WO2017047709A1 - ラーベス相金属間化合物、金属間化合物を用いた触媒、及びアンモニア製造方法 - Google Patents
ラーベス相金属間化合物、金属間化合物を用いた触媒、及びアンモニア製造方法 Download PDFInfo
- Publication number
- WO2017047709A1 WO2017047709A1 PCT/JP2016/077313 JP2016077313W WO2017047709A1 WO 2017047709 A1 WO2017047709 A1 WO 2017047709A1 JP 2016077313 W JP2016077313 W JP 2016077313W WO 2017047709 A1 WO2017047709 A1 WO 2017047709A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- intermetallic compound
- reaction
- hydrogen
- ammonia
- Prior art date
Links
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 title claims abstract description 238
- 229910021529 ammonia Inorganic materials 0.000 title claims abstract description 117
- 239000003054 catalyst Substances 0.000 title claims abstract description 117
- 229910000765 intermetallic Inorganic materials 0.000 title claims abstract description 106
- 229910001068 laves phase Inorganic materials 0.000 title claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 15
- 229910052747 lanthanoid Inorganic materials 0.000 claims abstract description 13
- 150000002602 lanthanoids Chemical class 0.000 claims abstract description 13
- 239000000203 mixture Substances 0.000 claims abstract description 12
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 11
- 238000006243 chemical reaction Methods 0.000 claims description 92
- 239000001257 hydrogen Substances 0.000 claims description 89
- 229910052739 hydrogen Inorganic materials 0.000 claims description 89
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 88
- 238000000034 method Methods 0.000 claims description 60
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 57
- 229910052757 nitrogen Inorganic materials 0.000 claims description 26
- 230000003197 catalytic effect Effects 0.000 claims description 18
- 239000007789 gas Substances 0.000 claims description 17
- 239000002131 composite material Substances 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 8
- 230000002194 synthesizing effect Effects 0.000 claims description 6
- 229910052684 Cerium Inorganic materials 0.000 claims description 4
- 239000004480 active ingredient Substances 0.000 abstract description 2
- 238000003786 synthesis reaction Methods 0.000 description 73
- 229910052751 metal Inorganic materials 0.000 description 62
- 239000002184 metal Substances 0.000 description 58
- 239000000843 powder Substances 0.000 description 50
- 230000015572 biosynthetic process Effects 0.000 description 39
- 239000002994 raw material Substances 0.000 description 25
- 238000002336 sorption--desorption measurement Methods 0.000 description 21
- 230000000694 effects Effects 0.000 description 17
- 150000001875 compounds Chemical class 0.000 description 16
- 238000005259 measurement Methods 0.000 description 15
- 239000002245 particle Substances 0.000 description 13
- 229910052723 transition metal Inorganic materials 0.000 description 11
- 150000003624 transition metals Chemical class 0.000 description 11
- 231100000572 poisoning Toxicity 0.000 description 10
- 230000000607 poisoning effect Effects 0.000 description 10
- 229910052707 ruthenium Inorganic materials 0.000 description 10
- 238000001179 sorption measurement Methods 0.000 description 10
- 239000000969 carrier Substances 0.000 description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 238000002844 melting Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 238000001308 synthesis method Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 229910052761 rare earth metal Inorganic materials 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 238000010298 pulverizing process Methods 0.000 description 5
- -1 CaNi 5 Chemical class 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000006757 chemical reactions by type Methods 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 238000003795 desorption Methods 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000012495 reaction gas Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 150000002736 metal compounds Chemical class 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000000629 steam reforming Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 3
- RTZYCRSRNSTRGC-LNTINUHCSA-K (z)-4-oxopent-2-en-2-olate;ruthenium(3+) Chemical compound [Ru+3].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O RTZYCRSRNSTRGC-LNTINUHCSA-K 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 239000012018 catalyst precursor Substances 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000004255 ion exchange chromatography Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- XEZNGIUYQVAUSS-UHFFFAOYSA-N 18-crown-6 Chemical compound C1COCCOCCOCCOCCOCCO1 XEZNGIUYQVAUSS-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 238000009620 Haber process Methods 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 238000003991 Rietveld refinement Methods 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- NQZFAUXPNWSLBI-UHFFFAOYSA-N carbon monoxide;ruthenium Chemical group [Ru].[Ru].[Ru].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-] NQZFAUXPNWSLBI-UHFFFAOYSA-N 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- WIWBLJMBLGWSIN-UHFFFAOYSA-L dichlorotris(triphenylphosphine)ruthenium(ii) Chemical compound [Cl-].[Cl-].[Ru+2].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 WIWBLJMBLGWSIN-UHFFFAOYSA-L 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 208000018459 dissociative disease Diseases 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 238000012933 kinetic analysis Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000005551 mechanical alloying Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 229910052705 radium Inorganic materials 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- OIWNHEPSSHYXTG-UHFFFAOYSA-L ruthenium(2+);triphenylphosphane;dichloride Chemical compound Cl[Ru]Cl.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 OIWNHEPSSHYXTG-UHFFFAOYSA-L 0.000 description 1
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 1
- FZHCFNGSGGGXEH-UHFFFAOYSA-N ruthenocene Chemical compound [Ru+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 FZHCFNGSGGGXEH-UHFFFAOYSA-N 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000002303 thermal reforming Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
- B01J35/45—Nanoparticles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0081—Preparation by melting
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C1/00—Ammonia; Compounds thereof
- C01C1/02—Preparation, purification or separation of ammonia
- C01C1/04—Preparation of ammonia by synthesis in the gas phase
- C01C1/0405—Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
- C01C1/0411—Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the catalyst
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/04—Alloys based on a platinum group metal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the present invention relates to an intermetallic compound having a Laves phase (hereinafter referred to as “Laves phase intermetallic compound”), a catalyst having the intermetallic compound as an active ingredient, and a method for producing ammonia using the same.
- Laves phase intermetallic compound an intermetallic compound having a Laves phase
- This application claims priority based on Japanese Patent Application No. 2015-181607 for which it applied to Japan on September 15, 2015, and uses the content here.
- the Haber Bosch method which is a typical ammonia synthesis method, uses double promoted iron containing several mass% of Al 2 O 3 and K 2 O in Fe 3 O 4 as a catalyst. Is a method of producing ammonia by contacting a mixed gas of nitrogen and hydrogen under high temperature and high pressure conditions. This technology is still used industrially in the manufacturing process almost as it was when it was completed.
- Catalysts using transition metals such as Ru are known to be able to synthesize ammonia under milder conditions than the reaction conditions used in the Haber-Bosch process because of their very high activity.
- the Harbor Bosch method requires a reaction temperature of 400 ° C. or higher and a reaction pressure of 20 MPa or higher, whereas a catalyst using a transition metal has a reaction temperature of 200 ° C. or higher and 1.1 MPa or lower, It is known that the reaction proceeds even at a reaction pressure of about atmospheric pressure.
- intermetallic compound As another ammonia synthesis catalyst, an intermetallic compound has been studied. If an intermetallic compound of a transition metal such as Ru having a high catalytic activity and another metal element is obtained, an inexpensive catalyst can be expected.
- intermetallic compounds having activity in ammonia synthesis include intermetallic compounds (Patent Document 2) of alkali metals or alkaline earth metals and transition metals, such as CaNi 5 , Mg 2 Ni, Mg 2 Cu, and CeFe 2. , CeCo 2, Ceru intermetallic compounds known as hydrogen-absorbing alloy such as 2 (non-Patent documents 1 and 2) and the like.
- Non-Patent Document 1 reports a survey result of ammonia synthesis using powders of intermetallic compounds such as CeFe 2 , CeRu 2 , and CeCo 2 prepared by a melting method instead of a single metal of the catalyst.
- a method has also been proposed in which hydride AB 5 H 6 to 6 obtained by reducing an intermetallic compound represented as AB 5 type intermetallic compound is used as a catalyst.
- the AB type 5 intermetallic compound A is a mischmetal having La as a main component
- B is an intermetallic compound of Ni
- a BET specific surface area is 0.02 m 2 / g. It has been reported that ammonia synthesis at room temperature is possible by using a hydride obtained by reducing an intermetallic compound as a catalyst (Non-patent Document 3).
- intermetallic compounds become brittle by occluding hydrogen, are crushed, and fine intermetallic compounds are obtained when hydrogen escapes.
- Ruthenium which has high catalytic activity, is a noble metal and has a large specific gravity, so the price per mass is very high. Therefore, it is desirable to reduce the amount of ruthenium used as much as possible in order to reduce the cost of the catalyst.
- Ru of the same mass it is preferable to increase the surface area.
- ruthenium is difficult to increase the specific surface area by making fine particles because it has the extensibility of a single metal. difficult. Therefore, it is difficult to produce fine particles of metal Ru that exist stably under reaction conditions.
- transition metals have a strong bond with hydrogen atoms when used as a catalyst active component such as Ru or Re in the catalyst, so that hydrogen is competitively adsorbed on the catalyst.
