WO2017047056A1 - 光拡散透過シート - Google Patents

光拡散透過シート Download PDF

Info

Publication number
WO2017047056A1
WO2017047056A1 PCT/JP2016/004117 JP2016004117W WO2017047056A1 WO 2017047056 A1 WO2017047056 A1 WO 2017047056A1 JP 2016004117 W JP2016004117 W JP 2016004117W WO 2017047056 A1 WO2017047056 A1 WO 2017047056A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
light
particles
resin
light diffusing
Prior art date
Application number
PCT/JP2016/004117
Other languages
English (en)
French (fr)
Inventor
多佳子 岩井
耕一郎 壹岐
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to JP2017540492A priority Critical patent/JPWO2017047056A1/ja
Priority to CN201680042343.1A priority patent/CN107850699A/zh
Publication of WO2017047056A1 publication Critical patent/WO2017047056A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a light diffusing and transmitting sheet.
  • Patent Document 1 describes a light diffusing and transmitting sheet provided with a resin as a base material and silica composite particles dispersed in the resin.
  • the silica composite particles include titanium oxide fine particles having an average particle diameter of 100 nm or less.
  • the light diffusion transmission sheet described in Patent Literature 1 exhibits high total light transmittance and haze ratio. Titanium oxide has a high refractive index (eg, about 2.60).
  • Patent Document 2 describes an optical laminate having an internal scattering layer provided on a light-transmitting substrate.
  • the internal scattering layer contains internal scattering particles.
  • the internal scattering particles include fine particles made of an organic material and / or an inorganic material having an average particle diameter of 1 to 10 ⁇ m and an average particle diameter of 5 to 300 nm.
  • Examples of the inorganic material forming the fine particles include materials having high refractive index expression such as titanium oxide, zinc oxide, zirconia, and alumina.
  • Patent Document 3 describes a transmissive screen for visually recognizing an image projected from a projector.
  • the transmission screen has a light diffusion layer containing light diffusion fine particles and xerogel.
  • the light diffusing fine particles are supported by xerogel.
  • xerogel voids air with a refractive index of 1.0
  • the relative refractive index of the light diffusing fine particles with respect to the air becomes very high.
  • efficient light diffusion of the light diffusing fine particles becomes possible.
  • Patent Document 3 as light diffusing fine particles, composite particles composed of organic fine particles and a small amount of inorganic fine particles (the proportion of inorganic fine particles is less than 50% by mass), or inorganic fine particles and a small amount of organic polymer (the proportion of organic fine particles). It is described that the composite particles can be used.
  • opt beads 500S and opt beads 6500M which are composite fine particles of silica and melamine resin, are used as the light diffusing fine particles.
  • Patent Document 4 describes a light diffusing plate having a light diffusing layer made of a transparent base material containing a transparent resin.
  • the light diffusion layer includes first light diffusion particles and second light diffusion particles present inside the transparent substrate.
  • the refractive index of the second light diffusing particles is larger than the refractive index of the first light diffusing particles.
  • the refractive index of the first light diffusing particles is 1.4 to 1.7, and the refractive index of the second light diffusing particles is larger than 2.
  • Patent Document 1 there is room for improving the luminance characteristics of the light diffusing and transmitting sheet.
  • Patent Document 2 although a specific material such as titanium oxide is exemplified as an inorganic material for forming fine particles, in order to increase the luminance of the optical layered body while ensuring good light diffusion characteristics No specific investigation has been made on advantageous internal scattering particles.
  • Patent Document 3 as the light diffusing fine particles that are composite particles, substantially only the opt beads 500S and the opt beads 6500M are described. Further, it is suggested that even if the optobead 500S is used, the luminance characteristics of the light diffusion layer are low depending on the porosity of the light diffusion layer.
  • Patent Document 4 neither describes nor suggests that the composite particles are dispersed in the transparent substrate.
  • an object of the present invention is to provide a light diffusing and transmitting sheet provided with novel composite particles that are advantageous for realizing good light diffusing characteristics and high luminance characteristics.
  • the present invention A base material resin; A resin binder and fine particles encapsulated in the resin binder, and composite particles dispersed in the matrix resin,
  • the fine particles include glass fine particles, A light diffusing and transmitting sheet is provided.
  • the fine particles encapsulated in the resin binder contain glass fine particles, which is advantageous for the composite particles to realize good light diffusion characteristics and high luminance characteristics.
  • the light diffusing and transmitting sheet has good light diffusing characteristics and high luminance characteristics.
  • FIG. 1 Schematic sectional view of a light diffusion transmission sheet according to an embodiment of the present invention Sectional view schematically showing the structure of the composite particles
  • the light diffusing and transmitting sheet 1 of the present invention includes a base material resin 10 and composite particles 20.
  • the composite particles 20 are dispersed in the base material resin 10.
  • the base material resin 10 is not particularly limited, but is preferably a resin having excellent dispersibility of the composite particles 20 and having transparency to visible light, weather resistance, moisture resistance, and heat resistance.
  • polyester polyol linear polyester, acrylic resin, amino resin, epoxy resin, melamine resin, silicone resin, urethane resin, vinyl acetate resin, norbornene resin, and polycarbonate
  • examples include materials such as resins.
  • Various thermosetting resins and various ultraviolet curable resins can also be used.
  • the light diffusing and transmitting sheet 1 may further include a substrate (not shown) such as a PET (polyethylene terephthalate) film, and the base resin 10 in which the composite particles 20 are dispersed may be formed in layers on the substrate.
  • a substrate such as a PET (polyethylene terephthalate) film
  • the base resin 10 in which the composite particles 20 are dispersed may be formed in layers on the substrate.
  • the composite particle 20 contains a resin binder 21 and fine particles 22.
  • the fine particles 22 are encapsulated in the resin binder 21.
  • the fine particles 22 include glass fine particles 22a.
  • the high refractive index fine particles PH having a higher refractive index than the glass fine particles 22a such as the titanium dioxide fine particles are present inside the composite particles instead of the glass fine particles 22a, the high refractive index fine particles PH.
  • the high refractive index fine particles PH When light is incident on the light, a large amount of light may be confined inside the high refractive index fine particles PH by repeating total reflection inside the high refractive index fine particles PH. This is disadvantageous in improving the luminance characteristics of the light diffusing and transmitting sheet.
  • the glass fine particles 22a are contained in the composite particles 20, some light may be confined in the glass fine particles 22a, but the refractive index of the glass.
