리염화비닐등의고분자로이루어질수있다.
【발명의 효과】
본 발명에 따르면, 레독스흐름전지의 운전시 발생할수 있는금속 덴드라이트 발생 현상을 방지하고, 충전시 애노드에서 보다 균일한 금속 박막을석출시켜서 전지의 안정성을향상시킬수있으며, 충전시 생성되는 다 ) 의 수율을 증가시켜 전하량 효율을 향상시키고, 레독스 흐름전지가 보다높은에너지 효율, 전류효율및 전압효율을구현할수있도록할수 있다.
한편, 상기 레독스 흐름전지용 전해액을 사용하면, 보다 높은 효율로서 중전을 수행할수 있으며, 높은 채움성을 가지고균일한두께를 갖는아연 박막을 얻어낼수있고, 이에 따라서 레독스흐름전지의 효율을 높이면서도장기적인안정성향상에 기여할수있다.
【도면의 간단한설명】 도 1은 본 발명의 일실시예에 따른 아연/브롬 레독스 흐름전지를 분해한상태의 개략적인구성을나타낸사시도이다.
도 2는 본 발명의 실시예 및 비교예에 따른 전해액을 사용하여 레독스 흐름전지를 구성한 경우, 아연 박막이 석출된 것을 5000 배율로 촬영한
Figure imgf000009_0001
사진이다.
도 3은 본 발명의 실시예 및 비교예에 따른 전해액을 사용하여 레독스 흐름전지를 구성한 경우, 아연 박막이 석출된 것을 20000 배율로 촬영한 묘사진이다.
도 4는 본 발명의 실시예 및 비교예에 따른 전해액을 사용하여 구현한레독스흐름전지에서충전전압곡선을나타낸것이다.
도 5는 본 발명의 실시예 및 비교예에 따른 전해액을 사용하여 구현한레독스흐름전지에서사이클에 따른 변화를나타낸것이다.
【발명을실시하기위한구체적인내용】
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는본발명을 예시하는 것일 뿐, 본발명의 내용이 하기의 실시예에 의하여 한정되는것은아니다.
[제조예: 아연-브롬레독스흐름전지의제조]
하기 표 1의 구성 성분을 사용하여 양극, 플로우 프레임, 분리막, 플로우 프레임, 음극 순서로 조립을 하여 아연-브롬 레독스 흐름전지를 제조하였다.
【표 11
Figure imgf000009_0002
Figure imgf000010_0001
실시예내지비교예:금속이온을첨가한레독스흐름전지용전해액 상기 표 1의 전해액에 하기 표 2의 금속 이온을 추가하여 레독스 흐름전지용전해액을제조하였다.
【표 2]
Figure imgf000010_0002
[실험 1:아연중착구조관찰을위한 腦촬영]
상기 실시예 및 비교예에 따라 얻어진 전해액을 사용한 아연-브롬 레독스 흐름전지의 충전 후, 아연이 애노드 전극 상에 증착된 것을 관찰하기 위하여 각각의 예에 따른 흐름전지의 애노드 전극 표면을 況 촬영하여 도 2 및 도 3에서 각각 나타내었다. 도 2는 5000 배율의 況 사진이며, 도 3은 20000배율의況 사진이다. [실험 2: 레독스흐름전지의운전성능평가]
상기표 1의 레독스흐름전지에상술한실시예 1내지 2및비교예 1 내지 2의 전해액을 각각투입하고 이러한충방전 사이클을 10회 진행하여 에너지 효율, 전하량효율및전압효율을즉정하였다. 이하의 실험예에서는 아연-브롬 레독스 흐름전지의 에너지 효율, 전압효율및전하량효율을다음과같은방법으로측정하였다. 2019/103371 1»(:1/10公018/013640
-충전조건: 전류밀도 20 mA/cm2,충전량 2.98Ah
-방전조건: 전류밀도 20 mA/cm2, cut-off 0.01V
-스트리핑 : 0.5A -> 0.05A, <0.01V, lcycle/1 stripping
【표 3】
Figure imgf000011_0001
(1)평균에너지 효율 (Energy Efficiency, EE)
= (방전에너지 (Wh) /충전에너지 (■)) *100
(2)전압효율 (Voltage Efficiency, VE)
= (에너지 효율 /전하량효율) *100
(3)전하량효율 (Coulombic Efficiency, CE)
= (방전용량 (Ah) /충전용량(Ah)) * 100
* Residual loss = (방전 과정 이후 Stripping 단계에서 생성된 전하량[Ah]/충전용량[Ah] )X100
* Transport loss = 100 - (CE + Residual loss) 상기 Transport inefficiency는 전체 전하량 효율 100에서 중방전 과정에서 생성되는 전하량 효율 (CE) 와 Stripping 단계에서 생성되는 전하량 효율인 residual inefficiency 를 뺀 값이다. 즉, 방전 및 stripping단계로회수할수없는손실된 효율을의미하며 이는셀저항, 크로스오버, Shunt current등에 의해유발된다. 따라서 이 값이 작을수록 사용되지못한채손실되는양이 작다는것을의미한다. 2019/103371 1»(:1^1{2018/013640
상기 표 3을 참조하면, 실시예의 전해액을 사용한 경우, 비교예의 전해액을사용한경우대비 에너지 효율및 전하량효율이 높아지며, 특히 실시예 2의 경우전하량효율이크게증가한것을확인할수있다.
이는 실시예에 따른 전해액을 사용함에 따라 충전 시 생성되는 수득율이 증가되고, 애노드 전극에 도금되는 아연 부분마다 전류 밀도차이가개선됨에 따라전하량효율이향상된것이다.
또한, 실시예의 경우 비교예에 비해 1 (11 1 103 %]가 적은데, 이는균일하게 형성된 아연 박막이 방전 시 전극표면을고르게 사용할수 있게 되어 아연 잔량으로 인한 손실이 줄어들고 실제로 사용할 수 있는 아연의 양이증가됨을나타낸다.
【표 4]
Figure imgf000012_0001
次 ¾이론석출량 [
=충전량 [能]/(2 X 98485 [쇼3/11101 ] ) X 3600[3/!1] X 65.409[¾원자량, 용/|1101] 상기 표 4의 결과를 살펴보면, 본 발명의 일실시예들에 따른 전해액을 사용한 경우 비교예에 따른 전해액 사용 시 대비 충전된 아연/브롬 레독스 흐를전지에서, 보다 많은 양의 아연이 석출된 것을 확인할수있었다. 한편, 도 4의 그래프는 상기 비교예 및 실시예에 따른 전해액을 이용한 아연/브롬 레독스 흐름전지의 충전 전압 곡선을 나타낸 것으로서, 비교예 1 내지 2에 따른흐름전지는 충전이 시작된 지 1시간이 지나서야 평탄한 전압 곡선을 그리는 반면, 본 발명의 실시예 1 내지 2에 따른 2019/103371 1»(:1^1{2018/013640
흐름전지는 크롬 이온 (&3+)의 양이 늘어날수록 평탄 곡선에 도달하는 시간이짧아지는것을확인할수있다.
즉, 이를통해 크름 이온이 없는경우수소발생 반응과아연 환원 반응이 1시간동안경쟁적으로일어나는것을확인할수있고, 크롬이온이 있는 경우에는 아연 증착이 빠르게 진행되고, 높은 채움성을 가지는 아연 박막을형성할수있다는점을확인할수있다. 한편, 도 5의 그래프는 상기 충방전 조건에서 매 사이클마다 크 한후전해액의 때를측정한것이다. 도 5의 그래프를참조하면, 비교예 1의 경우 1 이하의 전해액이 10 사이클만에
Figure imgf000013_0001
4 이상까지 증가한 반면 , 03+ 이온이 포함된 실시예들에서는 전해액
Figure imgf000013_0002
상승 속도가 비교예 대비 느리고, 특히 실시예 2와 같은 경우 10사이클이 지났음에도 매가 2.5수준에서유지되는것을확인할수있다. 【부호의 설명】
1: 앤드플레이트 2: 집전체
Figure imgf000013_0003
5:분리막 6:카본슬러리