- Some have the disadvantage of causing hydrogen poisoning that inhibits the adsorption of nitrogen. Since hydrogen poisoning inhibits the dissociation reaction of nitrogen molecules (N 2 ), which is an important elementary reaction in ammonia synthesis, there is a problem that ammonia synthesis activity decreases. Therefore, in the ammonia synthesis method using a catalyst containing metal Ru as a catalytic active component, there is a situation in which the reaction must be performed under a condition in which the hydrogen partial pressure is lowered, which is a disadvantageous aspect of the stoichiometric ratio. It was.
- reaction order of hydrogen in the ammonia synthesis reaction at this time is approximately ⁇ 0.2 to ⁇ 1.
- improvement of catalytic activity by loading on a support or addition of an accelerator is being studied.
- reaction order of hydrogen approaches zero but does not become positive, hydrogen poisoning has not been solved.
- an active metal such as a rare earth element is mixed and synthesized for the purpose of improving the reactivity by donating electrons to the active center. It is common.
- an intermetallic compound containing a metal having a high electron donating property such as a rare earth element as a constituent element is also difficult to increase in specific surface area by fine particle formation by physical pulverization, as described above.
- intermetallic compounds are often decomposed into rare earth element nitrides and transition metals at temperatures of about 300 ° C to 400 ° C, which are used for the reaction temperature of the ammonia synthesis reaction. Is scarce.
- the intermetallic compound used as the catalyst in Non-Patent Document 1 is shown to be decomposed as a result of X-ray diffraction measurement after the ammonia synthesis reaction. From these experimental results, it has been reported that it is considered that a transition metal such as Fe, Co, Ru, etc., exhibits catalytic activity. Further, in Non-Patent Document 2, CeCo 3 , CeRu 2 , CeFe 2, etc., changed to a rare earth metal nitride and a transition metal alone during the ammonia synthesis reaction, and actually functioned as a catalyst It is stated that it may be a simple substance of a transition metal such as Co, Ru, or Fe supported on nitride.
- the present inventor has produced a Laves phase intermetallic compound of a metal Ru and a rare earth element, and miniaturized crystallites of the intermetallic compound.
- the present inventors have obtained compounds and catalysts that exhibit activity and can produce inexpensive catalysts.
- a Laves phase intermetallic compound having a composition represented by the general formula ARu 2 (A is one or more elements selected from lanthanoid elements excluding Y, Sc, or Ce), the crystallite size of which is A Laves phase intermetallic compound characterized by being 1 nm or more and 100 nm or less.
- a Laves phase intermetallic compound having a composition represented by the general formula ARu 2 (A is one or more elements selected from lanthanoid elements excluding Y, Sc, or Ce), the crystallite size of which is An intermetallic compound composite comprising a Laves phase intermetallic compound having a thickness of 1 nm or more and 100 nm or less and a carrier for supporting the intermetallic compound.
- a Laves phase intermetallic compound having a composition represented by the general formula ARu 2 (A is one or more elements selected from lanthanoid elements excluding Y, Sc, or Ce), the crystallite size of which is A catalyst comprising a Laves phase intermetallic compound of 1 nm or more and 100 nm or less as a catalytic active component.
- a catalyst comprising a Laves phase intermetallic compound of 1 nm or more and 100 nm or less as a catalytic active component.
- the catalyst is a Laves phase intermetallic compound having a composition represented by the general formula ARu 2 (A is one or more elements selected from lanthanoid elements excluding Y, Sc, or Ce), and its crystallite size
- a process for producing ammonia wherein the catalyst comprises a Laves phase intermetallic compound having a catalytic activity component of 1 nm or more and 100 nm or less.
- the Laves phase intermetallic compound of the present invention has a small BET specific surface area that is not obtained when the crystallite size is small and the intermetallic compound is mechanically pulverized. Therefore, it is useful as a catalytically active component. Since the catalyst of the present invention does not decompose particularly in the ammonia synthesis reaction, the activity, stability and durability that are not found in conventional Ru metal-supported catalysts can be obtained.
- the composition ratio of ruthenium can be reduced, the catalyst cost can be reduced.
- FIG. 3 is a diagram showing XRD measurement results before and after hydrogen adsorption / desorption treatment in Example 1.
- FIG. 3 is a diagram showing a measurement result of SEM before hydrogen adsorption / desorption treatment in Example 1.
- FIG. 4 is a diagram showing the SEM measurement results after the hydrogen adsorption / desorption treatment in Example 1.
- FIG. 6 is a graph showing changes with time in the ammonia synthesis rate in Example 6. It is the figure which showed the XRD measurement result when 24 hours and 49 hours passed of the catalyst used in Example 6.
- FIG. 3 is a diagram showing XRD measurement results before and after hydrogen adsorption / desorption treatment in Example 1.
- FIG. 3 is a diagram showing a measurement result of SEM before hydrogen adsorption / desorption treatment in Example 1.
- FIG. 4 is a diagram showing the SEM measurement results after the hydrogen adsorption / desorption treatment in Example 1.
- FIG. 6 is a graph showing changes with time in the ammonia synthesis rate in
- the term “powder” is defined as “aggregate of particles having a maximum dimension of 1 mm or less” (powder) in “JIS Z 2500: 2,000 powder metallurgy terminology”. Used in such a meaning.
- the particle size is coarse powder of several hundred ⁇ m or more, normal powder of several hundred to several tens of ⁇ m, fine powder of several tens to 1 ⁇ m, fine powder of 1 to 0.1 ⁇ m, submicron.
- the term “powder” is referred to as “ultrafine powder” (Industry Research Committee, “Industrial Materials Dictionary”, item “powder”, 1997, first edition), and the terminology is also used in this specification with the same meaning. .
- An intermetallic compound is usually a compound composed of two or more metals.
- An intermetallic compound is generally known that has a crystal structure different from that of a component metal element constituting the intermetallic compound and has unique properties not found in the component metal element.
- the atomic ratio of the metal elements constituting the intermetallic compound is not particularly limited, but is usually an integer ratio.
- the intermetallic compound is represented by a composition formula, for example, in the case of an intermetallic compound composed of two kinds of metal elements, when the constituent metal elements are A and B, there is no particular limitation, but the general formula AB 5 in represented by objects or, those represented by the general formula AB 2.
- the compound represented by the general formula AB 2 is known as a Laves phase intermetallic compound.
- a Laves phase is one of phases of an intermetallic compound and is usually composed of two kinds of metal elements A and B having different sizes, and among these, the atomic radius Ra of an atom A having a large atomic radius is small.
- This is one of phases of an intermetallic compound that may be formed when the ratio of the atom B to the atomic radius Rb, Ra / Rb, is about 1.05 to 1.67.
- An intermetallic compound having such a phase is called a Laves phase intermetallic compound.
- the Laves phase intermetallic compound of the present invention (hereinafter sometimes simply referred to as the intermetallic compound of the present invention) has the general formula ARu 2 (A is one element selected from lanthanoid elements excluding Y, Sc or Ce) ).
- the lanthanoid elements other than Ce include one or more lanthanoid elements selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
- the Laves phase intermetallic compound of the present invention is a Laves phase intermetallic compound containing Ru as an essential constituent, and the metal element as the partner thereof excludes yttrium (Y), scandium (Sc), or Ce.
- a lanthanoid element, preferably Y which is relatively easy to obtain and inexpensive.
- the intermetallic compound of the present invention has a crystallite size of 1 nm or more and 100 nm or less. Preferably they are 2 nm or more and 90 nm or less, More preferably, they are 5 nm or more and 75 nm or less, More preferably, they are 5 nm or more and 50 nm or less. Because of the size, the intermetallic compound of the present invention can improve the catalytic activity while maintaining the properties of the intermetallic compound of the present invention, for example, when used in a catalyst. Further, for example, when used as a catalyst, a catalyst having a large surface area may be obtained, so that the catalytic activity can be improved.
- the crystallite of the intermetallic compound of the present invention refers to a portion that can be regarded as a single crystal in each particle.
- a single crystal refers to one in which the orientation of atomic arrangement is the same in any part of the crystal.
- one particle is usually composed of a plurality of crystallites.
- the crystallite size can be usually determined from the half-value width of the peak of X-ray diffraction based on the Scherrer formula in the range of about 1 nm or more and 100 nm or less.
- a method according to JIS H 7805: 2005 “Method for measuring crystallite diameter of metal catalyst by X-ray diffraction method” can be used.
- the Rietveld analysis can also be obtained from the half-value width of the peak of X-ray diffraction within a range of about 1 nm or more and 100 nm or less. Note that a crystallite size larger than the above range can be obtained from any measurement method.
- the intermetallic compound of the present invention is not particularly limited, but usually has cracks on its surface.
- a crack refers to a crack or a crack that appears on the surface of a material, and can be confirmed by a surface analyzer such as an electron microscope.
- the crack is not particularly limited, but it is preferably in 20% or more of all the crystals.
- the specific surface area of the intermetallic compound of the present invention is not particularly limited, but the specific surface area is usually small enough to be difficult to measure by the BET method.
- the catalytic activity is proportional to the size of the surface area. It is 0.5 m 2 / g or more in that the activity per mass is high, and more preferably 1.0 m 2 / g or more.
