WO2017051629A1 - セリウム系研磨材及びその製造方法 - Google Patents

セリウム系研磨材及びその製造方法 Download PDF

Info

Publication number
WO2017051629A1
WO2017051629A1 PCT/JP2016/073486 JP2016073486W WO2017051629A1 WO 2017051629 A1 WO2017051629 A1 WO 2017051629A1 JP 2016073486 W JP2016073486 W JP 2016073486W WO 2017051629 A1 WO2017051629 A1 WO 2017051629A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
cerium
mass
sodium
oxide
Prior art date
Application number
PCT/JP2016/073486
Other languages
English (en)
French (fr)
Inventor
知之 増田
浩 三枝
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN201680055510.6A priority Critical patent/CN108026433B/zh
Priority to EP16848417.8A priority patent/EP3354705B1/en
Priority to KR1020187008059A priority patent/KR102090494B1/ko
Priority to US15/762,857 priority patent/US10717909B2/en
Priority to JP2017541472A priority patent/JP6489491B2/ja
Publication of WO2017051629A1 publication Critical patent/WO2017051629A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/247Carbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/241Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion containing two or more rare earth metals, e.g. NdPrO3 or LaNdPrO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/253Halides
    • C01F17/265Fluorides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • C09K3/1418Abrasive particles per se obtained by division of a mass agglomerated by sintering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means

