CN113826258A - 用于高电压和可扩展能量储存的电解电池 - Google Patents

用于高电压和可扩展能量储存的电解电池 Download PDF

Info

Publication number
CN113826258A
CN113826258A CN202080035826.5A CN202080035826A CN113826258A CN 113826258 A CN113826258 A CN 113826258A CN 202080035826 A CN202080035826 A CN 202080035826A CN 113826258 A CN113826258 A CN 113826258A
Authority
CN
China
Prior art keywords
zinc
manganese dioxide
dioxide cell
electrolyte
rechargeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080035826.5A
Other languages
English (en)
Inventor
晁栋梁
乔世璋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Adelaide
Original Assignee
University of Adelaide
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2019901177A external-priority patent/AU2019901177A0/en
Application filed by University of Adelaide filed Critical University of Adelaide
Publication of CN113826258A publication Critical patent/CN113826258A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0011Sulfuric acid-based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

描述了一种新的能量储存电池系统,其包括高度可逆的电解Zn‑MnO2系统,其中采用Zn(阳极侧)和MnO2(阴极侧)对的电沉积/电解,理论电压为约2V并且能量密度为约409Wh kg‑1,其提供优异的耐用性和出色的能量密度。

Description

用于高电压和可扩展能量储存的电解电池
发明领域
本发明的领域涉及可再充电电池,特别是具有增加的输出电压和放电容量的可再充电锌-二氧化锰(Zn-MnO2)电池。
背景
对电池技术和开发,特别是在经济制备的同时还提供高容量储存和高效、可靠的放电而且重量轻的可扩展能量储存解决方案的开发存在高度关注和兴趣,以便能够满足目前应用诸如电动交通工具和绿色能量储存解决方案中的能量需求。
目前的电池类型包括锂离子电池、镍电池和铅酸电池,其中后者已经存在了相当一段时间。
例如,铅酸电池的制备相对低廉并且包括在酸性溶液中的铅板,广泛用于医院中的备用电源的储存以及计算机相关设备。
铅酸电池具有显著的缺点,不仅与它们使用铅板的环境影响有关,铅板虽然可以回收,但经常与高腐蚀性硫酸一起被丢弃。
锂离子电池由于其高电荷密度,在其长寿命方面经常被视为优选的替代物。锂离子电池使用有机溶液作为电解液,并且是可再充电的。这样的电池通常用于便携式电子设备领域,然而,它们具有有限的可再充电电池寿命(容量显著损失之前的完全充电-放电循环次数),并且容易受到放热降解反应的影响。锂离子电池也可能会经历热失控事件,这会导致电池破裂,并且在极端情况下会导致内容物泄漏,这可能会存在显著的安全问题。锂离子电池也相对昂贵,每kWh(千瓦时)的成本为约300美元。铅酸电池每kWh的成本为约48美元,尽管存在储存和放电容量有限的缺点,但较低的成本被认为更具商业吸引力。
发明概述
在本发明的一个方面,虽然这不应被视为以任何方式进行限制,但存在可再充电的电解锌-二氧化锰电池,其包括阳极、无阴极基材和包含锌和锰离子以及酸的水性电解液,所述水性电解液具有小于2.5的pH值。
优选地,该电解液包含硫酸根离子。
优选地,该酸是H2SO4
优选地,该阳极是锌阳极。
优选地,该锌阳极是锌泡沫阳极。
优选地,该阳极由碳和/或纯锌/锌合金中的至少一种制成。
优选地,将锌制备到石墨泡沫上以形成锌泡沫阳极。
优选地,该无阴极基材选自其他合适的集流体。
优选地,该无阴极基材是碳。
优选地,该无阴极基材是碳纤维布。
优选地,MnO2在充电后沉积到无阴极基材上。
优选地,该电解液的pH控制为0-2.5。
优选地,该电解液的pH小于2.0。