- the shape or the like of the intermetallic compound of the present invention is not particularly limited, and specifically, any of a lump shape, a powder shape, a film shape, and the like may be used. Any of normal powder, fine powder, submicron powder, and ultrafine powder may be used, but fine powder of about 50 ⁇ m to 1 ⁇ m is preferable.
- the manufacturing method of the intermetallic compound of this invention is not specifically limited as long as the effect is acquired, Usually, it can manufacture according to the following method.
- the first step includes a step of producing the intermetallic compound ARu 2 of the present invention from a metal atom source which is a constituent component of the intermetallic compound of the present invention.
- the subsequent second step includes a step of setting the crystallite size of the intermetallic compound ARu 2 within a predetermined range.
- the manufacturing method of the intermetallic compound of this invention is not specifically limited, Usually, the metal A and the metal Ru which are the structural components can be melted and mixed and manufactured.
- the raw material ratio during production is not limited as long as the intermetallic compound of the present invention can be obtained, but it is usually prepared to have a composition molar ratio of 1: 2.
- There are no particular limitations on the method of melting and mixing the raw metals for example, melting of raw metal by the arc melt method, mixing, firing of raw metal in an electric furnace such as a high-frequency furnace, microwave oven of raw metal, etc.
- Microwave melting synthesis of metal A, mechanical alloying of metal A particles and metal Ru particles, spray method of melt of raw material metal, metal A oxide powder and metal Ru powder are mixed, and this is reduced metal such as calcium
- metal such as calcium
- the intermetallic compound of the present invention can be produced as a film by sputtering, vapor deposition, a method in which a solution in which a metal compound as a raw material of an intermetallic compound is dissolved is applied to a carrier, and heated and reduced.
- the arc melt method is preferably used because of the simplicity of work.
- the arc melt method is a method in which after the metal is placed in a vacuum, the metal is dissolved and mixed by arc discharge.
- the conditions at this time are not particularly limited, but are usually performed in an oxygen-free atmosphere in order to prevent oxidation of the metal as a raw material, and preferably in an Ar atmosphere in which discharge easily occurs.
- the pressure at the time of melting is not particularly limited, it is usually carried out under low-pressure conditions so that electric discharge easily occurs, preferably 0.1 MPa or less, more preferably 0.05 MPa or less.
- the voltage at the time of arc discharge is not particularly limited as long as melting and mixing occur, and can be appropriately selected according to the type and amount of the raw material.
- ARu 2 is usually massive. By pulverizing this, ARu 2 may have a preferred particle size.
- mechanical pulverization or physical pulverization can be used.
- the second step of the method for producing an intermetallic compound of the present invention includes a step of setting the crystallite size of ARu 2 obtained in the first step to 1 nm or more and 100 nm or less.
- raw material aru 2 obtained in the first step here, hereinafter sometimes referred to as "raw material aru 2".
- the method is not particularly limited, and a method of increasing the surface area of the crystallite is used.
- the raw material ARu 2 may be difficult to form into fine particles by a normal physical method. Therefore, usually, with respect to the raw material aru 2, treatment with hydrogen adsorption and desorption (hereinafter, the hydrogen that adsorption and desorption treatment) is preferably performed.
- the hydrogen adsorption / desorption treatment will be described in detail.
- the raw material ARu 2 is placed in an atmosphere with a high hydrogen partial pressure to adsorb hydrogen.
- the hydrogen partial pressure during the adsorption is not particularly limited, but is preferably in the range of normal pressure to 10 MPa.
- the temperature at the time of the adsorption is not particularly limited, it is usually normal temperature or higher and 500 ° C. or lower, preferably 300 ° C. or higher from the viewpoint that ARu 2 is not decomposed and sufficiently adsorbs hydrogen.
- the BET specific surface area can be increased.
- the rate of temperature increase at this time is not particularly limited, but the temperature is usually increased at 5 ° C./min or more, preferably 10 ° C./min or more.
- the holding temperature is not particularly limited, but is usually 300 ° C. or higher and 500 ° C. or lower.
- the holding time after the temperature rise is not particularly limited, but is usually 10 minutes or more and 5 hours or less.
- the pressure in the said vacuum state is not specifically limited, Usually, hydrogen partial pressure is 10 kPa or less.
- the temperature at the time of desorption is not particularly limited, it is usually a high temperature, specifically, usually at ordinary temperature or more, preferably at 300 ° C. or more, and usually at 500 ° C. or less. Also at constant temperature in desorbing hydrogen, but may be changed at a faster temperature changes from room temperature, allowed to warm to a constant holding temperature, by holding a certain time, cracks in the surface of aru 2 Since it becomes easy to enter, it is preferable in that the BET specific surface area can be increased.
- the speed at which the temperature is raised is not particularly limited, but the temperature is usually raised at 5 ° C./min or more, preferably 30 ° C./min or more.
- the holding temperature is not particularly limited, but is usually 300 ° C. or higher and 500 ° C. or lower.
- the holding time after the temperature rise is not particularly limited, but is usually 10 minutes or more and 5 hours or less.
- ARu 2 used in the present invention usually has a property of adsorbing hydrogen, it is considered that hydrogen embrittlement and refinement occur through the hydrogen adsorption and desorption processes. As a result, the surface area of the intermetallic compound of the present invention increases.
- the shape of the intermetallic compound of the present invention obtained through the hydrogen adsorption / desorption treatment is not particularly limited, but is usually a fine powder, preferably a fine powder in which particles of 10 ⁇ m or more are 90% by mass or more.
- the intermetallic compound of the present invention can be used as a catalyst for various chemical reactions.
- the intermetallic compound of the present invention can be used as a catalyst as it is, or can be used as a complex supported on various commonly used carriers.
- the shape of the intermetallic compound and the like can be used by a method usually used.
- the crystallite size and specific surface area of the catalyst at this time are not particularly limited, but usually have the same values as the crystallite size and specific surface area of the intermetallic compound described above.
- the intermetallic compound of the present invention can be supported on various carriers and used as a composite.
- the material of the carrier when used as the composite is not particularly limited as long as it can support the intermetallic compound of the present invention and does not hinder the performance of the intermetallic compound of the present invention in the chemical reaction used, Various known carriers may be used.
- silicon oxide silicon oxide (silica), zinc oxide, aluminum oxide (alumina), magnesium oxide (magnesia), indium oxide, calcium oxide, zirconium oxide (zirconia), titanium oxide (titania), hafnium oxide, barium oxide, cerium oxide ( Ceria), inorganic oxide carriers such as oxides of two or more metals such as perovskite type compounds and mayenite type compounds; nitride carriers such as Ta3N5, BN and Si3N4; carbon carriers such as activated carbon and silicon carbide; And a composite of two or more carriers selected from these carriers.
- conductive mayenite type compound described in WO2012 / 0776758, “two-dimensional electride compound or precursor compound” described in WO2015 / 129471, and WO2016 / 088886
- a carrier containing one or more selected from the group consisting of “complexes” described in the published specification can be used.
- the composite of the present invention can be used as a catalyst.
- the particle size of the carrier is not particularly limited, but usually the carrier has a larger particle size, and therefore has a particle size according to the particle size of the carrier used.
- the specific surface area of the carrier is not particularly limited, but usually the specific surface area of the carrier is dominant with respect to the value of the specific surface area of the composite, so that it has a specific surface area equivalent to the specific surface area of the carrier used. .
- the raw material ARu 2 and the carrier can be used even if they are physically mixed. Further, the raw material ARu 2 may be coated on a support such as a carrier or a metal.
- aru 2 the compound of compound and Ru metal A is a component of aru 2 used in the present invention, the carrier, the impregnation method, chemical vapor deposition, or after carrying by sputtering or the like, by hydrogen reduction It can also be used as a supported metal catalyst supporting particles.
- the Ru compound is not particularly limited.
- triruthenium dodecacarbonyl [Ru 3 (CO) 12 ]
- dichlorotetrakis triphenylphosphine) ruthenium (II)
- dichloro Tris triphenylphosphine
- ruthenium (II) [RuCl 2 (PPh 3 ) 3 ]
- tris acetylacetonato) ruthenium (III) ([Ru (acac) 3 ]), ruthenocene ([Ru (C 5 H 5 )])
- inorganic metal compounds or organometallic complexes that are easily thermally decomposed, such as ruthenium chloride ([RuCl 3 ]).
- the carrier powder is dispersed in a solution composed of the Ru compound and the metal A compound and stirred.
- the total amount of the metal compound is not particularly limited, but is 0.01% by mass or more, preferably 0.02% by mass or more, more preferably 0.05% by mass or more, usually with respect to the mass of the carrier used. It is 40% by mass or less, preferably 30% by mass or less, more preferably 20% by mass or less.
- the solvent is evaporated to dryness by heating in an inert gas stream such as argon or helium or under vacuum to obtain a catalyst precursor.
- the temperature at this time is not particularly limited, but is usually 50 ° C. or higher and 200 ° C.
- the time required for this is not particularly limited, but is usually from 30 minutes to 5 hours. Then, by reducing the catalyst precursor comprising a compound of compound and the metal A of the dryness Ru, carrier carrying a coating of intermetallic compound aru 2 is obtained.