Definitions

  • the present invention relates to a cerium-based abrasive used for polishing glass materials such as glass substrates used for liquid crystal panels, hard disks, filters for specific frequency cuts, glass substrates for optical lenses, and the like, and a method for producing the same.
  • Glass materials are used in various applications, and surface polishing may be required depending on the application.
  • an optical lens requires a mirror finish.
  • glass substrates for optical disks and magnetic disks glass substrates used for thin film transistor (TFT) type and super twisted nematic (STN) type liquid crystal displays (LCD), color filters for liquid crystal televisions, large scale integrated circuits (LSI)
  • TFT thin film transistor
  • STN super twisted nematic
  • LCD liquid crystal displays
  • color filters for liquid crystal televisions color filters for liquid crystal televisions
  • LSI large scale integrated circuits
  • a glass substrate for a photomask or the like is required to have a small surface roughness, a high flatness, and a defect-free surface, and a more accurate surface polishing is required.
  • cerium-based abrasives are used for such glass surface polishing.
  • a cerium-based abrasive generally contains about several percent of fluorine atoms in order to increase the polishing power.
  • fluorine is fired in a state where it is already contained in the material to be fired when the abrasive is manufactured, so that the sintering of the constituent particles of the abrasive is moderately accelerated and exhibits high polishing power. ing.
  • Patent Document 1 from the viewpoint of environmental consideration, while the content of fluorine atoms is reduced, the alkali metal is reduced with respect to the oxide equivalent amount (TREO) of all rare earth elements. It has been proposed that the polishing power and the polishing accuracy be improved by setting 0.01 to 3.0 mass% and chlorine concentration to 0.3 mass% or less.
  • Patent Document 2 discloses a binary cerium containing a fluorine atom and controlling the ratio of oxides of rare earth elements such as neodymium and praseodymium other than cerium, and the rare earth elements are substantially cerium and lanthanum. System abrasives are described.
  • the cerium-based abrasive described in Patent Document 1 contains almost no fluorine, so that the generation of scratches on the polished surface can be reduced, but the lanthanum oxide and fluorine in the abrasive react with each other.
  • the resulting lanthanum oxyfluoride (LaOF) is insufficient.
  • abrasive particles are likely to adhere to the polished surface, and it is difficult to ensure a polishing rate comparable to that in the case where more fluorine is contained.
  • the fluorine content is low, the raw material particles are difficult to sinter at a low temperature in the baking process of the abrasive material, and in order to ensure a high polishing rate, it is necessary to increase the firing temperature. The energy cost of time increases.
  • the cerium-based abrasive described in Patent Document 2 has a high fluorine atom content of 5.0 to 15.0% by mass. For this reason, although it becomes difficult for the abrasive particles to adhere to the polished surface, the sintering of the raw material particles is significantly promoted in the baking process of the abrasive material, and abnormal grain growth causes surface defects such as scratches and pits on the polished surface. It becomes easy to produce.
  • the conventional cerium-based abrasive can ensure a high polishing rate if the fluorine atom content is increased, but the polishing surface is likely to be scratched, while the fluorine atom content is increased. If the amount is less, the abrasive particles are likely to adhere to the polished surface, and there is a problem that a high polishing rate cannot be secured.
  • the present invention has been made to solve the above technical problem, and has a high polishing rate in surface polishing of a glass substrate and the like, and generation of surface defects such as scratches and pits on the polishing surface and abrasive particles.
  • An object of the present invention is to provide a cerium-based abrasive capable of suppressing adhesion of cerium and having excellent production efficiency at a low cost and a production method thereof.
  • the present invention pays attention to the content ratio of the rare earth elements cerium, lanthanum and neodymium, and the influence of the fluorine atom and sodium atom content on the polishing characteristics. This is based on the finding that the production efficiency of the cerium-based abrasive can be improved as well as the polishing rate and the surface accuracy.
  • the present invention provides the following [1] to [6].
  • [1] Including cubic complex rare earth oxide and complex rare earth oxyfluoride, containing 95.0 to 99.5% by mass of all rare earth elements in terms of oxides, Thus, cerium is 54.5 to 95.0% by mass in terms of oxide, lanthanum is 4.5 to 45.0% by mass in terms of oxide, and neodymium is 0.5 to 2.0% in terms of oxide.
  • a cerium-based material containing 0.5% to 4.0% by weight of fluorine atoms and 0.001 to 0.50% by weight of sodium atoms with respect to the oxide equivalent amount of all the rare earth elements Abrasive.
  • a cerium-based oxide comprising a rare earth oxide, a step of adding a rare earth fluoride containing cerium, lanthanum and neodymium to the mixed rare earth oxide, crushing and firing, and adding a sodium compound before the firing
  • a manufacturing method of an abrasive A method for producing a cerium-based abrasive as described in [1] or [2] above, wherein a mixed light rare earth compound containing cerium, lanthanum and neodymium is fired at 500 to 1100 ° C. and mixed.
  • a cerium-based oxide comprising a rare earth oxide, a step of adding a rare earth fluoride containing cerium, lanthanum and neodymium to the mixed
  • Method. [5] The cerium-based abrasive according to [3] or [4], wherein the mixed mass ratio of the mixed oxidized rare earth and the rare earth fluoride to be added is 99: 1 to 65:35. Production method. [6]
  • the sodium compound is at least one sodium salt selected from the group consisting of sodium bicarbonate, sodium carbonate, sodium acetate, sodium phosphate, sodium sulfate, sodium nitrate, sodium oxalate and sodium polyacrylate.
  • the cerium-based abrasive of the present invention in the surface polishing of glass substrates and the like, the polishing rate is high, and the generation of surface defects such as scratches and pits on the polishing surface and the adhesion of abrasive particles are suppressed. A polished surface can be obtained. Moreover, according to the manufacturing method of the present invention, the cerium-based abrasive can be manufactured at low cost and with excellent production efficiency.
  • the cerium-based abrasive of the present invention contains cubic complex oxide rare earth and complex oxyfluoride rare earth.
  • the oxide equivalent (TREO) of all rare earth elements is 95.0 to 99.5% by mass, and cerium is 54.5 to 95.0% by mass in terms of oxide with respect to the TREO, and lanthanum. Is 4.5 to 45.0% by mass in terms of oxide, and neodymium is 0.5 to 2.0% by mass in terms of oxide. Further, it contains 0.5 to 4.0% by mass of fluorine atoms and 0.001 to 0.50% by mass of sodium atoms with respect to the TREO.
  • TREO is measured by oxalate precipitation, calcination, and gravimetric method. Specifically, TREO is measured by the method described in Examples described later.
  • the rare earth element content can be measured by instrumental analysis such as inductively coupled plasma (ICP) analysis or fluorescent X-ray analysis.
  • ICP inductively coupled plasma
  • fluorescent X-ray analysis a value obtained by converting a rare earth element as an oxide from the measured value by ICP analysis is defined as an oxide equivalent amount.
  • the cerium-based abrasive of the present invention contains cerium, lanthanum and neodymium in a predetermined ratio, and further contains a predetermined amount of sodium atoms, so that the fluorine atom content is relatively small.
  • the cerium-based abrasive of the present invention is substantially composed of cubic complex rare earth oxide and rare earth complex oxyfluoride.
  • the cubic complex rare earth oxide is an oxide represented by RE 2 O 3 when the rare earth element is represented by RE.
  • the complex oxyfluoride rare earth is, for example, a fluorine-containing compound such as REOF ⁇ REO.
  • the cerium-based abrasive of the present invention is substantially composed of these compounds. “Substantially” means that the crystal structure of the abrasive is basically composed of cubic complex rare earth oxide and rare earth complex oxyfluoride, and crystals other than these compounds in X-ray diffraction measurement. It means that almost no peak is detected. However, the crystal peak does not include a crystal peak due to the addition of an additive other than the rare earth element compound in the abrasive.
  • the cerium-based abrasive has a TREO of 95.0 to 99.5% by mass, preferably 95.2 to 99.3% by mass, more preferably 95.5 to 99.0% by mass.
  • TREO 95.0 to 99.5% by mass
  • the cerium-based abrasive has a TREO of 95.0 to 99.5% by mass, preferably 95.2 to 99.3% by mass, more preferably 95.5 to 99.0% by mass.
  • the content of cerium is 54.5 to 95.0% by mass, preferably 58.0 to 95.0% by mass, more preferably 60.0 to 92% based on the above-mentioned TREO in terms of oxide. 0.0% by mass.
  • the content is less than 54.5% by mass, the number of particles that do not contribute to polishing increases, resulting in a decrease in the polishing rate and the occurrence of scratches on the polished surface.
  • it exceeds 95.0% by mass the content of other rare earth elements is relatively reduced, and effects such as suppression of surface defects on the polished surface cannot be obtained sufficiently.
  • the content of lanthanum is 4.5 to 45.0% by mass, preferably 6.0 to 40.0% by mass, and more preferably 9.0 to 35.0% by mass in terms of oxide. % By mass.
  • the content of neodymium is 0.5 to 2.0% by mass, preferably 0.5 to 1.5% by mass, more preferably 0.5 to 1% by mass in terms of oxide with respect to the TREO. 0.0% by mass.
