WO2017043484A1 - 細胞内送達ベヒクル - Google Patents

細胞内送達ベヒクル Download PDF

Info

Publication number
WO2017043484A1
WO2017043484A1 PCT/JP2016/076175 JP2016076175W WO2017043484A1 WO 2017043484 A1 WO2017043484 A1 WO 2017043484A1 JP 2016076175 W JP2016076175 W JP 2016076175W WO 2017043484 A1 WO2017043484 A1 WO 2017043484A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
temperature
intracellular delivery
cells
alkyl
Prior art date
Application number
PCT/JP2016/076175
Other languages
English (en)
French (fr)
Inventor
俊一 辻
久美子 井門
小百合 山田
聖一 内山
恭子 河本
英利 徳山
健太郎 岡野
Original Assignee
キリン株式会社
国立大学法人 東京大学
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キリン株式会社, 国立大学法人 東京大学, 国立大学法人東北大学 filed Critical キリン株式会社
Priority to CN202110469355.5A priority Critical patent/CN113214422B/zh
Priority to KR1020187009510A priority patent/KR102205918B1/ko
Priority to EP20191485.0A priority patent/EP3760193B9/en
Priority to CN201680051805.6A priority patent/CN108350479B/zh
Priority to EP16844345.5A priority patent/EP3348648B1/en
Priority to KR1020217001218A priority patent/KR102403515B1/ko
Priority to SG11201801783VA priority patent/SG11201801783VA/en
Priority to US15/756,677 priority patent/US10712346B2/en
Publication of WO2017043484A1 publication Critical patent/WO2017043484A1/ja
Priority to US16/899,943 priority patent/US11452697B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5138Organic macromolecular compounds; Dendrimers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/04Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D233/20Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D233/24Radicals substituted by nitrogen atoms not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F122/00Homopolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F122/36Amides or imides
    • C08F122/38Amides
    • C08F122/385Monomers containing two or more (meth)acrylamide groups, e.g. N,N'-methylenebisacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/12Monomers containing a branched unsaturated aliphatic radical or a ring substituted by an alkyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • C08F222/1063Esters of polycondensation macromers of alcohol terminated polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/04Azo-compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/104Esters of polyhydric alcohols or polyhydric phenols of tetraalcohols, e.g. pentaerythritol tetra(meth)acrylate
    • C08F222/1045Esters of polyhydric alcohols or polyhydric phenols of tetraalcohols, e.g. pentaerythritol tetra(meth)acrylate of aromatic tetraalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an intracellular delivery vehicle that can easily deliver a desired component or compound into a cell without disturbing cell growth, and a method for producing or using the same.
  • Patent Document 1 It is known that when a protein or the like is introduced into a cell, it can be efficiently introduced by cationizing the protein (Patent Document 1). It is also known that when a peptide drug such as insulin is used together with a cationic polymer such as chitosan, mucosal absorption is promoted without damaging mucosal epithelial cells (Non-patent Document 1). Furthermore, the problem of the side effect of RNAi treatment due to introduction of siRNA into cells by nanoparticles using polycations and the means for solving them have been studied (Non-patent Document 2). Furthermore, recently, a cationic polymer for introduction into cells as a temperature-sensitive fluorescent probe has been reported (Patent Document 2). However, the mechanism by which cations cause the above-described phenomenon, the effect on cells, and the range of application are not necessarily elucidated.
  • Non-patent Document 3 a nanocapsule made of chitosan and ⁇ -glutamic acid, which is a cationic biopolymer, has been found to swell / shrink in conjunction with the surrounding pH, and its application has been studied (Non-patent Document 3). Also reported is the possibility of using a new cationic activator for hair conditioners (Non-patent Document 4) and the application of a cationic polymer that is excellent in low hygroscopicity while maintaining the charge amount (Patent Document 3). Has been.
  • An object of the present invention is to provide a vehicle that can easily deliver a desired component or compound into cells without disturbing cell proliferation, a method for producing the same, and a method for using the same.
  • the present inventors In the course of developing a technique for introducing a temperature-sensitive fluorescent probe into a cell, the present inventors have found a novel vehicle preparation method that can be easily introduced into a cell and does not inhibit cell division of the introduced cell. .
  • the present invention is based on this finding.
  • the present invention includes the following inventions.
  • (6) A method for measuring the temperature in a cell (A) A method comprising introducing the temperature-sensitive probe according to (5) into a cell, and (b) measuring fluorescence intensity or fluorescence lifetime under excitation light irradiation.
  • the present invention is advantageous in that a desired component or compound can be easily introduced into a cell without requiring a complicated operation such as microinjection. It is also advantageous in that the introduced vehicle does not interfere with cell proliferation. Furthermore, the use of the vehicle of the present invention is advantageous in that a desired component or compound can be easily delivered into cells without disturbing cell growth. Furthermore, in the examples of the present specification, it has also been confirmed that the vehicle of the present invention introduced into cells has the advantage that it does not interfere with cell differentiation.
  • EF043 cationic gel-type temperature probe EF043 immediately after induction of differentiation into brown adipocytes, and further continuing the culture for 3 days, and observing matured brown adipocytes under a microscope.
  • MOLT-4 human acute lymphoblastic leukemia T cells
  • vehicle means a vehicle or carrier that delivers a desired component or compound into a cell.
  • the “cell” in the present invention includes both prokaryotic cells and eukaryotic cells, which are general classifications, and does not depend on the species of the organism.
  • prokaryotic cells are divided into eubacteria and archaea, but eubacteria are broadly divided into gram-positive bacteria such as actinomycetes and gram-negative bacteria such as proteobacteria, depending on the thickness of the peptidoglycan layer.
  • the range to which the intracellular delivery vehicle of the present invention can be applied is not limited.
  • cells belonging to eukaryotes protists, fungi, plants, animals
  • yeast that is generally used in research such as molecular biology and industrially belongs to fungi.
  • the intracellular delivery vehicle of the present invention is suitably used in both floating cells and adherent cells.
  • C 1-3 alkyl means a linear, branched, or cyclic alkyl group having 1 to 3 carbon atoms, and is methyl, ethyl, n-propyl, i-propyl, cyclohexane. Contains propyl.