  • the light diffusing and transmitting sheet 1 has high luminance characteristics.
  • the glass tends to have a refractive index having a desirable relationship with the refractive index of the resin binder 21 from the viewpoint of providing the light diffusing and transmitting sheet 1 with good light diffusing characteristics.
  • the inclusion of the glass fine particles 22a in the fine particles 22 is advantageous for realizing both good light diffusion characteristics and high luminance characteristics.
  • the light diffusion transmission sheet 1 has good light diffusion characteristics and high luminance characteristics.
  • the average particle diameter of the composite particles 20 be within a predetermined range so that the composite particles 20 can be uniformly dispersed in the base material resin 10.
  • the average particle size of the composite particles 20 is, for example, 1 ⁇ m to 20 ⁇ m, desirably 1 ⁇ m to 15 ⁇ m, and more desirably 4 ⁇ m to 15 ⁇ m.
  • variation in the optical characteristic in the light diffusion transmission sheet 1 can be prevented.
  • the “average particle diameter” means a volume-based D50 measured by a laser diffraction method.
  • the “average particle size” is 50 or more visible when the cross section of the light diffusing and transmitting sheet 1 or the cross section of the composite particle 20 is observed with a scanning electron microscope (SEM) or a transmission electron microscope (TEM). It may be obtained as an average value of the maximum diameter of the particles.
  • the shape of the composite particles 20 is desirably granular with an aspect ratio of 1 to 2 from the viewpoint of imparting spatially uniform light diffusion characteristics to the light diffusion transmission sheet 1.
  • the aspect ratio means the ratio (da / db) of the major axis da of the composite particle 20 to the minor axis db of the composite particle 20.
  • the average particle diameter of the glass fine particles 22a is, for example, 10 nm to 10 ⁇ m.
  • the average particle diameter of the glass fine particles 22a is desirably 100 nm to 10 ⁇ m, and more desirably 100 nm to 5 ⁇ m.
  • the glass fine particles 22 a are appropriately included in the resin binder 21.
  • the refractive index of the glass fine particles 22a is, for example, 1.52 to 1.80.
  • the light-diffusion transmission sheet 1 has a favorable light-diffusion characteristic and a high luminance characteristic more reliably.
  • the refractive index of the glass fine particles 22a is preferably 1.54 to 1.80, more preferably 1 .55 to 1.80.
  • the glass fine particles 22 a have a refractive index larger than that of the resin binder 21.
  • the difference between the refractive index of the glass fine particles 22a and the refractive index of the resin binder 21 is, for example, 0.30 or less. This makes it difficult for light incident on the glass fine particles 22a to be confined by repeating total reflection inside the glass fine particles 22a, and the light diffusion transmission sheet 1 surely has high luminance characteristics.
  • the difference between the refractive index of the glass fine particles 22a and the refractive index of the resin binder 21 is, for example, 0.02 or more. Thereby, the light-diffusion transmission sheet 1 has a favorable light-diffusion characteristic more reliably.
  • the glass for forming the glass fine particles 22a is not particularly limited, but for example, the following glass. Expressed in mass%, 59% ⁇ SiO 2 ⁇ 65%, 8% ⁇ Al 2 O 3 ⁇ 15%, 47% ⁇ (SiO 2 —Al 2 O 3 ) ⁇ 57%, 1% ⁇ MgO ⁇ 5%, 20% ⁇ CaO ⁇ 30%, 0% ⁇ (Li 2 O + Na 2 O + K 2 O) ⁇ 2%, 0% ⁇ TiO 2 ⁇ 5%, Each component contains, B 2 O 3, F, ZnO, BaO, SrO, and not containing ZrO 2 substantially glass.
  • substantially does not contain means, for example, that it is not intentionally included unless it is inevitably mixed into industrial raw materials, and specifically includes the target component.
  • the amount is less than 0.1% by weight, desirably less than 0.05% by weight, more desirably less than 0.03% by weight.
  • the glass of international publication 2006/068255 is illustrated. Thereby, the light-diffusion transmission sheet 1 has a favorable light-diffusion characteristic and high brightness
  • the content of the composite particles 20 in the light diffusing and transmitting sheet 1 is, for example, 55% by mass or more, desirably 60% by mass or more, and more desirably 64% by mass or more. Thereby, the light diffusion transmission sheet 1 more reliably has good light diffusion characteristics and high luminance characteristics. Moreover, the content rate of the composite particle 20 in the light diffusive transmission sheet 1 is, for example, 70% by mass or less, desirably 68% by mass or less, and more desirably 66% by mass or less. Thereby, the composite particles 20 can be appropriately dispersed in the base material resin 10, and for example, the composite particles 20 can be prevented from being exposed on the surface of the light diffusion transmission sheet 1.
  • the content of the fine particles 22 in the composite particles 20 is, for example, 30% to 99% by mass, desirably 30% to 95% by mass, and more desirably 50% to 90% by mass.
  • the content of the resin binder 21 in the composite particle 20 is, for example, 1% by mass to 70% by mass, desirably 5% by mass to 70% by mass, and more desirably 10% by mass to 50% by mass.
  • the fine particles 22 may contain fine particles other than the glass fine particles 22a.
  • the fine particles 22 include at least one fine particle selected from the group consisting of silica, silicone, fluororesin, titanium dioxide, zinc oxide, zirconium oxide, calcium carbonate, barium sulfate, zinc sulfide, aluminum hydroxide, and extender pigment.
  • the light diffusion transmission sheet 1 which has various optical characteristics can be provided.
  • a predetermined mechanical strength can be imparted to the composite particles 20.
  • the composite particle 20 includes, for example, glass fine particles 22a and silica fine particles.
  • the light diffusion transmission sheet 1 more reliably has good light diffusion characteristics and high luminance characteristics.
  • the average particle diameter of the silica fine particles is, for example, smaller than the average particle diameter of the glass fine particles 22a, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 600 nm, and more preferably 2 nm to 400 nm.
  • the content of the silica fine particles in the composite particle 20 is, for example, 10% by mass to 98% by mass, desirably 15% by mass to 94% by mass, and more desirably 40% by mass to 87% by mass.
  • the composite particles 20 have desirable mechanical strength.
  • the silica fine particles have, for example, a spherical shape.
  • the composite particle 20 may include only glass fine particles 22 a and silica fine particles as the fine particles 22.
  • Resin binder 21 can enclose fine particles 22 and has transparency to visible light. From the viewpoint of reducing the possibility of damaging the member in contact with the light diffusing and transmitting sheet 1 by reducing the hardness of the composite particles 20, the resin binder 21 is desirably at least selected from the group consisting of an acrylic resin, a polyurethane resin, and nylon. Contains one resin. Among these, the resin binder 21 is desirably a polyurethane resin.
  • a sol solution in which the raw material of the resin binder 21 and the fine particles 22 including at least the glass fine particles 22a are dispersed is prepared. If necessary, fine particles 22 (for example, silica fine particles), fluorescent dyes, fluorescent brighteners, dyes, or pigments different from the glass fine particles 22a are dispersed in the sol solution.