  • the content of fluorine atoms in the cerium-based abrasive is in the range of 0.5 to 4.0% by mass, preferably 0.7 to 4.0% by mass, more preferably 0.9 to It is 4.0 mass%.
  • the polishing rate is low, and when it exceeds 4.0% by mass, sintering of the abrasive particles is promoted, and scratches are easily generated on the polished surface.
  • the content of sodium atoms is 0.001 to 0.50 mass%, preferably 0.002 to 0.40 mass%, more preferably 0.005 to 0.30 mass based on the TREO. % By mass.
  • the content is less than 0.001% by mass, the polishing rate becomes low, and the abrasive particles easily adhere to the polished surface.
  • it exceeds 0.50% by mass sintering of the abrasive particles is promoted and the polishing rate is increased, but scratches are likely to occur on the polished surface.
  • the cerium-based abrasive preferably has a main peak (2 ⁇ ) attributed to cubic complex rare earth oxide when X-ray diffraction measurement is performed at 28.0 ° or more.
  • the X-ray diffraction measurement is performed using an X-ray diffraction measurement apparatus (manufactured by Rigaku Corporation), using an X-ray tube (Cu anode) and a Ni foil filter, CuK ⁇ ray, X-ray generation voltage 40 kV, current 30 mA, scan speed. It is a value measured under conditions of 4.0 ° / min, measurement step 0.02 ° / min, diverging slit and scattering slit 1 °, and light receiving slit 0.3 mm.
  • the ratio of the intensity of the main peak of the oxyfluoride rare earth to the intensity of the main peak of the cubic complex rare earth oxide is preferably 0.01 to 0.50, more preferably 0.00. It is in the range of 05 to 0.40, more preferably 0.06 to 0.34.
  • the peak intensity means the maximum value of the diffraction intensity.
  • the main peak (2 ⁇ ) position of the rare earth oxyfluoride in the cerium-based abrasive is around 26.7 °.
  • the specific surface area of the cerium-based abrasive is preferably 2.0 to 8.0 m 2 / g, more preferably 2.5 to 8.0 m 2 / g, still more preferably 2.7 to 8.0 m. 2 / g.
  • the specific surface area is measured by the BET method. If the specific surface area is 2.0 m / g 2 or more, generation of scratches on the polished surface is suppressed, and if it is 8.0 m 2 / g or less, a sufficiently high polishing rate can be maintained.
  • the average particle diameter D50 of the cerium-based abrasive is preferably 0.5 to 3.0 ⁇ m, more preferably 0.7 to 2.0 ⁇ m, although it depends on the object to be polished and the polishing conditions.
  • the thickness is preferably 0.8 to 1.7 ⁇ m.
  • the average particle diameter D50 referred to in the present invention corresponds to the particle diameter in a 50% cumulative volume distribution measured with a 30 ⁇ m aperture tube using a particle size distribution measuring device (Coulter Multisizer; manufactured by Beckman Coulter, Inc.). To do.
  • the cerium-based abrasive of the present invention is usually handled in a powder form, but is used in a slurry state by being dispersed in a dispersion medium such as water during polishing.
  • the dispersion concentration of the abrasive in the slurry is appropriately adjusted depending on the object to be polished, polishing conditions, etc., but is usually 1.0 to 30.0% by mass.
  • As the dispersion medium for the slurry water or a water-soluble organic solvent is preferably used, and water is usually used. Examples of the water-soluble organic solvent include alcohol, polyhydric alcohol, acetone, tetrahydrofuran and the like.
  • the slurry includes glycols such as ethylene glycol and polyethylene glycol; phosphoric acid such as tripolyphosphoric acid and hexametaphosphate to improve dispersibility, prevent sedimentation, improve stability, and improve workability, if necessary.
  • Salts Polymer dispersing agents such as polyacrylates, cellulose ethers such as methylcellulose and carboxymethylcellulose, and water-soluble polymers such as polyvinyl alcohol may be added. Each of these addition amounts is usually 0.05 to 20% by mass, preferably 0.1 to 15% by mass, more preferably 0.1% by mass, based on the solid content mass in the slurry of the cerium-based abrasive. 1 to 10% by mass.
  • the cerium-based abrasive of the present invention includes various glass materials and glass, particularly glass substrates for optical disks and magnetic disks, glass substrates for liquid crystal displays, glass substrates for color filters and photomasks, glass substrates for optical lenses, etc. It is suitably used for finish polishing of products.
  • the glass substrate and the like polished using the cerium-based abrasive of the present invention can suppress the generation of surface defects such as scratches and pits on the polished surface and the adhesion of abrasive particles, and provide a high-quality polished surface.
  • the method for producing a cerium-based abrasive of the present invention is a method for producing the cerium-based abrasive as described above, and a mixed light rare earth compound containing cerium, lanthanum and neodymium is fired at 500 to 1100 ° C.
  • Addition and mixing of the sodium compound may be any time before firing, even when adding the rare earth fluoride to the mixed oxidized rare earth, after pulverizing the raw material to be fired other than the sodium compound, or firing. Just before.
  • the above-described cerium-based abrasive of the present invention can be efficiently produced.
  • the mixed light rare earth compound containing cerium, lanthanum and neodymium is calcined at 500 to 1100 ° C. to form a mixed oxide rare earth, and the mixed oxide rare earth contains cerium, lanthanum and Step (2) of adding a rare earth fluoride containing neodymium and wet pulverizing, adding and mixing a sodium compound thereto to prepare a raw material to be fired, and drying and firing the raw material to be fired It is preferable to produce by pulverizing and classifying (3).
  • each process is demonstrated in order.
  • a mixed light rare earth compound containing cerium, lanthanum and neodymium is fired at 500 to 1100 ° C. to obtain a mixed oxidized rare earth.
  • the “mixed light rare earth compound” is composed mainly of non-rare earth components (impurities) such as alkali metals, alkaline earth metals and radioactive materials, and cerium with a reduced content of medium heavy rare earth. This refers to mixed carbonated rare earth, mixed oxalic acid rare earth, mixed hydroxide rare earth, etc.
  • the method for obtaining the mixed light rare earth compound is not particularly limited, but can be obtained by chemically separating and removing impurities other than rare earth elements and medium heavy rare earth from ores containing rare earth elements.
  • rare earth concentrates such as bust nesite and monazite containing a large amount of naturally occurring light rare earth elements cerium, lanthanum, neodymium and praseodymium are preferably used.
  • impurities and medium heavy rare earths are chemically separated and removed, and mixed carbonated rare earths, mixed oxalic acid rare earths and mixed hydroxides containing cerium as a main component with reduced content.
  • a mixed light rare earth compound such as rare earth is obtained.
  • medium heavy rare earth refers to a rare earth having an atomic number larger than that of promethium (Pm).
  • based on cerium means that the content of cerium is the largest among rare earth elements, and is 40% by mass or more, more preferably 50% by mass or more, more preferably 50% by mass or more with respect to TREO in terms of oxide. It means 60 mass% or more.
  • sulfuric acid culture is a common method.
  • Sulfuric acid calcination is a method in which the pulverized raw material ore is roasted together with sulfuric acid to produce a sulfate, and this sulfate is dissolved in water to remove impurities as an insoluble matter.
  • a solvent extraction method is generally used as a method for chemically separating and removing the medium heavy rare earth. Specifically, after separating and removing the impurities from the raw ore as described above, mixed hydroxide rare earth is obtained with an alkali such as sodium hydroxide, and this is dissolved in hydrochloric acid to obtain a mixed rare earth chloride aqueous solution.
  • the medium heavy rare earth is removed by solvent extraction using a solvent.
  • the contents of cerium, lanthanum, and neodymium can be adjusted by a known method such as the degree of extraction and the use of additives as necessary.
  • a mixed light rare earth compound is obtained, but the mixed light rare earth compound used as the raw material of the mixed oxidized rare earth is subjected to the separation and removal treatment,
  • a mixed carbonated rare earth or a mixed oxalic acid rare earth which is made into carbonate or oxalate with sodium carbonate, ammonium bicarbonate, oxalic acid or the like may be included.
  • the separation and removal of impurities and medium heavy rare earth means that the content of impurities in the mixed light rare earth compound is 1% by mass or less and the content of medium heavy rare earths is 1% by mass or less in terms of oxide. It is only necessary to be reduced.
  • the mixed light rare earth compound is a mixed carbonate rare earth
  • TREO is 45 to 55 mass%
  • the cerium content is 54.5 to 95.0 in terms of oxide with respect to the TREO.
  • % By mass, lanthanum content is 4.5 to 45.0% by mass in terms of oxide, neodymium content is 0.5 to 2.0% by mass in terms of oxide conversion, and excluding carbonic acid.
  • the rare earth component content is preferably 0.5% by mass or less, and the remainder is preferably carbonic acid.
  • the mixed light rare earth compound is fired at 500 to 1100 ° C. to obtain a mixed oxidized rare earth.
  • the mixed oxidized rare earth can be obtained by firing the mixed light rare earth compound at a temperature within the above range to obtain an oxide.
  • the firing temperature is appropriately adjusted according to the composition of the mixed rare earth compound, but is preferably 600 to 1000 ° C., more preferably 700 to 900 ° C.
  • the firing time is preferably 0.5 to 24 hours, more preferably 1 to 12 hours, and further preferably 1.5 to 5 hours.