Claims

【청구범위】
【청구항 1]
크롬 이온 (Cr3+)과 아연/할라이드 Un/hal ide) 레독스 커플을 포함하며,
상기 크롬 이온의 농도가 0.015 내지 0.2M 인, 레독스 흐름전지용 전해액.
【청구항 2]
제 1항에 있어서,
상기 아연/할라이드 레독스 커플은 아연/브롬 (Zn/Br) 레독스 커플이며,
상기 레독스흐름전지용전해액 내 아연/브롬 (Zn/Br) 레독스커플의 농도는 1내지 10M인레독스흐름전지용전해액.
【청구항 3】
제 1항에 있어서,
상기 레독스 흐름전지용 전해액은 브롬화아연 (ZnBr2) , 염소화아연 (ZnCl2) , 순수 브롬 (Br2) , 브롬화암모늄 (NH4Br) 및 1-에틸- 1- 메틸-피롤리디니움 브로마이드 (l-ethyl-1-methy卜 pyrrol idiniura bromide(MEP-Br))로 이루어진 군에서 선택되는 1종 이상을 더 포함하는 레독스흐름전지용전해액.
【청구항 4]
제 1항에 있어서,
계면활성제, 착화제 (Complex Agent) 및 도전재 중 선택되는 1종 이상을더포함하는레독스흐름전지용전해액 .
【청구항 5】
제 1항의 전해액을포함하는레독스흐름전지.
PCT/KR2018/013640 2017-11-21 2018-11-09 레독스 흐름전지용 전해액 및 이를 포함하는 레독스 흐름전지 WO2019103371A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170155823A KR20190058136A (ko) 2017-11-21 2017-11-21 레독스 흐름전지용 전해액 및 이를 포함하는 레독스 흐름전지
KR10-2017-0155823 2017-11-21

