WO2017049802A1 - 阵列基板、透光钝化膜及液晶显示面板的制造方法 - Google Patents

阵列基板、透光钝化膜及液晶显示面板的制造方法 Download PDF

Info

Publication number
WO2017049802A1
WO2017049802A1 PCT/CN2015/100188 CN2015100188W WO2017049802A1 WO 2017049802 A1 WO2017049802 A1 WO 2017049802A1 CN 2015100188 W CN2015100188 W CN 2015100188W WO 2017049802 A1 WO2017049802 A1 WO 2017049802A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
forming
electrode layer
conductive film
substrate
Prior art date
Application number
PCT/CN2015/100188
Other languages
English (en)
French (fr)
Inventor
赵阳
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/913,364 priority Critical patent/US20170261805A1/en
Publication of WO2017049802A1 publication Critical patent/WO2017049802A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel

Definitions

  • the present invention relates to the field of liquid crystal display technology, and in particular to an array substrate, a light transmissive passivation film, and a method of manufacturing a liquid crystal display panel.
  • a three-layer film is formed on a substrate substrate of an array substrate (ie, an Array substrate), which is a common electrode layer, a passivation layer, and a pixel electrode.
  • an array substrate ie, an Array substrate
  • a passivation layer ie, an Array substrate
  • a pixel electrode ie, an Array substrate
  • the industry typically uses a high temperature sputtering process in excess of 285 ° C to form a passivation layer.
  • the particle activity of the passivation material for forming the passivation layer is high, resulting in generation of more granular protrusions on the surface of the finally formed passivation layer, thereby seriously affecting the liquid crystal display panel.
  • the penetration rate is used to form a passivation layer.
  • embodiments of the present invention provide an array substrate, a light-transmissive passivation film, and a method of manufacturing a liquid crystal display panel to reduce protrusions formed on the surface of the passivation layer and improve transmittance.
  • a method for manufacturing an array substrate includes: forming a first light-transmitting conductive film on a substrate substrate; forming a light-transmission passivation on the first light-transmitting conductive film at a temperature not exceeding 200 ° C a film; a second light-transmitting conductive film is formed on the light-transmissive passivation film.
  • the step of forming a first light-transmissive conductive film on the substrate substrate comprises: forming a first light-transmissive conductive film on the substrate substrate at a first preset temperature, and forming a first light-transmitting conductive layer Annealing is performed after the film, and the first predetermined temperature is greater than 200 °C.
  • the step of forming the first light-transmissive conductive film on the substrate substrate comprises: forming the first light-transmitting conductive film on the substrate substrate in a non-heated state.
  • the step of forming a second transparent conductive film on the transparent passivation film comprises: forming a second transparent conductive film on the transparent passivation film at a second preset temperature, and forming a second transparent The photoconductive film is then annealed, and the second predetermined temperature is greater than 200 °C.
  • the first preset temperature and the second preset temperature are equal.
  • the step of forming a second transparent conductive film on the transparent passivation film includes: A second light-transmitting conductive film is formed on the light-transmissive passivation film in a hot state.
  • the step of forming a transparent passivation film on the first transparent conductive film at a temperature not exceeding 200 ° C further includes: etching a contact hole on the transparent passivation film to make the second transparent conductive
  • the film is electrically connected to the source or the drain of the thin film transistor of the array substrate through the contact hole.
  • the first transparent conductive film is a common electrode layer, and the second transparent conductive film is a pixel electrode layer.
  • the embodiment of the present invention further provides a method for manufacturing a transparent passivation film.
  • the transparent passivation film is disposed between the common electrode layer and the pixel electrode layer, and the common electrode layer is disposed adjacent to the array substrate.
  • the method includes: A light-transmissive passivation film is formed on the common electrode layer at a temperature not exceeding 200 °C.
  • the method further comprises: forming a common electrode layer on the substrate substrate at a first preset temperature, and performing annealing after forming the common electrode layer, the first preset temperature being greater than 200 °C.
  • the method further comprises: forming a common electrode layer on the substrate substrate in a non-heated state.