  • the composite particles 20 can be obtained by spray drying using the prepared sol solution. By adjusting the content of the solid component in the sol liquid and the spraying conditions in the spray drying, aggregation of the primary particles can be suppressed and the particle size of the composite particles 20 can be controlled within an appropriate range.
  • fine particles 22 containing at least glass fine particles 22a are added to the molten resin to be the resin binder 21, and if necessary, fine particles 22 (for example, silica fine particles) different from the glass fine particles 22a, fluorescent dyes, fluorescent whitening. Agents, dyes, or pigments are added and kneaded, and these additives are mixed uniformly into the molten resin.
  • the composite particles 20 can also be obtained by pulverizing the resin mass obtained in this way and adjusting it to a predetermined particle size. However, from the viewpoint of uniformly dispersing the fine particles 22 and the like in the resin binder 21 or efficiently producing the composite particles 20 having a desired particle size and shape, the composite particles 20 are prepared by preparing a sol solution and spray drying. Is desirable.
  • the composite particles 20 produced as described above are uniformly dispersed in a fluid containing the raw material for the base material resin 10. In this way, an ink containing the raw material of the base resin 10 and the composite particles 20 is prepared.
  • the light diffusing and transmitting sheet 1 can be obtained by applying this ink on a substrate such as a PET film and solidifying the ink.
  • Aqueous dispersion of glass fine particles (refractive index of glass: 1.57, average particle size of glass fine particles: 1.5 ⁇ m, concentration of glass fine particles 5.8% by mass) 22.6 parts by weight, colloidal liquid A of silica fine particles ( Manufactured by Nissan Chemical Industries, Ltd., average particle diameter of silica fine particles: 2 nm to 3 nm, refractive index of silica fine particles: about 1.45, trade name: Snowtex XS, 18.4 parts by weight, colloid liquid B of silica fine particles (Japan) Chemical Industries, Ltd., average particle diameter of silica fine particles: 7 nm to 10 nm, refractive index of silica fine particles: about 1.45, trade name: silica dol 30S, 57.6 parts by weight, polyurethane emulsion A (manufactured by Mitsui Chemicals, Product name: Takelac W-6020, polyurethane refractive index: 1.50 to 1.55) 17.7 parts by
  • the content of the glass fine particles in the solid content of the sol liquid is 5.8% by mass
  • the content of the solid content of polyurethane in the solid content of the sol liquid is 20.4% by mass
  • the silica fine particles in the solid content of the sol liquid The content of was 73.8% by mass.
  • the glass forming the glass fine particles is expressed in mass%, 59% ⁇ SiO 2 ⁇ 65%, 8% ⁇ Al 2 O 3 ⁇ 15%, 47% ⁇ (SiO 2 —Al 2 O 3 ) ⁇ 57% 1% ⁇ MgO ⁇ 5%, 20% ⁇ CaO ⁇ 30%, 0% ⁇ (Li 2 O + Na 2 O + K 2 O) ⁇ 2%, 0% ⁇ TiO 2 ⁇ 5%, It was glass which contains each of these components and does not substantially contain B 2 O 3 , F, ZnO, BaO, SrO, and ZrO 2 .
  • the sol solution prepared as described above was spray-dried using a micro mist spray dryer (product name: MDL-050, manufactured by Fujisaki Electric Co., Ltd.) to produce composite particles according to the examples.
  • the average particle size of the composite particles according to the example was 4 to 15 ⁇ m.
  • the average particle size of the composite particles was measured using a laser diffraction / scattering particle size distribution analyzer (manufactured by Nikkiso Co., Ltd., product name: Microtrac MT-3000II).
  • the sample used for this measurement was prepared by mixing an appropriate amount of the composite particles according to the dried example in pure water and applying ultrasonic vibration (130 W for 1 minute) to disperse the composite particles in pure water.
  • the ink was prepared by dispersing the composite particles according to the example produced as described above in an acrylic resin. This ink was applied to a PET film having a thickness of 20 ⁇ m by the doctor blade method and solidified to prepare a sample according to the example.
  • the thickness of the coating film in the sample according to the example was 7 to 15 ⁇ m, and the content of the composite particles in the coating film of the sample according to the example was 65% by mass.
  • ⁇ Comparative example> 8.4 parts by weight of an aqueous dispersion of fine titanium dioxide particles (refractive index: 2.71, average particle size of fine titanium dioxide particles: 330 nm, concentration of fine titanium dioxide particles: 20% by mass), and an aqueous dispersion of fine zinc oxide particles ( Refractive index: 2.0, average particle diameter of zinc oxide fine particles: 0.15 to 0.16 ⁇ m, 9.1 parts by weight of zinc oxide fine particles (concentration: 21.7% by mass) and colloidal liquid A of silica fine particles (Nissan Chemical) Made by Kogyo Co., Ltd., average particle diameter of silica fine particles: 2 nm to 3 nm, refractive index of silica fine particles: about 1.45, product name: Snowtex XS, 16.6 parts by weight, colloid liquid B of silica fine particles (Nippon Chemical Industry Co., Ltd.) The average particle size of silica fine particles: 7 to 10 nm, the refractive index of silica fine particles: about
  • the content of titanium dioxide fine particles in the solid content of the sol liquid is 6.3% by mass
  • the content of zinc oxide fine particles in the solid content of the sol liquid is 7.4% by mass
  • the silica fine particles in the solid content of the sol liquid The content ratio of polyurethane was 62.1 mass%, and the solid content of polyurethane in the solid content of the sol liquid was 24.2 mass%.
  • the sol solution prepared as described above was spray-dried using a micro mist spray dryer (product name: MDL-050, manufactured by Fujisaki Electric Co., Ltd.) to produce composite particles according to a comparative example.
  • the average particle size of the composite particles according to the comparative example was 4 to 15 ⁇ m.
  • the average particle size of the composite particles according to the comparative example was measured in the same manner as in the example.
  • the composite particles according to the comparative example were dispersed in an acrylic resin to prepare an ink.
  • This ink was applied to a PET film having a thickness of 20 ⁇ m by a doctor blade method and solidified to prepare a sample according to a comparative example.
  • the thickness of the coating film in the sample according to the comparative example was 7 to 15 ⁇ m, and the content of the composite particles in the coating film of the sample according to the comparative example was 65% by mass.
  • the luminance and chromaticity y of the sample according to the example and the sample according to the comparative example were measured using a luminance measuring device (product name: RISA-COLOR ONE, manufactured by Highland Corporation).
  • the backlight of Apple's iPhone 5 was used as the light source.
  • IPhone is a registered trademark of Apple Inc.
  • the measurement position of the luminance and chromaticity y was located on the side opposite to the light source of the sample, and the distance between the measurement position of the luminance and chromaticity y and the sample was 100 cm. Table 1 shows the results. Note that the luminance value when the relative luminance value is 100% is 10 4 cd / cm 2 .
  • the sample according to the example had higher luminance characteristics than the sample according to the comparative example. Moreover, it was suggested that the sample which concerns on an Example has the high haze rate comparable as the sample which concerns on a comparative example, and has a favorable light-diffusion characteristic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明の光拡散透過シート(1)は、母材樹脂(10)と、母材樹脂(10)に分散している複合粒子(20)と、を備えている。複合粒子(20)は、樹脂バインダー(21)及び前記樹脂バインダー(21)に内包された微粒子(22)を含有している。微粒子(22)は、ガラス微粒子(22a)を含む。