Publications (1)

Publication Number Publication Date
WO2019103371A1 true WO2019103371A1 (ko) 2019-05-31

Family

ID=66632058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013640 WO2019103371A1 (ko) 2017-11-21 2018-11-09 레독스 흐름전지용 전해액 및 이를 포함하는 레독스 흐름전지

Country Status (2)

Country Link
KR (1) KR20190058136A (ko)
WO (1) WO2019103371A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110767927A (zh) * 2019-10-28 2020-02-07 武汉工程大学 一种用于静态锌溴液体电池的电解液
CN113054264A (zh) * 2021-05-18 2021-06-29 中国科学技术大学 水系电解液及水系电解型MnO2-Zn电池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113036197B (zh) * 2019-12-09 2022-04-12 中国科学院大连化学物理研究所 一种锌-溴液流电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120056894A (ko) * 2010-04-27 2012-06-04 스미토모덴키고교가부시키가이샤 레독스 플로우 전지
KR101521391B1 (ko) * 2014-09-03 2015-05-20 오씨아이 주식회사 레독스 흐름 전지
JP2015097219A (ja) * 2013-08-07 2015-05-21 住友電気工業株式会社 レドックスフロー電池
KR20160050102A (ko) * 2014-10-27 2016-05-11 동국대학교 산학협력단 하이브리드 흐름 전지 및 하이브리드 흐름 전지용 전해액
KR20170037434A (ko) * 2015-09-25 2017-04-04 롯데케미칼 주식회사 레독스 흐름 전지용 전해액 및 레독스 흐름 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120056894A (ko) * 2010-04-27 2012-06-04 스미토모덴키고교가부시키가이샤 레독스 플로우 전지
JP2015097219A (ja) * 2013-08-07 2015-05-21 住友電気工業株式会社 レドックスフロー電池
KR101521391B1 (ko) * 2014-09-03 2015-05-20 오씨아이 주식회사 레독스 흐름 전지
KR20160050102A (ko) * 2014-10-27 2016-05-11 동국대학교 산학협력단 하이브리드 흐름 전지 및 하이브리드 흐름 전지용 전해액
KR20170037434A (ko) * 2015-09-25 2017-04-04 롯데케미칼 주식회사 레독스 흐름 전지용 전해액 및 레독스 흐름 전지

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110767927A (zh) * 2019-10-28 2020-02-07 武汉工程大学 一种用于静态锌溴液体电池的电解液
CN113054264A (zh) * 2021-05-18 2021-06-29 中国科学技术大学 水系电解液及水系电解型MnO2-Zn电池

Also Published As

Publication number Publication date
KR20190058136A (ko) 2019-05-29

Similar Documents

Publication Publication Date Title
US10910674B2 (en) Additive for increasing lifespan of rechargeable zinc-anode batteries
KR101009440B1 (ko) 용해 납 레독스 흐름 배터리용 전극 및 이를 이용한 용해 납 레독스 흐름 배터리
Zhang et al. A corrosion-resistant current collector for lithium metal anodes
US20140141291A1 (en) Hybrid Anodes for Redox Flow Batteries
WO2019103371A1 (ko) 레독스 흐름전지용 전해액 및 이를 포함하는 레독스 흐름전지
CN108711633B (zh) 用于锌溴液流电池的电解液
US11043702B2 (en) Zinc ion secondary battery including aqueous electrolyte
JP2008130516A (ja) 液式鉛蓄電池
WO2017135704A1 (ko) 레독스 흐름 전지용 전해액 및 레독스 흐름 전지
WO2021133263A1 (en) Rechargeable aqueous zinc-iodine cell
JP6211800B2 (ja) 電解液流通型二次電池
CN113690397B (zh) 一种锌负极极片及其制备方法和应用
CN108390110B (zh) 一种铅-锰二次电池
US10873090B2 (en) Reduced-area current collectors for rechargeable batteries
US11101485B2 (en) Flow battery
KR101732686B1 (ko) 레독스 흐름 전지용 전해액 및 레독스 흐름 전지
CN101267055A (zh) 一种锂离子电池化成方法
WO2015068979A1 (ko) 화학흐름전지의 운전 방법
Raicheff et al. Novel current collector and active mass carrier of the zinc electrode for alkaline nickel-zinc batteries
WO2017052189A9 (ko) 화학흐름전지의 운전 제어 방법
CN113826258A (zh) 用于高电压和可扩展能量储存的电解电池
US11769869B1 (en) Battery having zinc plated copper electrode and method of making the same
CN115548342B (zh) 一种3D TiC复合材料及其制备方法和应用
CN219979631U (zh) 一种新型铁离子储能电池
Meyerson et al. Higher Surface Area Lithium Anode for Mediated Lithium-Sulfur Flow Batteries.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881929

Country of ref document: EP

Kind code of ref document: A1