  • the method further includes: forming a pixel electrode layer on the transparent passivation film at a second preset temperature, and performing annealing after forming the pixel electrode layer, wherein the second preset temperature is greater than 200 ° C.
  • the first preset temperature and the second preset temperature are equal.
  • the method further comprises: forming a pixel electrode layer on the transparent passivation film in a non-heated state.
  • the step of forming a light-transmissive passivation film on the common electrode layer at a temperature not exceeding 200 ° C further includes: etching a contact hole on the light-transmissive passivation film to pass the pixel electrode layer through the contact hole and the array The source or drain of the thin film transistor of the substrate is electrically connected.
  • the embodiment of the invention further provides a method for manufacturing a liquid crystal display panel, comprising: forming a common electrode layer on a substrate substrate; forming a light transmissive passivation film on the common electrode layer at a temperature not exceeding 200 ° C; A pixel electrode layer is formed on the light-transmissive passivation film.
  • the array substrate, the transparent passivation film and the method for manufacturing the liquid crystal display panel of the embodiment of the invention adopt a low temperature to form a passivation layer to reduce the particle activity of the passivation material, thereby reducing the granularity generated on the surface of the passivation layer.
  • the protrusions increase the transmittance of the liquid crystal display panel.
  • FIG. 1 is a schematic flow chart of an embodiment of a method for fabricating an array substrate of the present invention
  • Figure 2 is a cross-sectional view showing the structure of an array substrate of the present invention.
  • FIG. 3 is a schematic flow chart of another embodiment of a method for fabricating an array substrate of the present invention.
  • Figure 4 is a cross-sectional view showing the structure of an embodiment of a liquid crystal display panel of the present invention.
  • Fig. 1 is a flow chart showing an embodiment of a method for fabricating an array substrate of the present invention. The method is for forming a three-layer film structure including a first light-transmissive conductive film, a light-transmissive passivation film, and a second light-transmissive conductive film which are sequentially stacked, as shown in FIG. :
  • the materials of the first transparent conductive film and the second transparent conductive film may be the same, for example, both of them may be ITO (Indium Tin Oxide) transparent conductive film, and the transparent passivation film is a light transmissive but not Conductive passivation film.
  • the first light-transmissive conductive film may be a common electrode layer
  • the second light-transmissive conductive film is a pixel electrode layer
  • the light-transmissive passivation film is disposed on the common electrode layer and A passivation layer (also referred to as a PV layer or a flat passivation layer) between the pixel electrode layers.
  • a high-temperature sputtering method using a temperature exceeding 285 ° C is used to form a light-transmissive passivation film (passivation layer), and the embodiment of the present invention forms a passivation layer at a low temperature of not more than 200 ° C, which can reduce the formation of a passivation layer.
  • the three-layer film structure formed by the embodiment of the present invention is not directly formed on the array substrate of the liquid crystal display panel, that is, there may be other film structures between the first light-transmitting conductive film and the substrate substrate, for example, The array substrate of the cross-sectional view of the structure shown in FIG.
  • the array substrate 20 includes a substrate substrate 21, a metal layer 22, a first passivation layer 23, a common electrode layer 24, a second passivation layer 25, and a pixel electrode layer 26.
  • the metal layer 22 is formed on the substrate 21 a substrate;
  • a first passivation layer 23 is formed on the contact 22 and formed with a first hole O 1 of the exposed surface of the metal layer 22 a metal layer;
  • a first common electrode layer 24 is located and located on the periphery of the first contact hole O 1 passivation layer 23, i.e., not the first passivation layer 24 covers the common electrode layer 23 within a predetermined range around the first contact hole O 1 (dimension is shown in FIG.
  • the second passivation layer 25 is located on the first passivation layer 23 exposed by the common electrode layer 24 and the common electrode layer 24, and the second passivation layer 25 is formed with the second contact hole O 2 of the surface of the metal layer 22,
  • the second contact hole O 2 is in communication with the first contact hole O 1 to form a contact hole;