Description

光拡散透過シート
 本発明は、光拡散透過シートに関する。
 液晶ディスプレイの高画質化に伴い、液晶ディスプレイのバックライトから出射される光を空間的に均質化するために、光拡散特性の高い光拡散透過シートに対する需要が高まっている。加えて、消費エネルギーを低減する観点から、輝度特性の高い光拡散透過シートに対する需要も高まっている。
 特許文献1には、母材である樹脂と、樹脂に分散されたシリカ複合粒子とを備えた光拡散透過シートが記載されている。シリカ複合粒子は、平均粒径が100nm以下である酸化チタン微粒子を内包している。特許文献1に記載の光拡散透過シートは、高い全光線透過率及びヘイズ率を示す。酸化チタンは高い屈折率(例えば、約2.60)を有する。
 特許文献2には、光透過性基材上に設けられた内部散乱層を有する光学積層体が記載されている。内部散乱層は内部散乱粒子を含有する。内部散乱粒子は、平均粒径が1~10μmであり、かつ、平均粒径が5~300nmの有機材料及び/又は無機材料からなる微粒子を内包している。微粒子を形成する無機材料としては、酸化チタン、酸化亜鉛、ジルコニア、アルミナ等の屈折率発現性の高い材料が例示されている。
 特許文献3には、プロジェクターから投影された映像を視認するための透過型スクリーンが記載されている。透過型スクリーンは、光拡散微粒子とキセロゲルとを含有する光拡散層を有する。光拡散微粒子はキセロゲルによって担持されている。これにより、光拡散微粒子表面にキセロゲルの空隙(屈折率1.0の空気)が存在して、光拡散微粒子の空気に対する相対屈折率が非常に高くなる。このため、光拡散微粒子の効率的な光拡散が可能になる。その結果、プロジェクターから投影された映像を視認できる視野角が非常に広く、スクリーンの両面からの視認性にも優れる透過型スクリーンが提供される。特許文献3には、光拡散微粒子として、有機微粒子と少量の無機微粒子(無機微粒子の割合が50質量%を下回るもの)による複合粒子、又は、無機微粒子と少量の有機高分子(有機微粒子の割合が50質量%を下回るもの)による複合粒子が使用可能であることが記載されている。例えば、実施例では、シリカとメラミン樹脂との複合微粒子である、オプトビーズ500S及びオプトビーズ6500Mが光拡散微粒子として使用されている。
 特許文献4には、透明樹脂を含む透明基材からなる光拡散層を具備する光拡散板が記載されている。光拡散層は透明基材の内部に存在する、第一光拡散粒子及び第二光拡散粒子を含む。第二光拡散粒子の屈折率は、第一光拡散粒子の屈折率よりも大きい。第一光拡散粒子の屈折率は1.4~1.7であり、第二光拡散粒子の屈折率は2より大きい。
特開2014-48427号公報 特開2009-42554号公報 特開2013-195548号公報 特開2008-40479号公報
 特許文献1に記載の技術によれば、光拡散透過シートの輝度特性を高める余地を有している。また、特許文献2によれば、微粒子を形成する無機材料として、酸化チタンなどの特定の材料が例示されているものの、良好な光拡散特性を確保しつつ、光学積層体の輝度を高めるために有利な内部散乱粒子について具体的な検討はなされていない。特許文献3によれば、複合粒子である光拡散微粒子としては、実質的にはオプトビーズ500S及びオプトビーズ6500Mが記載されているのみである。また、オプトビーズ500Sを使用しても、光拡散層の空隙率によっては光拡散層の輝度特性が低いことが示唆されている。また、特許文献4には、透明基材に複合粒子を分散させることは記載も示唆もされていない。
 このような事情のもと、本発明は、良好な光拡散特性と高い輝度特性とを実現するのに有利である新規な複合粒子を備えた光拡散透過シートを提供することを目的とする。
 本発明は、
 母材樹脂と、
 樹脂バインダー及び前記樹脂バインダーに内包された微粒子を含有し、前記母材樹脂に分散している複合粒子と、を備え、
 前記微粒子は、ガラス微粒子を含む、
 光拡散透過シートを提供する。
 樹脂バインダーに内包された微粒子がガラス微粒子を含むことにより、複合粒子が、良好な光拡散特性と高い輝度特性とを実現するのに有利である。上記の光拡散透過シートは、このような複合粒子を備えることにより、良好な光拡散特性と高い輝度特性とを有する。
本発明の実施形態に係る光拡散透過シートの模式的な断面図 複合粒子の構造を模式的に示す断面図 複合粒子の内部のガラス微粒子に入射する光の光路を模式的に示す図 複合粒子の内部の高屈折率微粒子に入射する光の光路を模式的に示す図
 以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の説明は、本発明の一例に関するものであり、本発明はこれらによって限定されるものではない。
 図1に示すように、本発明の光拡散透過シート1は、母材樹脂10と、複合粒子20とを備えている。複合粒子20は、母材樹脂10に分散している。母材樹脂10は、特に限定されないが、複合粒子20の分散性に優れ、可視光に対する透明性、耐候性、耐湿性、及び耐熱性を有する樹脂であることが望ましい。例えば、母材樹脂10としては、ポリエステルポリオール、線状ポリエステル、アクリル系樹脂、アミノ樹脂、エポキシ系樹脂、メラミン系樹脂、シリコーン系樹脂、ウレタン系樹脂、酢酸ビニル系樹脂、ノルボルネン系樹脂、及びポリカーボネート樹脂等の材料が挙げられる。また、各種の熱硬化型樹脂、各種の紫外線硬化型樹脂を用いることもできる。これらの樹脂にはイソシアネート系等の硬化剤、各種の分散剤が適宜添加されていてもよい。光拡散透過シート1は、PET(ポリエチレンテレフタレート)フィルム等の基板(図示省略)をさらに備え、その基板上に複合粒子20が分散している母材樹脂10が層状に形成されていてもよい。
 図2に示すように、複合粒子20は、樹脂バインダー21及び微粒子22を含有している。微粒子22は、樹脂バインダー21に内包されている。微粒子22は、ガラス微粒子22aを含む。
 図3Bに示すように、ガラス微粒子22aの代わりに、二酸化チタン微粒子のようなガラス微粒子22aよりも高い屈折率を有する高屈折率微粒子PHが複合粒子の内部に存在する場合、高屈折率微粒子PHに光が入射すると、多くの光が高屈折率微粒子PHの内部で全反射を繰り返して高屈折率微粒子PHの内部に閉じ込められることがある。このことは、光拡散透過シートの輝度特性を高めるうえで不利である。これに対し、図3Aに示すように、ガラス微粒子22aが複合粒子20の内部に含まれていると、一部の光はガラス微粒子22aの内部に閉じ込められる可能性があるものの、ガラスの屈折率はそれほど高くないので、多くの光がガラス微粒子22aの表面で適切に屈折しながらガラス微粒子22aを通過する。すなわち、複合粒子20の微粒子22がガラス微粒子22aを含むことにより、ガラス微粒子22aに入射した光の多くが光拡散透過シート1の前方に向かって進むので、微粒子22に閉じ込められる光の割合が低減される。その結果、光拡散透過シート1は高い輝度特性を有する。また、ガラスは、光拡散透過シート1に良好な光拡散特性をもたらす観点から樹脂バインダー21の屈折率と望ましい関係にある屈折率を有しやすい。このため、微粒子22がガラス微粒子22aを含むことは、良好な光拡散特性と高い輝度特性との両方を実現するのに有利である。これにより、光拡散透過シート1は、良好な光拡散特性と高い輝度特性とを有する。