优选地,该电解液的pH为2。
优选地,该电解液的pH小于1.5。
优选地,该电解液包含可溶性锌盐和可溶性锰盐。
优选地,本发明的可再充电锌-二氧化锰电池在恒定电压下充电。
优选地,该恒定电压为约2.00V至2.41V。
本发明的另外的形式在于对电解锌-二氧化锰电池再充电的方法,该锌-二氧化锰电池包括阳极、无阴极基材和包含锌和锰离子的水性电解液,该水性电解液具有小于2.5的pH值,其中该电池在约2.00V至2.41V的恒定电压下再充电。
附图简述
举例来说,参考附图描述本发明的实施方案,其中:
图1a是在1M ZnSO4+1M MnSO4电解液(不含H2SO4)中的电池的示意图和电荷储存机制分析。
图1b是在1M ZnSO4+1M MnSO4+H2SO4电解液中电解Zn-MnO2电池的电荷存储机制的示意图。
图2a是在不含H2SO4的电解液中本发明不同循环下的pH值的变化图。
图2b是电解液的pH值随H2SO4(x M H2SO4)摩尔浓度变化的图。
图2c是具有x M H2SO4的电解液中的恒电流放电曲线图。
图2d是具有0.1M H2SO4的电解液中的电化学稳定性的图,其示出在电位对电流图上的沉积电压。
图2e是在2至60mA cm–2的不同倍率下的恒电流放电曲线图。
图2f是在2至60mA cm–2的不同倍率下的倍率性能。插图示出自制电解槽的数码照片。
图2g是本发明的电池在0.1M H2SO4下的前50次循环的恒电流放电曲线图。
图2h是在30mA cm–2下的循环稳定性测试。
图3是各种锌基电池及其容量对电压对能量密度的图。
结果
电解锌-二氧化锰电池中的电荷储存机制。
参考图1,作为计时电流法电沉积的结果示意性地说明了本发明。
如图1所示的本发明的电池包括Zn泡沫阳极、玻璃纤维隔膜、无阴极碳纤维布,并且对于图1a,包括ZnSO4+MnSO4水性电解液,对于图1b,包括ZnSO4+MnSO4+H2SO4水性电解液。有利地,ZnSO4和MnS O4成本低、高度稳定并且可溶于水。考虑到抑制锌枝晶,以及改善锌利用率和相应的整体能量/功率密度,三维(3D)轻质锌泡沫作为原型施加以代替常规的致密锌箔阳极。
在如图1所示的2.2V下的初始计时电流法充电过程中,来自电解液溶液的Zn2+和Mn2+离子在阳极上被还原为Zn并被氧化以在碳纤维上形成固体MnO2。这种合成方法在不使用粘结剂或导电添加剂的情况下提供与基材均匀且稳固的接触。在恒电流放电过程中,在ZnSO4+MnSO4水性电解液(不含H2SO4)中发生多重氧化还原反应(参见图1a)。参考图2c,放电曲线示出三个主要放电区域,D1(2.0–1.7V)、D2(1.7–1.4V)和D3(1.4–0.8V)。在不含H2SO4的电解液中,平均放电电压平台仅为~1.4V。
监测上述不含H2SO4的MnO2电池中电解液的pH值在图2a中示出,该pH值随着循环次数的增加而降低,即从初始状态的4.60到10次循环后的2.32,并且随后在20个循环后稳定在2.30。添加H2SO4模拟电解液中酸度增加的影响(参见图2b中的pH变化),其中将一系列浓度的H2SO4直接添加到1M ZnSO4和1M MnSO4电解液中(记为x M H2SO4)。pH值从不含H2SO4的4.60急剧下降到含有0.05M H2SO4的1.47,并且随后分别在含有0.30M和0.60M H2SO4时逐渐下降到0.67和0.31。图2c中相应的恒电流放电曲线示出高压区域D1的容量百分比的内在变化,从不含H2SO4的~26%到仅0.05M H2SO4的~67%和含有0.10M或更高浓度的~100%。此外,放电平台保持上升(参见图2c和表1),受益于更高的电解液电导率、增加的质子浓度和降低的高酸度下的电化学极化。
Figure BDA0003352073890000041
表1在1M ZnSO4、1M MnSO4和x M H2SO4电解液中的电解Zn-MnO2电池的放电容量、库仑效率和平均放电平台。
进行了锌泡沫阳极的电化学稳定性测试,并且即使在20mA cm-2的高电流下,在锌电镀/剥离过程中,含有0.10M H2SO4的电解液也显示出比含有0.15M和0.30M H2SO4的电解液更优异的稳定性和可逆性。如图2d所示,含有0.10M H2SO4的电解液表现出宽的电化学窗口,并且派生的(parasitical)H2(锌阳极)和O2(MnO2阴极)析出反应相对于Ag/AgCl分别被显著抑制至–1.06V和1.35V。结果表明,同时沉积Zn和MnO2需要约2.00V的最小沉积电压。在H2和O2析出电位内获得了约2.41V的最大工作电压窗口。
高倍率性能已被视为电池大规模应用,诸如电动交通工具和手机的快速充电,以及再生制动的重要指标。如图2e和2f所示,本发明设计的电解Zn-MnO2电池然后在2至60mAcm-2的不同电流密度下进行恒电流放电。在含有0.10M H2SO4的电解液中的放电曲线显示典型的电池行为,在2mA cm-2下具有1.95V的平坦放电平台,并且甚至在60mA cm-2(在100秒内)下具有1.55V的平坦放电平台。