  • the pixel electrode layer 26 is located on the second passivation layer 25 and in the first contact hole O 1 and the second contact hole O 2 so that The pixel electrode layer 26 is electrically connected to the metal layer 22 through a contact hole formed by the second contact hole O 2 and the first contact hole O 1 , and the metal layer 12 may be one of a source and a drain of the thin film transistor of the array substrate 20 .
  • a contact hole is formed on the light-transmissive passivation film so that the second light-transmissive conductive film is electrically connected to the source or drain of the thin film transistor of the array substrate 20 through the contact hole.
  • S31 forming a first light-transmitting conductive film on the substrate substrate at a first preset temperature, the first preset temperature is greater than 200 ° C, and annealing is performed after forming the first light-transmitting conductive film.
  • the first preset temperature and the second preset temperature may be equal or unequal, but both must be higher than 200 ° C, that is, compared to the low temperature required for forming the transparent passivation film, it is required to be formed at a high temperature.
  • a first light-transmitting conductive film and a second light-transmitting conductive film may be equal or unequal, but both must be higher than 200 ° C, that is, compared to the low temperature required for forming the transparent passivation film, it is required to be formed at a high temperature.
  • This embodiment can be formed at any high temperature by any combination of methods such as sputtering, plasma enhanced chemical vapor deposition (PECVD), chemical vapor deposition (CVD), vacuum evaporation, or low pressure chemical vapor deposition.
  • PECVD plasma enhanced chemical vapor deposition
  • CVD chemical vapor deposition
  • vacuum evaporation vacuum evaporation
  • low pressure chemical vapor deposition low pressure chemical vapor deposition.
  • the transmittance of the liquid crystal display panel is 43.76%, and this embodiment is Forming thickness
  • the first light-transmitting conductive film is annealed, if a light-transmissive passivation film of the same thickness is formed at a temperature of 200 ° C, the transmittance of the liquid crystal display panel is 88.33%.
  • the thickness is formed After the first transparent conductive film is annealed, if a transparent passivation film is formed at a temperature of 285 ° C by the prior art, the thickness is formed.
  • the transmittance of the liquid crystal display panel is 48.12%, and the thickness of the present embodiment is After the first transparent conductive film is annealed, if a transparent passivation film is formed at a temperature of 200 ° C, the thickness is formed. After the second light-transmissive conductive film is annealed, the transmittance of the liquid crystal display panel is 75.39%.
  • embodiments of the present invention can also form a first light-transmissive conductive film on the substrate substrate in a non-heated state.
  • a second light-transmitting conductive film is formed on the light-transmissive passivation film in a non-heated state.
  • membrane For example, the thickness is formed in a non-heated state After the first transparent conductive film, if a transparent passivation film is formed at a temperature of 200 ° C, the thickness is formed to After the second light-transmitting conductive film is annealed, the transmittance of the liquid crystal display panel is 76.13%. It can be seen that the transmittance of the obtained film structure is still much larger than that of the prior art.
  • the embodiment of the present invention further provides a method for manufacturing a liquid crystal display panel.
  • the liquid crystal display panel 40 includes the array substrate 20, a color filter substrate 41 disposed at a distance from the array substrate 20, and an array substrate.
  • the liquid crystal 42 between the film 20 and the color filter substrate 41.
  • the method of manufacturing the liquid crystal display panel 40 includes the above-described method of manufacturing the array substrate 20. For the manufacturing method steps of other structures, refer to the prior art, and details are not described herein again.
  • the embodiment of the present invention further provides a method for manufacturing a transparent passivation film, which corresponds to the second passivation layer 25 sandwiched between the common electrode layer 24 and the pixel electrode layer 26 as shown in FIG. 2 . Therefore, a light-transmitting passivation film can be formed on the common electrode layer 24 at a temperature of 200 °C.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Geometry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种阵列基板(20)的制造方法,该方法包括:在衬底基材(21)上形成第一透光导电膜(24);在不超过200℃的温度下于第一透光导电膜(24)上形成透光钝化膜(25);在透光钝化膜(25)上形成第二透光导电膜(26)。一种透明钝化膜(25)及液晶显示面板(40)的制造方法。上述方法能够减少产生于钝化层(25)的表面上的颗粒状的突起,提高液晶显示面板(40)的穿透率。