  • Process (2) A rare earth fluoride containing cerium, lanthanum and neodymium is added to the mixed rare earth oxide obtained in step (1) and wet pulverized, and a sodium compound is added thereto and mixed to prepare a raw material to be fired. .
  • the mixture to be pulverized is preferably a mixture containing a mixed oxidized rare earth as a main raw material and a rare earth fluoride as an auxiliary raw material and containing them in a predetermined ratio.
  • the mixing ratio between the mixed rare earth oxide and the rare earth fluoride is appropriately determined according to the fluorine atom content required for the cerium-based abrasive to be produced. That is, the fluorine atom content in the cerium-based abrasive can be easily adjusted by changing the mixing ratio of the rare earth fluoride.
  • unreacted rare earth fluoride remains in the cerium-based abrasive to be produced, it becomes hard particles and may cause scratches on the polished surface. Preferably less than soil.
  • the mixing ratio of the mixed oxidized rare earth and the rare earth fluoride is preferably 99: 1 to 65:35 by mass ratio, more preferably 97: 3 to 77:23, and still more preferably. 95: 5 to 81:19.
  • the rare earth fluoride is preferably composed mainly of cerium, and TREO is preferably 60 to 90% by mass, more preferably 65 to 88% by mass, and further preferably 75 to 85% by mass. %.
  • the fluorine atom content is preferably 20 to 30% by mass, more preferably 22 to 29% by mass, and still more preferably 25 to 28% by mass.
  • Such a rare earth fluoride is obtained by adding a fluoride such as hydrofluoric acid, ammonium fluoride or acidic ammonium fluoride to the mixed light rare earth compound as a fluorine source, and heat-treating it at 400 ° C. or lower. be able to.
  • the fluorinated rare earth heat-treated at a temperature within the above range the reactivity between the fluorine in the fluorinated rare earth and the mixed oxidized rare earth mixed with the fluorinated rare earth becomes good, and the rare earth fluorinated earth. This is preferable because residual hard particles are suppressed.
  • the mixed carbonic acid rare earth containing cerium, lanthanum and neodymium may be added to the mixture.
  • the wet pulverization is preferably performed using a medium mill such as a wet ball mill from the viewpoint of uniformly mixing and pulverizing the mixed oxidized rare earth and the fluorinated rare earth.
  • Water is preferably used as the dispersion medium. Thereby, a mixed slurry is obtained.
  • the particle diameter of the mixture after wet pulverization is preferably 0.5 to 3.0 ⁇ m, more preferably 0.7 to 2.2.
  • the thickness is 8 ⁇ m, more preferably 0.9 to 2.5 ⁇ m.
  • a sodium compound is added to and mixed with the mixed slurry obtained by the wet pulverization to obtain a material to be fired. That is, the raw material to be fired contains mixed rare earth oxide, rare earth fluoride and sodium compound. Moreover, as above-mentioned, the mixed carbonate rare earth may be included. Specific examples of sodium compounds to be added include sodium hydrogen carbonate, sodium carbonate, sodium acetate, various sodium phosphates, sodium sulfate, sodium nitrate, organic acid sodium such as sodium oxalate, and organic such as polyacrylic acid. Examples thereof include high molecular sodium salts. Among these, sodium hydrogen carbonate is preferable. These sodium salts may be used alone or in combination of two or more. The addition amount of the sodium compound is appropriately adjusted so that the content of sodium atoms in the obtained cerium-based abrasive satisfies the above-described range.
  • a cerium-based abrasive is obtained by drying the material to be fired obtained in step (2), followed by firing, pulverization, and classification. Drying, firing, crushing, and classification can be performed in the same manner as that applied in the production of conventional cerium-based abrasives.
  • the firing temperature is preferably 600 to 1200 ° C., more preferably 650 to 1150 ° C., and further preferably 700 to 1100 ° C.
  • the firing time is preferably 0.5 to 48 hours, more preferably 1 to 36 hours, and still more preferably 1.5 to 24 hours.
  • the firing atmosphere is preferably in the air.
  • Example 1 A raw material ore (rare earth concentrate) containing 47% by mass of TREO, 2% by mass of medium heavy rare earth in terms of oxide, and 8% by mass of neodymium in terms of oxide is treated by sulfuric acid culture and solvent extraction.
  • the content of rare earth elements was adjusted by reducing the content of impurities as non-rare earth components to 1% by mass or less and the medium heavy rare earth to 1% by mass or less in terms of oxides to obtain a mixed light rare earth compound.
  • cerium is 64.6% by mass in terms of oxide (CeO 2 ) and lanthanum is 34.6% by mass in terms of oxide (La 2 O 3 ) with respect to TREO, neodymium.
  • This mixed light rare earth compound was treated with ammonium bicarbonate to obtain a mixed carbonate rare earth.
  • the mixed carbonated rare earth had a TREO of 49% by mass.
  • 2 kg of this mixed carbonated rare earth was heat-treated at 800 ° C. for 2 hours using an electric furnace to obtain a mixed oxidized rare earth.
  • the mixed oxidized rare earth had a TREO of 93% by mass.
  • hydrofluoric acid was added to a part of the mixed light rare earth compound and heat treated at 400 ° C. for 2 hours to obtain a rare earth fluoride.
  • This rare earth fluoride contains 85% by mass of TREO, and cerium is 64.6% by mass in terms of oxide, lanthanum is 34.6% by mass in terms of oxide, and neodymium is oxidized with respect to TREO. It contained 0.7% by mass in terms of product and contained 27% by mass of fluorine atoms.
  • 100 g of this rare earth fluoride and 900 g of the above mixed oxidized rare earth are added, 600 g of water is added, and the mixture is pulverized by a wet ball mill (grinding medium: balls made of zirconia having a diameter of 5 mm), and the average particle diameter D50 is 1.7 ⁇ m. A slurry containing particles was obtained.
  • Table 1 shows the contents of TREO, rare earth elements and fluorine atoms in the mixed oxidized rare earth and the rare earth fluoride used for the material to be fired. And after drying this to-be-fired material raw material at 100 degreeC with a hot air dryer, it baked at 1100 degreeC for 2 hours using the electric furnace. The obtained fired body was allowed to cool and then crushed and classified to prepare a cerium-based abrasive.
  • Examples 2 to 16 and Comparative Examples 1 to 6 As shown in the following Table 1, using TREO, rare earth element content and mixed rare earth oxide and fluorine rare earth content, and the rare earth element content and the amount (addition) of sodium compound, and the fired to be prepared A cerium-based abrasive was produced in the same manner as in Example 1 except that the firing temperature of the raw material was set to the conditions shown in Table 2 below. However, the average particle diameter D50 of the pulverized powder in the slurry was 1.0 ⁇ m in Example 13 and 2.0 ⁇ m in Example 14.
  • the oxide equivalent amount of each rare earth element relative to TREO was measured by an ICP emission spectroscopic analysis (ICP-AES) method by dissolving the abrasive in acid.
  • the fluorine atom content was measured by a fluoride ion electrode method after the abrasive was alkali-melted and extracted with warm water.
  • the sodium atom content was measured by atomic absorption after dissolving the abrasive with acid.
  • strength of the main peak of the cubic complex oxidation rare earth in a X-ray-diffraction measurement (CuKa alpha ray)
  • the peak intensity ratio (peak intensity ratio) and the specific surface area are summarized in Table 2 below.
  • These measuring methods are as follows.
  • the average particle diameter D50 is measured with a 30 ⁇ m aperture tube using a particle size distribution measuring apparatus (Coulter Multisizer; manufactured by Beckman Coulter, Inc.), and corresponds to the particle diameter in a 50% cumulative volume distribution value.
  • the peak intensity ratio in the X-ray diffraction measurement is as follows. Using an X-ray diffraction measuring apparatus (manufactured by Rigaku Corporation), an X-ray tube (Cu anode) and a Ni foil filter are used. X-ray diffraction measurement is performed under the conditions of 30 mA, scan speed 4.0 ° / min, measurement step 0.02 ° / min, divergence and scattering slits 1 °, and light-receiving slit 0.3 mm. The ratio of the maximum value of the intensity of the main peak of the cubic complex oxide rare earth located to the maximum value of the intensity of the main peak (2 ⁇ ) of the oxyfluoride rare earth located around 26.7 ° was determined. FIG.
  • Example 1 shows an X-ray diffraction spectrum of the cerium-based abrasive of Example 2 as a representative example.
  • the specific surface area was measured in accordance with “6.2 Flow method (3.5) One-point method” in JIS R 1626-1996 (Method for measuring specific surface area of fine ceramic powder by gas adsorption BET method). Nitrogen was used as the adsorbate gas.
  • polishing machine Single-side polishing machine Workpiece: 5 cm square alkali-free glass, area 25 cm 2 Number of processed sheets: 1 sheet / batch x 3 batch Polishing pad: Foamed polyurethane pad Lower platen rotation speed: 260 rpm Processing pressure: 80 g / cm 2 Polishing time: 20 minutes
  • Table 2 summarizes the evaluation results of the polishing rate, scratches on the polished surface, and the presence or absence of deposits in the polishing test. These evaluation methods are as follows. The polishing rate was determined from the average value of these, and the change in weight before and after polishing, by measuring the thickness before polishing at four points per glass substrate with a micrometer. The scratch was observed with a differential interference microscope at a magnification of 50 times, and the number of scratches per polished surface was measured. The deposit was observed under a light source with a halogen light of 100,000 lux to confirm the presence or absence. In the evaluation results shown in Table 2, the number of adhered abrasive particles per polishing surface is 0, 1 is ⁇ , 2 to 9 is ⁇ , 10 or more Is shown as x.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