放电平台和电解液的酸度也被证明随着循环而稳定(图2g)。放电容量在4C(8mAcm-2)下保持高于1.96mAh cm-2,并且在30C(60mA cm-2)下保持高于1.67mAh cm-2。本发明的电解Zn-MnO2电池即使在高倍率下也示出优异的循环可持续性。在30mA cm-2下循环1800次后,保持约92%的最大放电容量(图2h)。这种倍率稳定性可以归因于有利的和单独的电解反应、更高的电解液电导率、更小的欧姆和电荷转移电阻以及更快的离子扩散的协同作用。
电解Zn-MnO2电池的重量容量在图3中示出,其是基于碳纤维阴极上10次循环后MnO2的沉积质量计算的。本发明的电解ZnMnO2电池在重量容量和放电平台两方面都很突出。由于同时存在单电子和双电子反应,含有0M和0.05M H2SO4的MnO2 ZIB的重量容量远低于电解Zn-MnO2电池(0.01-0.5M)的重量容量。由于高CE,含有0.10M H2SO4的本发明的电解Zn-MnO2电池表现出最佳的重量容量。从图3中可以看出,在0M H2SO4下,本发明的电池的能量密度为约500Wh kg-1。在0.05M和0.1M H2SO4下能量密度均显著增加。电解Zn-MnO2电池表现出前所未有的能量密度,以正极活性材料质量计,该能量密度为~1100Wh kg-1,当考虑锌阳极的质量时,能量密度为~409Wh kg-1。与报道的ZIB相比,这些值对应于能量密度至少增加300%。
本发明的电解Zn-MnO2电池显示在最高达10mAh cm-2的面积容量下以96.0%CE进行充电/放电,并且可以使用诸如增加基材的厚度或表面积的改善以进一步增强面积和体积行为。在另外的实施方案中,可以包括电池的磁力搅拌或流动设计。在开路电位为6.24V的情况下,在6.6V下充电仅60s后,具有三个串联电池的本发明的电解Zn-MnO2电池组能够给手机(5V,5W)充电。电解液的输出电压、能量效率和成本优于常规的水性液流电池系统,例如Zn-Fe、Zn-Br2、Zn-Ce、Zn-空气和全钒液流电池。本发明的电解Zn-MnO2电池表现出优异的电荷储存性质和高能量/功率密度,可以满足来自电网的快速功率变化。
本发明的Zn-MnO2电池使用低成本的电解电化学,并且与已知的可再充电锌基电池相比,展示了优异的性质,诸如前所未有的电压和容量,以及能量密度。优异的平台性能被认为是酸性电解液中质子反应性改善和阳离子空位激活的MnO2二者的结果。
方法
材料。这项工作中的所有试剂和材料都是市售的,并且无需进一步纯化即可使用。一水硫酸锌(ZnSO4·H2O,≥99.0%)、一水硫酸锰(MnSO4·H2O,≥99.0%)、硫酸(H2SO4,95.0–98.0%)、硫酸钠(Na2SO4,≥99.0%)和硼酸(H3BO3,≥99.5%)购自Sigma-Aldrich。
电沉积/电解Zn-MnO2电池设计。使用碳纤维布作为无阴极集流体,并且使用锌泡沫作为阳极,在自制的电解槽(参见图2f中的插图)中组装Zn-MnO2水性电池。1M ZnSO4、1MMnSO4和x M H2SO4溶液用作电解电池的电解液。在用作集流体之前,碳纤维布通过空气等离子体亲水处理5分钟。经由电沉积法在石墨泡沫上制备锌泡沫阳极,溶液中含有溶解在20mL去离子水中的2g ZnSO4·H2O、3g Na2SO4和0.5g H3BO3,并且恒定电流为10mA cm-2,持续60分钟。锌泡沫的面积质量负载为3.6mg cm-2。阴极和阳极被玻璃纤维纸隔膜夹在中间,并组装在典型的纽扣电池组中。Ti/Cu箔用作电极的集流体,将其分开且不与电解液直接接触以避免任何副反应。
测量
在室温下使用LAND电池循环仪(CT2001A)和IM6e恒电位仪(Zahner ElektrikCo.,德国)记录计时电流法充电、恒电流放电、循环和电化学阻抗谱(EIS)测量值。采用恒定电压技术使电池在2.2V(相对于Zn/Zn2+)充电至2mAh cm-2,以形成均匀且中孔的MnO2绒毛(fluff)。然后在2-60mA cm-2的不同电流密度下施加恒电流放电,相对于Zn/Zn2+截止电压为0.8V。电解Zn-MnO2单电池在双电极装置中进行,其中锌泡沫用作阳极,碳纤维布用作无阴极基材。
电解液的电化学稳定性和可逆性在具有0.10M、0.15M和0.30M H2SO4的电解液中的对称Zn泡沫/Zn箔装置中测试。OER和HER测试在三电极装置中进行,沉积的MnO2作为正极,Ag/AgCl作为参比电极,并且Zn泡沫作为负极。线性扫描伏安法在1mV s-1下测试。基于沉积的MnO2的几何面积计算记录的面积容量和电流密度。报告的重量容量根据沉积的MnO2活性材料的质量确定。能量和功率密度被归一化为来自阳极和阴极活性材料二者的总质量。