  • C 1-6 alkyl means a linear, branched, cyclic or partially cyclic alkyl group having 1 to 6 carbon atoms, such as methyl, ethyl, n-propyl. I-propyl, n-butyl, s-butyl, i-butyl, t-butyl, n-pentyl, 3-methylbutyl, 2-methylbutyl, 1-methylbutyl, 1-ethylpropyl, n-hexyl, 4-methylpentyl , 3-methylpentyl, 2-methylpentyl, 1-methylpentyl, 3-ethylbutyl, and 2-ethylbutyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylmethyl, and the like, for example, C 1-4 alkyl And C 1-3 alkyl and the like are also included.
  • C 1-10 alkyl means a linear, branched, cyclic or partially cyclic alkyl group having 1 to 10 carbon atoms.
  • C 1-6 Alkyl and C 1-3 alkyl and the like are included.
  • C 1-20 alkyl means a linear, branched, cyclic or partially cyclic alkyl group having 1 to 20 carbon atoms.
  • C 1-10 Alkyl, C 1-6 alkyl, C 1-3 alkyl and the like are included.
  • C 1-6 alkoxy means an alkyloxy group having an alkyl group having 1 to 6 carbon atoms already defined as an alkyl moiety, and includes, for example, methoxy, ethoxy, n-propoxy, i-propoxy N-butoxy, s-butoxy, i-butoxy, t-butoxy, n-pentoxy, 3-methylbutoxy, 2-methylbutoxy, 1-methylbutoxy, 1-ethylpropoxy, n-hexyloxy, 4-methylpen Toxic, 3-methylpentoxy, 2-methylpentoxy, 1-methylpentoxy, 3-ethylbutoxy, cyclopentyloxy, cyclohexyloxy, cyclopropylmethyloxy, etc. are included, for example, C 1-4 alkoxy and C 1 Also included are -3 alkoxy and the like.
  • aryl means a 6- to 10-membered aromatic carbocyclic group, and includes, for example, phenyl, 1-naphthyl, 2-naphthyl and the like.
  • C 7-14 aralkyl means an arylalkyl group having 7 to 14 carbon atoms including an aryl group, such as benzyl, 1-phenethyl, 2-phenethyl, 1-naphthylmethyl, 2- Naphthylmethyl and the like are included.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • C 1-20 alkylene means a linear, branched, cyclic or partially cyclic alkylene group having 1 to 20 carbon atoms, such as methylene, ethylene, propylene, butylene. And further include C 1-10 alkylene and C 1-6 alkylene.
  • C 3-20 alkenylene means a linear, branched, cyclic or partially cyclic alkenylene group having 3 to 20 carbon atoms, such as propenylene, butenylene, and the like. 3-10 alkenylene and C 3-6 alkenylene are included.
  • C 3-20 alkynylene means a linear, branched, cyclic or partially cyclic alkynylene group having 3 to 20 carbon atoms, such as propynylene, butynylene, and the like. 3-10 alkynylene and C 3-6 alkynylene are included.
  • C 1-6 alkylthio means an alkylthio group having an alkyl group having 1 to 6 carbon atoms already defined as the alkyl moiety, and examples thereof include methylthio, ethylthio, n-propylthio, i-propylthio, n-butylthio, s-butylthio, i-butylthio, t-butylthio and the like are included.
  • C 1-6 alkylsulfinyl means an alkylsulfinyl group having a previously defined alkyl group having 1 to 6 carbon atoms as the alkyl moiety, for example, methylsulfinyl, ethylsulfinyl, n- propyl sulfinyl I-propylsulfinyl, n-butylsulfinyl, s-butylsulfinyl, i-butylsulfinyl, t-butylsulfinyl and the like.
  • C 1-6 alkylsulfonyl means an alkylsulfonyl group having an alkyl group having 1 to 6 carbon atoms already defined as the alkyl moiety, such as methylsulfonyl, ethylsulfonyl, n-propylsulfonyl. I-propylsulfonyl, n-butylsulfonyl, s-butylsulfonyl, i-butylsulfonyl, t-butylsulfonyl and the like.
  • 6- to 18-membered aromatic carbocyclic group includes, for example, phenyl, naphthyl, anthracenyl, pyrenyl, indanyl, tetralinyl and the like.
  • the “5- to 18-membered aromatic heterocyclic group” is an aromatic heterocyclic ring having one or more heteroatoms selected from oxygen, nitrogen and sulfur, such as pyrrolyl, pyrazolyl, imidazolyl, pyridyl. , Indolyl, quinolyl, quinoxalinyl, quinazolinyl, benzofuranyl, benzothienyl, benzopyranyl, benzochromenyl and the like.
  • C 2-6 alkenylsulfonyl means an alkenylsulfonyl group having a C 2-6 alkenyl group which has already been defined as an alkenyl moiety, and includes, for example, vinylsulfonyl, allylsulfonyl and the like.
  • C 2-6 alkenylcarbonyl means an alkenylcarbonyl group having a C 2-6 alkenyl group already defined as an alkenyl moiety, and includes, for example, acryloyl, methacryloyl, and the like.
  • C 2-6 alkynylcarbonyl means an alkynylcarbonyl group having a C 2-6 alkynyl group which has already been defined as an alkynyl moiety, and includes, for example, ethynylcarbonyl and the like.
  • C 1-6 alkylcarbonyl refers to a group —CO (C 1-6 alkyl), wherein the C 1-6 alkyl is as previously defined.
  • C 1-6 alkoxycarbonyl represents a group —CO (C 1-6 alkoxy), wherein C 1-6 alkoxy is as defined above.
  • C 1-6 alkylcarbonylamino refers to the group —NHCO (C 1-6 alkyl), where C 1-6 alkyl is as previously defined.
  • C 1-6 arylcarbonylamino refers to the group —NHCO (aryl), where aryl is as previously defined.
  • the “5- to 7-membered nitrogen-containing heterocycle” in the present specification includes, for example, a saturated heterocycle such as a pyrrole ring, a pyrrolidine ring, a piperidine ring, a homopiperidine ring, a piperazine ring, a homopiperazine ring, a morpholine ring, and a thiomorpholine ring. included.
  • examples of the “4- to 8-membered nitrogen-containing heterocycle” include pyrrole ring, azetidine ring, pyrrolidine ring, piperidine ring, homopiperidine ring, piperazine ring, homopiperazine ring, morpholine ring, thiomorpholine ring, and the like. And 5- to 7-membered nitrogen-containing heterocycles.