- the intermetallic compound supported on the carrier obtained by the above method can also be used as a catalyst supporting the intermetallic compound of the present invention, preferably by the hydrogen adsorption / desorption treatment.
- the catalyst carrying the intermetallic compound of the present invention is suitable for ammonia synthesis, it can be used as an ammonia synthesis catalyst.
- the ammonia production method of the present invention uses the intermetallic compound of the present invention as a catalyst, and synthesizes ammonia by reacting hydrogen and nitrogen on the catalyst.
- ammonia is usually produced by heating the catalyst.
- the reaction temperature is not particularly limited, but is usually 200 ° C. or higher, preferably 250 ° C. or higher, more preferably 300 ° C. or higher, usually 600 ° C. or lower, preferably 500 ° C. or lower, more preferably 450 ° C. or lower. . Since ammonia synthesis is an exothermic reaction, the low temperature region is more advantageous for ammonia production in terms of chemical equilibrium, but the above temperature range is preferred in order to obtain a sufficient ammonia production rate.
- the molar ratio of nitrogen and hydrogen to be brought into contact with the catalyst is not particularly limited, but is usually a ratio of hydrogen to nitrogen (H 2 / N 2 (volume / volume)), usually 0.4 or more, preferably 0.8. It is 5 or more, more preferably 1 or more, usually 10 or less, preferably 5 or less.
- the reaction pressure of the ammonia production method of the present invention is not particularly limited, it is usually 0.01 MPa or more, preferably 0.1 MPa or more, usually 20 MPa or less, preferably 15 MPa or less, as a mixed gas pressure containing nitrogen and hydrogen. Preferably it is 10 MPa or less. Since the activity of the catalyst of the present invention is highly pressure-dependent, pressure conditions of atmospheric pressure or higher are preferable in consideration of practical use.
- the form of the synthesis reaction may be any of a batch type reaction type, a closed circulation type reaction type, and a distribution type reaction type, but the distribution type reaction type is most preferable from a practical viewpoint.
- the ammonia synthesis reaction is in an equilibrium relationship, and high pressure and low temperature conditions are advantageous.
- it is an exothermic reaction it is advantageous to carry out the reaction while removing the heat of reaction, and in order to increase the yield, it is possible to use a technique that is usually carried out industrially in ammonia production. For example, when using a flow reactor, connect a plurality of reactors filled with catalyst in series, install an intercooler at the outlet of each reactor to remove heat, and lower the inlet temperature of each reactor.
- a method of obtaining a high ammonia yield or a method of precisely controlling the outlet temperature of each reaction layer using a reactor having a plurality of catalyst layers inside can be employed.
- ammonia synthesis can be carried out using a single reactor or a plurality of reactors filled with a catalyst, as in the conventional synthesis methods.
- the catalyst used is the Ru-based intermetallic compound fine powder alone, or a combination of two or more kinds of catalysts selected from the Ru-based intermetallic compound fine powder catalyst, or a combination of the Ru-based intermetallic compound fine powder catalyst and a known catalyst, Any of these can be used.
- any of a method of connecting a plurality of reactors and a method of providing a plurality of reaction layers in the same reactor can be used.
- the ammonia produced in the reaction gas is cooled and removed, and then the unreacted raw material is separated from the reaction gas and some of the impurities contained in the unreacted raw material by membrane separation. After purging outside, it can be recycled as a raw material.
- the hydrogen raw material used in the ammonia production method of the present invention is a steam reforming, partial oxidation reforming method, or a self-thermal reforming method combining steam reforming and partial oxidation using coal, oil or natural gas as a raw material, Any raw material of hydrogen raw materials produced by various methods such as a method of producing by a combination of shift reactions, a method of using biomass as a raw material, a method of electrolysis of water, and a method of water decomposition using a photocatalyst can be used.
- the stoichiometric ratio N 2: H 2 1: as a method of obtaining a raw material of high H / N ratio in order to carry out the synthesis reaction with hydrogen excess condition than 3, a method is developed to use the air that has oxygenated If such a raw material is used, the amount of recycle gas is reduced, which is a preferable method in terms of energy. Further, after compressing and separating air, oxygen is used for hydrogen production by the autothermal method, and nitrogen is used as a reaction gas or process nitrogen, which is a preferable method from the viewpoint of energy saving. In the ammonia synthesis method of the present invention, Any of the raw material production methods can be used.
- the reaction temperature is lowered to room temperature and the catalyst activity is restored when the reaction conditions are set again, so that the ammonia synthesis reaction can be repeated.
- the hydrogen adsorption amount of the intermetallic compound of the present invention changes, hydrogen is adsorbed and desorbed, further miniaturization occurs, and the activity of the catalyst is increased. This is to recover.
- this invention is demonstrated in detail. Obtained by the production method of the present invention by determining the amount of NH 3 produced by gas chromatography or by dissolving NH 3 produced in an aqueous sulfuric acid solution and quantifying the solution by ion chromatography to determine the ammonia synthesis rate. The ammonia synthesis activity of the catalyst was evaluated.
- BET specific surface area measurement method The BET specific surface area was measured from an adsorption / desorption isotherm based on adsorption / desorption of nitrogen gas at ⁇ 196 ° C. by adsorbing nitrogen gas on the surface of the object at liquid nitrogen temperature.
- the analysis conditions are as follows. [Measurement condition] Measuring device: High-speed / specific surface / pore distribution measuring device NOVA 4200e (manufactured by Quantachrome Instruments) Adsorption gas: Nitrogen 99.99995% by volume Adsorption temperature: Liquid nitrogen temperature -196 ° C Pretreatment: The measurement object is left at 130 ° C. for 2 hours under vacuum.
- reaction order of nitrogen and hydrogen was determined by the above formula (1).
- the reaction order of ammonia was determined by an empirical rule represented by a value obtained by subtracting 1 from the value of the reciprocal of the slope of the straight line obtained by plotting the ammonia abundance ratio vs. the reciprocal of the total flow rate. In this measurement, in order to make the gas flow rate constant, the total flow rate was controlled using Ar gas which is an inert gas.
- Example 1 ⁇ Synthesis of YRu2 fine powder> A commercially available yttrium (Y) is weighed, and a commercially available Ru metal is weighed in a molar ratio of 1: 2 according to the weight of the yttrium. Then mixed sample of the Y and Ru, and melted in an arc melting method using an arc melting apparatus to obtain a melt of YRu 2. The melt was cooled to room temperature, and the resulting YRu 2 mass was crushed in a mortar to obtain YRu 2 fine powder.
- Y yttrium
- Ru metal is weighed in a molar ratio of 1: 2 according to the weight of the yttrium.
- YRu2 fine powder ⁇ Hydrogen adsorption / desorption treatment of YRu2 fine powder>
- the YRu 2 fine powder is heated at a hydrogen partial pressure of 10 atm or less from room temperature to 500 ° C. at a rate of 5 ° C./minute, then maintained for 1.5 hours, hydrogen is occluded in the YRu 2 fine powder, and then cooled to room temperature. did.
- the YRu 2 fine powder occluded with hydrogen is heated from room temperature to 300 ° C. at 30 ° C./min in a vacuum state, the hydrogen occluded by the YRu 2 is desorbed, and subsequently cooled to room temperature.
- Two fine powders of hydrogen adsorption / desorption treatment were obtained. As shown in FIGS.
- Example 2 ⁇ Ammonia synthesis reaction using YRu 2 fine powder treated with hydrogen adsorption / desorption as a catalyst> A reaction was performed in which nitrogen gas (N 2 ) and hydrogen gas (H 2 ) were brought into contact with the catalyst to generate ammonia gas (NH 3 ). After YRu 2 fine powder was synthesized by the method described in Example 1 and ball milled, 0.03 g of YRu 2 fine powder treated by hydrogen adsorption / desorption by the method described in Example 1 was packed in a glass tube, and fixed bed flow type The catalyst was used as a catalyst in the reactor, and an ammonia synthesis reaction was carried out by contacting nitrogen gas and hydrogen gas.
- the ammonia synthesis reaction was performed at a reaction temperature of 400 ° C., gas flow rates of N 2 : 15 mL / min, H 2 : 45 mL / min, a total of 60 mL / min, and a reaction pressure at atmospheric pressure.
- the gas coming out of the flow reactor was bubbled into a 0.005 M aqueous sulfuric acid solution, the produced ammonia was dissolved in the aqueous sulfuric acid solution, and the resulting ammonium ions were quantified by ion chromatography.
- the reaction rate of the ammonia synthesis reaction at 400 ° C. was 871 ⁇ molg ⁇ 1 h ⁇ 1 .
- the specific surface area of the YRu 2 fine powder catalyst after the reaction was 1.8 m 2 / g by BET specific surface area measurement. The results are shown in Table 1.
- Example 3 ⁇ High activation of YRu 2 catalyst subjected to hydrogen adsorption / desorption treatment by repeating ammonia synthesis reaction and cooling to room temperature>
- the YRu 2 fine powder subjected to the hydrogen adsorption / desorption treatment described in Example 1 was used as a catalyst for the ammonia synthesis reaction under the same reaction conditions as in Example 2, and then the reaction temperature was lowered to room temperature. Subsequently, a second ammonia synthesis reaction was performed again under the same reaction conditions as in Example 2.