ガラス基板等の表面研磨において、研磨速度が高く、しかも、研磨面におけるスクラッチやピット等の表面欠陥の発生及び研磨材粒子の付着を抑制することができる、低コストかつ生産効率に優れたセリウム系研磨材及びその製造方法を提供する。 立方晶複合酸化希土及び複合酸フッ化希土を含み、全希土類元素を酸化物換算で95.0~99.5質量%含有し、前記全希土類元素の酸化物換算量に対して、セリウムを酸化物換算量で54.5~95.0質量%、ランタンを酸化物換算量で4.5~45.0質量%、ネオジムを酸化物換算量で0.5~2.0質量%含有し、フッ素原子を0.5~4.0質量%含有し、前記全希土類元素の酸化物換算量に対して、ナトリウム原子を0.001~0.50質量%含有する、セリウム系研磨材、及びその製造方法。

Description

セリウム系研磨材及びその製造方法
 本発明は、液晶パネル、ハードディスク、特定周波数カット用フィルター等に使用されるガラス基板、光学レンズ用ガラス基板等のガラス材の研磨に用いられるセリウム系研磨材及びその製造方法に関する。
 ガラス材料は、様々な用途に用いられており、その用途によっては表面研磨が必要となる場合がある。例えば、光学レンズにおいては、鏡面仕上げが要求される。また、光ディスクや磁気ディスク用のガラス基板、薄膜トランジスタ(TFT)型や超ねじれネマティック(STN)型の液晶ディスプレイ(LCD)等に用いられるガラス基板、液晶テレビ用カラーフィルター、大規模集積回路(LSI)フォトマスク用ガラス基板等においては、表面粗さが小さく、高い平坦性を有していること、さらに、無欠陥であることが要求され、より高精度な表面研磨が求められている。
 このようなガラスの表面研磨には、従来から、セリウム系研磨材が用いられている。セリウム系研磨材においては、研磨力を高めるために、一般に、数%程度のフッ素原子を含有させる。
 セリウム系研磨材の研磨機構の詳細は明らかではないが、酸化セリウム粒子自体の硬さに起因するメカニカル効果と、含有されるフッ素によるケミカル効果の複合作用によって、研磨加工が促進されることが確認されている。また、フッ素は、研磨材製造時に既に被焼成物原料に含有された状態で焼成されることにより、研磨材の構成粒子の焼結が適度に促進され、高い研磨力を発揮することが知られている。
 しかしながら、近年、ガラス基板に求められる表面精度はより厳しくなっており、セリウム系研磨材に対しても、研磨面にスクラッチやピット、研磨材粒子の付着等の表面欠陥を生じさせず、しかも、高い研磨速度が求められている。
 これに対しては、例えば、特許文献1には、環境への配慮の観点から、フッ素原子の含有量を低減させる一方で、全希土類元素の酸化物換算量(TREO)に対して、アルカリ金属を0.01~3.0質量%、塩素濃度を0.3質量%以下とすることにより、研磨力及び研磨精度の改善を図ることが提案されている。
 また、特許文献2には、フッ素原子を含有させるとともに、セリウム以外のネオジムやプラセオジム等の希土類元素の酸化物の割合を制御し、希土類元素が実質的にセリウムとランタンである2成分系のセリウム系研磨材が記載されている。
特開2006-124566号公報 特開2012-66370号公報
 しかしながら、上記特許文献1に記載されたセリウム系研磨材においては、フッ素をほとんど含有しないことにより、研磨面におけるスクラッチの発生を低減することができるものの、該研磨材中の酸化ランタンとフッ素が反応して生成するオキシフッ化ランタン(LaOF)が不十分となる。このため、研磨面に研磨材粒子が付着しやすくなり、また、より多くのフッ素を含有する場合と同等程度の研磨速度を確保することは難しい。また、フッ素の含有量が少ないと、研磨材原料の焼成工程において、低温では原料粒子が焼結しにくくなり、高い研磨速度を確保するためには、焼成温度をより高くする必要があり、製造時のエネルギーコストが高くなる。
 一方、上記特許文献2に記載されたセリウム系研磨材は、フッ素原子の含有量が5.0~15.0質量%と多い。このため、研磨面に研磨材粒子が付着しにくくなるものの、研磨材原料の焼成工程において、原料粒子の焼結の促進が著しく、異常粒成長により、研磨面にスクラッチやピット等の表面欠陥を生じさせやすくなる。
 このように、従来のセリウム系研磨材は、フッ素原子の含有量を多くすれば、高い研磨速度を確保することができるが、研磨面にスクラッチが発生しやすくなり、一方、フッ素原子の含有量を少なくすると、研磨面に研磨材粒子が付着しやすくなり、高い研磨速度を確保することができないという課題を有していた。
 本発明は、上記技術的課題を解決するためになされたものであり、ガラス基板等の表面研磨において、研磨速度が高く、しかも、研磨面におけるスクラッチやピット等の表面欠陥の発生及び研磨材粒子の付着を抑制することができる、低コストかつ生産効率に優れたセリウム系研磨材及びその製造方法を提供することを目的とするものである。
 本発明は、セリウム系研磨材において、希土類元素のセリウム、ランタン及びネオジムの含有量比、並びにフッ素原子及びナトリウム原子の含有量の研磨特性への影響に着目し、特定の範囲の含有量において、研磨速度及び表面精度はもちろん、セリウム系研磨材の生産効率を向上させることができることを見出したことに基づくものである。
 すなわち、本発明は、以下の[1]~[6]を提供するものである。
[1]立方晶複合酸化希土及び複合酸フッ化希土を含み、全希土類元素を酸化物換算で95.0~99.5質量%含有し、前記全希土類元素の酸化物換算量に対して、セリウムを酸化物換算量で54.5~95.0質量%、ランタンを酸化物換算量で4.5~45.0質量%、ネオジムを酸化物換算量で0.5~2.0質量%含有し、フッ素原子を0.5~4.0質量%含有し、前記全希土類元素の酸化物換算量に対して、ナトリウム原子を0.001~0.50質量%含有する、セリウム系研磨材。
[2]CuKα線を用いたX線回折測定における、前記立方晶複合酸化希土のメインピークの強度に対する酸フッ化希土のメインピークの強度の比が0.01~0.50である、上記[1]に記載のセリウム系研磨材。
[3]上記[1]又は[2]に記載のセリウム系研磨材を製造する方法であって、セリウム、ランタン及びネオジムを含有する混合軽希土化合物を、500~1100℃で焼成して混合酸化希土とし、前記混合酸化希土にセリウム、ランタン及びネオジムを含有するフッ化希土を添加して、粉砕及び焼成する工程を含み、前記焼成よりも前にナトリウム化合物を添加する、セリウム系研磨材の製造方法。
[4]前記フッ化希土が、前記混合軽希土化合物にフッ化物を添加して400℃以下で熱処理して得られたものである、上記[3]に記載のセリウム系研磨材の製造方法。
[5]前記混合酸化希土と、添加する前記フッ化希土との混合質量比が、99:1~65:35である、上記[3]又は[4]に記載のセリウム系研磨材の製造方法。
[6]前記ナトリウム化合物が、炭酸水素ナトリウム、炭酸ナトリウム、酢酸ナトリウム、リン酸ナトリウム、硫酸ナトリウム、硝酸ナトリウム、シュウ酸ナトリウム及びポリアクリル酸ナトリウムからなる群のうちから選ばれる少なくとも1種のナトリウム塩である、上記[3]~[5]のいずれか1項に記載のセリウム系研磨材の製造方法。
 本発明のセリウム系研磨材によれば、ガラス基板等の表面研磨において、研磨速度が高く、しかも、研磨面におけるスクラッチやピット等の表面欠陥の発生及び研磨材粒子の付着が抑制された高品質な研磨面を得ることができる。
 また、本発明の製造方法によれば、前記セリウム系研磨材を低コストかつ優れた生産効率で製造することができる。
実施例2のセリウム系研磨材のX線回折スペクトルを示す。
 以下、本発明を詳細に説明する。
[セリウム系研磨材]
 本発明のセリウム系研磨材は、立方晶複合酸化希土及び複合酸フッ化希土を含むものである。そして、全希土類元素の酸化物換算量(TREO)が95.0~99.5質量%であり、前記TREOに対して、セリウムを酸化物換算量で54.5~95.0質量%、ランタンを酸化物換算量で4.5~45.0質量%、ネオジムを酸化物換算量で0.5~2.0質量%含有している。さらに、フッ素原子を0.5~4.0質量%、前記TREOに対して、ナトリウム原子を0.001~0.50質量%含有している。
 なお、TREOは、シュウ酸塩沈殿、焼成及び重量法により測定され、具体的には、後述する実施例に記載の方法により測定される。
 また、希土類元素の含有量は、誘導結合プラズマ(ICP)分析や蛍光X線分析等の機器分析により測定することができる。本発明においては、ICP分析による測定値から、希土類元素を酸化物として換算した値を酸化物換算量とする。
 本発明のセリウム系研磨材は、上記のように、所定割合でセリウム、ランタン及びネオジムを含有し、さらに、所定量のナトリウム原子を含有するものであることにより、フッ素原子含有量が比較的少なくても、高い研磨速度を維持することができ、かつ、ガラス等の研磨面におけるスクラッチやピット等の表面欠陥の発生及び研磨材粒子の付着を抑制することができ、高品質な研磨面を得ることができる。
 本発明のセリウム系研磨材は、実質的に立方晶複合酸化希土及び複合酸フッ化希土からなるものである。
 ここで、立方晶複合酸化希土とは、希土類元素をREで表すと、例えば、REのように示される酸化物である。また、複合酸フッ化希土とは、例えば、REOF・REOのように示されるフッ素含有化合物である。
 本発明のセリウム系研磨材は、実質的にこれらの化合物から構成される。「実質的に」とは、該研磨材の結晶構造が、基本的に立方晶複合酸化希土及び複合酸フッ化希土から構成されており、X線回折測定において、これらの化合物以外の結晶ピークはほぼ検出されないことを意味する。ただし、前記結晶ピークには、該研磨材中の希土類元素化合物以外の添加剤等の添加に起因する結晶ピークは含めないものとする。
 前記セリウム系研磨材は、TREOが95.0~99.5質量%であり、好ましくは95.2~99.3質量%、より好ましくは95.5~99.0質量%である。
 TREOが95.0質量%未満である場合、研磨に寄与しない粒子が多くなり、研磨速度が低くなったり、研磨面におけるスクラッチ発生の原因となる。また、99.5質量%を超えると、相対的にフッ素原子及びナトリウム原子の含有量が少なくなり、これらの成分による高い研磨速度の維持、研磨面の表面欠陥の抑制等の効果が得られない。
 また、セリウムの含有量が、酸化物換算量で前記TREOに対して54.5~95.0質量%であり、好ましくは58.0~95.0質量%、より好ましくは60.0~92.0質量%である。