  • the “5- to 7-membered heterocycle containing two nitrogen atoms” includes, for example, imidazolidine, tetrahydropyrimidine and the like.
  • the alkylene chain when alkylene is inserted at one or more sites, the alkylene chain contains an ether bond in the main chain, and the insertion has a stable structure.
  • the process is performed so as not to form the O— and —O—CH 2 —O— structures. The above also applies to the insertion of S into alkylene.
  • a copolymer is an aggregate of polymer chains formed by mixing monomers corresponding to each unit and performing a polymerization reaction.
  • the polymer refers to a polymer chain in which monomer units are connected and connected.
  • the “counter anion” is not particularly limited as long as it is an anion usually used as a counter anion of an organic compound in the technical field of organic chemistry.
  • a halide anion chloride ion, bromide ion, fluoride
  • Ions iodide ions
  • organic acid conjugate bases eg, acetate ions, trifluoroacetate ions
  • nitrate ions e.g., acetate ions, trifluoroacetate ions
  • sulfate ions e.g., acetate ions, trifluoroacetate ions
  • Preferred counter anions in the present invention include, for example, trifluoromethanesulfonate ion, chloride ion, nitrate ion and the like.
  • Intracellular delivery vehicle The intracellular delivery vehicle of the present invention is a gel particle of any shape whose surface is covered with a positive charge: It is.
  • the shape of the intracellular delivery vehicle of the present invention is preferably approximately elliptical, and more preferably approximately spherical.
  • This intracellular delivery vehicle can be filled with a desired component or compound to form an intracellular delivery complex.
  • the intracellular delivery complex can be formed by covalently attaching a desired component or compound to the intracellular delivery vehicle.
  • Intracellular delivery vehicles and these intracellular delivery complexes can be easily introduced into cells and do not interfere with the survival and proliferation of the introduced cells. Furthermore, in the examples of the present specification, it has also been confirmed that the vehicle of the present invention introduced into cells has the advantage that it does not interfere with cell differentiation.
  • the intracellular delivery vehicle of the present invention comprises: It has the following structure.
  • the intracellular delivery vehicle of the present invention is prepared by, for example, producing a polymer in which at least one of the two ends or a unit in the vicinity thereof has a positive charge, and this is crosslinked between molecules. Can be manufactured.
  • the intracellular delivery vehicle of the present invention comprises a radical polymerization reaction using a cationic polymerization initiator, a monomer containing a carbon-carbon double bond, and a crosslinking agent. Manufactured.
  • Cationic polymerization initiator used in the present invention is (a) stable at room temperature, (b) water-soluble, and (c) has a radical-producing ability to induce a radical polymerization reaction. (D) Even at the terminal of the polymer after the radical polymerization reaction, it has a positive charge at least in the vicinity of neutrality in a wide pH range.
  • the cationic polymerization initiator is preferably one that retains a positive charge in the cell.
  • the pH is 2 to 9, and about 4 to 8 for general animal, plant and microbial cells. Therefore, it is desirable that the cationic polymerization initiator retains a positive charge within this pH range.
  • the cationic polymerization initiator of the present invention includes, for example, the general formula (I): [Where: Y represents a single bond or CR 85 ; Z represents a single bond or CR 86 ; R 72 , R 73 , R 75 , R 76 , R 77 , R 78 , R 85 and R 86 are each independently a hydrogen atom, C 1-6 alkyl, C 1-6 alkoxy, C 1-6 alkyl Selected from the group consisting of carbonyl, phenyl and hydroxy, wherein said C 1-6 alkyl, C 1-6 alkoxy, C 1-6 alkylcarbonyl and phenyl are further C 1-6 alkyl, C 1-6 alkoxy, Optionally substituted with 1 or 2 substituents selected from the group consisting of C 1-6 alkylcarbonyl, phenyl and hydroxy, R 72 and R 73 may each independently represent adamantyl or C 1-6 alkyl substituted with Si (OCH 3 ) 2
  • Y and Z in formula (I) represent a single bond.
  • R 81 , R 82 , R 83 and R 84 of formula (I) each independently consist of methyl, ethyl, methylcarbonyl, isobutyl, and 2-methyl-2-methoxy-propyl Selected from the group.
  • R 71 and R 74 of formula (I) are methyl groups.
  • R 72 , R 73 , R 75 , R 76 , R 77 , R 78 , R 85 , and R 86 of formula (I) are each independently a hydrogen atom, C 1-6 alkyl , C 1-6 alkoxy, C 1-6 alkylcarbonyl, phenyl and hydroxy.
  • R 75 and R 76 of formula (I), or R 77 and R 78 are taken together to form — (CH 2 ) 4 —.
  • R 72 and R 73 , R 75 and R 77 , R 76 and R 78 , R 81 and R 84 , R 82 and R 83 , and R 71 and R of formula (I) 74 represents the same substituent, and Y and Z represent the same substituent, or both represent a single bond.
  • R 71 , R 72 , R 73 , R 74 , R 81 , R 82 , R 83 , and R 84 of formula (I) are methyl groups
  • R 75 , R 76 , R 77 , and R 78 are hydrogen atoms
  • Y and Z are single bonds.
  • the method for synthesizing the compound of formula (I) is not particularly limited, but for example, it can be synthesized as follows.
  • ⁇ , ⁇ ′-azobisisobutyronitrile (AIBN) derivative Is dissolved in an appropriate solvent, and hydrogen chloride gas is passed at room temperature in the presence of an excess amount of methanol to obtain an active imino ester derivative: Can be obtained.
  • Me in the structural formula means a methyl group.
  • an alkylenediamine derivative such as ethylenediamine is added to the iminoester derivative: Compound having a cyclic structure by adding an excess amount of and stirring: Can be obtained.
  • the compound of the above formula (I) is a novel compound and forms one aspect of the present invention.
  • Examples of the monomer used as a raw material monomer radical polymerization reaction a carbon - as long as it is a compound having a carbon double bond, can be used any of those. Further, among those, those skilled in the art can appropriately select a suitable component or compound for filling or chemical bonding. Among them, those skilled in the art can appropriately select appropriate ones from the viewpoints of biocompatibility and ease of decomposition. Furthermore, among them, those skilled in the art can appropriately select a suitable one from the viewpoints of efficiency, economic efficiency, safety and the like of the radical polymerization reaction.