 複合粒子20が母材樹脂10に均一に分散できるように、複合粒子20の平均粒径が所定の範囲に収まっていることが望ましい。このような観点から、複合粒子20の平均粒径は、例えば1μm~20μmであり、望ましくは1μm~15μmであり、より望ましくは4μm~15μmである。これにより、光拡散透過シート1における光学特性の空間的なばらつきを防止できる。また、複合粒子20が凝集したときに生じる一次粒子同士の間の空隙に光が進入することによる光の反射ロスを低減できる。これにより、光拡散透過シート1の輝度特性を向上させることができる。さらに、光拡散透過シート1において光が屈折する界面を十分に確保できる。これにより、光拡散透過シート1の光拡散特性を高めることができる。なお、本明細書で「平均粒径」とは、レーザー回折法で測定した体積基準のD50を意味する。また、「平均粒径」は、光拡散透過シート1の断面又は複合粒子20の断面を走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)で観察したときに視認可能な50個以上の粒子の最大径の平均値として求められてもよい。
 複合粒子20の形状は、光拡散透過シート1に空間的に均一な光拡散特性を付与する観点から、アスペクト比が1~2である粒状であることが望ましい。ここで、アスペクト比とは、複合粒子20の長径daの複合粒子20の短径dbに対する比(da/db)を意味する。
 ガラス微粒子22aの平均粒径は、例えば10nm~10μmである。ガラス微粒子22aの平均粒径は、望ましくは100nm~10μmであり、より望ましくは100nm~5μmである。これにより、ガラス微粒子22aが樹脂バインダー21に適切に内包される。
 ガラス微粒子22aの屈折率は、例えば、1.52~1.80である。これにより、光拡散透過シート1が、より確実に、良好な光拡散特性と高い輝度特性とを有する。光拡散透過シート1が、より確実に、良好な光拡散特性と高い輝度特性とを有する観点から、ガラス微粒子22aの屈折率は、望ましくは1.54~1.80であり、より望ましくは1.55~1.80である。
 例えば、ガラス微粒子22aは、樹脂バインダー21の屈折率よりも大きい屈折率を有する。ガラス微粒子22aの屈折率と樹脂バインダー21の屈折率との差は、例えば0.30以下である。これにより、ガラス微粒子22aに入射した光がガラス微粒子22aの内部で全反射を繰り返して閉じ込められにくくなり、光拡散透過シート1が確実に高い輝度特性を有する。ガラス微粒子22aの屈折率と樹脂バインダー21の屈折率との差は、例えば0.02以上である。これにより、光拡散透過シート1がより確実に良好な光拡散特性を有する。
 ガラス微粒子22aを形成するガラスは、特に制限されないが、例えば以下のガラスである。
 質量%で表して、
 59%≦SiO2≦65%、
 8%≦Al23≦15%、
 47%≦(SiO2-Al23)≦57%、
 1%≦MgO≦5%、
 20%≦CaO≦30%、
 0%<(Li2O+Na2O+K2O)<2%、
 0%≦TiO2≦5%、
の各成分を含有し、B23、F、ZnO、BaO、SrO、及びZrO2を実質的に含有しない、ガラス。ここで、「実質的に含有しない」とは、例えば工業用原料に不可避的に混入される場合を除き、意図的に含ませないことを意味し、具体的には、対象となる成分の含有量が0.1質量%未満であり、望ましくは0.05質量%未満であり、より望ましくは0.03質量%未満である。このようなガラスとしては、国際公開第2006/068255号に記載のガラスが例示される。これにより、光拡散透過シート1が、より確実に良好な光拡散特性と高い輝度特性とを有する。
 光拡散透過シート1における複合粒子20の含有率は、例えば55質量%以上であり、望ましくは60質量%以上であり、より望ましくは64質量%以上である。これにより、光拡散透過シート1は、より確実に、良好な光拡散特性と高い輝度特性とを有する。また、光拡散透過シート1における複合粒子20の含有率は、例えば70質量%以下であり、望ましくは68質量%以下であり、より望ましくは66質量%以下である。これにより、複合粒子20が母材樹脂10に適切に分散し、例えば光拡散透過シート1の表面に複合粒子20が露出することを抑制できる。
 複合粒子20における微粒子22の含有率は、例えば30質量%~99質量%であり、望ましくは30質量%~95質量%であり、より望ましくは50質量%~90質量%である。複合粒子20における樹脂バインダー21の含有率は、例えば1質量%~70質量%であり、望ましくは5質量%~70質量%であり、より望ましくは10質量%~50質量%である。これにより、光拡散透過シート1は、より確実に、良好な光拡散特性と高い輝度特性とを有する。
 図2に示すように、微粒子22は、ガラス微粒子22a以外の微粒子を含んでいてもよい。例えば、微粒子22は、シリカ、シリコーン、フッ素樹脂、二酸化チタン、酸化亜鉛、酸化ジルコニウム、炭酸カルシウム、硫酸バリウム、硫化亜鉛、水酸化アルミニウム、及び体質顔料からなる群から選ばれる少なくとも1種の微粒子をさらに含む。これにより、多様な光学特性を有する光拡散透過シート1を提供できる。また、場合によっては、複合粒子20に所定の機械的強度を付与することができる。
 複合粒子20は、例えば、ガラス微粒子22a及びシリカ微粒子を含む。これにより、光拡散透過シート1は、より確実に、良好な光拡散特性と高い輝度特性とを有する。この場合、シリカ微粒子の平均粒径は、例えばガラス微粒子22aの平均粒径よりも小さく、例えば1nm~1μmであり、望ましくは2nm~600nmであり、より望ましくは2nm~400nmである。また、複合粒子20におけるシリカ微粒子の含有率は、例えば10質量%~98質量%であり、望ましくは15質量%~94質量%であり、より望ましくは40質量%~87質量%である。これにより、シリカ微粒子が樹脂バインダー21とともにガラス微粒子22aを取り囲みやすくなるので、複合粒子20が望ましい機械的強度を有する。シリカ微粒子は、例えば、球形状である。複合粒子20は、微粒子22として、ガラス微粒子22a及びシリカ微粒子のみを含んでいてもよい。
 樹脂バインダー21は、微粒子22を内包でき、可視光に対する透明性を有する。複合粒子20の硬度を低下させて光拡散透過シート1に接する部材を傷付ける可能性を低減する観点から、樹脂バインダー21は、望ましくは、アクリル樹脂、ポリウレタン樹脂、及びナイロンからなる群から選ばれる少なくとも1種の樹脂を含む。中でも、樹脂バインダー21はポリウレタン樹脂であることが望ましい。
 次に、光拡散透過シート1の製造方法の一例を説明する。樹脂バインダー21の原料と、少なくともガラス微粒子22aを含む微粒子22とが分散しているゾル液を調製する。ゾル液には、必要に応じて、ガラス微粒子22aとは異なる種類の微粒子22(例えばシリカ微粒子)、蛍光染料、蛍光増白剤、染料、又は顔料を分散させる。調製したゾル液を用いて噴霧乾燥を行うことにより複合粒子20を得ることができる。ゾル液における固体成分の含有量及び噴霧乾燥における噴霧条件を調整することにより、一次粒子の凝集を抑制して複合粒子20の粒径を適切な範囲に制御することができる。