Description

阵列基板、透光钝化膜及液晶显示面板的制造方法 【技术领域】
本发明涉及液晶显示技术领域,具体而言涉及一种阵列基板、透光钝化膜及液晶显示面板的制造方法。
【背景技术】
对于诸如FFS(Fringe Field Switching,边缘场开关技术)模式的液晶显示面板,其阵列基板(即Array基板)的衬底基材上形成有三层薄膜,依次为公共电极层、钝化层、像素电极层。当前,业界通常使用超过285℃的高温溅射方法形成钝化层。但是在高温溅射的过程中,用于形成钝化层的钝化材料的颗粒活性较高,导致在最终形成的钝化层的表面上产生较多颗粒状的突起,从而严重影响液晶显示面板的穿透率。
【发明内容】
鉴于此,本发明实施例提供一种阵列基板、透光钝化膜及液晶显示面板的制造方法,以减少形成于钝化层表面上的突起,提高穿透率。
本发明实施例提供的一种阵列基板的制造方法,包括:在衬底基材上形成第一透光导电膜;在不超过200℃的温度于第一透光导电膜上形成透光钝化膜;在透光钝化膜上形成第二透光导电膜。
其中,所述在衬底基材上形成第一透光导电膜的步骤包括:在第一预设温度下于衬底基材上形成第一透光导电膜,并在形成第一透光导电膜后进行退火,所述第一预设温度大于200℃。
其中,所述在衬底基材上形成第一透光导电膜的步骤包括:在非加热状态下于衬底基材上形成第一透光导电膜。
其中,所述在透光钝化膜上形成第二透光导电膜的步骤包括:在第二预设温度下于透光钝化膜上形成第二透光导电膜,并在形成第二透光导电膜后进行退火,所述第二预设温度大于200℃。
其中,第一预设温度和第二预设温度相等。
其中,所述在透光钝化膜上形成第二透光导电膜的步骤包括:在非加 热状态下于透光钝化膜上形成第二透光导电膜。
其中,所述在不超过200℃的温度于第一透光导电膜上形成透光钝化膜的步骤还包括:在透光钝化膜上刻蚀形成接触孔,以使第二透光导电膜通过接触孔和阵列基板的薄膜晶体管的源极或漏极电连接。
其中,第一透光导电膜为公共电极层,且第二透光导电膜为像素电极层。
本发明实施例还提供一种透光钝化膜的制造方法,透光钝化膜夹设于公共电极层和像素电极层之间,且公共电极层临近设置于阵列基板上,该方法包括:在不超过200℃的温度下于公共电极层上形成透光钝化膜。
其中,所述方法还包括:在第一预设温度下于衬底基材上形成公共电极层,并在形成公共电极层后进行退火,第一预设温度大于200℃。
其中,所述方法还包括:在非加热状态下于衬底基材上形成公共电极层。
其中,所述方法还包括:在第二预设温度下于透光钝化膜上形成像素电极层,并在形成像素电极层后进行退火,第二预设温度大于200℃。
其中,第一预设温度和第二预设温度相等。
其中,所述方法还包括:在非加热状态下于透光钝化膜上形成像素电极层。
其中,所述在不超过200℃的温度于公共电极层上形成透光钝化膜的步骤还包括:在透光钝化膜上刻蚀形成接触孔,以使像素电极层通过接触孔和阵列基板的薄膜晶体管的源极或漏极电连接。
本发明实施例进一步提供一种的液晶显示面板的制造方法,包括:在衬底基材上形成公共电极层;在不超过200℃的温度下于公共电极层上形成透光钝化膜;在透光钝化膜上形成像素电极层。
本发明实施例的阵列基板、透光钝化膜及液晶显示面板的制造方法,采用低温形成钝化层,降低钝化材料的颗粒活性,从而减少产生于钝化层的表面上的颗粒状的突起,提高液晶显示面板的穿透率。