  • a vehicle having a small cross-linking size can be selected by increasing the cross-linking agent concentration.
  • small molecules are likely to leak out of the vehicle network by diffusion, so use the hydrophobicity or charge of the low molecules to promote interaction with the vehicle as described below, Alternatively, it is desirable to select a monomer that can be directly bonded to the vehicle by a covalent bond.
  • a polymer having a relatively large molecular weight it is possible to control the network by appropriately selecting the concentration of the crosslinking agent.
  • a monomer such as PEG when importance is attached to biocompatibility, a monomer such as PEG may be used.
  • a monomer having an ionic group that serves as a counter for the charge can be selected.
  • examples include a monomer having a positively charged side chain such as an amine. If the component or compound to be charged has a positive charge, the carboxylic acid sugar And monomers having a side chain having a negative charge such as.
  • the monomer can be selected depending on the hydrophobicity / hydrophilicity of the component or compound to be filled.
  • the component or compound to be filled is a highly hydrophobic molecule
  • a monomer having no large number of hydroxyl groups, amine groups and ionic groups in the side chain and having a large number of carbon atoms can be mentioned.
  • the compound has a structure containing a benzene ring
  • the stability of the filling component in the vehicle can be maintained by the interaction by selecting a monomer having a phenyl group in the side chain.
  • the component or compound to be filled is a highly hydrophilic molecule that is easily soluble in water, a monomer containing a hydroxyl group, an amine group and an ionic group in the side chain can be used.
  • the compound when a component or compound is covalently bound to an intracellular delivery vehicle, the compound is synthesized by synthesizing a compound in which the target small molecule or polymer is covalently bound to an acrylamide-based monomer or the like. It can be used as a monomer.
  • a monomer that changes its chemical structure in response to pH Controls the pore size of the vehicle and the strength of interaction with the components or compounds to be filled.
  • a monomer include a monomer containing a carboxylic acid or an amine in the side chain.
  • a filling component or compound out of the vehicle in response to temperature by selecting a monomer that changes the polymer structure in response to temperature, Controls the pore size of the vehicle and the strength of interaction with the components or compounds to be filled.
  • a monomer include acrylamide monomers.
  • the structure of a portion of the monomer is cleaved in response to UV when considering the release of the filling component or compound out of the vehicle in response to light, such as ultraviolet light.
  • light such as ultraviolet light.
  • monomers include PEG-photo-MA (Murayama, Shuhei, et al. “NanoPARCEL: a method for controlling cellular. behavior with external light. Photocleavable monomers such as “Chemical Communications 48.67 (2012): 8380-8382.).
  • crosslinking agent used as a raw material for radical polymerization reaction is not particularly limited as long as it is a monomer containing two or more vinyl groups in the molecule and is usually used as a crosslinking agent.
  • Specific examples of the crosslinking agent include N, N′-methylenebisacrylamide, N, N′-ethylenebisacrylamide, N, N′-methylenebismethacrylamide, N, N′-ethylenebismethacrylamide, ethylene Examples include glycol diacrylate and ethylene glycol dimethacrylate.
  • the amount of the crosslinking agent monomer to be used is not particularly limited. For example, an amount of 0.1 to 20 mol% is used with respect to the monomers of formulas (a), (b) and (c) described later. Can do.
  • the intracellular delivery vehicle of the present invention can be synthesized based on ordinary knowledge in the technical field of polymer synthesis, and can be obtained, for example, as a polymer by radical polymerization or the like.
  • a general method for producing an intracellular delivery vehicle is as follows.
  • the polymerization initiator may be used in an amount of 0.01 mol% or more with respect to the monomer used, and an appropriate amount can be selected within the range of the concentration at which radical synthesis proceeds.
  • a polymerization initiator of 0.1 mol% or more, preferably 1 mol% or more can be used.
  • the reaction solvent used for the polymerization reaction is not particularly limited, and examples thereof include water, dioxane, dimethylformamide, dimethyl sulfoxide and the like.
  • the radical polymerization is not particularly limited, but can be performed, for example, at a reaction temperature of 0 to 100 ° C., preferably 50 to 70 ° C., and a reaction time of 1 to 48 hours, preferably 2 to 16 hours, for example.
  • the copolymerization reaction in the case of using a crosslinking agent monomer can be performed by a method commonly used in this technical field.
  • the reaction solvent used in the copolymerization reaction is not particularly limited.
  • a surfactant for example, sodium dodecyl sulfate, sodium dodecylbenzene sulfate, sodium pentadecane sulfate, N-dodecyl-N, N, N-trimethylammonium.
  • Water containing bromide, N-cetyl-N, N, N-trimethylammonium bromide, Triton X-100, etc. can be used.
  • the size of the copolymer nanogel (nano-sized gel fine particles) obtained using the crosslinker monomer is the stirring efficiency in the copolymerization reaction, the reaction temperature, the amount of surfactant used, the amount of reaction initiator used, and the crosslinking. It can adjust with the usage-amount of an agent monomer. For example, a nanogel having a small size can be obtained by increasing the amount of surfactant and / or initiator used. The size of the obtained nanogel can be appropriately adjusted by those skilled in the art to which the present invention belongs, and the size of the nanogel of the copolymer of the present invention is, for example, 5 to 100 nm.
  • the copolymerization reaction is not particularly limited, and examples thereof include a reaction temperature of 0 to 100 ° C., preferably 50 to 70 ° C., and a time of 1 to 48 hours, preferably 2 to 16 hours.
  • Intracellular delivery complex An intracellular delivery complex can be produced by filling the intracellular delivery vehicle with a desired component or compound, or by binding the component or compound.
  • a monomer having a strong interaction is selected according to the charge or polarity of the component to be filled or the compound, Adsorption can be promoted. It is also possible to increase the amount of adsorption by stirring treatment and temperature control. If monomers with side chains such as biotin are used, or if the compound to be filled is a fusion protein with streptavidin, etc., it should be bound to the vehicle with a very strong force and packed. It is possible to synthesize a stable vehicle in which the compound is hardly leaked.
  • Intracellular delivery vehicle When immersed in a solution containing a compound or the like to be filled, select a monomer that causes a change in the structure of the vehicle depending on, for example, pH or temperature. By increasing the structure (pore size) and reducing the network structure after immersion, the compound (mainly polymer) can be confined in the vehicle. Thereafter, the target vehicle can be prepared by separating the compound / molecule to be filled and the vehicle by operations such as centrifugation, dialysis and filtration.