- the reaction rate when first subjected to the ammonia synthesis reaction was 893 ⁇ molg ⁇ 1 h ⁇ 1
- the reaction rate when subjected to the second ammonia synthesis reaction was 1187 ⁇ molg ⁇ 1 h ⁇ 1.
- Increased and the activity per mass of catalyst increased.
- Example 4 ⁇ Measurement of reaction order of H 2 , N 2 , and NH 3 when YRu 2 fine powder subjected to hydrogen adsorption / desorption treatment is used as a catalyst> Same as Example 2 except that the same catalyst used in Example 2 was used and the N 2 and H 2 gas flow rates (mL / min) were varied from 5 ml / min to 60 ml / min. The ammonia synthesis reaction was carried out by the method. From the above calculation formula, it was determined that the reaction order of nitrogen was 0.94, the reaction order of hydrogen was 0.81, and the reaction order of ammonia was ⁇ 0.73. The results are shown in Table 2.
- Example 5 ⁇ Pressure dependence in ammonia synthesis reaction using YRu 2 fine powder treated with hydrogen adsorption / desorption>
- the reaction was performed in the same manner as in Example 2 except that the reaction was performed at a reaction temperature of 380 ° C. and reaction pressures of 0.1 MPa, 0.4 MPa, 0.6 MPa, and 0.8 MPa.
- the reaction rates during ammonia synthesis at 380 ° C. and pressures of 0.1 MPa, 0.4 MPa, 0.6 MPa, and 0.8 MPa were 453 ⁇ molg ⁇ 1 h ⁇ 1 , 713 ⁇ molg ⁇ 1 h ⁇ 1 , 789 ⁇ molg ⁇ 1 h ⁇ 1 , respectively.
- YRu 2 has a smaller specific surface area than Ru metal
- Yru 2 has a catalytic activity per mass of about 73 times higher than that of Ru metal.
- the catalytic activity per surface area of the post-reaction catalyst expressed by the reaction rate of ammonia synthesis is about 130 times higher.
- Example 6 ⁇ Durability of YRu 2 fine powder catalyst> An ammonia synthesis reaction was performed in the same manner as in Example 5 except that the reaction pressure of YRu 2 fine powder was changed to 0.8 MPa. As shown in FIG. 4, although up to about the first 20 hours decreased activity is observed, substantially show the same value, for example, catalytic activity was measured after 23 hours of about 80% of the initial activity after the 771Myumolg - 1 h ⁇ 1 and 750 ⁇ mol ⁇ 1 h ⁇ 1 after 48 hours. Further, when XRD measurement was performed on the fine powder after 24 hours and after 49 hours, as shown in FIG. 5, since the peak intensity was not substantially changed, the YRu2 fine powder maintained the crystal structure without being decomposed into Y and Ru. I found out.
- the intermetallic compound of the present invention was found to be resistant to hydrogen from the comparison with Example 4 and Comparative Example 3 when used as an ammonia synthesis catalyst. Therefore, efficient ammonia synthesis can be performed even at a high hydrogen partial pressure.
- the intermetallic compound of the present invention it is considered that poisoning by hydrogen during the synthesis reaction is suppressed by facilitating the occlusion and release of hydrogen.
- the Ru metal by the Laves phase intermetallic compound aru 2 having a hydrogen storage properties, ammonia synthesis activity compared to Ru single metal catalysts are greatly improved. Further, from the reaction rate analysis of ammonia synthesis, the catalyst used in the synthesis method of the present invention is different from the Ru metal catalyst, the hydrogen reaction order is positive, and the activity is improved under the ammonia synthesis reaction conditions with high hydrogen partial pressure. confirmed.
- an intermetallic compound having a property of absorbing hydrogen moves hydrogen atoms excessively present on the surface to the inside of the crystal, so that hydrogen poisoning can be suppressed and activity is increased.
- the intermetallic compound of the present invention can provide a high yield without causing hydrogen poisoning when used as a catalyst, particularly in an ammonia synthesis reaction. Since hydrogen poisoning does not occur even under high-pressure hydrogen conditions, the reaction can be further accelerated under high-pressure conditions, and ammonia reaction synthesis that is more advantageous under high-pressure conditions can be performed more efficiently. It becomes.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Catalysts (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
本願は、2015年9月15日に、日本に出願された特願2015-181607号に基づき優先権を主張し、その内容をここに援用する。
アンモニア合成に活性を示す金属間化合物としては、CaNi5、Mg2Ni,Mg2Cu等の、アルカリ金属又はアルカリ土類金属と、遷移金属との金属間化合物(特許文献2)や、CeFe2、CeCo2、CeRu2等の水素吸蔵合金として知られている金属間化合物(非特許文献1,2)が挙げられる。
具体的に、非特許文献1では、触媒を金属の単体に代えて溶融法で作製したCeFe2,CeRu2、CeCo2等の金属間化合物の粉末を用いてアンモニア合成を行った調査結果が報告されている。
また、AB5型金属間化合物と表わされる金属間化合物を還元した水素化物AB5H~6を触媒として用いる方法も提案されている。具体的には前記AB5型金属間化合物として、AがLaを主成分とするミッシュメタル(mischmetal)、BがNiの金属間化合物であり、BET比表面積が0.02m2/gである金属間化合物を還元した水素化物を触媒として用いることで、室温でのアンモニア合成が可能であることが報告されている(非特許文献3)。
それゆえに、金属Ruを触媒活性成分とする触媒を用いたアンモニア合成法では、化学量論比の面で不利な条件である水素分圧を下げた条件で反応を行わざるを得ない状況にあった。
しかし、希土類元素等の電子供与性が高い金属を構成元素として含む金属間化合物も、前記同様、一般的に物理的粉砕による微粒子化による比表面積の増大が困難である。
また金属間化合物は、アンモニア合成反応の反応温度に用いられる300℃~400℃程度の温度において、希土類元素の窒化物と遷移金属の単体に分解することが多く、触媒としての安定性、耐久性が乏しい。