【附图说明】
图1是本发明的阵列基板的制造方法一实施例的流程示意图;
图2是本发明的阵列基板一实施例的结构剖视图;
图3是本发明的阵列基板的制造方法另一实施例的流程示意图;
图4是本发明的液晶显示面板一实施例的结构剖视图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明所提供的示例性的实施例的技术方案进行清楚、完整地描述。
图1是本发明的阵列基板的制造方法一实施例的流程示意图。所述方法用于形成三层膜结构,该三层膜结构包括依次层叠的第一透光导电膜、透光钝化膜和第二透光导电膜,如图1所示,所述方法包括:
S11:在衬底基材上形成第一透光导电膜。
S12:在不超过200℃的温度于第一透光导电膜上形成透光钝化膜。
S13:在透光钝化膜上形成第二透光导电膜。
第一透光导电膜和第二透光导电膜的材料可以相同,例如两者均可以为ITO(Indium Tin Oxide,氧化铟锡)透明导电膜,透光钝化膜是一种透光但不导电的钝化薄膜。在例如FFS模式的液晶显示面板中,第一透光导电膜可以为公共电极层,且第二透光导电膜为像素电极层,则对应地,透光钝化膜为设置于公共电极层和像素电极层之间的钝化层(Passivation Layer,又称PV层或平坦钝化层)。
区别于现有技术的使用超过285℃的高温溅射方法形成透光钝化膜(钝化层),本发明实施例采用不超过200℃的低温形成钝化层,能够降低形成钝化层的钝化材料的颗粒活性,从而减少产生于钝化层的表面上的颗粒状的突起,提高液晶显示面板的穿透率。
需要说明的是,本发明实施例形成的三层膜结构并非直接形成于液晶显示面板的阵列基板上,即第一透光导电膜和衬底基材之间还可以有其他膜结构,例如具有图2所示结构剖视图的阵列基板。
如图2所示,所述阵列基板20包括衬底基材21、金属层22、第一钝化层23、公共电极层24、第二钝化层25以及像素电极层26。其中:金属层22形成于衬底基材21上;第一钝化层23形成于金属层22上且形成有暴露金属层22的表面的第一接触孔O1;公共电极层24位于第一钝化层23 上且位于第一接触孔O1的外围,即第一钝化层23在第一接触孔O1周围的预定范围(尺寸为图中所示b)内未覆盖公共电极层24;第二钝化层25位于公共电极层24以及公共电极层24所暴露的第一钝化层23上,且第二钝化层25形成有金属层22的表面的第二接触孔O2,第二接触孔O2和第一接触孔O1相通以构成一接触孔;像素电极层26位于第二钝化层25上以及第一接触孔O1和第二接触孔O2内,以使像素电极层26通过第二接触孔O2和第一接触孔O1相通构成的接触孔与金属层22电连接,金属层12可以为阵列基板20的薄膜晶体管的源极和漏极的一者。即,在透光钝化膜上刻蚀形成接触孔,以使第二透光导电膜通过接触孔和阵列基板20的薄膜晶体管的源极或漏极电连接。
参阅图3所示的本发明的阵列基板的制造方法,包括以下:
S31:在第一预设温度下于衬底基材上形成第一透光导电膜,所述第一预设温度大于200℃,并在形成第一透光导电膜后进行退火。
S32:在不超过200℃的温度于第一透光导电膜上形成透光钝化膜。
S33:在第二预设温度下于透光钝化膜上形成第二透光导电膜,所述第二预设温度大于200℃,并在形成第二透光导电膜后进行退火。