  • the vehicle which is a polymer relatively easily under a temperature condition that promotes the polymerization Can be obtained. Thereafter, the vehicle can be purified by reprecipitation, filtration, centrifugation, salting out, or the like.
  • Preferred examples of desired components or compounds to be filled into the intracellular delivery vehicle of the present invention include the following. ⁇ Insulin filling to promote percutaneous absorption. -Filling with whitening ingredients and cosmetic ingredients to promote the transition into skin cells. ⁇ Fill with dye as a hair coloring agent to increase hair penetration. ⁇ Prepare shampoos and conditioners filled with good ingredients in the hair to increase the penetration into the hair. ⁇ Introduce genetic material into cells using genetic material that does not inhibit cell division. -Efficient drug delivery into target cells such as cancer cells by filling drugs. -Fill the ink to stabilize the dispersion of the ink components.
  • Intracellular delivery method of intracellular delivery complex When introducing the intracellular delivery vehicle of the present invention into a cell, it is desirable to replace it with a solution (solvent) having a low ionic strength.
  • a solution solvent having a low ionic strength.
  • a solvent include water (preferably pure water), a sorbitol aqueous solution, a glucose solution, and the like.
  • a solution obtained by adding 0.45 mM calcium chloride to these glucose solutions and the like can also be suitably used.
  • the concentration of the intracellular delivery vehicle polymer when introducing the intracellular delivery vehicle into the cells according to the present invention is, for example, a final copolymer concentration of 0.001 to 1% (w / v), preferably 0.01. Adjust to 0.5% (w / v) and mix with cells. This applies not only to microbial cells but also to other cells such as adherent cells.
  • the intracellular delivery complex of the present invention can also be introduced into cells by the same method as above.
  • Cationic Gel Type Temperature Sensitive Probe The intracellular delivery complex of the present invention can also be applied to a temperature sensitive probe. In that case, it can be produced by a copolymerization reaction using a thermosensitive unit, a fluorescent unit, a cationic polymerization initiator and a crosslinking agent, and can be obtained as a copolymer used as a temperature sensitive probe of the present invention. it can.
  • the combination of the heat-sensitive unit and the fluorescent unit may be a combination of a heat-sensitive unit whose characteristics change according to the ambient temperature and a fluorescent unit whose fluorescence intensity or fluorescence lifetime changes according to the change in the characteristics. Anything can be used.
  • a person skilled in the art can select an appropriate combination according to the cell type and the temperature range to be measured.
  • the thermosensitive unit becomes a polymer, its shape and hydrophobicity change depending on the temperature, for example, a lower critical solution temperature or an upper critical solution temperature (LCST or UCST).
  • LCST lower critical solution temperature
  • UCST upper critical solution temperature
  • the polymer chain binds the water molecule. It causes phase transition behavior that hydrates.
  • the fluorescence intensity or the fluorescence lifetime is changed according to the shape change of the heat-sensitive unit.
  • thermosensitive units are known whose solubility in water changes due to shape change according to temperature. In that case, the fluorescence intensity, fluorescence wavelength, or fluorescence lifetime depends on the polarity of the solvent as the fluorescence unit. Fluorescent units with varying solvatochromic properties can be used.
  • a suitable example of heat-sensitive unit contained in the copolymer used as the temperature-sensitive probe of the present invention is one or more kinds represented by the following formula (a). Or one or more repeating structures derived from the monomers: Wherein R 1 is selected from a hydrogen atom and C 1-3 alkyl; R 4 and R 5 are independently selected from a hydrogen atom and C 1-20 alkyl, wherein the alkyl is substituted with one or more substituents selected from hydroxy, C 1-6 alkoxy, and aryl Or R 4 and R 5 together with the nitrogen atom to which they are attached form a 4- to 8-membered nitrogen-containing heterocycle, where the heterocycle is C 1-6 alkyl, C 1-6 alkoxy, nitro, halogen atom, optionally substituted by one or more substituents selected from C 1-10 alkylcarbonylamino and arylcarbonylamino].
  • a preferred example of the fluorescent unit contained in the copolymer used as the temperature-sensitive probe of the present invention is one or more types represented by the following formula (b). Or one or more repeating structures derived from the monomers: [Wherein R 3 is selected from a hydrogen atom and C 1-3 alkyl; X 2 is O, S, or N—R 12 ; X 3 is a direct bond, O, S, SO, SO 2 , N (—R 13 ), CON (—R 16 ), N (—R 16 ) CO, N (—R 17 ) CON (—R 18 ) , SO 2 N (—R 19 ) or N (—R 19 ) SO 2 ; Q 2 is selected from C 1-20 alkylene, C 3-20 alkenylene, or C 3-20 alkynylene, wherein the alkylene has O, S or phenylene independently inserted at one or more points.
  • Ar is selected from a 6 to 18-membered aromatic carbocyclic group or a 5 to 18-membered aromatic heterocyclic group, wherein the aromatic carbocyclic group and the aromatic heterocyclic group include one or more of the included rings.
  • a condensed ring which is an aromatic ring may be included, and —CH 2 — existing as a ring atom in the aromatic carbocyclic group and aromatic heterocyclic group may be substituted with —C (O) —.
  • aromatic carbocyclic group and aromatic heterocyclic group include a halogen atom, C 1-6 alkyl, C 1-6 alkoxy, C 1-6 alkylthio, C 1-6 alkylsulfinyl, C 1-6 alkylsulfonyl.
  • nitro, cyano, C 1-6 alkylcarbonyl, C 1-6 alkoxycarbonyl, carboxy, formyl, -NR 6 R 7, and by one or more substituents selected from -SO 2 NR 14 R 15 May be conversion (the C 1-6 alkyl, where, C 1-6 alkoxy, C 1-6 alkylthio, C 1-6 alkylsulfinyl, C 1-6 alkylsulfonyl, C 1-6 alkylcarbonyl and C
  • the alkyl contained in 1-6 alkoxycarbonyl is 1 selected from a halogen atom, C 1-6 alkoxy, hydroxy, amino, C 1-6 alkylamino, di (C 1-6 alkyl) amino, aryl, and carboxy.