また、非特許文献2では、CeCo3、CeRu2,CeFe2等については、アンモニア合成反応に際して希土類金属窒化物と遷移金属の単体に変化し、実際に触媒としての機能を果たしているのは希土類金属窒化物に担持されたCo,Ru,Fe等の遷移金属の単体であろうと述べられている。
[1]一般式ARu2(Aは、Y、Sc又は、Ceを除くランタノイド元素から選ばれる一種類以上の元素)で示される組成を有するラーベス相金属間化合物であって、その結晶子サイズが1nm以上、100nm以下であることを特徴とするラーベス相金属間化合物。
[2]一般式ARu2(Aは、Y、Sc又は、Ceを除くランタノイド元素から選ばれる一種類以上の元素)で示される組成を有するラーベス相金属間化合物であって、その結晶子サイズが1nm以上、100nm以下であるラーベス相金属間化合物と、前記金属間化合物を担持させる担体とを含むことを特徴とする金属間化合物複合体。
[3]一般式ARu2(Aは、Y、Sc又は、Ceを除くランタノイド元素から選ばれる一種類以上の元素)で示される組成を有するラーベス相金属間化合物であって、その結晶子サイズが1nm以上、100nm以下であるラーベス相金属間化合物を触媒活性成分として含むことを特徴とする触媒。
[4]前記触媒活性成分が、担体に担持されている、前記[3]に記載の触媒。
[5]前記触媒が、アンモニア製造用触媒である、前記[3]又は[4]に記載の触媒。
[6]水素と窒素を含有するガスを触媒と接触させるアンモニアを合成する方法において、
前記触媒が、一般式ARu2(Aは、Y、Sc又は、Ceを除くランタノイド元素から選ばれる一種類以上の元素)で示される組成を有するラーベス相金属間化合物であって、その結晶子サイズが1nm以上、100nm以下であるラーベス相金属間化合物を触媒活性成分として含む触媒であることを特徴とするアンモニアの製造方法。
[7]前記触媒と接触させる際の反応温度が、200℃以上である、前記[6]に記載のアンモニアの製造方法。
[8]前記触媒と接触させる際の反応圧力が、10kPa以上、15MPa以下である、前記[6]又は[7]に記載のアンモニアの製造方法。
[9]前記触媒と接触させる際の窒素に対する水素の比率(H2/N2(体積/体積))が、0.4以上である、前記[6]~[8]のいずれかに記載のアンモニアの製造方法。
本発明の触媒は、特にアンモニア合成反応において分解が生じないので、従来のRu金属担持触媒にはない活性と、安定性、耐久性が得られる。
金属間化合物とは、通常、2種類以上の金属によって構成される化合物である。
金属間化合物は、通常、金属間化合物を構成する成分金属元素とは異なる結晶構造を持ち、また成分金属元素にはない特異な性質を持つものが知られている。
金属間化合物を構成する金属元素の原子比は、特に限定はされないが、通常整数比である。金属間化合物は、組成式で表わした場合、例えば2種類の金属元素で構成される金属間化合物の場合、その構成金属元素をA及びBとした場合、特に限定はされないが、一般式AB5で表わされるものや、一般式AB2で表わされるものがある。
すなわち、本発明のラーベス相金属間化合物は、Ruを必須の構成成分とするラーベス相金属間化合物であり、その相手となる金属元素は、イットリウム(Y)、スカンジウム(Sc)又は、Ceを除くランタノイド元素であり、好ましくは、入手が比較的容易で安価であるYである。
また、例えば触媒に用いた際に、表面積の大きなものを得ることがあるため、触媒活性の向上をはかることができる。
ここで本発明の金属間化合物の結晶子とは、各々の粒子中で、単結晶と見なせる部分をいう。単結晶とは、結晶内のどの部分においても原子配列の向きが同一であるものをいう。また、通常一つの粒子は複数の結晶子によって構成されている。
そして前記結晶子のサイズは、通常、1nm以上、100nm以下程度の範囲ならばX線回折のピークの半値幅から、シェラー式に基いて求めることができる。測定方法としては、JIS H 7805:2005「X線回折法による金属触媒の結晶子径測定方法」に準じた方法を用いることができる。この他に、Rietveld解析によっても、1nm以上、100nm以下程度の範囲ならばX線回折のピークの半値幅から求めることができる。なお前記の範囲より大きな結晶子のサイズはいずれの測定方法からでも求めることができる。
クラックとは、材料表面に現れる亀裂やひび割れのことをいい、電子顕微鏡などの表面分析装置によって確認できる。
クラックは、特に限定されないが、全結晶のうち2割以上の結晶にあることが好ましい。
まず、第一の工程として、本発明の金属間化合物の構成成分となる金属原子源から、本発明の金属間化合物ARu2を製造する工程を含む。
引き続く第二の工程として、前記金属間化合物ARu2の結晶子サイズを、所定の範囲にする工程を含む。
本発明の金属間化合物の製造方法は、特に限定はされないが、通常、その構成成分である金属Aと金属Ruを溶融、混合して製造することができる。
製造の際の原料比は、本発明の金属間化合物が得られる限りにおいて、限定はされないが、通常はその組成モル比である1:2となるように調製される。
原料となる金属同士の溶融、混合方法は特に限定はされず、例えばアークメルト法による原料金属の溶融、混合によるもの、原料金属の高周波炉などの電気炉での焼成、原料金属の電子レンジ等によるマイクロ波溶融合成、金属Aの粒子と金属Ru粒子のメカニカルアロイング、原料金属の溶融物のスプレー法、金属Aの酸化物粉末と金属Ru粉末を混合し、これをカルシウム等の還元性金属の蒸気中で加熱することで希土類元素酸化物を還元して、金属Ru中に拡散させる還元拡散法、水素化した金属A粉末と金属Ru粉末を混合、又はスパッタリング等で混ぜあわせ、高温下で真空状態に減圧し、金属Aから水素を引き抜くことで合成する等の方法を適宜選択することができる。
また、本発明の金属間化合物は、スパッタリングや蒸着、金属間化合物の原料の金属化合物を溶解した溶液を担体に被着し加熱還元する方法等によって被膜として製造できる。
アークメルト法は、上記金属を真空中においた後、アーク放電により、金属を溶解させ、混合する方法である。
このときの条件は特に限定されないが、通常は、原料となる金属の酸化を防止するため、酸素非含有雰囲気下で行ない、好ましくは、放電が起こりやすいAr雰囲気下で行なう。
溶融時の圧力は特に限定されないが、通常、放電が起こりやすいよう低圧条件下で行ない、好ましくは0.1MPa以下、より好ましくは0.05MPa以下である。
アーク放電時の電圧等は、溶融、混合が起これば特に限定はされず、原料の種類や、その量に応じて適宜選択できる。そして、溶融金属を常温になるまで冷却する。得られたARu2は、通常、塊状である。これを粉砕することにより、ARu2を好ましい粒子径にしてもよい。粉砕には機械的な粉砕や物理的粉砕のいずれも使用することができる。
本発明の金属間化合物の製造法の第二の工程として、第一の工程で得られたARu2の結晶子サイズを1nm以上、100nm以下にする工程を含む。なおここで上記第一の工程で得られたARu2を、以下、「原料ARu2」ということがある。
その方法は特に限定されるものではなく、いわゆる結晶子の表面積を大きくする方法が用いられる。
前記原料ARu2は、通常の物理的方法による微粒子化状にすることが困難な場合がある。そのため、通常は、前記原料ARu2に対して、水素吸脱着による処理(以下、水素吸脱着処理という)を行うことが好ましい。
以下、前記水素吸脱着処理について詳述する。
また水素を脱離させる際の温度は一定でも、変化させてもよいが、常温から速い温度変化で、一定の保持温度まで昇温させ、一定時間保持することで、ARu2の表面にクラックが入りやすくなるため、BET比表面積を増大させることができる点で好ましい。
このときの昇温する速度は特に限定はされないが、通常5℃/分以上で昇温させ、好ましくは、30℃/分以上である。また前記保持温度は、特に限定はされないが、通常、300℃以上、500℃以下である。昇温後の前記保持時間は特に限定はされないが、通常10分以上、5時間以下である。
その結果、本発明の金属間化合物の表面積が増大する。
本発明の金属間化合物をそのまま触媒として用いる場合は、前記金属間化合物の形状等を通常用いる方法で行なって使用することができる。
このときの触媒の結晶子サイズや比表面積は、特に限定はされないが、通常は前記した金属間化合物の結晶子サイズや比表面積等と同様の値を有する。
前記担体の粒子径は、特に限定されるものではないが、通常は担体の方は粒子径が大きいものを用いるため、用いる担体の粒子径に準ずる粒子径を持つ。
前記担体の比表面積は、特に限定されるものではないが、通常は担体の比表面積が複合体の比表面積の値に対して支配的であるため、用いる担体の比表面積に準ずる比表面積を持つ。
<アンモニアの合成>
本発明のアンモニア製造方法は、本発明の金属間化合物を触媒として用い、水素と窒素とを該触媒上で反応させてアンモニアを合成する。
本発明のアンモニアの製造方法においては、水素と窒素を含むガスを、本発明の触媒に接触させる際、特に限定はされないが、通常触媒を加熱することによりアンモニアを製造する。
反応温度は特に限定はされないが、通常200℃以上、好ましくは250℃以上であり、より好ましくは300℃以上、通常600℃以下であり、好ましくは500℃以下、より好ましくは450℃以下である。アンモニア合成は発熱反応であることから、低温領域のほうが化学平衡論的にアンモニア生成に有利であるが、十分なアンモニア生成速度を得るためには上記の温度範囲が好ましい。
本発明のアンモニア製造方法の反応圧力は、特に限定はされないが、窒素と水素含む混合ガスの圧力で、通常0.01MPa以上、好ましくは0.1MPa以上、通常20MPa以下、好ましくは15MPa以下、より好ましくは10MPa以下である。本発明の触媒の活性は、圧力依存性が高いので実用的な利用を考慮すると、大気圧以上の加圧条件が好ましい。
BET比表面積の測定は、対象物の表面に液体窒素温度で窒素ガスを吸着させ、-196℃における窒素ガスの吸脱着に基づく吸脱着等温線から求めた。分析条件は以下の通り。
[測定条件]
測定装置:高速・比表面/細孔分布測定装置 NOVA 4200e(Quantachrome Instruments社製)
吸着ガス:窒素 99.99995体積%
吸着温度:液体窒素温度 -196℃
前処理 :測定対象物を、真空減圧下、130℃、2時間放置する。
反応容器から排出されたアンモニアガスを、5mM硫酸水溶液に溶解させ、捕捉したアンモニウムイオン(NH4 +)をイオンクロマトグラフにより分析した。分析条件は以下の通り。
[測定条件]
装置:日本分光社製 LC-2000 plus
検出器:電気伝導度検出器CD-5(Shodex社製)
カラム:イオンクロマトグラム用カラム(島津製作所社製)
溶離液:3.0mM シュウ酸+2.0mM 18-クラウン-6-エーテル水溶液
流速:1.0mL/分
カラム温度:40°C
アンモニア合成反応の反応次数の解析は、Applied Catalysis A:General 209(2001) pp.317~325に記載の条件に準じて行なった。具体的には、同文献319頁“2.3 Kinetic analysis”の項目中に記載の式(1)~(13)を適用して反応次数を求めた。
反応次数の解析は、一定の温度および流量の下で、反応ガスの分圧を変化させて得た触媒活性の値を測定することで、下記一般式(1)で表わされる。
窒素及び水素の反応次数は前記式(1)により求めた。アンモニアの反応次数は、アンモニア存在比vs.全流量の逆数のプロットで得た直線の傾きの逆数の値から、1を引いた値によって表される経験則により求めた。
また本測定では、ガス流量を一定とするために、不活性ガスであるArガスを用いて全流量の制御を行った。
以下の4つの流量条件下でアンモニア合成速度を測定し、窒素分圧とアンモニア合成速度それぞれの自然対数のプロットを取り、その傾きから窒素反応次数を求めた。
各ガスの流量(mL/min)は以下の通り。
N2:H2:Ar= 6:30:24
N2:H2:Ar=10:30:20
N2:H2:Ar=15:30:15
N2:H2:Ar=20:30:10
以下の4つの流量条件下でアンモニア合成速度を測定し、水素分圧とアンモニア合成速度それぞれの自然対数のプロットを取り、その傾きから水素反応次数を求めた。
各ガスの流量(mL/min)は以下の通り。
N2:H2:Ar=10:20:30
N2:H2:Ar=10:25:35
N2:H2:Ar=10:30:20
N2:H2:Ar=10:40:10
以下の4つの流量条件下でアンモニア合成速度を測定し、全ガス流量の逆数と出口アンモニア濃度それぞれの自然対数のプロットを取り、その傾きmから以下の式でアンモニア反応次数(=1-1/m)を求めた。
各ガスの流量(mL/min)は以下の通り。
N2:H2:Ar=5:15:0
N2:H2:Ar=10:30:0
N2:H2:Ar=15:45:0
N2:H2:Ar=20:60:0
触媒材料の結晶構造解析は、X線回折装置(XRD,BRUKER社製, D8 ADVANCE)を用いて行った。
X線源:Cu Kα線 (λ =0.15418nm,40 kV,50 mA)
触媒材料の表面構造は、走査電子顕微鏡(SEM,JEOL社製、JSM-7600F)を用いて測定した。
<YRu2微粉の合成>
市販のイットリウム(Y)を量り取り、そのイットリウムの重さに合わせて市販のRu金属をモル比で1:2となるように量り取る。次に前記のYとRuの混合試料を、アーク溶融装置を用いたアークメルト法で溶融し、YRu2の溶融物を得た。そして前記溶融物を常温まで冷却し、得られたYRu2塊を乳鉢で砕いてYRu2の微粉を得た。
前記YRu2微粉を、水素分圧10気圧以下で、常温から500℃まで5℃/分で昇温した後、1.5時間維持し、水素を前記YRu2微粉に吸蔵させ、引き続き常温まで冷却した。次に水素を吸蔵させたYRu2微粉を真空状態で、常温から30℃/分で300℃まで昇温し、前記YRu2が吸蔵していた水素を脱離させ、引き続き常温まで冷却し、YRu2微粉の水素吸脱着処理品を得た。
図3AとBに示す通り、図3A水素吸脱着処理前と、図3B水素吸脱着処理後のSEM写真の解析により、水素吸脱着による処理によって、結晶組織の変化は認められず、図3Bの矢印に示すように、大きさ数十μmの微粉にクラックが入っていることが確認された。すなわち、YRu2微粉の表面積が大きくなっていることが示唆された。
また、図2に示すように、粉末XRDの回折線の線幅の変化を評価したところ、水素吸脱着処理によって、結晶子サイズは、前記処理前に250nmであったのが、前記処理後には20nmになり、微小化していた。
<水素吸脱着処理したYRu2微粉を触媒として用いたアンモニア合成反応>
窒素ガス(N2)と水素ガス(H2)を触媒と接触させてアンモニアガス(NH3)を生成させる反応を行った。実施例1に記載の方法でYRu2微粉を合成し、ボールミリングをした後に、実施例1に記載の方法で水素吸脱着処理したYRu2微粉0.03gをガラス管に詰め、固定床流通式反応装置で触媒として用い、窒素ガスと水素ガスと接触させてアンモニア合成反応を行った。
<アンモニア合成反応と室温への冷却を繰り返すことによる水素吸脱着処理したYRu2触媒の高活性化>
実施例1に記載の水素吸脱着処理したYRu2微粉を触媒として実施例2と同じ反応条件でアンモニア合成反応に供した後、反応温度を常温まで下げた。引き続き再度実施例2と同じ反応条件で2回目のアンモニア合成反応を行なった。最初にアンモニア合成反応に供したときの反応速度が893 μmolg-1h-1であったのに対して、2回目のアンモニア合成反応に供した際の反応速度は1187 μmolg-1h-1まで増大し、触媒の質量あたりの活性が上昇した。
<水素吸脱着処理したYRu2微粉を触媒として用いた際のH2、N2、NH3の反応次数の測定>
実施例2で用いたものと同様の触媒を用いて、N2とH2のガスの流量(mL/min)を、5ml/min~60ml/minで変化させた以外は、実施例2と同様の方法でアンモニア合成反応を行った。
前記の算出式から、窒素の反応次数が0.94、水素の反応次数が0.81、アンモニアの反応次数が-0.73であることを求めた。結果を表2に示した。
<水素吸脱着処理したYRu2微粉を触媒として用いたアンモニア合成反応における圧力依存性>
反応温度を380℃、反応圧力を、0.1MPa、0.4MPa、0.6MPa、0.8MPaで反応を行った以外は実施例2と同様に反応を行なった。
380℃、圧力:0.1MPa、0.4MPa、0.6MPa、0.8MPaにおけるアンモニア合成時の反応速度はそれぞれ453μmolg-1h-1、713μmolg-1h-1、789μmolg-1h-1、914μmolg-1h-1であった。結果を図1に示した。本発明の触媒によるアンモニア合成反応は、圧力依存性が見られ、0.8MPaで得られた反応速度は0.1MPaで得られた反応速度の2倍であった。
<水素吸脱着処理していないYRu2微粉触媒によるアンモニア合成反応>
実施例1に記載のYRu2微粉を、水素吸脱着をせずに触媒として用いて、実施例2と同じ方法でアンモニア合成反応を行った。400℃におけるアンモニアの合成速度は233μmolg-1h-1であり、触媒活性は実施例2の1/4程度であった。結果を表1に示した。反応後のYRu2微粉の比表面積は極めて小さいため測定不能であった。
<Ru金属触媒によるアンモニア合成反応>
Ru金属(高純度化学研究所社製、3N、粉末状)を触媒として用いて、触媒としての使用量を0.5gとした以外は、実施例2と同じ方法でアンモニア合成反応を行った。400℃におけるアンモニア合成反応の反応速度は12μmolg-1h-1であった。結果を表1に示した。反応後のRu金属の比表面積はBET比表面積測定により、3.0m2/gであった。
<Ru金属触媒のH2、N2、NH3の反応次数>
前記金属Ruを触媒として、0.5g使用し、反応温度を450℃とした以外は、実施例4と同様の方法でアンモニア合成反応の反応次数を求めた。
窒素の反応次数が1.01、水素の反応次数が-0.49、アンモニアの反応次数は-0.09であった。結果を表2に示した。
<Ru金属触媒を用いた加圧条件下におけるアンモニア合成>
前記のRu金属を触媒とし、0.5g使用し、反応温度が450℃とした以外は実施例5と同様の方法でアンモニア合成反応を行なった。450℃、圧力:0.1MPa、0.4MPa、0.6MPa、0.8MPaにおけるアンモニア合成の反応速度は、それぞれ46μmolg-1h-1、54μmolg-1h-1、61μmolg-1h-1、64μmolg-1h-1であり、0.8MPaで得られた反応速度は0.1MPaで得られた反応速度の1.4倍であった。結果を図1に示した。
表1のアンモニア合成速度と反応後の触媒表面積の測定結果からYRu2はRu金属よりも比表面積が小さいにも関わらず、質量あたりの触媒活性が約73倍も高く、反応後の触媒表面積あたりのアンモニア合成の反応速度で表わす、反応後触媒表面積あたりの触媒活性は約130倍高い。
表2に示すように、Ru金属触媒は水素の反応次数が-0.49と負の値であるのに対し、YRu2触媒は0.81と正の値であり、水素被毒を起こしていないことを示している。
図1に示す高圧条件におけるアンモニア合成速度は、0.1MPaに対して0.8MPaではYRu2触媒は2倍であり、Ru金属触媒は1.4倍であった。YRu2触媒がRu金属触媒に比べて活性の圧力依存性が高いことは、水素の反応次数の値が正であることを反映している。
<YRu2微粉触媒の耐久性>
YRu2微粉を、反応圧力0.8MPaとした以外は、実施例5と同様にアンモニア合成反応を行った。図4に示すように、最初の20時間程度までは活性の低下が見られるが、以降は初期活性に対して80%程度のほぼ同じ値を示し、例えば23時間後に測定した触媒活性は771μmolg-1h-1であり、48時間後は750μmolg-1h-1であった。また、24時間後と49時間後の微粉のXRD測定を行ったところ、図5に示すように、ほぼピーク強度が変わらなかったため、YRu2微粉はYとRuに分解しないで結晶構造を維持していることを見出した。
Claims (9)
- 一般式ARu2(Aは、Y、Sc又は、Ceを除くランタノイド元素から選ばれる一種類以上の元素)で示される組成を有するラーベス相金属間化合物であって、その結晶子サイズが1nm以上、100nm以下であることを特徴とするラーベス相金属間化合物。
- 一般式ARu2(Aは、Y、Sc又は、Ceを除くランタノイド元素から選ばれる一種類以上の元素)で示される組成を有するラーベス相金属間化合物であって、その結晶子サイズが1nm以上、100nm以下であるラーベス相金属間化合物と、前記金属間化合物を担持させる担体とを含むことを特徴とする金属間化合物複合体。
- 一般式ARu2(Aは、Y、Sc又は、Ceを除くランタノイド元素から選ばれる一種類以上の元素)で示される組成を有するラーベス相金属間化合物であって、その結晶子サイズが1nm以上、100nm以下であるラーベス相金属間化合物を触媒活性成分として含むことを特徴とする触媒。
- 前記触媒活性成分が、担体に担持されている、請求項3に記載の触媒。
- 前記触媒が、アンモニア製造用触媒である、請求項3又は4に記載の触媒。
- 水素と窒素を含有するガスを触媒と接触させてアンモニアを合成する方法において、
前記触媒が、一般式ARu2(Aは、Y、Sc又は、Ceを除くランタノイド元素から選ばれる一種類以上の元素)で示される組成を有するラーベス相金属間化合物であって、その結晶子サイズが1nm以上、100nm以下であるラーベス相金属間化合物を触媒活性成分として含む触媒であることを特徴とするアンモニアの製造方法。 - 前記触媒と接触させる際の反応温度が、200℃以上である、請求項6に記載のアンモニアの製造方法。
- 前記触媒と接触させる際の反応圧力が、10kPa以上、15MPa以下である、請求項6又は7に記載のアンモニアの製造方法。
- 前記触媒と接触させる際の窒素に対する水素の比率(H2/N2(体積/体積))が、0.4以上である、請求項6~8のいずれか1項に記載のアンモニアの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/760,072 US10695751B2 (en) | 2015-09-15 | 2016-09-15 | Laves phase intermetallic compound, catalyst using intermetallic compound, and method for producing ammonia |
CN201680052923.9A CN108025921B (zh) | 2015-09-15 | 2016-09-15 | 拉夫斯相金属间化合物、使用该金属间化合物的催化剂、以及氨制造方法 |
EP16846580.5A EP3351509B1 (en) | 2015-09-15 | 2016-09-15 | Laves phase intermetallic compound, catalyst using intermetallic compound, and method for producing ammonia |
JP2017539977A JP6737455B2 (ja) | 2015-09-15 | 2016-09-15 | ラーベス相金属間化合物、金属間化合物を用いた触媒、及びアンモニア製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015181607 | 2015-09-15 | ||
JP2015-181607 | 2015-09-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017047709A1 true WO2017047709A1 (ja) | 2017-03-23 |
Family
ID=58289373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/077313 WO2017047709A1 (ja) | 2015-09-15 | 2016-09-15 | ラーベス相金属間化合物、金属間化合物を用いた触媒、及びアンモニア製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10695751B2 (ja) |
EP (1) | EP3351509B1 (ja) |
JP (1) | JP6737455B2 (ja) |
CN (1) | CN108025921B (ja) |
WO (1) | WO2017047709A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020085324A1 (ja) | 2018-10-23 | 2020-04-30 | つばめBhb株式会社 | アンモニア合成システムおよびアンモニアの製造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019013272A1 (ja) * | 2017-07-12 | 2019-01-17 | 国立研究開発法人科学技術振興機構 | 金属間化合物、水素吸放出材料、触媒及びアンモニアの製造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3185900A (en) * | 1962-09-25 | 1965-05-25 | Bell Telephone Labor Inc | High field superconducting devices |
US3684495A (en) * | 1969-08-14 | 1972-08-15 | Manfred Wilhelm | Superconducting alloy |
JP2005268750A (ja) * | 2004-02-19 | 2005-09-29 | Hoya Corp | 反射型マスクブランクス及び反射型マスク並びに半導体装置の製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE415173B (sv) | 1977-12-19 | 1980-09-15 | Atomenergi Ab | Forfarande for framstellning av ammoniak genom katalyserad reaktion mellan vete och kveve |
JP2532145B2 (ja) | 1988-12-16 | 1996-09-11 | 株式会社新燃焼システム研究所 | アンモニア製造用触媒 |
DE3914844A1 (de) * | 1989-05-05 | 1990-11-08 | Heraeus Gmbh W C | Pyrochlorverwandte oxide und sie enthaltende widerstandsmassen |
JPH0679177A (ja) | 1992-09-02 | 1994-03-22 | Mitsui Toatsu Chem Inc | アンモニア合成触媒および合成方法 |
JP3773293B2 (ja) | 1996-03-05 | 2006-05-10 | 三井化学株式会社 | アンモニア合成触媒の製造法 |
DE60304257T2 (de) | 2002-07-11 | 2006-08-31 | Haldor Topsoe A/S | Verfahren zur Herstellung von Ammoniak sowie Katalysator hierzu |
JP4777670B2 (ja) | 2005-02-25 | 2011-09-21 | 本田技研工業株式会社 | アンモニア合成触媒及びその製造方法 |
EP2039669A1 (en) * | 2007-09-19 | 2009-03-25 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Use of a mixture of an ordered intermetallic compound and an inert material as a catalyst and corresponding hydrogenation processes |
BR112013012061B1 (pt) | 2010-12-07 | 2021-09-28 | Japan Science And Technology Agency | Método de síntese de amônia e catalisador |
-
2016
- 2016-09-15 WO PCT/JP2016/077313 patent/WO2017047709A1/ja active Application Filing
- 2016-09-15 US US15/760,072 patent/US10695751B2/en active Active
- 2016-09-15 JP JP2017539977A patent/JP6737455B2/ja active Active
- 2016-09-15 CN CN201680052923.9A patent/CN108025921B/zh active Active
- 2016-09-15 EP EP16846580.5A patent/EP3351509B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3185900A (en) * | 1962-09-25 | 1965-05-25 | Bell Telephone Labor Inc | High field superconducting devices |
US3684495A (en) * | 1969-08-14 | 1972-08-15 | Manfred Wilhelm | Superconducting alloy |
JP2005268750A (ja) * | 2004-02-19 | 2005-09-29 | Hoya Corp | 反射型マスクブランクス及び反射型マスク並びに半導体装置の製造方法 |
Non-Patent Citations (2)
Title |
---|
ANDREW P. WALKER ET AL.: "Structure and reactivity of ammonia synthesis catalysts derived from CeRu2 precursors: A study by in Situ X-ray absorption spectroscopy", JOURNAL OF CATALYSIS, vol. 125, no. 1, September 1990 (1990-09-01), pages 67 - 76, XP055370486 * |
See also references of EP3351509A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020085324A1 (ja) | 2018-10-23 | 2020-04-30 | つばめBhb株式会社 | アンモニア合成システムおよびアンモニアの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017047709A1 (ja) | 2018-08-09 |
CN108025921A (zh) | 2018-05-11 |
JP6737455B2 (ja) | 2020-08-12 |
EP3351509A4 (en) | 2019-04-03 |
CN108025921B (zh) | 2021-05-04 |
EP3351509A1 (en) | 2018-07-25 |
US20180257061A1 (en) | 2018-09-13 |
US10695751B2 (en) | 2020-06-30 |
EP3351509B1 (en) | 2021-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6670754B2 (ja) | 複合体、複合体の製造方法、アンモニア合成触媒及びアンモニア合成方法 | |
JP6680919B2 (ja) | 担持金属触媒 | |
JP6675619B2 (ja) | アンモニア合成用触媒の製造方法及びアンモニアの製造方法 | |
JP6802544B2 (ja) | 金属担持物、担持金属触媒及び該触媒を用いるアンモニア合成法 | |
WO2017111028A1 (ja) | 遷移金属担持金属間化合物、担持金属触媒、及びアンモニアの製造方法 | |
CN112403461A (zh) | 一种高温抗烧结催化剂及其合成方法 | |
JP6737455B2 (ja) | ラーベス相金属間化合物、金属間化合物を用いた触媒、及びアンモニア製造方法 | |
WO2016133213A1 (ja) | アンモニア合成触媒とその製造方法 | |
WO2021006136A1 (ja) | 金属酸水素化物の製造方法、金属酸水素化物、及びそれを用いたアンモニア合成方法 | |
JP2019126776A (ja) | アンモニア合成用触媒及び該触媒を用いるアンモニア合成法 | |
WO2005030391A1 (en) | Catalyst and method for the generation of co-free hydrogen from methane | |
JP7090253B2 (ja) | 金属間化合物、水素吸放出材料、触媒及びアンモニアの製造方法 | |
WO2021172107A1 (ja) | 典型元素酸化物を含む金属担持物、アンモニア合成用触媒、及びアンモニアの合成方法 | |
JPWO2020175558A1 (ja) | 酸窒素水素化物、酸窒素水素化物を含む金属担持物、及びアンモニア合成用触媒 | |
WO2021172109A1 (ja) | 酸窒素水素化物、酸窒素水素化物を含む金属担持物、及びアンモニア合成用触媒 | |
US20220126276A1 (en) | Catalyst for ammonia synthesis and method for synthesizing ammonia using the same | |
JP5812253B2 (ja) | 炭化水素を分解する触媒及び燃料電池システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16846580 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017539977 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15760072 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016846580 Country of ref document: EP |