 前記含有量が54.5質量%未満である場合、研磨に寄与しない粒子が多くなり、研磨速度が低くなったり、研磨面におけるスクラッチ発生の原因となる。また、95.0質量%を超えると、相対的に他の希土類元素の含有量が少なくなり、研磨面の表面欠陥の抑制等の効果が十分に得られない。
 ランタンの含有量は、酸化物換算量で前記TREOに対して4.5~45.0質量%であり、好ましくは6.0~40.0質量%、より好ましくは9.0~35.0質量%である。また、ネオジムの含有量は、酸化物換算量で前記TREOに対して0.5~2.0質量%であり、好ましくは0.5~1.5質量%、より好ましくは0.5~1.0質量%である。
 ランタン及びネオジムの各含有量が上記範囲未満の場合、研磨面にスクラッチが発生しやすくなり、上記範囲を超える場合、研磨速度が低くなりやすい傾向にある。
 また、前記セリウム系研磨材中のフッ素原子の含有量は、0.5~4.0質量%の範囲内であり、好ましくは0.7~4.0質量%、より好ましくは0.9~4.0質量%である。
 前記含有量が0.5質量%未満の場合、研磨速度が低くなり、4.0質量%を超える場合、研磨材粒子の焼結が促進され、研磨面にスクラッチが発生しやすくなる。
 さらに、ナトリウム原子の含有量は、前記TREOに対して0.001~0.50質量%であり、好ましくは0.002~0.40質量%であり、より好ましくは0.005~0.30質量%である。
 前記含有量が0.001質量%未満の場合、研磨速度が低くなり、また、研磨面に研磨材粒子が付着しやすくなる。また、0.50質量%を超える場合、研磨材粒子の焼結が促進され、研磨速度は高くなるが、研磨面にスクラッチが発生しやすくなる。
 前記セリウム系研磨材は、X線回折測定を行った場合の立方晶複合酸化希土に起因するメインピーク(2θ)が28.0°以上に位置することが好ましい。前記メインピーク位置がこのような範囲であることにより、研磨速度が高くなり、研磨面にスクラッチが発生しにくくなる傾向にある。
 前記X線回折測定は、X線回折測定装置(株式会社理学製)で、X線管球(Cu陽極)、Ni箔フィルターを用いて、CuKα線、X線発生電圧40kV、電流30mA、スキャンスピード4.0°/分、測定ステップ0.02°/分、発散スリット及び散乱スリット1°、受光スリット0.3mmの条件にて測定した値である。
 前記X線回折測定において、立方晶複合酸化希土のメインピークの強度に対する酸フッ化希土のメインピークの強度の比が0.01~0.50であることが好ましく、より好ましくは0.05~0.40、さらに好ましくは0.06~0.34の範囲内である。
 ここで、ピークの強度とは、回折強度の最大値を意味する。前記セリウム系研磨材における酸フッ化希土のメインピーク(2θ)位置は26.7°前後である。
 メインピークの強度比が上記範囲内であれば、セリウム系研磨材中の酸化ランタンに起因する研磨速度の低下や研磨面における表面欠陥の発生が十分に抑制される。
 前記セリウム系研磨材の比表面積は、2.0~8.0m/gであることが好ましく、より好ましくは2.5~8.0m/g、さらに好ましくは2.7~8.0m/gである。比表面積はBET法により測定される。
 比表面積が2.0m/g以上であれば、研磨面におけるスクラッチの発生が抑制され、8.0m/g以下であれば、十分に高い研磨速度を維持することができる。
 また、前記セリウム系研磨材の平均粒径D50は、研磨対象や研磨条件等にもよるが、0.5~3.0μmであることが好ましく、より好ましくは0.7~2.0μm、さらに好ましくは0.8~1.7μmである。
 なお、本発明で言う平均粒径D50は、粒度分布測定装置(コールターマルチサイザー;ベックマン・コールター株式会社製)を用いて30μmアパチャーチューブで測定された、体積分布50%累積値における粒子径に相当するものである。
 本発明のセリウム系研磨材は、通常、粉末状で取り扱われるが、研磨時には、例えば、水等の分散媒に分散させて、スラリーの状態で使用される。スラリー中の研磨材の分散濃度は、研磨対象や研磨条件等によって適宜調整されるが、通常、1.0~30.0質量%である。
 スラリーの分散媒としては、水や水溶性有機溶媒が好適に用いられ、通常、水が使用される。水溶性有機溶媒としては、アルコール、多価アルコール、アセトン、テトラヒドロフラン等が挙げられる。
 また、前記スラリーには、必要に応じて、分散性向上、沈降防止、安定性向上及び作業性向上等のため、エチレングリコール、ポリエチレングリコール等のグリコール類;トリポリリン酸、ヘキサメタリン酸塩等のリン酸塩;ポリアクリル酸塩等の高分子分散剤、メチルセルロース、カルボキシメチルセルロース等のセルロースエーテル類、ポリビニルアルコール等の水溶性高分子を添加してもよい。これらの各添加量は、該セリウム系研磨材のスラリー中の固形分質量に対して、通常、0.05~20質量%であり、好ましくは0.1~15質量%、より好ましくは0.1~10質量%である。
 本発明のセリウム系研磨材は、特に、光ディスクや磁気ディスク用のガラス基板、液晶ディスプレイ用のガラス基板、カラーフィルターやフォトマスク用のガラス基板、光学レンズ用のガラス基板等、各種ガラス材及びガラス製品の仕上げ研磨に好適に用いられる。
 本発明のセリウム系研磨材を用いて研磨されたガラス基板等は、研磨面へのスクラッチやピット等の表面欠陥の発生及び研磨材粒子の付着が抑制され、高品質な研磨面が得られる。
[セリウム系研磨材の製造方法]
 本発明のセリウム系研磨材の製造方法は、上記のようなセリウム系研磨材を製造する方法であって、セリウム、ランタン及びネオジムを含有する混合軽希土化合物を、500~1100℃で焼成して混合酸化希土とし、前記混合酸化希土にセリウム、ランタン及びネオジムを含有するフッ化希土を添加して、粉砕及び焼成する工程を含み、前記焼成よりも前にナトリウム化合物を添加することを特徴とするものである。
 ナトリウム化合物の添加混合は、焼成する前であればいつでもよく、混合酸化希土にフッ化希土を添加する際でも、ナトリウム化合物以外の被焼成物原料を粉砕した後でも、粉砕時でも、焼成直前でもよい。このようなナトリウム化合物の焼成より前における添加により、上述した本発明のセリウム系研磨材を効率的に製造することができる。
 具体的には、セリウム、ランタン及びネオジムを含有する混合軽希土化合物を500~1100℃で焼成して混合酸化希土とする工程(1)と、前記混合酸化希土に、セリウム、ランタン及びネオジムを含有するフッ化希土を添加して湿式粉砕し、これにナトリウム化合物を添加混合して被焼成物原料を調製する工程(2)と、前記被焼成物原料を乾燥した後、焼成し、解砕し、分級する工程(3)を経ることにより製造することが好ましい。
 以下、各工程を順に説明する。
(工程(1))
 まず、セリウム、ランタン及びネオジムを含有する混合軽希土化合物を500~1100℃で焼成して混合酸化希土とする。
 ここで、「混合軽希土化合物」とは、アルカリ金属、アルカリ土類金属及び放射性物質等の非希土類成分(不純物質)、及び中重希土の含有量が低減されたセリウムを主成分とする混合炭酸希土、混合シュウ酸希土や混合水酸化希土等を言う。
 前記混合軽希土化合物を得るための方法は特に限定されるものではないが、希土類元素を含む鉱石から希土類元素以外の不純物質及び中重希土を化学的に分離除去することにより得ることが好ましい。
 希土類元素を含む鉱石としては、天然に存在する、軽希土類元素であるセリウム、ランタン、ネオジム及びプラセオジムを多く含む、バストネサイトやモナザイト等の希土精鉱が好適に用いられる。このような原料鉱石から、不純物質及び中重希土を化学的に分離除去し、これらの含有量が低減されたセリウムを主成分とする混合炭酸希土、混合シュウ酸希土や混合水酸化希土等の混合軽希土化合物を得る。
 ここで、「中重希土」とは、プロメチウム(Pm)より原子番号が大きい希土類を言うものとする。また、「セリウムを主成分とする」とは、希土類元素のうちセリウムの含有量が最も多く、酸化物換算量でTREOに対して40質量%以上、より好ましくは50質量%以上、さらに好ましくは60質量%以上であることを意味する。
 不純物質を化学的に分離除去する方法としては、硫酸培焼が一般的な方法である。硫酸培焼は、粉砕された前記原料鉱石を硫酸とともに焙焼して硫酸塩を生成し、この硫酸塩を水に溶解して不純物質を不溶物として除去する方法である。
 中重希土を化学的に分離除去する方法としては、溶媒抽出法が一般的である。具体的には、上記のようにして原料鉱石から不純物質を分離除去した後、水酸化ナトリウム等のアルカリにより混合水酸化希土とし、これを塩酸で溶解して混合塩化希土水溶液として、有機溶媒を用いて溶媒抽出することにより中重希土を除去する。なお、この溶媒抽出において、必要に応じて、抽出の程度や添加剤等の使用等の公知の方法によって、セリウム、ランタン及びネオジムの含有量を調整することができる。
 このようにして不純物質及び中重希土を分離除去することにより、混合軽希土化合物が得られるが、混合酸化希土の原料とする混合軽希土化合物は、前記分離除去の処理後、炭酸ナトリウムや重炭酸アンモニウム、シュウ酸等により炭酸塩又はシュウ酸塩とした混合炭酸希土又は混合シュウ酸希土を含んでいてもよい。また、不純物質及び中重希土を分離除去とは、混合軽希土化合物中の不純物質の含有量が1質量%以下、中重希土の含有量が酸化物換算で1質量%以下にまで低減されていればよい。
 混合軽希土化合物は、例えば、混合炭酸希土である場合、TREOが45~55質量%であり、前記TREOに対して、セリウムの含有量が酸化物換算量で54.5~95.0質量%、ランタンの含有量が酸化物換算量で4.5~45.0質量%、ネオジムの含有量が酸化物換量算で0.5~2.0質量%であり、炭酸を除く非希土類成分の含有量は0.5質量%以下であり、残りは炭酸であることが好ましい。
 前記混合軽希土化合物を500~1100℃で焼成して混合酸化希土とする。
 このように、混合酸化希土は、前記混合軽希土化合物を上記範囲内の温度で焼成して酸化物とすることにより得ることができる。
 焼成温度は、混合希土化合物の組成に応じて適宜調整されるが、好ましくは600~1000℃、より好ましくは700~900℃である。焼成時間は、0.5~24時間であることが好ましく、より好ましくは1~12時間、さらに好ましくは1.5~5時間である。
(工程(2))
 工程(1)で得られた混合酸化希土に、セリウム、ランタン及びネオジムを含有するフッ化希土を添加して湿式粉砕し、これにナトリウム化合物を添加混合して被焼成物原料を調製する。