  • R 6 and R 7 independently represent a hydrogen atom, C 1-10 alkyl, aryl, C 1-10 alkylcarbonyl, arylcarbonyl, C 1-10 alkylsulfonyl, arylsulfonyl, carbamoyl, N— (C 1-10 Alkyl) carbamoyl, and N, N-di (C 1-10 alkyl) carbamoyl, wherein said C 1-10 alkyl, C 1-10 alkylcarbonyl, C 1-10 alkylsulfonyl, N— (C 1 -10 alkyl) carbamoyl and alkyl contained in N, N-di (C 1-10 alkyl) carbamoyl are a halogen atom, C 1-6 alkoxy, hydroxy, amino, C 1-6 alkylamino, di (C 1 -6 alkyl) location amino, aryl, and optionally one or more substituents selected from carboxy May be
  • a second fluorescent unit can be used in some cases.
  • the fluorescent unit described so far is referred to as a “first fluorescent unit”.
  • the second fluorescent unit has a maximum fluorescent wavelength different from that of the first fluorescent unit.
  • the fluorescence intensity derived from the first fluorescent unit and the fluorescence derived from the second fluorescent unit are measured. By calculating the ratio with the intensity and making this correspond to the actual temperature, the temperature can be measured with high accuracy in a simple and short time.
  • the first fluorescent unit and the second fluorescent unit generate fluorescence having different maximum fluorescence wavelengths when irradiated with excitation light having the same wavelength. Also, the difference between the maximum fluorescence wavelength of the first fluorescence unit and the maximum fluorescence wavelength of the second fluorescence unit is sufficiently discriminated by the measuring instrument when simultaneously measuring the fluorescence intensity at the two wavelengths. Although it should just be separated to a certain extent and it does not restrict
  • either one of the first fluorescent unit and the second fluorescent unit has an increase in fluorescence intensity with an increase in temperature, and the other has an increase in temperature.
  • the fluorescence intensity does not change or decreases according to the above, and preferably decreases.
  • Suitable examples of the second fluorescent unit combined with the first fluorescent unit represented by the formula (c) include the following formula (c): Wherein R 55 is selected from a hydrogen atom and C 1-3 alkyl; R 51 , R 52 , R 53 and R 54 are independently selected from a hydrogen atom and C 1-6 alkyl; X 4 is a direct bond, phenylene, —Q 4 —O—C ( ⁇ O) — (where Q 4 is directly bonded to the boron dipyrromethene skeleton), —Q 4 —N (—R 61 ) —C ( ⁇ O) — (wherein Q 4 is directly bonded to the boron dipyrromethene skeleton); R 61 is selected from a hydrogen atom and C 1-6 alkyl; Q 4 is selected from C 1-20 alkylene, phenylene, and naphthylene, wherein the phenylene and naphthylene are substituted by one or more substituents selected from a halogen atom,
  • the copolymer used in the present invention is represented by the formula (I) at least at one end of the main chain. And a repeating structure derived from each of the monomer represented by the formula (a) and the monomer represented by the formula (b), followed by crosslinking with a crosslinking agent. It is a copolymer containing a structure.
  • the copolymer used in the present invention has the formula (I ′), the formula (A), and the formula (B): [Wherein R 71 , R 72 , R 75 , R 76 , R 81 , R 82 and Y, R 1 , R 4 and R 5 , and R 3 , X 2 , X 3 , Q 2 and Ar are already And a and b are numbers greater than 0 representing the ratio of each repeating unit] It includes a repeating unit represented in, is further a copolymer containing a cross-linked structure due to crosslinking agent M K. In this copolymer, a is 100, and b is preferably 0.05-2.
  • the crosslinked structures may be arranged in any order.
  • the copolymer may contain one or two or more kinds of repeating units represented by the respective formulas with respect to each repeating unit. This copolymer forms one embodiment of the present invention as a substance itself.
  • the copolymer used in the present invention has a structure derived from a cationic polymerization initiator represented by the formula (I) at least at one end of the main chain, followeded by a repeating structure derived from each of the monomer represented by the formula (a), the monomer represented by the formula (b) and the monomer represented by the formula (c), and further includes a crosslinked structure by a crosslinking agent. It is considered as a copolymer.
  • the copolymer used in the present invention has the formula (I ′), the formula (A), the formula (B) and the formula (C): [Wherein R 71 , R 72 , R 75 , R 76 , R 81 , R 82 and Y, R 1 , R 4 and R 5 , and R 3 , X 2 , X 3 , Q 2 and Ar, and R 55 , X 4 , R 51 , R 52 , R 53 and R 54 are as defined above, and a, b and c are numbers greater than 0 representing the ratio of each repeating unit] It includes a repeating unit represented in, is further a copolymer containing a cross-linked structure due to crosslinking agent M K.
  • a is 100, b is preferably 0.05 to 2, and c is preferably 0.005 to 1.
  • other repeating structures that is, the repeating units of the formula (A), the formula (B) and the formula (C), and The crosslinked structure by the crosslinking agent M K may be arranged in any order.
  • the copolymer may contain one or two or more kinds of repeating units represented by the respective formulas with respect to each repeating unit. This copolymer forms one embodiment of the present invention as a substance itself.
  • the copolymer includes two or more heat-sensitive units.
  • thermosensitive units There are various types of thermosensitive units, and the temperature range showing the highest temperature reactivity varies depending on the type. In this embodiment, it can adjust so that the temperature reactivity of a copolymer may become high in a desired temperature range by combining 2 or more types of thermosensitive units.
  • the copolymer includes two or more heat-sensitive units represented by the formula (a). In one embodiment, two types of heat sensitive units are used.
  • NPAM Nn-propylacrylamide
  • NIPAM N-isopropylacrylamide
  • NTBAM N-tert-butylacrylamide
  • a in the formula (A) represents the total sum of the thermosensitive units, and when two or more thermosensitive units are used, it means the sum of the ratios of the number of repeating units of all the thermosensitive units. .
  • Ar is represented by the following formula: An aromatic carbocyclic group or an aromatic heterocyclic group selected from the group represented by the formula: wherein these groups are halogen atoms, C 1-6 alkyl, C 1-6 alkoxy, C 1-6 on the ring.