 また、樹脂バインダー21となる溶融樹脂に、少なくともガラス微粒子22aを含む微粒子22を添加し、必要に応じて、ガラス微粒子22aとは異なる種類の微粒子22(例えばシリカ微粒子)、蛍光染料、蛍光増白剤、染料、又は顔料を添加して混錬し、これらの添加物を溶融樹脂に均一に混ぜ合わせる。このようにして得られた樹脂の塊を粉砕して所定の粒径に調整することによっても複合粒子20を得ることができる。ただし、微粒子22などを樹脂バインダー21に均一に分散させ、又は、望ましい粒径及び形状の複合粒子20を効率的に製造する観点から、ゾル液の調製及び噴霧乾燥によって複合粒子20を作製することが望ましい。
 上記のようにして作製した複合粒子20を、母材樹脂10の原料を含有している流動体に均一に分散させる。このようにして、母材樹脂10の原料及び複合粒子20を含有するインクを調製する。このインクをPETフィルム等の基板上に塗布してインクを固化させることにより光拡散透過シート1を得ることができる。
 実施例を用いて本発明を詳細に説明する。ただし、本発明は以下の実施例に限定されるものではない。
 <実施例>
 ガラス微粒子の水分散体(ガラスの屈折率:1.57、ガラス微粒子の平均粒径:1.5μm、ガラス微粒子の濃度5.8質量%)22.6重量部、シリカ微粒子のコロイド液A(日産化学工業社製、シリカ微粒子の平均粒径:2nm~3nm、シリカ微粒子の屈折率:約1.45、商品名:スノーテックス XS)18.4重量部と、シリカ微粒子のコロイド液B(日本化学工業社製、シリカ微粒子の平均粒径:7nm~10nm、シリカ微粒子の屈折率:約1.45、商品名:シリカドール30S)57.6重量部と、ポリウレタンエマルジョンA(三井化学社製、商品名:タケラック W-6020、ポリウレタンの屈折率:1.50~1.55)17.7重量部と、ポリウレタンエマルジョンB(三井化学社製、商品名:タケラック WS-6021、ポリウレタンの屈折率:1.50~1.55)2.7重量部とを混合してゾル液を調製した。ゾル液の固形分におけるガラス微粒子の含有率は5.8質量%であり、ゾル液の固形分におけるポリウレタンの固形分の含有率は20.4質量%であり、ゾル液の固形分におけるシリカ微粒子の含有率は73.8質量%であった。
 ガラス微粒子を形成するガラスは、質量%で表して、
 59%≦SiO2≦65%、
 8%≦Al23≦15%、
 47%≦(SiO2-Al23)≦57%
 1%≦MgO≦5%、
 20%≦CaO≦30%、
 0%<(Li2O+Na2O+K2O)<2%、
 0%≦TiO2≦5%、
の各成分を含有し、B23、F、ZnO、BaO、SrO、及びZrO2を実質的に含有しない、ガラスであった。
 上記のように調製したゾル液を、マイクロミストスプレードライヤー(藤崎電機社製、製品名:MDL-050)を用いて噴霧乾燥させ、実施例に係る複合粒子を作製した。実施例に係る複合粒子の平均粒径は4~15μmであった。複合粒子の平均粒径は、レーザー回折・散乱式粒子径分布測定装置(日機装社製、製品名:マイクロトラックMT-3000II)を用いて測定した。この測定に使用した試料は、乾燥した実施例に係る複合粒子を純水に適量混合して超音波振動(130Wで1分間)にかけて複合粒子を純水中に分散させることによって作製した。
 上記のように作製した実施例に係る複合粒子をアクリル樹脂に分散させてインクを調製した。このインクをドクターブレード法によって厚さ20μmのPETフィルムに塗布して固化させ、実施例に係るサンプルを作製した。実施例に係るサンプルにおける塗膜の厚みは7~15μmであり、実施例に係るサンプルの塗膜における複合粒子の含有率は65質量%であった。
 <比較例>
 二酸化チタン微粒子の水分散体(屈折率:2.71、二酸化チタン微粒子の平均粒径:330nm、二酸化チタン微粒子の濃度:20質量%)8.4重量部と、酸化亜鉛微粒子の水分散体(屈折率:2.0、酸化亜鉛微粒子の平均粒径:0.15~0.16μm、酸化亜鉛微粒子の濃度21.7質量%)9.1重量部と、シリカ微粒子のコロイド液A(日産化学工業社製、シリカ微粒子の平均粒径:2nm~3nm、シリカ微粒子の屈折率:約1.45、商品名:スノーテックス XS)16.6重量部と、シリカ微粒子のコロイド液B(日本化学工業社製、シリカ微粒子の平均粒径:7nm~10nm、シリカ微粒子の屈折率:約1.45、商品名:シリカドール 30S)44.3重量部と、ポリウレタンエマルジョンA(三井化学社製、商品名:タケラック W-6020、ポリウレタンの屈折率:1.50~1.55)19.4重量部と、ポリウレタンエマルジョンB(三井化学社製、商品名:タケラック WS-6021、ポリウレタンの屈折率:1.50~1.55)2.2重量部とを混合してゾル液を調製した。ゾル液の固形分における二酸化チタン微粒子の含有率は6.3質量%であり、ゾル液の固形分における酸化亜鉛微粒子の含有率は7.4質量%であり、ゾル液の固形分におけるシリカ微粒子の含有率は62.1質量%であり、ゾル液の固形分におけるポリウレタンの固形分の含有率は24.2質量%であった。
 上記のように調製したゾル液を、マイクロミストスプレードライヤー(藤崎電機社製、製品名:MDL-050)を用いて噴霧乾燥させ、比較例に係る複合粒子を作製した。比較例に係る複合粒子の平均粒径は4~15μmであった。比較例に係る複合粒子の平均粒径は、実施例と同様にして測定した。
 比較例に係る複合粒子をアクリル樹脂に分散させてインクを調製した。このインクをドクターブレード法によって厚さ20μmのPETフィルムに塗布して固化させ、比較例に係るサンプルを作製した。比較例に係るサンプルにおける塗膜の厚みは7~15μmであり、比較例に係るサンプルの塗膜における複合粒子の含有率は65質量%であった。
 <輝度特性の測定>
 輝度計測装置(ハイランド社製、製品名:RISA-COLOR ONE)を用いて実施例に係るサンプル及び比較例に係るサンプルの輝度及び色度yを測定した。光源としてApple社製のiPhone 5のバックライトを用いた。なお、「iPhone」はApple社の登録商標である。また、輝度及び色度yの測定位置はサンプルの光源と反対側に位置し、輝度及び色度yの測定位置とサンプルとの距離は100cmであった。表1に結果を示す。なお、輝度の相対値が100%であるときの輝度の値は104cd/cm2である。
 <ヘイズ率の測定>
 分光光度計(島津製作所社製、製品名:UV-3600)及び積分球を用いて、実施例に係るサンプル及び比較例に係るサンプルの波長555nmの入射光に対するヘイズ率を測定した。結果を表1に示す。
 表1に示すように、実施例に係るサンプルは、比較例に係るサンプルよりも、高い輝度特性を有することが示唆された。また、実施例に係るサンプルは、比較例に係るサンプルと同程度の高いヘイズ率を有し、良好な光拡散特性を有することが示唆された。
Figure JPOXMLDOC01-appb-T000001

Claims (9)

  1.  母材樹脂と、
     樹脂バインダー及び前記樹脂バインダーに内包された微粒子を含有し、前記母材樹脂に分散している複合粒子と、を備え、
     前記微粒子は、ガラス微粒子を含む、
     光拡散透過シート。
  2.  前記複合粒子の平均粒径は、1μm~20μmである、請求項1に記載の光拡散透過シート。
  3.  前記ガラス微粒子の平均粒径は、10nm~10μmである、請求項1又は2に記載の光拡散透過シート。
  4.  前記ガラス微粒子の屈折率は、1.52~1.80である、請求項1~3のいずれか1項に記載の光拡散透過シート。
  5.  前記ガラス微粒子の屈折率と前記樹脂バインダーの屈折率との差が0.30以下である、請求項1~4のいずれか1項に記載の光拡散透過シート。
  6.  前記複合粒子における前記微粒子の含有率は30質量%~99質量%であり、前記複合粒子における前記樹脂バインダーの含有率は1~70質量%である、請求項1~5のいずれか1項に記載の光拡散透過シート。
  7.  前記微粒子は、シリカ、フッ化マグネシウム、シリコーン、フッ素樹脂、二酸化チタン、酸化亜鉛、酸化ジルコニウム、炭酸カルシウム、硫酸バリウム、硫化亜鉛、水酸化アルミニウム、及び体質顔料からなる群から選ばれる少なくとも1種の微粒子をさらに含む、請求項1~6のいずれか1項に記載の光拡散透過シート。
  8.  前記複合粒子は、前記微粒子として、ガラス微粒子及びシリカ微粒子を含む、請求項1~7のいずれか1項に記載の光拡散透過シート。
  9.  前記樹脂バインダーは、アクリル樹脂、ポリウレタン樹脂、及びナイロンからなる群から選ばれる少なくとも1種の樹脂を含む、請求項1~8に記載の光拡散透過シート。
PCT/JP2016/004117 2015-09-15 2016-09-09 光拡散透過シート WO2017047056A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017540492A JPWO2017047056A1 (ja) 2015-09-15 2016-09-09 光拡散透過シート
CN201680042343.1A CN107850699A (zh) 2015-09-15 2016-09-09 光扩散透射片

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-181387 2015-09-15
JP2015181387 2015-09-15

Publications (1)

Publication Number Publication Date
WO2017047056A1 true WO2017047056A1 (ja) 2017-03-23

Family

ID=58288547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004117 WO2017047056A1 (ja) 2015-09-15 2016-09-09 光拡散透過シート

Country Status (3)

Country Link
JP (1) JPWO2017047056A1 (ja)
CN (1) CN107850699A (ja)
WO (1) WO2017047056A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI676816B (zh) * 2018-08-22 2019-11-11 白金科技股份有限公司 擴散片

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003107217A (ja) * 2001-09-28 2003-04-09 Fuji Photo Film Co Ltd 光拡散板及びその製造方法
JP2005017920A (ja) * 2003-06-27 2005-01-20 Dainippon Printing Co Ltd 光拡散剤、光拡散シートおよびノングレアーシート
JP2014048427A (ja) * 2012-08-30 2014-03-17 Nippon Sheet Glass Co Ltd 光拡散透過シート

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213616A (ja) * 1983-05-19 1984-12-03 Nippon Kogaku Kk <Nikon> 非晶質アルミノ珪酸塩及びその製法
JP2509214B2 (ja) * 1987-04-15 1996-06-19 水澤化学工業株式会社 無機充填剤
JPH09304607A (ja) * 1996-05-16 1997-11-28 Nitto Denko Corp 光拡散フィルム
JP4002320B2 (ja) * 1997-03-25 2007-10-31 株式会社日本触媒 シリカ複合樹脂粒子、その製造方法
JP3775901B2 (ja) * 1997-08-08 2006-05-17 水澤化学工業株式会社 非晶質シリカ系複合粒子及びその用途
JP4263113B2 (ja) * 2004-01-30 2009-05-13 積水化成品工業株式会社 複合樹脂粒子とその製造方法、光拡散性樹脂組成物、光拡散性材料、および液晶ディスプレイ用バックライトユニット
JP4281785B2 (ja) * 2006-08-28 2009-06-17 住友化学株式会社 光拡散板
JP2008058386A (ja) * 2006-08-29 2008-03-13 Toppan Printing Co Ltd 光学素子及びこれを備える偏光板並びに液晶表示装置
JP5096069B2 (ja) * 2007-08-09 2012-12-12 大日本印刷株式会社 光学積層体、偏光板、及び、画像表示装置
TWI406014B (zh) * 2008-10-02 2013-08-21 Eternal Chemical Co Ltd 複合光學膜
CN101393274B (zh) * 2008-10-17 2012-08-15 长兴化学工业股份有限公司 复合光学膜

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003107217A (ja) * 2001-09-28 2003-04-09 Fuji Photo Film Co Ltd 光拡散板及びその製造方法
JP2005017920A (ja) * 2003-06-27 2005-01-20 Dainippon Printing Co Ltd 光拡散剤、光拡散シートおよびノングレアーシート
JP2014048427A (ja) * 2012-08-30 2014-03-17 Nippon Sheet Glass Co Ltd 光拡散透過シート

Also Published As

Publication number Publication date
JPWO2017047056A1 (ja) 2018-03-29
CN107850699A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
KR101918334B1 (ko) 방현성 필름, 편광판 및 화상 표시 장치
WO2015019532A1 (ja) 表示装置および電子機器
KR20040093658A (ko) 방현성 필름 및 화상표시장치
US20140002901A1 (en) Method for producing anti-glare film, anti-glare film, polarizing plate, and image display
JP6414173B2 (ja) 防眩性反射防止ハードコートフィルム、画像表示装置、防眩性反射防止ハードコートフィルムの製造方法
WO2015146143A1 (ja) 光拡散透過シート
JP2012212092A (ja) 透視可能な透過型スクリーン及びその製造方法
JP5104269B2 (ja) 構造色ディスプレイ
WO2011122379A1 (ja) Led照明用光拡散フィルム
KR20130041347A (ko) 광확산 소자 및 광확산 소자를 가진 편광판의 제조 방법, 그리고, 이들 방법으로 얻어진 광확산 소자 및 광확산 소자를 가진 편광판
JP2017021295A (ja) 量子ドットシート、バックライト及び液晶表示装置
KR20210148144A (ko) 광확산 필름, 광확산 필름의 제조 방법, 광학 부재, 화상 표시 장치용 표시 패널 및 화상 표시 장치
JP6475849B2 (ja) 光拡散透過シート及び複合粒子の製造方法
WO2017047056A1 (ja) 光拡散透過シート
US20140002899A1 (en) Method for producing anti-glare film, anti-glare film, coating solution, polarizing plate, and image display
US20090059408A1 (en) Optical layered product
WO2012036275A1 (ja) 光拡散素子
JP2010211010A (ja) 光拡散フィルム、それらを用いたバックライトユニット及び液晶表示装置
JP6301576B2 (ja) 光拡散透過シート
JP6793211B2 (ja) 光拡散粒子、光拡散透過シート、及び光拡散粒子を製造する方法
TW201814005A (zh) 光擴散透射片
TW201814007A (zh) 光擴散透射片
JP6014979B2 (ja) 光拡散膜形成用樹脂組成物とその製造方法、光拡散膜、光拡散反射部材、光拡散透過部材、光学素子
JP2004170959A (ja) 投影用スクリーン
WO2018142721A1 (ja) 光拡散粒子、光拡散透過シート、及び光拡散粒子を製造する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16845931

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017540492

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16845931

Country of ref document: EP

Kind code of ref document: A1