 粉砕される混合物は、混合酸化希土を主原料、フッ化希土を副原料とし、これらを所定の割合で含有するものであることが好ましい。混合酸化希土とフッ化希土の混合比は、製造するセリウム系研磨材に要求されるフッ素原子含有量に応じて適宜決定される。すなわち、フッ化希土の混合比を変更することにより、セリウム系研磨材中のフッ素原子含有量を容易に調整することができる。また、製造するセリウム系研磨材中に未反応のままのフッ化希土が残留すると硬い粒子となり、研磨面におけるスクラッチの原因となるおそれがあるため、フッ化希土の混合比は混合酸化希土よりも少ないことが好ましい。このような観点から、混合酸化希土とフッ化希土の混合比は、質量比で99:1~65:35であることが好ましく、より好ましくは97:3~77:23、さらに好ましくは95:5~81:19である。
 フッ化希土は、セリウムを主成分とするものであることが好ましく、また、TREOが60~90質量%であることが好ましく、より好ましくは65~88質量%、さらに好ましくは75~85質量%である。また、フッ素原子含有量は20~30質量%であることが好ましく、より好ましくは22~29質量%、さらに好ましくは25~28質量%である。
 また、このようなフッ化希土は、前記混合軽希土化合物に、フッ酸、フッ化アンモニウム又は酸性フッ化アンモニウム等のフッ化物をフッ素源として添加し、400℃以下で熱処理することにより得ることができる。
 上記範囲内の温度で熱処理したフッ化希土によれば、該フッ化希土中のフッ素と、フッ化希土と混合される混合酸化希土との反応性が良好となり、フッ化希土の硬い粒子の残留が抑制されるため好ましい。
 また、前記混合物は、混合酸化希土及びフッ化希土以外に、セリウム、ランタン及びネオジムを含有する混合炭酸希土を添加してもよい。
 湿式粉砕は、混合酸化希土とフッ化希土とを均等に混合粉砕する観点から、湿式ボールミル等の媒体ミルを用いて行うことが好ましい。分散媒としては、水が好適に用いられる。これにより、混合スラリーが得られる。
 前記混合物の湿式粉砕後の粒子径は、後の工程での取り扱い性等の観点から、平均粒径D50が0.5~3.0μmであることが好ましく、より好ましくは0.7~2.8μm、さらに好ましくは0.9~2.5μmである。
 前記湿式粉砕により得られた混合スラリーに、ナトリウム化合物を添加混合して被焼成物原料とする。すなわち、被焼成物原料は、混合酸化希土、フッ化希土及びナトリウム化合物を含むものである。また、上述したように、混合炭酸希土を含んでいてもよい。
 添加するナトリウム化合物としては、具体的には、炭酸水素ナトリウム、炭酸ナトリウム、酢酸ナトリウム、各種リン酸ナトリウム、硫酸ナトリウム、硝酸ナトリウム、また、シュウ酸ナトリウム等の有機酸ナトリウム、ポリアクリル酸等の有機高分子のナトリウム塩等が挙げられる。これらの中でも、炭酸水素ナトリウムが好ましい。これらのナトリウム塩は、単独で用いても、2種以上併用してもよい。
 ナトリウム化合物の添加量は、得られるセリウム系研磨材中のナトリウム原子の含有量が、上述した範囲を満たすように適宜調整される。
(工程(3))
 工程(2)で得られた被焼成物原料を乾燥した後、焼成し、解砕し、分級することにより、セリウム系研磨材が得られる。
 乾燥、焼成、解砕及び分級は、従来のセリウム系研磨材の製造において適用される方法と同様に行うことができる。
 また、焼成により被焼成物原料を十分に反応させる観点から、焼成温度は、600~1200℃であることが好ましく、より好ましくは650~1150℃、さらに好ましくは700~1100℃である。焼成時間は、0.5~48時間であることが好ましく、より好ましくは1~36時間、さらに好ましくは1.5~24時間である。焼成雰囲気は、大気中であることが好ましい。
 以下、本発明を実施例により具体的に説明するが、本発明は下記実施例に限定されるものではない。
(実施例1)
 TREOが47質量%、中重希土を酸化物換算で2質量%、ネオジムを酸化物換算で8質量%含有する原料鉱石(希土精鉱)を、硫酸培焼及び溶媒抽出法により処理し、非希土類成分である不純物質を1質量%以下、中重希土を酸化物換算で1質量%以下に低減して、希土類元素の含有量を調整し、混合軽希土化合物とした。この混合軽希土化合物は、TREOに対して、セリウムを酸化物(CeO)換算量で64.6質量%、ランタンを酸化物(La)換算量で34.6質量%、ネオジムを酸化物(Nd)換算量で0.7質量%含有していた。
 この混合軽希土化合物を、重炭酸アンモニウムで処理し、混合炭酸希土を得た。なお、混合炭酸希土は、TREOが49質量%であった。
 この混合炭酸希土2kgを、電気炉を用いて800℃で2時間熱処理し、混合酸化希土とした。なお、混合酸化希土は、TREOが93質量%であった。
 また、前記混合軽希土化合物の一部にフッ酸を加えて400℃で2時間熱処理し、フッ化希土を得た。このフッ化希土は、TREOが85質量%であり、該TREOに対して、セリウムを酸化物換算量で64.6質量%、ランタンを酸化物換算量で34.6質量%、ネオジムを酸化物換算量で0.7質量%含有し、フッ素原子を27質量%含有していた。
 このフッ化希土100gと、前記混合酸化希土900gとを混合し、水600gを加えて、湿式ボールミル(粉砕媒体:直径5mmジルコニア製ボール)で粉砕し、平均粒径D50が1.7μmの粒子を含むスラリーを得た。
 このスラリーに、ナトリウム化合物として炭酸水素ナトリウム5gを添加混合して被焼成物原料を調製した。
 表1に、被焼成物原料に用いた混合酸化希土及びフッ化希土におけるTREO、希土類元素及びフッ素原子の含有量を示す。
 そして、この被焼成物原料を熱風乾燥器にて100℃で乾燥した後、電気炉を用いて1100℃で2時間焼成した。得られた焼成体を放冷後、解砕、分級して、セリウム系研磨材を作製した。
(実施例2~16及び比較例1~6)
 下記表1に示すような、TREO、希土類元素含有量及びフッ素原子含有量である混合酸化希土及びフッ化希土を用いて、ナトリウム化合物の種類及び添加(配合)量、並びに調製した被焼成物原料の焼成温度を下記表2に示す条件とし、それ以外は実施例1と同様にして、セリウム系研磨材を作製した。
 ただし、スラリー中の粉砕した粉体の平均粒径D50を、実施例13は1.0μm、実施例14は2.0μmとした。
Figure JPOXMLDOC01-appb-T000001
[研磨材の含有成分]
 上記実施例及び比較例で得られた各セリウム系研磨材について、TREO、TREOに対する各希土類元素の酸化物換算量、フッ素原子含有量、及びTREOに対するナトリウム原子含有量を下記表2にまとめて示す。これらの測定方法は以下のとおりである。
 TREOは、研磨材を酸溶解し、溶液にアンモニア水を添加して沈殿物を生じさせ、この沈殿物をろ過、洗浄してアルカリ金属を除去した後、再び酸溶解し、溶液にシュウ酸を添加して沈殿物を生じさせ、この沈殿物を焼成して重量法にて測定した。
 TREOに対する各希土類元素の酸化物換算量は、研磨材を酸溶解し、ICP発光分光分析(ICP-AES)法により測定した。
 フッ素原子含有量は、研磨材をアルカリ溶融して温水抽出して、フッ化物イオン電極法により測定した。
 ナトリウム原子含有量は、研磨材を酸溶解した後、原子吸光法にて測定した。
[研磨材の物性測定]
 上記実施例及び比較例で得られた各セリウム系研磨材について、平均粒径D50、X線回折測定(CuKα線)における立方晶複合酸化希土のメインピークの強度に対する酸フッ化希土のメインピークの強度の比(ピーク強度比)、及び比表面積を下記表2にまとめて示す。これらの測定方法は以下のとおりである。
 平均粒径D50は、粒度分布測定装置(コールターマルチサイザー;ベックマン・コールター株式会社製)にて、30μmアパチャーチューブで測定し、体積分布50%累積値における粒子径に相当する。
 X線回折測定におけるピーク強度比は、X線回折測定装置(株式会社理学製)にて、X線管球(Cu陽極)、Ni箔フィルターを用いて、CuKα線、X線発生電圧40kV、電流30mA、スキャンスピード4.0°/分、測定ステップ0.02°/分、発散スリット及び散乱スリット1°、受光スリット0.3mmの条件にてX線回折測定を行い、28.2°以上に位置する立方晶複合酸化希土のメインピークの強度の最大値と、26.7°前後に位置する酸フッ化希土のメインピーク(2θ)の強度の最大値との比を求めた。図1に、代表例として、実施例2のセリウム系研磨材のX線回折スペクトルを示す。
 比表面積は、JIS R 1626-1996(ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法)の「6.2 流動法 (3.5)一点法」に準拠して測定した。吸着質気体には窒素を用いた。
[研磨試験]
 上記実施例及び比較例で得られた各セリウム系研磨材を用いて、濃度10質量%で水に分散させた研磨材スラリーを調製した。この研磨剤スラリーを用いて、TFT液晶ディスプレイ用無アルカリガラス基板の研磨試験を以下の条件で行った。
  研磨機   :片面研磨機
  加工物   :5cm角無アルカリガラス、面積25cm
  加工枚数  :1枚/バッチ×3バッチ
  研磨パッド :発泡ポリウレタンパッド
  下定盤回転数:260rpm
  加工圧力  :80g/cm
  研磨時間  :20分
 上記の研磨試験における研磨速度、研磨面におけるスクラッチ、及び付着物の有無の評価結果を、表2にまとめて示す。これらの評価方法は以下のとおりである。
 研磨速度は、ガラス基板1枚当たり4点で研磨前の厚さをマイクロメーターで4点測定し、これらの平均値と研磨前後の重量変化から求めた。
 スクラッチは、微分干渉顕微鏡にて倍率50倍でガラス表面を観察し、研磨面1面当たりのスクラッチの本数を計測した。
 付着物は、ハロゲン光10万ルクスの光源の下で観察し、有無を確認した。表2の評価結果においては、研磨面1面当たりの研磨材粒子の付着数が、0個の場合を◎、1個の場合を○、2~9個の場合を△、10個以上の場合を×として示す。
Figure JPOXMLDOC01-appb-T000002
 表2から分かるように、実施例1~16は、研磨速度が高く、しかも、研磨面におけるスクラッチの発生が抑制され、かつ、研磨材粒子がほとんど付着しない、高品質な研磨面が得られることが認められた。
 これに対して、フッ素原子含有量が多い場合(比較例1,2)、ネオジムの含有量が少ない場合(比較例4)、ナトリウム原子含有量が多い場合(比較例5)は、研磨速度は高いものの、スクラッチの発生が多かった。
 また、ナトリウム原子を含まない場合(比較例3)、フッ素原子含有量が少ない場合(比較例6)は、研磨速度は低く、研磨面への研磨材粒子の付着も観察され、研磨面の品質も劣っていた。また、この場合、焼成温度を、1100℃を超える温度にまで高くしなければ、実施例2と同等の比表面積を有する研磨材が得られなかった。

Claims (6)

  1.  立方晶複合酸化希土及び複合酸フッ化希土を含み、
     全希土類元素を酸化物換算で95.0~99.5質量%含有し、
     前記全希土類元素の酸化物換算量に対して、セリウムを酸化物換算量で54.5~95.0質量%、ランタンを酸化物換算量で4.5~45.0質量%、ネオジムを酸化物換算量で0.5~2.0質量%含有し、
     フッ素原子を0.5~4.0質量%含有し、
     前記全希土類元素の酸化物換算量に対して、ナトリウム原子を0.001~0.50質量%含有する、セリウム系研磨材。
  2.  CuKα線を用いたX線回折測定における、前記立方晶複合酸化希土のメインピークの強度に対する酸フッ化希土のメインピークの強度の比が0.01~0.50である、請求項1に記載のセリウム系研磨材。
  3.  請求項1又は2に記載のセリウム系研磨材を製造する方法であって、
     セリウム、ランタン及びネオジムを含有する混合軽希土化合物を、500~1100℃で焼成して混合酸化希土とし、前記混合酸化希土にセリウム、ランタン及びネオジムを含有するフッ化希土を添加して、粉砕及び焼成する工程を含み、前記焼成よりも前にナトリウム化合物を添加する、セリウム系研磨材の製造方法。
  4.  前記フッ化希土が、前記混合軽希土化合物にフッ化物を添加して400℃以下で熱処理して得られたものである、請求項3に記載のセリウム系研磨材の製造方法。
  5.  前記混合酸化希土と、添加する前記フッ化希土との混合質量比が、99:1~65:35である、請求項3又は4に記載のセリウム系研磨材の製造方法。
  6.  前記ナトリウム化合物が、炭酸水素ナトリウム、炭酸ナトリウム、酢酸ナトリウム、リン酸ナトリウム、硫酸ナトリウム、硝酸ナトリウム、シュウ酸ナトリウム及びポリアクリル酸ナトリウムからなる群のうちから選ばれる少なくとも1種のナトリウム塩である、請求項3~5のいずれか1項に記載のセリウム系研磨材の製造方法。
PCT/JP2016/073486 2015-09-25 2016-08-09 セリウム系研磨材及びその製造方法 WO2017051629A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680055510.6A CN108026433B (zh) 2015-09-25 2016-08-09 铈系研磨材料及其制造方法
EP16848417.8A EP3354705B1 (en) 2015-09-25 2016-08-09 Cerium-based abrasive material and process for producing same
KR1020187008059A KR102090494B1 (ko) 2015-09-25 2016-08-09 세륨계 연마재 및 그 제조 방법
US15/762,857 US10717909B2 (en) 2015-09-25 2016-08-09 Cerium-based abrasive material and process for producing same
JP2017541472A JP6489491B2 (ja) 2015-09-25 2016-08-09 セリウム系研磨材及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-187767 2015-09-25
JP2015187767 2015-09-25

Publications (1)

Publication Number Publication Date
WO2017051629A1 true WO2017051629A1 (ja) 2017-03-30

Family

ID=58386006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073486 WO2017051629A1 (ja) 2015-09-25 2016-08-09 セリウム系研磨材及びその製造方法

Country Status (6)

Country Link
US (1) US10717909B2 (ja)
EP (1) EP3354705B1 (ja)
JP (1) JP6489491B2 (ja)
KR (1) KR102090494B1 (ja)
CN (1) CN108026433B (ja)
WO (1) WO2017051629A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021220672A1 (ja) * 2020-04-27 2021-11-04
WO2024014425A1 (ja) * 2022-07-12 2024-01-18 株式会社レゾナック セリウム系研磨材、研磨液、研磨液の製造方法、及びガラス研磨方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6560155B2 (ja) * 2016-04-20 2019-08-14 信越化学工業株式会社 合成石英ガラス基板用研磨剤及び合成石英ガラス基板の研磨方法
CN114599752A (zh) * 2019-10-22 2022-06-07 Cmc材料股份有限公司 用于选择性化学机械抛光氧化物的组合物及方法
CN111085901B (zh) * 2019-12-23 2021-12-21 江西沃格光电股份有限公司 玻璃面板的抛光方法及玻璃面板
CN112080207B (zh) * 2020-08-19 2022-04-15 包头天骄清美稀土抛光粉有限公司 稀土抛光粉的制备方法
KR20230090768A (ko) 2021-12-15 2023-06-22 인오켐 주식회사 디스플레이 유리기판 연마용 조성물의 제조방법 및 상기 조성물을 이용한 디스플레이 기판을 연마하는 방법
CN115627153A (zh) * 2022-10-19 2023-01-20 中国兵器科学研究院宁波分院 一种碳化硼陶瓷球用水基研磨液及其制备方法
CN115975509A (zh) * 2022-12-29 2023-04-18 德米特(苏州)电子环保材料有限公司 一种铈基稀土抛光粉及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224949A (ja) * 2000-11-30 2002-08-13 Showa Denko Kk セリウム系研磨材及びその製造方法
WO2004092297A1 (ja) * 2003-04-17 2004-10-28 Mitsui Mining & Smelting Co., Ltd. セリウム系研摩材
JP2006097014A (ja) * 2004-09-03 2006-04-13 Showa Denko Kk 混合希土類酸化物、混合希土類フッ素化物及びそれらを用いたセリウム系研磨材、並びにそれらの製造方法
JP2006124566A (ja) * 2004-10-29 2006-05-18 Mitsui Mining & Smelting Co Ltd セリウム系研摩材及びセリウム系研摩材の製造方法
JP2009501812A (ja) * 2005-07-20 2009-01-22 トライバッハー インダストリー アーゲー セリアを主材料としたガラス研磨組成物およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85106015A (zh) * 1985-07-23 1987-01-21 上海跃龙化工厂 镧铈混合稀土
TWI338036B (en) * 2005-04-04 2011-03-01 Showa Denko Kk Cerium-based oxide abrasive, and producing method and use thereof
JP4876183B1 (ja) 2010-09-27 2012-02-15 三井金属鉱業株式会社 セリウム系研摩材
CN103509472A (zh) * 2013-10-25 2014-01-15 上海华明高纳稀土新材料有限公司 铈基混合稀土抛光粉及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224949A (ja) * 2000-11-30 2002-08-13 Showa Denko Kk セリウム系研磨材及びその製造方法
WO2004092297A1 (ja) * 2003-04-17 2004-10-28 Mitsui Mining & Smelting Co., Ltd. セリウム系研摩材
JP2006097014A (ja) * 2004-09-03 2006-04-13 Showa Denko Kk 混合希土類酸化物、混合希土類フッ素化物及びそれらを用いたセリウム系研磨材、並びにそれらの製造方法
JP2006124566A (ja) * 2004-10-29 2006-05-18 Mitsui Mining & Smelting Co Ltd セリウム系研摩材及びセリウム系研摩材の製造方法
JP2009501812A (ja) * 2005-07-20 2009-01-22 トライバッハー インダストリー アーゲー セリアを主材料としたガラス研磨組成物およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3354705A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021220672A1 (ja) * 2020-04-27 2021-11-04
JP7400956B2 (ja) 2020-04-27 2023-12-19 株式会社レゾナック セリウム系研磨材スラリー原液及びその製造方法、並びに研磨液
WO2024014425A1 (ja) * 2022-07-12 2024-01-18 株式会社レゾナック セリウム系研磨材、研磨液、研磨液の製造方法、及びガラス研磨方法

Also Published As

Publication number Publication date
US20180291245A1 (en) 2018-10-11
JP6489491B2 (ja) 2019-03-27
EP3354705A1 (en) 2018-08-01
JPWO2017051629A1 (ja) 2018-03-08
EP3354705B1 (en) 2021-10-06
CN108026433A (zh) 2018-05-11
KR20180042375A (ko) 2018-04-25
CN108026433B (zh) 2021-02-26
KR102090494B1 (ko) 2020-03-18
US10717909B2 (en) 2020-07-21
EP3354705A4 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
JP6489491B2 (ja) セリウム系研磨材及びその製造方法
JP6421887B2 (ja) セリウム塩の製造方法、酸化セリウム及びセリウム系研磨剤
JP3929481B2 (ja) 酸化セリウム系研磨材、その製造方法及び用途
US6986798B2 (en) Cerium-based abrasive, production process thereof
JP4450424B2 (ja) セリウム系研摩材およびその原料
JP6839767B2 (ja) セリウム系研磨材用原料の製造方法、及びセリウム系研磨材の製造方法
JP3694478B2 (ja) セリウム系研磨材及びその製造方法
JP5619515B2 (ja) 酸化セリウム系研磨剤及びガラス製ハードディスク基板の製造方法
JP3875668B2 (ja) フッ素を含有するセリウム系研摩材およびその製造方法
TWI285674B (en) Cerium-based abrasive and production process thereof
JP2002097457A (ja) セリウム系研摩材、その品質検査方法および製造方法
KR100679966B1 (ko) 세륨계 연마재 및 세륨계 연마재의 제조 방법
KR20220148919A (ko) 세륨계 연마재 슬러리 원액 및 그 제조 방법, 및 연마액
JP2002097458A (ja) セリウム系研摩材、その品質検査方法および製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848417

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017541472

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187008059

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15762857

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016848417

Country of ref document: EP