Claims (18)

1.一种可再充电电解锌-二氧化锰电池,其包括阳极、无阴极基材和包含锌和锰离子以及酸的水性电解液,所述水性电解液具有小于2.5的pH值。
2.权利要求1所述的可再充电电解锌-二氧化锰电池,其中所述电解液包含硫酸根离子。
3.上述权利要求中任一项所述的可再充电电解锌-二氧化锰电池,其中所述酸为H2SO4
4.上述权利要求中任一项所述的可再充电电解锌-二氧化锰电池,其中所述阳极为锌阳极。
5.权利要求4所述的可再充电电解锌-二氧化锰电池,其中所述锌阳极为锌泡沫阳极。
6.上述权利要求1-3或5中任一项所述的可再充电电解锌-二氧化锰电池,其中所述阳极由碳和/或纯锌/锌合金中的至少一种制成。
7.权利要求5所述的可再充电电解锌-二氧化锰电池,其中将所述锌制备到石墨泡沫上以形成所述锌泡沫阳极。
8.上述权利要求中任一项所述的可再充电电解锌-二氧化锰电池,其中所述无阴极基材选自其他合适的集流体。
9.上述权利要求中任一项所述的可再充电电解锌-二氧化锰电池,其中所述无阴极基材是碳。
10.上述权利要求中任一项所述的可再充电电解锌-二氧化锰电池,其中所述无阴极基材为碳纤维布。
11.上述权利要求中任一项所述的可再充电电解锌-二氧化锰电池,其中MnO2在充电后沉积到无阴极基材上。
12.上述权利要求中任一项所述的可再充电电解锌-二氧化锰电池,其中所述电解液的pH控制为0-2.5。
13.权利要求12所述的可再充电电解锌-二氧化锰电池,其中所述电解液的pH小于2.0。
14.权利要求12所述的可再充电电解锌-二氧化锰电池,其中所述电解液的pH为2。
15.权利要求13所述的可再充电电解锌-二氧化锰电池,其中所述电解液的pH小于1.5。
16.上述权利要求中任一项所述的可再充电电解锌-二氧化锰电池,其中所述电解液包括可溶性锌盐和可溶性锰盐。
17.上述权利要求中任一项所述的可再充电电解锌-二氧化锰电池,其中本发明的可再充电锌-二氧化锰电池在恒定电压下充电。
18.权利要求17所述的可再充电电解锌-二氧化锰电池,其中所述恒定电压为约2.00V至2.41V。
CN202080035826.5A 2019-04-05 2020-04-03 用于高电压和可扩展能量储存的电解电池 Pending CN113826258A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2019901177 2019-04-05
AU2019901177A AU2019901177A0 (en) 2019-04-05 Electrolytic Battery for High-Voltage and Scalable Energy Storage
PCT/AU2020/050335 WO2020198805A1 (en) 2019-04-05 2020-04-03 Electrolytic battery for high-voltage and scalable energy storage