其中,第一预设温度和第二预设温度可以相等也可以不相等,但两者必须都高于200℃,即,比较于形成透光钝化膜所需的低温,需要在高温下形成第一透光导电膜和第二透光导电膜。
本实施例可以在高温下采用例如溅射、等离子化学气相沉积(Plasma Enhanced Chemical vapor deposition,PECVD)、化学气相沉积(Chemical vapor deposition,CVD)、真空蒸镀或低压化学气相沉积等任意组合方法形成第一透光导电膜、透光钝化膜和第二透光导电膜。
在形成厚度为
Figure PCTCN2015100188-appb-000001
(埃米)的第一透光导电膜并退火后,若采用现有技术在285℃的温度下形成透光钝化膜,则液晶显示面板的穿透率为43.76%,而本实施例在形成厚度为
Figure PCTCN2015100188-appb-000002
的第一透光导电膜并退火后,若在200℃的温度下形成相同厚度的透光钝化膜,则液晶显示面板的穿透率为88.33%。类似的,在形成厚度为
Figure PCTCN2015100188-appb-000003
的第一透光导电膜并退火后,若采用现有技术在285℃的温度下形成透光钝化膜,再形成厚度为
Figure PCTCN2015100188-appb-000004
的第二透光导电膜并退火后,则液晶显示面板的穿透率为48.12%,而本实施例在形成厚度 为
Figure PCTCN2015100188-appb-000005
的第一透光导电膜并退火后,若在200℃的温度下形成透光钝化膜,再形成厚度为
Figure PCTCN2015100188-appb-000006
的第二透光导电膜并退火后,则液晶显示面板的穿透率为75.39%。
显然采用本发明实施例的制造方法所得到的液晶显示面板的(或膜结构的)穿透率远远大于现有技术的穿透率。
当然,本发明的其他实施例也可以在非加热状态下于衬底基材上形成第一透光导电膜,同理,在非加热状态下于透光钝化膜上形成第二透光导电膜。例如,在非加热状态下形成厚度为
Figure PCTCN2015100188-appb-000007
的第一透光导电膜后,若在200℃的温度下形成透光钝化膜,再形成厚度为
Figure PCTCN2015100188-appb-000008
的第二透光导电膜并退火后,则液晶显示面板的穿透率为76.13%。可见所制得的膜结构的穿透率依然远大于现有技术的穿透率。
本发明实施例还提供一种液晶显示面板的制造方法,如图4所示,该液晶显示面板40包括上述阵列基板20、与阵列基板20相对间隔设置的彩膜基板41以及夹设于阵列基板20和彩膜基板41之间的液晶42。该液晶显示面板40的制造方法包括上述阵列基板20的制造方法。而至于其他结构的制造方法步骤,可参阅现有技术,此处不再赘述。
本发明实施例进一步提供一种透光钝化膜的制造方法,该透光钝化膜相当于图2所示夹设于公共电极层24和像素电极层26之间的第二钝化层25,因此可在200℃的温度下于公共电极层24上形成透光钝化膜。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,例如各实施例之间技术特征的相互结合,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (16)

  1. 一种阵列基板的制造方法,其中,所述方法包括:
    在衬底基材上形成第一透光导电膜;
    在不超过200℃的温度于所述第一透光导电膜上形成透光钝化膜;
    在所述透光钝化膜上形成第二透光导电膜。
  2. 根据权利要求1所述的方法,其中,所述在衬底基材上形成第一透光导电膜的步骤包括:
    在第一预设温度下于衬底基材上形成第一透光导电膜,并在形成所述第一透光导电膜后进行退火,所述第一预设温度大于200℃。
  3. 根据权利要求1所述的方法,其中,所述在衬底基材上形成第一透光导电膜的步骤包括:
    在非加热状态下于衬底基材上形成第一透光导电膜。
  4. 根据权利要求1所述的方法,其中,所述在所述透光钝化膜上形成第二透光导电膜的步骤包括:
    在第二预设温度下于所述透光钝化膜上形成第二透光导电膜,并在形成所述第二透光导电膜后进行退火,所述第二预设温度大于200℃。
  5. 根据权利要求4所述的方法,其中,所述第一预设温度和所述第二预设温度相等。
  6. 根据权利要求1所述的方法,其中,所述在所述透光钝化膜上形成第二透光导电膜的步骤包括:
    在非加热状态下于所述透光钝化膜上形成第二透光导电膜。
  7. 根据权利要求1所述的方法,其中,所述在不超过200℃的温度于所述第一透光导电膜上形成透光钝化膜的步骤还包括:
    在所述透光钝化膜上刻蚀形成接触孔,以使所述第二透光导电膜通过所述接触孔和所述阵列基板的薄膜晶体管的源极或漏极电连接。
  8. 根据权利要求1所述的方法,其中,所述第一透光导电膜为公共电极层,且所述第二透光导电膜为像素电极层。
  9. 一种透光钝化膜的制造方法,所述透光钝化膜夹设于阵列基板的公共电极层和像素电极层之间,且所述公共电极层临近设置于所述阵列基板 上,其中,所述方法包括:
    在不超过200℃的温度下于所述公共电极层上形成所述透光钝化膜。
  10. 根据权利要求9所述的方法,其中,所述方法还包括:
    在第一预设温度下于衬底基材上形成所述公共电极层,并在形成所述公共电极层后进行退火,所述第一预设温度大于200℃。
  11. 根据权利要求9所述的方法,其中,所述方法还包括:
    在非加热状态下于衬底基材上形成所述公共电极层。
  12. 根据权利要求9所述的方法,其中,所述在所述透光钝化膜上形成所述像素电极层的步骤包括:
    在第二预设温度下于所述透光钝化膜上形成所述像素电极层,并在形成所述像素电极层后进行退火,所述第二预设温度大于200℃。
  13. 根据权利要求12所述的方法,其中,所述第一预设温度和所述第二预设温度相等。
  14. 根据权利要求9所述的方法,其中,所述在所述透光钝化膜上形成所述像素电极层的步骤包括:
    在非加热状态下于所述透光钝化膜上形成所述像素电极层。
  15. 根据权利要求9所述的方法,其中,所述在不超过200℃的温度于所述公共电极层上形成透光钝化膜的步骤还包括:
    在所述透光钝化膜上刻蚀形成接触孔,以使所述像素电极层通过所述接触孔和所述阵列基板的薄膜晶体管的源极或漏极电连接。
  16. 一种液晶显示面板的制造方法,其中,所述方法包括:
    在衬底基材上形成公共电极层;
    在不超过200℃的温度下于所述公共电极层上形成透光钝化膜;
    在所述透光钝化膜上形成像素电极层。
PCT/CN2015/100188 2015-09-25 2015-12-31 阵列基板、透光钝化膜及液晶显示面板的制造方法 WO2017049802A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/913,364 US20170261805A1 (en) 2015-09-25 2015-12-31 Manufacturing method of array substrate, trnaslucent passivation film and liquid crystal display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510624658.4 2015-09-25
CN201510624658.4A CN105116589A (zh) 2015-09-25 2015-09-25 阵列基板、透光钝化膜及液晶显示面板的制造方法

Publications (1)

Publication Number Publication Date
WO2017049802A1 true WO2017049802A1 (zh) 2017-03-30

Family

ID=54664615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/100188 WO2017049802A1 (zh) 2015-09-25 2015-12-31 阵列基板、透光钝化膜及液晶显示面板的制造方法

Country Status (3)

Country Link
US (1) US20170261805A1 (zh)
CN (1) CN105116589A (zh)
WO (1) WO2017049802A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105116589A (zh) * 2015-09-25 2015-12-02 深圳市华星光电技术有限公司 阵列基板、透光钝化膜及液晶显示面板的制造方法
CN109390277B (zh) * 2017-08-11 2021-03-16 京东方科技集团股份有限公司 阵列基板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5903047A (en) * 1997-01-03 1999-05-11 National Science Council Low temperature-deposited passivation film over semiconductor device
CN104091783A (zh) * 2014-06-26 2014-10-08 京东方科技集团股份有限公司 Tft阵列基板的制作方法、tft阵列基板和显示面板
CN104409413A (zh) * 2014-11-06 2015-03-11 京东方科技集团股份有限公司 阵列基板制备方法
CN104538405A (zh) * 2015-01-04 2015-04-22 京东方科技集团股份有限公司 一种阵列基板及其制造方法和显示装置
CN105116589A (zh) * 2015-09-25 2015-12-02 深圳市华星光电技术有限公司 阵列基板、透光钝化膜及液晶显示面板的制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050105071A1 (en) * 2003-06-03 2005-05-19 Fusao Ishii Methods for patterning substrates having arbitrary and unexpected dimensional changes
JP2006080426A (ja) * 2004-09-13 2006-03-23 Sharp Corp 発光ダイオード
US7688619B2 (en) * 2005-11-28 2010-03-30 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
KR102141459B1 (ko) * 2013-03-22 2020-08-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5903047A (en) * 1997-01-03 1999-05-11 National Science Council Low temperature-deposited passivation film over semiconductor device
CN104091783A (zh) * 2014-06-26 2014-10-08 京东方科技集团股份有限公司 Tft阵列基板的制作方法、tft阵列基板和显示面板
CN104409413A (zh) * 2014-11-06 2015-03-11 京东方科技集团股份有限公司 阵列基板制备方法
CN104538405A (zh) * 2015-01-04 2015-04-22 京东方科技集团股份有限公司 一种阵列基板及其制造方法和显示装置
CN105116589A (zh) * 2015-09-25 2015-12-02 深圳市华星光电技术有限公司 阵列基板、透光钝化膜及液晶显示面板的制造方法

Also Published As

Publication number Publication date
US20170261805A1 (en) 2017-09-14
CN105116589A (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
US10181465B2 (en) Array substrate, display device and manufacturing method of array substrate
WO2016086531A1 (zh) 阵列基板及其制作方法
US11443658B2 (en) Flexible display panels, manufacturing methods thereof and flexible display apparatuses
US20150129881A1 (en) Pixel unit and method of fabricating the same, array substrate and display device
WO2016065852A1 (zh) 一种coa基板及其制作方法和显示装置
WO2015089963A1 (zh) 阵列基板及其制备方法、显示装置
US20160148954A1 (en) Manufacturing method of array substrate, array substrate and display device
WO2017219411A1 (zh) 阵列基板及其制作方法
KR102221845B1 (ko) 표시 기판 및 그의 제조방법
TWI582838B (zh) 一種液晶顯示面板陣列基板的製作方法
CN105742292A (zh) 阵列基板的制作方法及制得的阵列基板
WO2017008333A1 (zh) Tft基板结构的制作方法
WO2015062265A1 (zh) 像素结构、阵列基板、显示装置及像素结构的制造方法
US20180231816A1 (en) Thin film transistor and manufacturing method thereof, liquid crystal panel
WO2017049802A1 (zh) 阵列基板、透光钝化膜及液晶显示面板的制造方法
US10211232B2 (en) Manufacture method of array substrate and array substrate manufactured by the method
KR102227519B1 (ko) 표시 기판 및 그의 제조방법
CN108337905A (zh) 一种阵列基板及其制备方法、液晶显示面板
WO2017012292A1 (zh) 阵列基板及其制备方法、显示面板、显示装置
WO2015010410A1 (zh) 阵列基板及其制作方法和显示面板
WO2016161858A1 (zh) 触摸基板及其制作方法、触摸显示面板
WO2015003406A1 (zh) 一种tft-lcd阵列基板及显示装置
TWI724145B (zh) 統一具有觸控感測器之撓性彩色濾波器及撓性液晶顯示器及其製造方法
US9263483B2 (en) Array panel and manufacturing method for the same
US20160190327A1 (en) Thin film transistor substrate, manufacturing method thereof, and liquid crystal display panel using same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14913364

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904676

Country of ref document: EP

Kind code of ref document: A1