  • Ar is represented by the following formula:
  • a is selected from the group represented aromatic carbocyclic group or aromatic heterocyclic group, each of which halogen atoms on the ring, C 1-6 alkyl, C 1-6 alkoxy, C 1-6 alkylthio, C 1-6 alkylsulfinyl, C 1-6 alkylsulfonyl, nitro, C 1-6 alkylcarbonylamino, arylcarbonylamino, cyano, formyl, C 1-6 alkylcarbonyl, C 1-6 alkoxycarbonyl, carboxy and It may be substituted with one or more substituents selected from —SO 2 NR 14 R 15 .
  • R 1 , R 2 , R 3 and R 55 are preferably selected from a hydrogen atom and methyl.
  • —NR 4 R 5 is not particularly limited.
  • R 4 may be a hydrogen atom
  • R 5 may be C 2-10 alkyl.
  • R 4 and R 5 together with the nitrogen atom to which they are bonded form a 4- to 8-membered nitrogen-containing heterocycle, for example, pyrrolidine ring, piperidine ring, homopiperidine ring, piperazine ring, homopiperazine A ring, a morpholine ring, a thiomorpholine ring, or the like may be formed.
  • X 2 —Q 2 — in formula (b) and formula (B) is preferably X 2 is O, NH or N (C 1-6 alkyl), and Q 2 is C 2-10 alkylene. is there.
  • R 31 is selected from a hydrogen atom, a halogen atom, nitro, cyano, and —SO 2 NR 14 R 15 ;
  • R 32 is C 1-6 alkyl;
  • X 11 is N—R 33 , O Or R;
  • R 33 is a hydrogen atom or C 1-6 alkyl;
  • X 10 , R 14 and R 15 are as defined above. Is a group selected from
  • Preferred X 3 for formula (V) includes, for example, a direct bond, CON (—R 16 ), N (—R 16 ) CO, SO 2 N (—R 19 ) or N (—R 19 ) SO 2. It is done.
  • Preferred X 3 for formula (VI) includes, for example, N—R 13 (wherein preferred R 13 includes C 1-3 alkyl such as methyl), or S.
  • Preferred X 3 for formula (VII) includes, for example, a direct bond, CON (—R 16 ), N (—R 16 ) CO, SO 2 N (—R 19 ) or N (—R 19 ) SO 2. It is done.
  • Preferred X 3 for formula (VIII) includes, for example, a direct bond, CON (—R 16 ), N (—R 16 ) CO, SO 2 N (—R 19 ) or N (—R 19 ) SO 2. It is done.
  • Preferred X 3 for formula (IX) includes, for example, a direct bond.
  • Preferred X 3 for formula (X) includes, for example, a direct bond.
  • Preferred X 3 for the formula (XI) includes, for example, CO, SO 2 , SO 2 N (—R 19 ) or CON (—R 16 ) (wherein the SO 2 N (—R 19 ) and CON (—R) 16 ) includes a sulfur atom and a carbon atom bonded to Ar, respectively.
  • Preferred X 3 for the formula (XII) includes, for example, CO, SO 2 , SO 2 N (—R 19 ) or CON (—R 16 ) (wherein the SO 2 N (—R 19 ) and CON (—R) 16 ) includes a sulfur atom and a carbon atom bonded to Ar, respectively.
  • the group —X 3 —Ar functions as an environmentally responsive fluorophore.
  • the sensor uses a fluorophore of formula (VI) or (VIII) to (XII), a temperature sensor is obtained in which the fluorescence intensity increases as the temperature increases.
  • R 51 , R 52 , R 53 and R 54 in formula (c) and formula (C) are preferably independently selected from a hydrogen atom and a methyl group.
  • Preferred X 4 in the formula (c) and the formula (C) is, for example, a direct bond, phenylene, —Q 4 —O—C ( ⁇ O) — (where Q 4 is bonded directly to the boron dipyrromethene skeleton. Or —Q 4 —NH—C ( ⁇ O) — (wherein Q 4 is directly bonded to the boron dipyrromethene skeleton).
  • Q 4 in formula (c) and formula (C) is preferably phenylene.
  • R 1 is selected from a hydrogen atom, methyl and ethyl
  • R 4 is selected from n-propyl, isopropyl and t-butyl and R 5 is a hydrogen atom
  • R 3 is selected from a hydrogen atom and C 1-3 alkyl
  • X 2 is O or N—R 12
  • X 3 is a direct bond, O, N (—R 13 ), CON (—R 16 ), N (—R 16 ) CO, or N (—R 17 ) CON (—R 18 );
  • Q 2 is from C 1-20 alkylene, C 3-20 alkenylene, or C 3-20 alkynylene.
  • alkylene may be independently inserted with O, S or phenylene at one or more points;
  • Ar is of the formula: An aromatic carbocyclic group or an aromatic heterocyclic group selected from the group represented by the formula: these groups have a halogen atom, C 1-6 alkoxy, nitro, cyano, —NR 6 R 7 on the ring, And optionally substituted by one or more substituents selected from —SO 2 NR 14 R 15 and further substituted by C 1-6 alkyl;
  • X 10 is selected from O, S or Se
  • R 8 is selected from a hydrogen atom, C 1-10 alkyl, and aryl;
  • R 6 and R 7 are independently a hydrogen atom, C 1-10 alkyl, aryl, C 1-10 alkylcarbonyl, arylcarbonyl; , C 1-10 alkylsulfonyl, selected arylsulfonyl, and carbamoyl; or R 6 and R 7 together with the nitrogen atom to which they
  • A, b, and c in Formula (A), Formula (B), and Formula (C) are numbers greater than 0 representing the ratio of each repeating unit in the formula, and are not particularly limited.
  • b is 0.01 to 10, specifically 0.02 to 5, preferably 0.05 to 2, and more preferably 0.1 to 1.5.
  • c is 0.001 to 5, specifically 0.002 to 2, preferably 0.005 to 1, and more preferably 0.01 to 1.
  • b / c representing the ratio of b to c is not particularly limited, but is preferably 0.1 to 30, more preferably 1 to 20, and still more preferably 3 to 10.
  • a is the sum of the thermosensitive units.
  • the ratio of the thermosensitive units is p: ap, using a certain number p.
  • the size of the copolymer of the present invention is not particularly limited, but is, for example, 1 to 100,000 nm, preferably 1 to 10,000 nm, and more preferably 1 to 1000 nm.