Publications (1)

Publication Number Publication Date
CN113826258A true CN113826258A (zh) 2021-12-21

Family

ID=72664336

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080035826.5A Pending CN113826258A (zh) 2019-04-05 2020-04-03 用于高电压和可扩展能量储存的电解电池

Country Status (7)

Country Link
US (1) US20220216526A1 (zh)
EP (1) EP3949001A1 (zh)
KR (1) KR20210147005A (zh)
CN (1) CN113826258A (zh)
AU (1) AU2020255674A1 (zh)
CA (1) CA3138939A1 (zh)
WO (1) WO2020198805A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112510178A (zh) * 2020-11-27 2021-03-16 华北电力大学 一种三维合金负极材料及其在制备二次储能电池中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096318A (en) * 1974-10-26 1978-06-20 Basf Aktiengesellschaft Rechargeable accumulator having a manganese dioxide electrode and an acid electrolyte
US20060063065A1 (en) * 2001-08-10 2006-03-23 Clarke Robert L Battery with bifunctional electrolyte
US20180130998A1 (en) * 2012-11-28 2018-05-10 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Zinc Electrodes for Batteries
WO2018221309A1 (ja) * 2017-05-29 2018-12-06 ナミックス株式会社 二次電池及び二次電池を含む装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096318A (en) * 1974-10-26 1978-06-20 Basf Aktiengesellschaft Rechargeable accumulator having a manganese dioxide electrode and an acid electrolyte
US20060063065A1 (en) * 2001-08-10 2006-03-23 Clarke Robert L Battery with bifunctional electrolyte
US20180130998A1 (en) * 2012-11-28 2018-05-10 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Zinc Electrodes for Batteries
WO2018221309A1 (ja) * 2017-05-29 2018-12-06 ナミックス株式会社 二次電池及び二次電池を含む装置

Also Published As

Publication number Publication date
AU2020255674A1 (en) 2021-11-25
CA3138939A1 (en) 2020-10-08
EP3949001A1 (en) 2022-02-09
WO2020198805A1 (en) 2020-10-08
KR20210147005A (ko) 2021-12-06
US20220216526A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
US10418666B2 (en) Battery
US9595730B2 (en) Flow battery and usage thereof
CN102201590B (zh) 一种酸性锌单液流储能电池
WO2011079482A1 (zh) 一种电池
CN106129455A (zh) 锂硫电池
CN103107373B (zh) 电池
KR20140039022A (ko) 전지
CN111463403A (zh) 复合人工固态电解质界面膜修饰的负极材料及其电池应用
WO2017020860A1 (zh) 电池、电池组以及不间断电源
CN102738442A (zh) 一种高能量密度充放电锂电池
Pan et al. Preliminary study of alkaline single flowing Zn–O2 battery
CN104347894A (zh) 一种沉积型水系锂离子电池
US10522869B2 (en) Battery, battery pack, and uninterruptible power supply
KR20160059974A (ko) 전지 시스템 및 이를 포함하는 레독스 흐름 전지
CN113690397B (zh) 一种锌负极极片及其制备方法和应用
CN108390110B (zh) 一种铅-锰二次电池
CN112952212A (zh) 水系二氧化锰-金属二次电池
CN113826258A (zh) 用于高电压和可扩展能量储存的电解电池
CN103904352A (zh) 一种液流电池用锌电解液及其制备方法
CN109119635A (zh) 电池
CN112993357A (zh) 一种碱性液流电池正极电解液
CN104300169A (zh) 一种碱性锌钒液流电池
CN112952172A (zh) 一种碱性铁镍液流电池
Lu et al. Introduction to Zinc–Air Batteries
CN108565485A (zh) 一种基于液态电极的硫-溴可充电电池及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination