WO2017049784A1 - 一种轿厢平衡补偿链系统 - Google Patents

一种轿厢平衡补偿链系统 Download PDF

Info

Publication number
WO2017049784A1
WO2017049784A1 PCT/CN2015/098072 CN2015098072W WO2017049784A1 WO 2017049784 A1 WO2017049784 A1 WO 2017049784A1 CN 2015098072 W CN2015098072 W CN 2015098072W WO 2017049784 A1 WO2017049784 A1 WO 2017049784A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
acid
weight
car
compensation chain
Prior art date
Application number
PCT/CN2015/098072
Other languages
English (en)
French (fr)
Inventor
魏伟
毛亮
韩阳
吴夕虎
Original Assignee
南通兴华达高实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通兴华达高实业有限公司 filed Critical 南通兴华达高实业有限公司
Publication of WO2017049784A1 publication Critical patent/WO2017049784A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G13/00Chains

Definitions

  • the invention belongs to the field of manned implements, and in particular relates to a car balance compensation chain system.
  • FIG. 1 is a schematic diagram of a prior art elevator system.
  • the length of the cable 13 between the car side 11 and the counterweight side 12 will constantly change, causing a change in the weight of the wire ropes on both sides of the sheave sheave 14.
  • the weight of the cable 13 is mostly applied to the car side 11; when the car 11a is at the upper level, the weight of the cable 13 is mostly applied to the counterweight side 12.
  • This kind of change has little effect on the running performance of the elevator when the lift height is not large, but when the lift exceeds a certain height, it will seriously affect the stability of the elevator operation and endanger the safety of passengers. For this reason, when the lifting height of the elevator exceeds a certain height, it is necessary to provide a component having a certain weight to balance the weight change due to the height change, which is the elevator balance compensation chain 15.
  • the function of the compensation chain 15 is to ensure the smoothness of the elevator car 11a when it is raised and lowered.
  • the compensation chain 15 will swing due to the weight inertia. Therefore, the elevator runs for a long time and is prone to wear, which causes the outer layer of the compensation chain to fall off and the abnormal noise inside the elevator.
  • the technical problem to be solved by the present invention is to provide a car balance compensation chain system, which strengthens the strength of the compensation chain by the composite material to solve the problems of the prior art.
  • the present invention discloses a car balance compensation chain system, which comprises: a car; an auxiliary sheave; a main cable wound around the auxiliary sheave, wherein the main cable suspends the car; The main cable is suspended by the edge of the auxiliary sheave; the load is heavy, the pulley is suspended by the rope; the secondary cable of the suspended car; the connector connecting the main cable and the secondary cable; and the connector fixed to the connector a common blocker, and a common blocker restricts the movement of the connector; the compensation chain is suspended from the load block, wherein the length of the compensation chain is equal to the length of the running distance of the negative weight; the compensation chain receiving groove for receiving the compensation chain; and, the compensation
  • the chain is made of a carbon fiber composite material coated with a sizing agent, and comprises a component A having a monofunctional or higher epoxy group, which is composed of a hydroxyl group, an amide group, an imide group, an urethane group, An epoxy compound having at least one functional
  • Group 1 99.8 parts by mass relative to the component A, and a sizing agent containing at least a tertiary amine compound having a molecular weight of 100 g/mol or more as the component B;
  • Group 2 99.8 parts by mass based on the component A, and a quaternary ammonium salt having at least a cationic moiety represented by any one of the following general formula (I) or (II) used as the component B, 0.19 to 23.8 by mass Sizing agent
  • R1 to R5 each represent a hydrocarbon group having 7 to 19 carbon atoms, a hydrocarbon-containing and ether group having 7 to 19 carbon atoms, a hydrocarbon-containing and ester group having 7 to 19 carbon atoms, or a carbon number of 7 to Any of the hydrocarbon-containing and hydroxyl group-containing groups of 19, each of R6 and R7 represents hydrogen, a hydrocarbon group having 3 to 6 carbon atoms, a hydrocarbon-containing and ether-containing group having 3 to 6 carbon atoms, or a carbon number of 3 to 6 Any of the bases of the hydrocarbon and ester construction;
  • Group 3 99.8 parts by mass based on the component A, and a slurry containing at least 0.19 to 23.8 parts by mass of the quaternary phosphonium salt and/or the phosphine compound used as the component B.
  • the present invention can obtain the following technical effects:
  • the compensation chain is made of a carbon fiber composite material coated with a sizing agent.
  • the sizing agent with the component A and the component B is coated on the carbon fiber to strengthen the strength of the carbon fiber itself, thereby avoiding excessive friction of the outer layer of the chain, thereby causing compensation.
  • the outer layer of the chain falls off and an abnormal sound inside the elevator occurs.
  • Figure 1 is a schematic view of the prior art of the present invention
  • FIG. 2 is a schematic diagram of a car balance compensation chain system in accordance with an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an operational state of a car balance compensation chain system in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a connector of a car balance compensation chain system in accordance with an embodiment of the present invention.
  • Figure 5 is a cross-sectional view taken along line 5-5 of Figure 4.
  • 6 to 7 are schematic views of a car balance compensation chain system according to another embodiment of the present invention.
  • FIGS. 8 to 10 are schematic views of a compensation chain according to another embodiment of the present invention.
  • Elevator system 10 car side 11, car 11a1, counterweight side 12, cable 13, traction sheave 14, compensation chain 15, fixed portion 90, 90A-90D, bottom portion 92, top portion 94, Elevator well 100, load block 110, 160, 170, 175, well 112, pulley 120, up buffer member 131, blocker 132, load block buffer member 140, guide member 141, common blocker 145, guide rail 151, Load block 170, compensation chain 180, 181, 182, compensation chain receiving groove 190, compensation chain storage cylinder 191, machine room 200, motor 231, traction sheave 300, auxiliary sheave 400, connector 500, cable 600, Cable 610, secondary cable 700, cable 710, car 800, length D, S.
  • a traction machine (not shown) is installed in the machine room 200 at the top of the elevator shaft 100.
  • the primary cable 600 extends in a wound manner between the traction sheave 300 of the traction machine and the secondary sheave 400 at an appropriate length from the sheave sheave 300.
  • the main cable 600 suspended by the edge of the traction sheave 300 is connected to the car 800 at one end by a one-to-one rope, and the main cable 600 suspended by the edge of the auxiliary sheave 400 is wound around the pulley.
  • 120 the pulley 120 suspends the weight 110 with a two-to-one rope) and connects one end of the primary cable 600 to a fixed portion 90 located in the middle of the elevator shaft 100.
  • the primary cable 600 and the secondary cable 700 of the suspended car 800 are interconnected by a connector 500. Furthermore, assuming that the car 800 is in the bottom portion 92 of the hoistway 100, the length D of the main cable 600 is at least the running distance of the car 800 from the bottom portion 92 to the top portion 94, and D is D1 + D2, wherein D1 is the length to the auxiliary sheave 400 and D2 is the length from the auxiliary sheave 400 to the length of the connector 500 (as shown in FIG. 2) and the length of the cable 600 wound around the sheave sheave 300 and the auxiliary sheave 400.
  • the secondary cable 700 When the car 800 is at the bottom level, or when the load block 110 is at the top, the secondary cable 700 has a length that can suspend the pulley 120 at half the length of the length D.
  • the distance of the connector 500 between the uppermost and lowermost moving levels is equal to that of the main The cable 600 moves half the length D.
  • the traction sheave 300 is suspended and the weight on the side of the car is the weight of the car 800 (the weight of the car 800 itself, its attachment device and its accessories, and 50% of the load on the load), and the length D and the reach of the traction slot.
  • the weight suspended by the auxiliary sheave 400 on the load weight 110 is the sum of the following weights, i.e., the D/2 length plus the weight of the secondary cable 700 from the connector 500 to the length S of the pulley 120,
  • the weight of the main cable 600 of the auxiliary sheave 400 to the length D2 of the connector 500, and the weight of the pulley 120 and the weight 110 are half of the sum.
  • the weight on the side of the load weight 110 is adjusted to be approximately equal to the weight on the side of the car 800.
  • the adjustment of the weight balance can be accomplished using a large size rope or a large and heavy material as the secondary cable 700, or the weight of the pulley 120 and the load weight 110 can be adjusted.
  • the weight on the side of the car 800 is the car 800 and the to the sheave 300.
  • the weight on the side of the load weight 110 is the sum of the weight of the pulley 120 and the weight 110 and the weight of the main cable 600 of the length D and D2.
  • the weight of almost all of the secondary ropes is supported by the fixed portion 90 and does not act on the secondary sheave 400.
  • the car cushioning member 130 and the load block cushioning member 140 are generally provided in opposite directions of the car 800 and the weight block 110.
  • the load weight 110 is suspended in the hoistway 100 in the manner described above.
  • the up buffer member 131 on the ceiling of the car 800 is generally provided on the side opposite to the blocker 132 on the underside of the floor of the machine room 200 to alleviate the strongness of the car 800 to the underside of the floor of the machine room 200 due to careless over-running. Shock.
  • the hanging weight on the side of the car 800 when running up and down is almost equal to the weight on the side of the negative weight 110. Further, when the car 800 is at the top portion 94, the hanging weight on the side of the car 800 is reduced by the weight of the main rope having the length L, which is transmitted to the side of the weight 110, and on the other hand, at the weight 110. The side suspension weight is reduced and is supported by the fixed portion 90 of the weight of the secondary cable 700. Therefore, when the car 800 is moved up and down, the hanging weight on the side of the load weight 110 also changes. When the car 800 is in the top portion 94 or the bottom portion 92, the hanging weight acting on the hoisting machine varies depending on the resulting minimum and maximum weight.
  • the connector 500 serves as one weight.
  • a skyscraper for example, when the connector 500 is in an intermediate position between the auxiliary sheave 400 and the pulley 120, and the skyscraper is rocked by a strong wind or an earthquake, most of the cables 600 are also rocked separately. .
  • the rocking of the cable 600 can be achieved by The connector 500 of the configuration shown in Figures 4 and 5 is avoided.
  • the lowermost ends of the primary cables 600 are respectively connected to the uppermost ends of the secondary cables 700 by rod-shaped connectors 500.
  • Most of the connectors 500 are restricted from moving in the horizontal direction by the common blocker 145.
  • the common blocker 145 is fixed to the connector and the other connector is horizontally constrained and vertically loosely engaged.
  • a common blocker 145 extending along the line of the connector 500 limits the horizontal movement of the majority of the connectors 500 and is provided with guides 141 at both ends thereof.
  • the guide 141 grasps the guide rail 151 installed in the passage for guiding the up and down movement.
  • the cable 610 is free from swinging of the skyscraper.
  • the main cable 600 is double-wound between the sheave sheave 300 and the auxiliary sheave 400 such that the contact angle of the main cable 600 to the sheave sheave 300 is large.
  • the main cable 600 is simply wound around the sheave sheave 300 as shown in FIG.
  • Fig. 6 The structure and effect in Fig. 6 are the same as those in Fig. 2 except for the following.
  • the load block 160 is suspended from a portion of the connector 500 and guided by a rail that protects the cable 610 from rocking caused by the mass effect of the connector 500. In this case, the weight of the pulley 120 and the weight block 110 needs to be reduced due to the associated weight of the weight block 160. Moreover, when the load weight 160 is suspended from the connector 500, the compensation chain needs to be suspended from the bottom of the load weight 160 to the fixed portion 90 in the passage to create the same effect as the secondary rope in order to adjust the weight balance.
  • the secondary cable 700 is used to adjust the weight and the fixed portion 90 for the cable 710 is only a portion of the intermediate floor.
  • a portion of the intermediate floor of the elevator shaft must withstand all of the weight and tension of the secondary cable 700, and therefore, the elevator shaft 100 must have a special force design.
  • the plurality of fixed portions 90A-90D are respectively distributed on a plurality of floors, and the ends of the plurality of secondary cables 700 are connected to the fixed portions 90A-90D. Since this approach reduces the burden on the secondary cable 700, the design and execution of the elevator shaft intermediate layer can be in a general manner.
  • the fixed portions 90A-90D are respectively distributed to the respective intermediate floors.
  • the compensation chain 180 is used as the secondary cable 700 to perform continuous weight adjustment.
  • a cable 610 wound in a one-to-one manner around the sheave sheave 300 hangs a car 800 at one end and a load block 170 at the other end.
  • the load block 170 is suspended from its bottom by a compensation chain 180.
  • the length of the compensation chain 180 is at least the same as the length of the distance traveled by the load block 170 from its uppermost portion to its lowermost portion, or the length of the well 112 that reaches the chain.
  • the compensation chain receiving slot 190 can accommodate almost all of the compensation chains.
  • the hanging weight of the car 800 and the D+D1 length of the cable 610 is almost the same as the hanging weight of the load weight 170 and the total length of the compensation chain 180 and the length XX of the cable 610.
  • the weight is equal.
  • the hanging weight of the cable 610 of the car 800 and the length D1 is almost equal to the weight of the cable 610 of the hanging weight of the load weight 170 and the length of D+D2 (including the length transferred by the car 800).
  • the length of the side cable 610 is shortened due to the gradual shift to the weight 170. Due to the transfer of the cable 610, the compensation chain 180 is continuously received in the compensation chain receiving groove 190.
  • the compensation chain 180 is housed in the compensation chain accommodating groove 190, the weight of the compensation chain 180 acting on the sprocket wheel 300 is gradually lowered due to chain accommodation.
  • the hanging weight on the car side becomes the sum of the weight of the rope equal to the length of D1 and the weight of the car 800.
  • the hanging weight at the side of the load weight is the weight of the cable 610 of the length of the cable D of the D length and the length of the cable 610; this results in a balance of the hanging weight.
  • the weight adjustment can be continuously performed while the car 800 is running up and down, without any conventional suspension ropes and without causing an imbalance.
  • the effect is the same as the aforementioned embodiment.
  • the load weight 170 can also replace the weight of the load weight 170 by using a relatively thick chain as the compensation chain 180.
  • the modification required in this case is that the compensation chain 180 is made into a U-shaped suspension, and one end thereof is fixed to the middle portion of the elevator shaft.
  • the cable 610 wound around the traction sheave 300 hangs the car 800 at one end thereof, and the other end of the cable hangs the compensation chain accommodating groove 190 as a load block, and the compensation chain 181 is suspended from the lower layer of the machine room 200.
  • the positional relationship between the car 800 and the compensation chain accommodating groove 190 is such that when one of the two is on the top layer, the other is on the bottom layer.
  • the compensation chain 181 is suspended on the same plane as the compensation chain accommodating groove 190, and has a length such that when the compensation chain accommodating groove 190 is at the bottom layer, the end of the compensation chain does not burden the compensation chain accommodating groove 190. .
  • the compensation chain 182 for adjusting the weight is suspended from the lower floor of the machine room 200 and is on the same plane as the load block 170 suspended by the cable 610, and the weight 170 is provided.
  • the compensation chain storage cylinder 191 is driven by a motor 231.
  • Motor 231 is controlled to synchronize with the speed and direction of operation of the car (not shown). Again, the maximum and minimum winding amounts of the compensation chain 182 occur when the load weight 170 is at the top or bottom.
  • the weight of the winding amount of the compensation chain 182 is adjusted, so that the suspension on the car side (not shown)
  • the hanging weight is balanced with the weight suspended on the side of the weight when the weight 170 is at the top layer and the compensation chain 182 is wound to its maximum amount.
  • the weight block 170 moves downward and unwinds the compensation chain 182.
  • the compensating chains 180, 181, and 182 are made of a sizing-coated carbon fiber composite material comprising a component A having a monofunctional or higher epoxy group, and a hydroxyl group, an amide group, an imide group, and an aminocarboxylic acid.
  • a method for producing a carbon fiber obtained by applying a slurry of at least one of the group of the following Group 1, Group 2, and Group 3, wherein the slurry is applied to the carbon fiber,
  • the temperature range of 158 to 258 ° C is heat-treated for 29 to 599 seconds.
  • Group one 99.8 parts by mass based on the component A, and a sizing agent containing at least a tertiary amine compound having a molecular weight of 100 g/mol or more used as the component B.
  • Group 2 99.8 parts by mass based on the component A, and a quaternary ammonium salt having at least a cationic moiety represented by any one of the following general formula (I) or (II) used as the component B, 0.19 to 23.8 by mass a sizing agent,
  • each of R1 to R5 represents a hydrocarbon group having 7 to 19 carbon atoms, a hydrocarbon-containing and ether group having 7 to 19 carbon atoms, a hydrocarbon-containing and ester-containing group having 7 to 19 carbon atoms, or a carbon number of 7 Any one of the hydrocarbon-containing and hydroxyl group-containing groups of ⁇ 19
  • each of R6 and R7 represents hydrogen, a hydrocarbon group having 3 to 6 carbon atoms, a hydrocarbon-containing and ether-containing group having 3 to 6 carbon atoms, or a carbon number of 3 to 6 Any of the hydrocarbon- and ester-containing groups)
  • Group 3 99.8 parts by mass relative to component A, combined with at least a quaternary phosphonium salt and/or phosphine used as component B A slurry of 0.19 to 23.8 parts by mass of the compound.
  • the component A used in the present invention means a compound having two or more epoxy groups in the molecule, or an epoxy group having one or more functional groups, and having a hydroxyl group, an amide group, an imide group, or an ethyl urethane.
  • the component B used in the present invention refers to a tertiary amine compound and/or a tertiary amine salt having a molecular weight of 100 g/mol or more, and has four stages of a cationic moiety represented by any one of the formula (I) or (II). Ammonium salt.
  • the mechanism in which a sizing agent containing a specific amount of the component A and the component B is applied to the carbon fiber and heat-treated under specific conditions to improve the adhesion is determined to be the first component B acts on the carboxyl group of the carbon fiber used in the present invention. Further, an oxygen-containing functional group such as a hydroxyl group is anionized by drawing hydrogen ions contained in the functional groups, and then the anionized functional group is subjected to a nucleophilic reaction with the epoxy group contained in the component A. Thereby, a strong bond of the carbon fiber and the epoxy group used in the present invention is formed.
  • the epoxy equivalent of the epoxy compound of the component A is preferably less than 344 g/mol, more preferably less than 289 g/mol, still more preferably less than 143 g/mol.
  • the epoxy equivalent is less than 344 g/mol, a covalent bond can be formed at a high density to further improve the adhesion between the carbon fiber and the matrix resin.
  • the lower limit of the epoxy equivalent is not specific, but when it is less than 88 g/mol, the adhesion is saturated.
  • the epoxy compound of the component A is preferably a trifunctional or higher epoxy resin, more preferably a tetrafunctional or higher epoxy resin.
  • the epoxy compound of the component A is a trifunctional or higher epoxy resin having three or more epoxy groups in the molecule, even if one epoxy group forms a covalent bond with the oxygen-containing functional group on the surface of the carbon fiber, the remaining The two or more epoxy groups may form a covalent bond or a hydrogen bond with the matrix resin, and the adhesion is further increased.
  • the upper limit of the number of epoxy groups is not specific, but when it is 10 or more, the adhesion is saturated.
  • the epoxy compound of the component A preferably has one or more aromatic rings in the molecule, and more preferably has two or more aromatic rings.
  • the so-called interfacial layer in the vicinity of the carbon fiber is affected by the carbon fiber or the sizing agent, and has characteristics different from those of the matrix resin.
  • the epoxy compound of the component A has one or more aromatic rings, a rigid interface layer can be formed, the stress transmission ability between the carbon fibers and the matrix resin can be improved, and mechanical properties such as 0° tensile strength of the fiber-reinforced composite material can be improved.
  • the upper limit of the number of aromatic rings is not specific, but the mechanical properties are saturated when more than six.
  • the epoxy compound of the component A is preferably any one of a phenol novolak type epoxy resin, a cresol novolac type epoxy resin or tetrafos propyl diaminodiphenylmethane.
  • These epoxy resins have a large number of epoxy groups and a small epoxy equivalent, and have two or more aromatic rings.
  • the epoxy resin has a mechanical strength such as 0° tensile strength.
  • the epoxy resin having two or more functional groups is more preferably a phenol novolac type epoxy resin or a cresol novolak type epoxy resin.
  • the tertiary amine compound and/or the tertiary amine salt having a molecular weight of 100 g/mol or more of the component B used in the present invention must be blended in an amount of from 1 to 23 parts by mass, preferably from 1.5 to 9 parts by mass, based on 99.8 parts by mass of the component A epoxy compound. 18 parts by mass, more preferably 2 to 15 parts by mass, and particularly preferably 2 to 8 parts by mass.
  • the amount is less than 0.1 part by mass, covalent bond formation between the epoxy compound of the component A and the oxygen-containing functional group on the surface of the carbon fiber cannot be promoted, and the adhesion between the carbon fiber and the matrix resin is insufficient.
  • the amount exceeds 25 parts by mass the component B covers the surface of the carbon fiber, hinders the formation of a covalent bond, and the adhesion between the carbon fiber and the matrix resin is insufficient.
  • the tertiary amine compound and/or the tertiary amine salt having a molecular weight of 100 g/mol or more of the component B used in the present invention must have a molecular weight of 100 g/mol or more and a molecular weight of preferably 100 to 400 g/mol, more preferably It is preferably in the range of 100 to 300 g/mol, and more preferably in the range of 100 to 200 g/mol.
  • the molecular weight is 100 g/mol or more, volatilization is also suppressed during heat treatment, and a large adhesion improving effect is obtained even in a small amount.
  • the molecular weight is 400 g/mol or less, the ratio of the active sites in the molecule is high, and even if the amount is small, a large adhesion improving effect is obtained.
  • the tertiary amine compound used in the present invention means a compound having a tertiary amino group in the molecule.
  • the tertiary amine salt used in the present invention means a salt in which a compound having a tertiary amino group is neutralized by a proton donor.
  • the proton supply system means a compound having an active hydrogen which can be used as a proton for a compound having a tertiary amino group.
  • active hydrogen means a hydrogen atom to which a basic compound is supplied as a proton.
  • the proton donor may, for example, be an organic acid such as an inorganic acid, a carboxylic acid, a sulfonic acid or a phenol, an alcohol, a thiol or a 1,3-dicarbonyl compound.
  • organic acid such as an inorganic acid, a carboxylic acid, a sulfonic acid or a phenol, an alcohol, a thiol or a 1,3-dicarbonyl compound.
  • the inorganic acid may, for example, be sulfuric acid, sulfurous acid, persulfuric acid, hydrochloric acid, perchloric acid, nitric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, phosphonic acid, phosphinic acid, pyrophosphoric acid, tripolyphosphoric acid, and amide sulfuric acid.
  • sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid are preferably used.
  • the carboxylic acid may, for example, be an aliphatic polycarboxylic acid, an aromatic polycarboxylic acid, a polycarboxylic acid containing S, an aliphatic oxycarboxylic acid, an aromatic oxycarboxylic acid, an aliphatic monocarboxylic acid, and an aromatic single.
  • the following compounds of carboxylic acids are included in the following compounds.
  • aliphatic polycarboxylic acid may, for example, be oxalic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecane di Acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, methylmalonic acid, ethylmalonic acid, propylmalonic acid, butylmalonic acid, methylsuccinic acid, B Succinic acid, 2,2-dimethylsuccinic acid, 2,3-dimethylsuccinic acid, 2-methylglutaric acid, 3-methylglutaric acid, 3-methyl-3-ethylpentyl Diacid, 3,3-diethylglutaric acid, 3,3-dimethylglutaric acid, 3-methyladipate, citraconic acid, and the like.
  • aromatic polycarboxylic acid examples include phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, and pyromellitic acid.
  • S-containing polycarboxylic acid examples include thiopropionic acid and the like.
  • aliphatic oxycarboxylic acid examples include, for example, glycolic acid, lactic acid, tartaric acid, and castor oil fatty acid.
  • aromatic oxycarboxylic acid examples include salicylic acid, mandelic acid, 4-hydroxybenzoic acid, 1-hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, and 6-hydroxy-2. -naphthoic acid, etc.
  • aliphatic monocarboxylic acid may, for example, be formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, heptanoic acid, lanolinic acid, stearic acid, behenic acid, and eleven.
  • Acid acrylic acid, methacrylic acid and oleic acid.
  • aromatic monocarboxylic acid may, for example, be benzoic acid, cinnamic acid, naphthoic acid, toluic acid, ethylbenzoic acid, propylbenzoic acid, isopropylbenzoic acid, butylbenzoic acid or isobutylbenzene.
  • Formic acid t-butylbenzoic acid, butyl benzoic acid, hydroxybenzoic acid, ethoxybenzoic acid, propoxybenzoic acid, isopropoxybenzoic acid, N-ethylaminobenzoic acid, N- Propylaminobenzoic acid, N-isopropylaminobenzoic acid, N-butylaminobenzoic acid, N-isobutylaminobenzoic acid, N-butylidene benzoic acid, nitrobenzene Formic acid and fluorobenzoic acid.
  • aromatic polycarboxylic acids aromatic polycarboxylic acids, aliphatic monocarboxylic acids, and aromatic carboxylic acids are preferably used, and specifically, phthalic acid, formic acid, and octanoic acid are preferably used.
  • the single fiber diameter of the carbon fiber is preferably 7.5 ⁇ m or less, more preferably 6 ⁇ m or less, and particularly preferably 5.5 ⁇ m or less.
  • the lower limit of the single fiber diameter is not particularly limited. However, when it is 4.5 ⁇ m or less, single fiber cutting is likely to occur during the process, and productivity is lowered.
  • the obtained carbon fiber is usually subjected to an oxidation treatment in order to improve the adhesion to the matrix resin, and an oxygen-containing functional group is introduced.
  • an oxidation treatment method gas phase oxidation, liquid phase oxidation, and liquid phase electrolytic oxidation are used, but from the viewpoint of high productivity and uniform treatment, liquid phase electrolytic oxidation is preferably used.
  • examples of the electrolytic solution used for liquid phase electrolytic oxidation include an acidic electrolytic solution and an alkaline electrolytic solution.
  • the carbon fiber to electrolytic treatment in an alkaline electrolyte.
  • electrolytic treatment in an acidic aqueous solution followed by washing with an alkaline aqueous solution, and applying a sizing agent. It is considered that the excessive oxidation portion in the surface of the carbon fiber is present at the interface during the electrolytic treatment, and it becomes a starting point of destruction when it becomes a composite material, so that the excess oxidized portion is dissolved and removed by using an alkaline aqueous solution. Promote the formation of covalent bonds.
  • the residue of the acidic electrolytic solution is present on the surface of the carbon fiber, the proton in the residue is captured by the component B, and the effect of the component B which is originally intended to extract the hydrogen ion of the oxygen-containing functional group on the surface of the carbon fiber is lowered. Therefore, it is preferred to carry out an electrolytic treatment in an acidic aqueous solution, followed by neutralizing the acidic electrolytic solution with an alkaline aqueous solution.
  • the combination of the specifically treated carbon fibers and the sizing agent provides a further improvement.
  • the concentration of the electrolytic solution used in the present invention is preferably in the range of 0.02 to 5.3 mol/liter. If the concentration of the electrolyte is When the temperature is 0.02 mol/liter or more, the electrolytic treatment voltage is lowered, which is advantageous in terms of running cost. On the other hand, if the concentration of the electrolytic solution is 5.3 mol/liter or less, it is advantageous from the viewpoint of safety.
  • the temperature of the electrolytic solution used in the present invention is preferably in the range of 13 to 100 ° C, more preferably in the range of 10 to 47 ° C.
  • the temperature of the electrolytic solution is 13 ° C or more, the efficiency of the electrolytic treatment is increased, which is advantageous in terms of running cost.
  • the temperature of the electrolytic solution is 100 ° C or lower, it is advantageous from the viewpoint of safety.
  • the amount of liquid phase electrolytic oxidation is preferably optimized to match the carbonization degree of the carbon fiber, and when a high elastic modulus carbon fiber is treated, a larger amount of electricity is required.
  • the present invention from the viewpoint of forming a covalent bond between the epoxy compound of the component A and the oxygen-containing functional group on the surface of the carbon fiber, and further improving the adhesion, it is preferred to wash with an alkaline water-soluble after the oxidation treatment. carbon fiber. Among them, it is preferred to carry out liquid phase electrolytic treatment in an acidic electrolytic solution, followed by washing with an alkaline aqueous solution.
  • the pH of the alkaline aqueous solution used for washing is preferably in the range of 7 to 14, more preferably in the range of 9.3 to 13.8.
  • Specific examples of the alkaline aqueous solution include aqueous solutions of hydroxides such as sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, and barium hydroxide, sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate, and carbonic acid.
  • An aqueous solution of ammonium and hydrazine is preferably used.
  • a method of washing the carbon fibers with an alkaline aqueous solution for example, a dipping method and a spraying method can be used.
  • a dipping method and a spraying method can be used as a method of washing the carbon fibers with an alkaline aqueous solution.
  • the impregnation method is used to vibrate carbon fibers by ultrasonic waves.
  • the means for applying (coating) the carbon fiber to the sizing agent for example, a method of immersing the carbon fiber in the sizing liquid via a roll, and contacting the carbon fiber with the adhering roll of the sizing liquid, the sizing liquid is sprayed, and the carbon fiber is sprayed on the carbon fiber.
  • the means for imparting the sizing agent may be either a batch type or a continuous type, and a continuous type having good productivity and small variation is preferably used.
  • the sizing agent when the sizing agent is applied, it is also preferable to vibrate the carbon fiber with ultrasonic waves.
  • the heat treatment conditions are preferably in the temperature range of 168 to 234 ° C for 28 to 435 seconds, more preferably in the temperature range of 178 to 230 ° C for 31 to 298 seconds. If the heat treatment condition is lower than 158 ° C and/or less than 28 seconds, the covalent bond formation between the epoxy resin of the sizing agent and the oxygen-containing functional group on the surface of the carbon fiber cannot be promoted, and the adhesion between the carbon fiber and the matrix resin is insufficient. .
  • the surface oxygen concentration (O/C) of the atomic ratio of oxygen (O) to carbon (C) on the surface of the fiber measured by X-ray photoelectron spectroscopy is preferably 0.049 to 0.51. In the range, it is more preferably in the range of 0.059 to 0.29, and particularly preferably in the range of 0.069 to 0.21. Since the surface oxygen concentration (O/C) is 0.049 or more, the oxygen-containing functional group on the surface of the carbon fiber can be secured to obtain a strong adhesion to the matrix resin. Further, since the surface oxygen concentration (O/C) is 0.049 or less, the decrease in the strength of the carbon fiber itself due to oxidation can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)

Abstract

一种轿厢平衡补偿链系统,其包括:轿厢(800);辅槽轮(400);缠绕辅槽轮(400)的主要缆绳(600);负重块(110);悬挂轿厢(800)的次要缆绳(700);连接主要缆绳(600)和次要缆绳(700)的连接器(500);固定至连接器(500)的共同阻挡器(145);补偿链(180、181、182),悬挂于负重块(110、160、170、175),补偿链(180、181、182)的长度等于负重块(110、160、170、175)运行距离的长度;用以容置补偿链(180、181、182)的补偿链容置槽(190);补偿链(180、181、182)由涂布上浆剂的碳纤维复合材料所制成。通过碳纤维复合材料加强补偿链本身强度,避免补偿链(180、181、182)外表层过度摩擦,进而造成补偿链(180、181、182)外表层脱落,出现电梯内异响。

Description

一种轿厢平衡补偿链系统 技术领域
本发明属于载人机具领域,具体地说涉及一种轿厢平衡补偿链系统。
背景技术
请参考图1,其为现有技术的电梯系统的示意图。如图所示,电梯系统10在运行过程中,轿厢侧11和对重侧12之间缆绳13的长度会不断变化,从而引起曳引槽轮14两侧钢丝绳重量的变化。当轿厢11a位于最低层时,缆绳13的重量大部分作用于轿厢侧11;当轿厢11a位于高层时,缆绳13的重量大部分作用于对重侧12。这种变化在电梯提升高度不大时,对电梯的运行性能影响不大,但提升超过一定高度时,会严重影响电梯运行的稳定性,危及乘客的安全。为此,当电梯的提升高度超过一定高度时,必须要设置具有一定重量的部件来平衡因高度变化带来的重量变化,这就是电梯平衡补偿链15。
简言之,补偿链15的作用是为了要保证电梯轿厢11a升降时的平稳。然,在电梯上下运行时,补偿链15多少会因为重量惯性而产生摆动,因此电梯运行时间长了容易磨损,进而造成补偿链外表层脱落,出现电梯内异响。
发明内容
有鉴于此,本发明所要解决的技术问题是提供了一种轿厢平衡补偿链系统,通过复合材料加强补偿链的强度,以解决先前技术的问题。
为了解决上述技术问题,本发明公开了一种轿厢平衡补偿链系统,其包括:轿厢;辅槽轮;缠绕辅槽轮的主要缆绳,其中主要缆绳悬挂所述轿厢;滑轮,其由辅槽轮的边缘所悬垂而下的主要缆绳所缠绕;负重块,滑轮通过绳索悬挂复重块;悬挂轿厢的次要缆绳;连接主要缆绳和次要缆绳的连接器;固定至连接器的共同阻挡器,且共同阻挡器限制连接器移动;补偿链,悬挂于负重块,其中补偿链的长度等于负重块运行距离的长度;用以容置补偿链的补偿链容置槽;并且,补偿链由涂布上浆剂的碳纤维复合材料所制成,其包含成分A,所述成分A具有1官能以上的环氧基,由羟基、酰胺基、酰亚胺基、胺基甲酸乙酯基、脲基、磺酰基及磺基中选出的至少一个以上的官能基的环氧化合物;以及由下述群组一、群组二及群组三所成的族群中的至少1种的浆剂;
群组一:相对于成分A有99.8质量份,配合有至少作为成分B使用的分子量为100g/mol以上的三级胺化合物的上浆剂;
群组二:相对于成分A有99.8质量份,配合有至少作为成分B使用的具有以下通式(I)或(II)中任一者所示的阳离子部位的四级铵盐0.19~23.8质量份而成的上浆剂;
Figure PCTCN2015098072-appb-000001
上述式中,R1至R5各自表示碳数7~19的烃基、碳数7~19的含烃与醚构造的基、碳数7~19的含烃与酯构造的基、或碳数7~19的含烃与羟基的基中任一者,R6与R7各自表示氢、碳数3~6的烃基、碳数3~6的含烃与醚构造的基、或碳数3~6的含烃与酯构造的基中的任一者;
群组三:相对于成分A有99.8质量份,配合有至少作为成分B使用的四级鏻盐及/或膦化合物0.19~23.8质量份而成的浆剂。
与现有技术相比,本发明可以获得包括以下技术效果:
1)通过连接器的设置,可避免缆绳过度摇摆而影响电梯乘坐安全。
2)补偿链由一种涂布上浆剂的碳纤维复合材料所制成,配合成分A与成分B的上浆剂涂布于碳纤维上,加强碳纤维本身强度,避免补偿链外表层过度摩擦,进而造成补偿链外表层脱落,出现电梯内异响。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明的现有技术的示意图;
图2是本发明实施例的轿厢平衡补偿链系统的示意图。
图3是本发明实施例的轿厢平衡补偿链系统的操作状态的示意图。
图4是本发明实施例的轿厢平衡补偿链系统的连接器的示意图。
图5是图4的剖面线5-5的剖面图。
图6~图7是本发明另一实施例的轿厢平衡补偿链系统的示意图。
图8~图10是本发明另一实施例的补偿链的示意图。
附图标记说明:
电梯系统10,轿厢侧11,轿厢11a1,对重侧12,缆绳13,曳引槽轮14,补偿链15,固定部份90、90A-90D,底层部份92,顶层部份94,电梯井100,负重块110、160、170、175,井112,滑轮120,上行缓冲件131,阻挡器132,负重块缓冲件140,导引件141,共同阻挡器145,导引轨151,负重块170,补偿链180、181、182,补偿链容置槽190,补偿链收置筒191,机房200,马达231,曳引槽轮300,辅槽轮400,连接器500,缆绳600,缆绳610,次要缆绳700,缆绳710,轿厢800,长度D、S。
具体实施方式
以下将配合附图及实施例来详细说明本发明的实施方式,藉此对本发明如何应用技术手段来解决技术问题并达成技术功效的实现过程能充分理解并据以实施。
本发明的轿厢平衡补偿链系统的一实施例将参考图2而说明。曳引机(未显示)安装在电梯井100顶端的机房200中。主要缆绳600以缠绕方式延伸于在曳引机的曳引槽轮300和在与曳引槽轮300距离一段适当长度的辅槽轮400之间。由曳引槽轮300的边缘所悬垂而下的主要缆绳600乃于此端以一对一绳索连接至轿厢800,而由辅槽轮400的边缘所悬垂而下的主要缆绳600缠绕于滑轮120(所述滑轮120以二对一绳索悬挂负重块110)且将主要缆绳600的一端连接至位于电梯井100的中间的固定部份90。
悬挂轿厢800的主要缆绳600和次要缆绳700以连接器500互相连接。再者,假设轿厢800在电梯井100的底层部份92,主要缆绳600的长度D至少为轿厢800由底层部份92到顶层部份94的运行距离,而D为D1+D2,其中D1为到辅槽轮400的长度且D2为由辅槽轮400至连接器500的长度(如图2所示)以及缠绕曳引槽轮300和辅槽轮400的缆绳600的长度。
当轿厢800在底层,或当负重块110在最上位时,次要缆绳700具有一可悬挂滑轮120在长度D一半高度的长度。介于最上和最下移动位准间的连接器500的移动距离相等于主要 缆绳600的移动长度D的一半。其次,当轿厢800在底层部份92时,于下将解释界于轿厢800边的重量以及负重块110边缘的重量间的关系。负重块110乃由曳引槽轮300和辅槽轮400悬垂而下。
曳引槽轮300悬垂而在车边上的重量为轿厢800的重量(轿厢800本身的重量,其附着装置及其附件,以及50%的搭乘负载),和长度D以及到达曳引槽轮300的长度D1的主要缆绳600的重量的和。另一方面,由辅槽轮400悬垂而在负重块110上的重量为下列重量的和,即D/2长度加上由连接器500至滑轮120的长度S的次要缆绳700的重量,由辅槽轮400至连接器500的长度D2的主要缆绳600的重量,以及滑轮120和负重块110的重量和的一半。在负重块110侧的重量乃受调整以近似相等于在轿厢800边的重量。重量平衡的调整可以使用大尺寸的绳索或一大且重的材料当成次要缆绳700加以完成,或可以调整滑轮120和负重块110的重量。
另一方面,当轿厢800在顶层部份94且在轿厢800侧的主要缆绳600的长度变成D1时,在轿厢800侧的重量乃是轿厢800和到曳引槽轮300的D1长度的主要缆绳600的重量的和。在此情形下,在负重块110边上的重量为滑轮120和负重块110重量和的一半和D及D2长度的主要缆绳600的重量和。几乎所有的次要绳索的重量由固定部份90所支持且并不作用在辅槽轮400上。
轿厢缓冲件130和负重块缓冲件140通常提供在轿厢800和负重块110的相反方向。负重块110以如上所述的方式悬挂在电梯井100中。在轿厢800天花板上的上行缓冲件131通常提供在与在机房200的地板下侧上的阻挡器132相对边以缓和因为粗心的过度运行所引起轿厢800对于机房200的地板下侧的强烈冲击。
无论轿厢800在任何楼层,在上下运行时在轿厢800侧的悬挂重量几乎相等于负重块110侧的重量。再者,当轿厢800在顶层部份94时,在轿厢800侧的悬挂重量降低了具有长度L的主要绳索的重量,其传送至负重块110侧,而另一方面,在负重块110侧的悬挂重量下降,几乎由次要缆绳700的重量中的固定部份90所支持。因此,当轿厢800上下运行时,在负重块110侧的悬挂重量亦改变。当轿厢800在顶层部份94或底层部份92时,作用在曳引机的悬挂重量依据随之而来的最小和最大重量而改变。
相同的,在图2所示的实施例中,由于主要缆绳600藉由使用连接器500连接至具有较大于主要绳索的尺寸的次要缆绳700,连接器500当作一个重量。因此,在例如一摩天大楼中,当连接器500在界于辅槽轮400和滑轮120之间的中间位置时,且此摩天大楼受到巨风或地震而摇摆时,多数的缆绳600亦分别摇摆。在本发明中,该缆绳600的摇摆可藉由具有 如图4与图5所示的构造的连接器500加以避免。
亦即,主要缆绳600的最下端分别以杆形连接器500与次要缆绳700的最上端连接。多数的连接器500由共同阻挡器145限制在水平方向移动。共同阻挡器145固定至连接器,且另一连接器乃水平的受限且铅直的松弛接合。沿着连接器500的线延伸的共同阻挡器145限制了多数连接器500的水平移动,且于其两端提供有导引件141。导引件141抓住安装在通道中用以引导上下移动的导引轨151。如上所述,缆绳610可免于摩天大楼的摇摆而生的摆动。
在上述的实施例中,主要缆绳600双缠绕于曳引槽轮300和辅槽轮400间以使主要缆绳600对曳引槽轮300的接触角较大。但是,当主要缆绳600对曳引槽轮300的接触角不需如此的大时,主要缆绳600单缠绕在曳引槽轮300上如图5所示已是足够的。
除了下述的外,在图6中的结构与效果均与在图2中相同。
负重块160悬挂在连接器500的部份并由导轨所导引,导轨可使缆绳610免于由连接器500的质量效果而引起的摇摆。在此例中,由于负重块160的相关重量,滑轮120和负重块110的重量需要降低。再者,当负重块160悬挂在连接器500时,补偿链需要由负重块160的底部悬挂至在通道中的固定部份90以造成如同次要绳索相同的效果以便调整重量平衡。
在所有上述的实施例中,次要缆绳700乃使用以调整重量且用于缆绳710的固定部份90只是在中间楼层的一部份。电梯井的中间楼层上的一部份必需承受次要缆绳700的所有重量以及张力,因此,电梯井100必需有特殊的力的设计。
因此,如图7所示,多数的固定部份90A-90D分别分布在多数的楼层,且多数的次要缆绳700的端部乃连接至固定部份90A-90D。由于此种方式降低了次要缆绳700的负担,电梯井中间层的设计及执行可以一般的方式为的。较佳的,该固定部份90A-90D乃分别的分布至各中间楼层。
其次将说明其他的实施例,其中使用补偿链180当成次要缆绳700以执行连续的重量调整。
参考图8,以一对一方式缠绕曳引槽轮300的缆绳610于其一端悬挂一轿厢800,而于另一端悬挂负重块170。该负重块170由其底部悬挂补偿链180。补偿链180的长度至少相同于负重块170从其最上到其最下部份所运行距离的长度,或是链到达在通道中的井112的长度。当负重块170在其最低位置时,补偿链容置槽190可容纳几乎所有的补偿链。
在上述的构造中,当轿厢800在底层时,轿厢800和D+D1长度的缆绳610的悬挂重量几乎与负重块170的悬挂重量和补偿链180的总长度和D2长度的缆绳610的重量相等。当轿厢 800在顶层时,轿厢800和D1长度的缆绳610的悬挂重量几乎相等于负重块170的悬挂重量和D+D2(包括由轿厢800所转移的长度)的长度的缆绳610的重量。
在上述的构造中,当轿厢800由所显示的状况(轿厢800在底层)运行向上时,在车边缆绳610的长度由于渐渐转移至负重块170而缩短。由于缆绳610的转移,补偿链180连续的收容在补偿链容置槽190中。当补偿链180容纳在补偿链容置槽190中时,作用在曳引槽轮300的补偿链180的重量由于链收容而逐渐的降低。当轿厢800最后到达顶层时,在轿厢侧的悬挂重量变成相等于D1长度的绳索和轿厢800的重量的和。另一方面,在负重块边的悬挂重量为由传送而来的D长度的缆绳610和D2的长度的缆绳610的重量和;其导致悬挂重量的平衡。
因此,在轿厢800上下运行时可连续的执行重量调整,无需任何习知的悬挂绳索且不会引起不平衡。其效果相同于前述的实施例。
除了图8所显示的实施例外,负重块170亦可藉由使用相当厚的链作为补偿链180而取代负重块170的重量。此种情形需要的修饰为补偿链180做成U形悬挂,且其一端固定至电梯井道的中间部份。
参考图9,缠绕曳引槽轮300的缆绳610于其一端悬挂轿厢800,且其另一端悬挂补偿链容置槽190当成负重块,补偿链181乃由机房200的下侧层悬挂而下。界于轿厢800和补偿链容置槽190间的位置关系为:当两者的一在顶层时,另一便在底层。补偿链181乃悬挂在与补偿链容置槽190相同的平面上,其具有一长度使当补偿链容置槽190在底层时,补偿链的端部不会对补偿链容置槽190构成负担。
在上述的构造中,当轿厢800由显示的状况(轿厢800在底层)向上运行时,D长度的绳索转移至负重块170边并渐渐的缩短,且藉由转移的缆绳610的重量,轿厢800边的重量减少了。由于缆绳610的转移,补偿链容置槽190向下运行且补偿链181逐渐离开补偿链容置槽190。藉此,由于补偿链的离开,链容器的重量减少,并与在车边的重量平衡。因此,上述的实施例亦具有前述实施例的效果。
在图10所显示的实施例中,用以调整重量的补偿链182乃由机房200的下侧地板悬挂而下,且与由缆绳610所悬挂的负重块170在同一平面上,负重块170提供有补偿链收置筒191以卷绕补偿链182。补偿链收置筒191由一马达231所驱动。马达231受控制以使与轿厢(未显示)所受操作的速度和方向同步。再者,补偿链182的最大和最小卷绕量分别发生在负重块170在顶层或在底层时。
在上述的构造中,补偿链182的卷绕量的重量乃受到调整,因此在轿厢侧(未显示)的悬 挂重量与悬挂在砝码边的重量相平衡,当负重块170在顶层,且补偿链182卷绕至其最大量时。藉此,当轿厢(未显示)向上运行,负重块170向下移动且解绕补偿链182。藉由使解绕补偿链182的重量大约相等于由于车的向上运行而到达砝码边的缆绳610的重量和离开车边所缩短绳索的重量的和,即使当车上下运行而使在每边的缆绳610的长度改变时,亦不会在轿厢侧和负重块侧间产生重量差异。
以下,更详细地说明用于实施本发明的补偿链180、181、182的制造方法。补偿链180、181、182由一种涂布上浆剂的碳纤维复合材料所制成,其包含成分A,具有1官能以上的环氧基,由羟基、酰胺基、酰亚胺基、胺基甲酸乙酯基、脲基、磺酰基及磺基中选出的至少一个以上的官能基的环氧化合物。并且,由下述群组一、群组二及群组三所成的族群中的至少1种的浆剂涂布于其上的碳纤维的制造方法,其将浆剂涂布于碳纤维上,在158~258℃的温度范围,热处理29~599秒。
群组一:相对于成分A有99.8质量份,配合有至少作为成分B使用的分子量为100g/mol以上的三级胺化合物的上浆剂。
群组二:相对于成分A有99.8质量份,配合有至少作为成分B使用的具有以下通式(I)或(II)中任一者所示的阳离子部位的四级铵盐0.19~23.8质量份而成的上浆剂,
Figure PCTCN2015098072-appb-000002
(上述式中,R1至R5各自表示碳数7~19的烃基、碳数7~19的含烃与醚构造的基、碳数7~19的含烃与酯构造的基、或碳数7~19的含烃与羟基的基中任一者,R6与R7各自表示氢、碳数3~6的烃基、碳数3~6的含烃与醚构造的基、或碳数3~6的含烃与酯构造的基中的任一者),
群组三:相对于成分A有99.8质量份,配合有至少作为成分B使用的四级鏻盐及/或膦 化合物0.19~23.8质量份而成的浆剂。
本发明中所用的成分A系指在分子内具有2个以上的环氧基的化合物,或具有1官能以上的环氧基,具有由羟基、酰胺基、酰亚胺基、胺基甲酸乙酯基、脲基、磺酰基及磺基中选出的至少一个以上的官能基的环氧化合物。
本发明所用的成分B系指:分子量为100g/mol以上的三级胺化合物及/或三级胺盐,具有通式(I)或(II)中任一者所示的阳离子部位的四级铵盐。
将配合有特定量的成分A与成分B的上浆剂涂布于碳纤维上,在特定条件下热处理而提高接着性的机构虽然不确定,但判断为首先成分B作用于本发明所用的碳纤维的羧基及羟基等含氧官能基,拉拔此等官能基中所含有的氢离子而阴离子化后,此经阴离子化的官能基与成分A中所含有的环氧基进行亲核反应。藉此,形成本发明所用的碳纤维与环氧基的强固的键结。
于本发明中,成分A的环氧化合物的环氧当量较佳为低于344g/mol,更佳为低于289g/mol,尤佳为低于143g/mol。环氧当量若低于344g/mol,则可高密度形成共价键,进一步提高碳纤维与基质树脂的接着性。环氧当量的下限系没有特定,但低于88g/mol时接着性会饱和。
于本发明中,成分A的环氧化合物较佳为3官能以上的环氧树脂,更佳为4官能以上的环氧树脂。成分A的环氧化合物若为在分子内具有3个以上的环氧基的3官能以上的环氧树脂,则即使1个环氧基与碳纤维表面的含氧官能基形成共价键时,剩余的2个以上的环氧基也可与基质树脂形成共价键或氢键,接着性进一步升高。环氧基的数目的上限系没有特定,但10个以上时接着性会饱和。
于本发明中,成分A的环氧化合物较佳为在分子内具有1个以上的芳香环,更佳为具有2个以上的芳香环。于由碳纤维与基质树脂所成的纤维强化复合材料中,碳纤维附近的所谓界面层系受到碳纤维或上浆剂的影响,会具有与基质树脂不同的特性。若成分A的环氧化合物具有1个以上的芳香环,则可形成刚直的界面层,提高碳纤维与基质树脂之间的应力传达能力,提高纤维强化复合材料的0°拉伸强度等力学特性。芳香环的数目的上限系没有特定,但6个以上时力学特性会饱和。
于本发明中,成分A的环氧化合物较佳为苯酚酚醛清漆型环氧树脂、甲酚酚醛清漆型环氧树脂或四环氧丙基二胺基二苯基甲烷中的任一者。此等环氧树脂系环氧基数多、环氧当量小,而且具有2个以上的芳香环,除了提高碳纤维与基质树脂的接着性,还提高纤维强化复合材料的0°拉伸强度等力学特性。2官能以上的环氧树脂更佳为苯酚酚醛清漆型环氧树脂及甲酚酚醛清漆型环氧树脂。
以下,将说明成分B。
本发明所用的成分B分子量为100g/mol以上的三级胺化合物及/或三级胺盐,必须相对于成分A环氧化合物99.8质量份,配合1~23质量份,较佳为配合1.5~18质量份,更佳为配合2~15质量份,尤佳为配合2~8质量份。配合量若低于0.1质量份,则无法促进成分A的环氧化合物与碳纤维表面的含氧官能基之间的共价键形成,碳纤维与基质树脂的接着性变不充分。另一方面,配合量若超过25质量份,则成分B覆盖碳纤维表面,阻碍共价键的形成,碳纤维与基质树脂的接着性变不充分。
本发明中所用的成分B的分子量为100g/mol以上的三级胺化合物及/或三级胺盐,必须分子量为100g/mol以上,分子量较佳为100~400g/mol的范围内,更佳为100~300g/mol的范围内,尤佳为100~200g/mol的范围内。分子量若为100g/mol以上,则在热处理中亦抑制挥发,即使少量也得到大的接着性提高效果。另一方面,分子量若为400g/mol以下,则分子中的活性部位的比率高,即使少量仍然得到大的接着性提高效果。
本发明中所用的三级胺化合物表示在分子内具有三级胺基的化合物。又,本发明所用的三级胺盐表示具有三级胺基的化合物经质子供予体中和的盐。此处,质子供予体系指对于具有三级胺基的化合物,具有可供予作为质子的活性氢的化合物。再者,活性氢系指对于碱性化合物,供予作为质子的氢原子。
作为质子供予体,可例如为无机酸、羧酸、磺酸及苯酚类等的有机酸、醇类、硫醇类及1,3-二羰基化合物等。
无机酸可例如为硫酸、亚硫酸、过硫酸、盐酸、过氯酸、硝酸、磷酸、亚磷酸、次磷酸、膦酸、次膦酸、焦磷酸、三聚磷酸及酰胺硫酸等。其中,较宜使用硫酸、盐酸、硝酸及磷酸。
作为羧酸类,可例如为脂肪族多羧酸、芳香族多羧酸、含S的多羧酸、脂肪族氧基羧酸、芳香族氧基羧酸、脂肪族单羧酸及芳香族单羧酸的以下化合物。
作为脂肪族多羧酸的具体例,可例如为草酸、戊二酸、己二酸、庚二酸、辛二酸酸、壬二酸、癸二酸、十一烷二酸、十二烷二酸、十三烷二酸、十四烷二酸、十五烷二酸、甲基丙二酸、乙基丙二酸、丙基丙二酸、丁基丙二酸、甲基琥珀酸、乙基琥珀酸、2,2-二甲基琥珀酸、2,3-二甲基琥珀酸、2-甲基戊二酸、3-甲基戊二酸、3-甲基-3-乙基戊二酸、3,3-二乙基戊二酸、3,3-二甲基戊二酸、3-甲基己二酸及柠康酸等。
作为芳香族多羧酸的具体例,可举出苯二甲酸、间苯二甲酸、对苯二甲酸、偏苯三酸及苯均四酸等。
作为含S的多羧酸的具体例,可例如为硫代丙酸等。
作为脂肪族氧基羧酸的具体例,可例如为羟乙酸、乳酸、酒石酸及蓖麻油脂肪酸等。
作为芳香族氧基羧酸的具体例,可例如为水杨酸、扁桃酸、4-羟基苯甲酸、1-羟基-2-萘甲酸、3-羟基-2-萘甲酸及6-羟基-2-萘甲酸等。
作为脂肪族单羧酸的具体例,可例如为甲酸、乙酸、丙酸、丁酸、异丁酸、戊酸、己酸、庚酸、羊脂酸、硬脂酸、山萮酸、十一酸、丙烯酸、甲基丙烯酸及油酸等。
作为芳香族单羧酸的具体例,可例如为苯甲酸、桂皮酸、萘甲酸、甲苯甲酸、乙基苯甲酸、丙基苯甲酸、异丙基苯甲酸、丁基苯甲酸、异丁基苯甲酸、第2丁基苯甲酸、第3丁基苯甲酸、羟基苯甲酸、乙氧基苯甲酸、丙氧基苯甲酸、异丙氧基苯甲酸、N-乙基胺基苯甲酸、N-丙基胺基苯甲酸、N-异丙基胺基苯甲酸、N-丁基胺基苯甲酸、N-异丁基胺基苯甲酸、N-第2丁基胺基苯甲酸、硝基苯甲酸及氟苯甲酸等。
于以上的羧酸类的中,较宜使用芳香族多羧酸、脂肪族单羧酸、芳香族羧酸,具体地较宜使用苯二甲酸、甲酸、辛酸。
于本发明中,从得到强度与弹性模数高的碳纤维的观点来看,较宜使用细纤度的碳纤维。具体地,碳纤维的单纤维直径较佳为7.5μm以下,更佳为6μm以下,尤佳为5.5μm以下。单纤维直径的下限系没有特定,但若为4.5μm以下,则在制程中容易发生单纤维切断,生产性会降低。
所得的碳纤维,为了提高与基质树脂的接着性,通常施予氧化处理,而导入含氧官能基。作为氧化处理方法,使用气相氧化、液相氧化及液相电解氧化,但从生产性高、可均匀处理的观点来看,较宜使用液相电解氧化。
于本发明中,作为液相电解氧化所用的电解液,可举出酸性电解液及碱性电解液。
于本发明中,从促进成分A的环氧化合物与碳纤维表面的含氧官能基的共价键形成,进一步提高接着性的观点来看,较佳为将碳纤维在碱性电解液中电解处理后,或在酸性水溶液中电解处理,接着用碱性水溶液洗净后,涂布上浆剂。兹认为电解处理时,碳纤维表面中的过剩氧化部分系成为脆弱层而存在于界面,由于在成为复合材料时会变成破坏的起点,故藉由用碱性水溶液来溶解去除过剩氧化部分,而促进共价键形成。又,酸性电解液的残渣若存在于碳纤维表面,则残渣中的质子被成分B补捉,本来所应达成任务的成分B拉拔碳纤维表面的含氧官能基的氢离子的效果会降低。因此,较佳为在酸性水溶液中进行电解处理,接着用碱性水溶液中和洗净酸性电解液。基于上述理由,藉由已施予
特定处理的碳纤维与上浆剂的组合,可得到接着的进一步提高。
本发明中所用的电解液的浓度较佳为0.02~5.3莫耳/升的范围内。电解液的浓度若为 0.02莫耳/升以上,则电解处理电压下降,在运转成本上有利。另一方面,电解液的浓度若为5.3莫耳/升以下,从安全性的观点来看系有利。
本发明中所用的电解液的温度较佳为13~100℃的范围内,更佳为10~47℃的范围内。电解液的温度若为13℃以上,则电解处理的效率升高,在运转成本上系有利。另一方面,电解液的温度若为100℃以下,从安全性的观点来看系有利。
于本发明中,液相电解氧化的电量较佳为配合碳纤维的碳化度而最合适化,当对高弹性模数的碳纤维施予处理时,需要更大的电量。
于本发明中,从促进成分A的环氧化合物与碳纤维表面的含氧官能基的共价键形成,进一步提高接着性的观点看,较佳为在氧化处理后,用碱性水溶性洗净碳纤维。其中,较佳为在酸性电解液中进行液相电解处理,接着用碱性水溶液洗净。
于本发明中,洗净所用的碱性水溶液的pH较佳为7~14的范围内,更佳为9.3~13.8的范围内。作为碱性水溶液,具体地可举出氢氧化钠、氢氧化钾、氢氧化镁、氢氧化钙及氢氧化钡等的氢氧化物的水溶液,碳酸钠、碳酸钾、碳酸镁、碳酸钙、碳酸钡及碳酸铵等的碳酸盐的水溶液,碳酸氢钠、碳酸氢钾、碳酸氢镁、碳酸氢钙、碳酸氢钡及碳酸氢铵等的碳酸氢盐的水溶液,氨、氢氧化四烷基铵及肼的水溶液等。其中,从不含有会引起基质树脂的硬化障碍的碱金属的观点来看,较宜使用碳酸铵、碳酸氢铵的水溶液、或显示强碱性的氢氧化四烷基铵的水溶液。
于本发明中,作为用碱性水溶液洗净碳纤维的方法,例如可使用浸渍法与喷洒法。其中,从洗净容易的观点来看,较宜使用浸渍法,以及边以超音波来振动碳纤维边使用浸渍法者系较佳的态样。
作为将上浆剂赋予(涂布)碳纤维的手段,例如有经由辊将碳纤维浸渍于上浆液中的方法,使碳纤维接触上浆液的附着辊的方法,使上浆液成为雾状,喷吹于碳纤维的方法等。又,上浆剂的赋予手段可为分批式与连续式中的任一者,较宜使用生产性良好、偏差小的连续式。此时,较佳为控制上浆液浓度、温度及丝条张力等,以使得上浆剂有效成分对碳纤维的附着量在恰当范围内均匀附着。又,于上浆剂赋予时,用超音波来振动碳纤维者亦为较佳的态样。
于本发明中,在碳纤维上涂布上浆剂后,必须在158~258℃的温度范围热处理29~599秒。热处理条件较佳为在168~234℃的温度范围28~435秒,更佳为在178~230℃的温度范围31~298秒。热处理条件若低于158℃及/或低于28秒,则无法促进上浆剂的环氧树脂与碳纤维表面的含氧官能基之间的共价键形成,碳纤维与基质树脂的接着性变不充分。另一方面,热处理条件若超过249℃及/或超过597秒,则发生三级胺化合物及/或三级胺盐的挥发, 无法促进共价键形成,碳纤维与基质树脂的接着性变不充分。
于本发明中,作为碳纤维,经由X射线光电子分光法所测定的其纤维表面的氧(O)与碳(C)的原子数比的表面氧浓度(O/C)较佳为0.049~0.51的范围内,更佳为0.059~0.29的范围内,尤佳为0.069~0.21的范围内。由于表面氧浓度(O/C)为0.049以上,可确保碳纤维表面的含氧官能基,得到与基质树脂的强固接着。又,由于表面氧浓度(O/C)为0.049以下,可抑制氧化所致的碳纤维本身强度的降低。
说明示出并描述了本发明的若干优选实施例,但如前所述,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。

Claims (3)

  1. 一种轿厢平衡补偿链系统,其特征在于,包括:
    轿厢;
    辅槽轮;
    缠绕所述辅槽轮的主要缆绳,其中所述主要缆绳悬挂所述轿厢;
    滑轮,其由所述辅槽轮的边缘所悬垂而下的所述主要缆绳所缠绕;
    负重块,所述滑轮通过绳索悬挂所述复重块;
    悬挂所述轿厢的次要缆绳;
    连接所述主要缆绳和所述次要缆绳的连接器;
    固定至所述连接器的共同阻挡器,且所述共同阻挡器限制所述连接器移动;
    补偿链,悬挂于所述负重块,其中所述补偿链的长度等于所述负重块运行距离的长度;
    用以容置所述补偿链的补偿链容置槽;
    其中,所述补偿链由涂布上浆剂的碳纤维复合材料所制成,其包含成分A,所述成分A具有1官能以上的环氧基,由羟基、酰胺基、酰亚胺基、胺基甲酸乙酯基、脲基、磺酰基及磺基中选出的至少一个以上的官能基的环氧化合物;以及
    由下述群组一、群组二及群组三所成的族群中的至少1种的浆剂;
    群组一:相对于成分A有99.8质量份,配合有至少作为成分B使用的分子量为100g/mol以上的三级胺化合物的上浆剂;
    群组二:相对于成分A有99.8质量份,配合有至少作为成分B使用的具有以下通式(I)或(II)中任一者所示的阳离子部位的四级铵盐0.19~23.8质量份而成的上浆剂;
    Figure PCTCN2015098072-appb-100001
    Figure PCTCN2015098072-appb-100002
    上述式中,R1至R5各自表示碳数7~19的烃基、碳数7~19的含烃与醚构造的基、碳数7~19的含烃与酯构造的基、或碳数7~19的含烃与羟基的基中任一者,R6与R7各自表示氢、碳数3~6的烃基、碳数3~6的含烃与醚构造的基、或碳数3~6的含烃与酯构造的基中的任一者;
    群组三:相对于成分A有99.8质量份,配合有至少作为成分B使用的四级鳞盐及/或膦化合物0.19~23.8质量份而成的浆剂。
  2. 如权利要求1所述的轿厢平衡补偿链系统,其特征在于,所述连接器为杆形连接器。
  3. 如权利要求1所述的轿厢平衡补偿链系统,其特征在于,其中所述浆剂在158~258℃的温度范围,并且通过热处理29~599秒涂布于碳纤维上。
PCT/CN2015/098072 2015-09-24 2015-12-21 一种轿厢平衡补偿链系统 WO2017049784A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510618685.0A CN105151957A (zh) 2015-09-24 2015-09-24 一种轿厢平衡补偿链系统
CN201510618685.0 2015-09-24

Publications (1)

Publication Number Publication Date
WO2017049784A1 true WO2017049784A1 (zh) 2017-03-30

Family

ID=54793092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098072 WO2017049784A1 (zh) 2015-09-24 2015-12-21 一种轿厢平衡补偿链系统

Country Status (2)

Country Link
CN (1) CN105151957A (zh)
WO (1) WO2017049784A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113247738A (zh) * 2021-05-21 2021-08-13 上海三菱电梯有限公司 电梯补偿装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105151957A (zh) * 2015-09-24 2015-12-16 南通兴华达高实业有限公司 一种轿厢平衡补偿链系统
CN107089574A (zh) * 2017-06-30 2017-08-25 南通兴华达高实业有限公司 一种电梯轿厢悬挂装置的紧固装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB690779A (en) * 1950-05-20 1953-04-29 Waygood Otis Ltd Mechanism for controlling elevator circuits
JPH02310281A (ja) * 1989-05-26 1990-12-26 Mitsubishi Electric Corp エレベータ装置
CN102030238A (zh) * 2010-12-14 2011-04-27 江南嘉捷电梯股份有限公司 电梯上平衡链的安装结构
CN103991776A (zh) * 2013-02-14 2014-08-20 通力股份公司 电梯
CN104044973A (zh) * 2014-05-23 2014-09-17 苏州市东沪电缆有限公司 扁形随行电梯平衡补偿链
CN104477732A (zh) * 2014-11-24 2015-04-01 日立电梯(中国)有限公司 电梯补偿系统
CN104891316A (zh) * 2015-05-29 2015-09-09 江南嘉捷电梯股份有限公司 一种电梯配重装置
CN105151957A (zh) * 2015-09-24 2015-12-16 南通兴华达高实业有限公司 一种轿厢平衡补偿链系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011073836A (ja) * 2009-09-30 2011-04-14 Hitachi Ltd ロープ式エレベータ装置
RU2014127302A (ru) * 2011-12-05 2016-01-27 Торэй Индастриз, Инк. Формирующий углеродные волокна сырьевой материал, сформированный материал и армированный углеродными волокнами композитный материал
KR101863990B1 (ko) * 2011-12-27 2018-07-04 도레이 카부시키가이샤 사이징제 도포 탄소 섬유, 사이징제 도포 탄소 섬유의 제조 방법, 프리프레그 및 탄소 섬유 강화 복합 재료
US9243118B2 (en) * 2012-06-07 2016-01-26 Sabic Global Technologies B.V. High modulus high strength high flow OSU compliant polyetherimide-carbon fiber composites for metal replacement
EP2740700B1 (en) * 2012-12-06 2016-06-29 Kone Corporation Elevator with a compensation rope
JP5915998B2 (ja) * 2014-09-08 2016-05-11 東芝エレベータ株式会社 エレベータ装置
CN104444706A (zh) * 2014-11-18 2015-03-25 陈伟群 一种电梯钢丝绳安装导向系统
CN204434033U (zh) * 2014-12-23 2015-07-01 重庆迈高电梯有限公司 一种电梯

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB690779A (en) * 1950-05-20 1953-04-29 Waygood Otis Ltd Mechanism for controlling elevator circuits
JPH02310281A (ja) * 1989-05-26 1990-12-26 Mitsubishi Electric Corp エレベータ装置
CN102030238A (zh) * 2010-12-14 2011-04-27 江南嘉捷电梯股份有限公司 电梯上平衡链的安装结构
CN103991776A (zh) * 2013-02-14 2014-08-20 通力股份公司 电梯
CN104044973A (zh) * 2014-05-23 2014-09-17 苏州市东沪电缆有限公司 扁形随行电梯平衡补偿链
CN104477732A (zh) * 2014-11-24 2015-04-01 日立电梯(中国)有限公司 电梯补偿系统
CN104891316A (zh) * 2015-05-29 2015-09-09 江南嘉捷电梯股份有限公司 一种电梯配重装置
CN105151957A (zh) * 2015-09-24 2015-12-16 南通兴华达高实业有限公司 一种轿厢平衡补偿链系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113247738A (zh) * 2021-05-21 2021-08-13 上海三菱电梯有限公司 电梯补偿装置

Also Published As

Publication number Publication date
CN105151957A (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
JP5969989B2 (ja) 方法およびエレベータ装置
WO2017049784A1 (zh) 一种轿厢平衡补偿链系统
CN102633174B (zh) 紧急制动装置以及具有该紧急制动装置的电梯设备
US20200354195A1 (en) Elevator system roping arrangement
CN105939955A (zh) 用于钢丝绳提升机的低结构台车
JP2012121637A (ja) エレベーター用テールコードの懸架装置、及びエレベーター装置
JP2014526427A (ja) エレベータの懸架構造およびガイドシュー構造
KR101016822B1 (ko) 엘리베이터 장치
JP2019512440A (ja) 昇降路の異なる区間において互いに独立に移動する複数のエレベータかご及びカウンタウェイトの懸架及び巻上げモータシステム
CN1164471C (zh) 电梯装置及其装配方法
CN203740811U (zh) 家用电梯
WO2018225140A1 (ja) エレベーター
JPWO2014006703A1 (ja) エレベータ装置
CN112499421B (zh) 主绳索的振动抑制装置
CN101631737A (zh) 具有平衡重的电梯
CN1741950A (zh) 电梯
EP1535875A1 (en) Elevator device
CN105621198B (zh) 配置件和方法
JP2016008114A (ja) エレベーター
CN105268200A (zh) 通过软索改变物体运行轨迹及姿态的方法
EP1602613A1 (en) Counterbalancing self-running elevator
JP4750104B2 (ja) エレベータ装置
JP2013199335A (ja) エレベータ装置
JP6624523B2 (ja) エレベータ
CN209242455U (zh) 一种无机房电梯的布置结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904659

Country of ref document: EP

Kind code of ref document: A1