  • the copolymer of the present invention responds very quickly to ambient temperature changes, and its structural change is on the order of a few milliseconds. That is, since the temperature-sensitive fluorescent probe of the present invention changes the fluorescence intensity in response to the temperature change in the cell, when the temperature distribution in the cell is visualized using a microscope or the like, the fluorescence intensity ratio Thus, the intracellular temperature in each minute space in the cell can be quantified.
  • the cationic functional group contained in the copolymer maintains ionicity in a wide range of pH. Is preferable.
  • the intracellular pH is 2 to 9, and in the normal state, general animal, plant, and microbial cells, the pH is about 4 to 8.
  • the change of the fluorescence intensity by the thermal sensitivity of the copolymer used for this invention can be measured with the normal fluorescence intensity measuring method.
  • the excitation wavelength in measurement and the fluorescence wavelength to be measured are not particularly limited.
  • the maximum excitation wavelength when measuring the excitation spectrum of the measurement sample or a wavelength in the vicinity thereof can be used.
  • the fluorescence wavelength to be measured is not particularly limited, and for example, the maximum fluorescence wavelength when the fluorescence spectrum of the measurement sample is measured at a certain temperature or a wavelength in the vicinity thereof can be used.
  • the present invention it is also possible to take a method of measuring the fluorescence intensities at two independent fluorescence wavelengths, taking these ratios, and converting the fluorescence intensity ratios into temperatures.
  • This technique eliminates the possibility that the fluorescence intensity emitted from the copolymer is caused by the concentration of the copolymer in the minute space or the intensity of the excited laser, and the ratio of the fluorescence intensity obtained by experiment and the temperature is 1: 1. It is possible to correspond to. This makes it possible to compare not only the temperature in the same cell but also the intracellular temperature of another cell placed under the same condition. For example, it is possible to grasp the physiological state of each yeast cell by measuring the difference in individual cell temperatures in the yeast population.
  • the method for calculating the fluorescence intensity ratio is not particularly limited, and the ratio can be calculated from the fluorescence intensities of two regions including different wavelengths.
  • one region is a wavelength region of about 20 nm including the wavelength indicating the maximum intensity of fluorescence generated from the first fluorescent unit, and the integrated value of the fluorescence intensity is S1, and the other region is generated from the second fluorescent unit.
  • the integrated value of fluorescence intensity may be S2, and S1 / S2 may be the fluorescence intensity ratio.
  • the S1 and S2 regions may have the same width or different widths.
  • S1 may include a wavelength region with a width of 20 nm, while S2 may have a single wavelength with a width of 1 nm.
  • the wavelength selection criteria are not particularly limited, but considering the fluorescence intensity to be obtained, monomers (for example, represented by the formula (b) or the formula (c)) that give the respective fluorescent units contained in the temperature-sensitive probe. It is desirable to select the wavelength from the surrounding wavelengths based on the wavelength indicating the maximum fluorescence intensity when measuring the excitation spectrum of water and a polar solvent close to water at room temperature (about 25 ° C.).
  • the calibration curve measured under which conditions is not limited, but, for example, a curve plotting the change in fluorescence intensity due to the thermosensitive response of the copolymer in a potassium chloride solution that mimics the inside of a cell.
  • the cell population into which the copolymer has been introduced is subjected to a fluorometer, and the curve plotting the change in fluorescence intensity due to the heat-responsiveness, or the cell population into which the copolymer has been introduced is subjected to a fluorescence microscope to produce heat sensitivity in a plurality of cells.
  • a curve or the like in which an average value of changes in fluorescence intensity due to responsiveness is plotted can be used. More specifically, using a cell population into which the copolymer has been introduced, a thermosensitive response test is performed, and when plotting changes in fluorescence intensity, the cells do not actively undergo metabolic activity, For example, when cells are suspended in water or in a buffer containing a compound that cannot be assimilated, the cells are held at a specific temperature for a certain period of time, and the external temperature and the internal temperature of the cells have reached equilibrium. The method of measuring a fluorescence intensity etc. is mentioned under the situation where it is possible.
  • the fluorescence lifetime can be used as an index as a change due to the thermal sensitivity of the copolymer used in the present invention. This change can be measured by a usual fluorescence lifetime measurement method.
  • the excitation wavelength in the measurement is not particularly limited. For example, a maximum excitation wavelength or a wavelength in the vicinity thereof when the excitation spectrum of the measurement sample is measured can be used.
  • a fluorescence lifetime value can be obtained from a fluorescence decay curve obtained by an experiment by using a general analysis method such as one-component approximation or two-component approximation according to the state of the sample to be measured.
  • the change in fluorescence lifetime due to the thermal sensitivity of the copolymer used in the present invention is determined by a general fluorescence lifetime measurement method such as a single photon counting method, a phase modulation method, a pulse sampling method, or an excitation probe method. Can be measured.
  • the single photon counting method is a method for measuring the fluorescence lifetime by utilizing the fact that the emission intensity distribution on the time axis and the emission probability of one photon are correlated, and the fluorophore is measured from 50 ps to 1 ns.
  • the fluorescence lifetime measurement by the single photon counting method can be performed by using a commercially available time-correlated single photon counting fluorescence lifetime measuring apparatus and a measurement / analysis program attached thereto.
  • kits for measuring temperature using the method described above, the kit comprising the temperature sensitive probe of the present invention or the copolymer of the present invention.
  • This reagent kit for temperature measurement can be suitably used for temperature measurement in a minute space, particularly for cell temperature measurement.
  • the reagent kit can be used in research fields such as medicine, biology, and biotechnology, and in medical fields such as diagnosis and treatment.
  • the method and temperature measurement kit of the present invention can be applied to various fields of research and development. For example, in the field of biotechnology, in the fermentative production of useful substances using microorganisms, it is expected to improve the efficiency of examination of culture conditions by adding the intracellular temperature, which has been difficult to measure accurately, to analysis parameters.
  • the method and temperature measurement kit of the present invention can be applied to various fields of research and development. For example, in the field of biotechnology, in the fermentative production of useful substances using microorganisms, it is expected to improve the efficiency of examination of culture conditions by adding the intracellular temperature, which has been difficult to measure accurately, to analysis parameters.
  • the method and temperature measurement kit of the present invention can be applied to various medical uses. For example, by using the temperature-sensitive probe according to the present invention for a part of a patient's tissue, it is possible to discriminate between cancer cells that are said to have high heat production and normal cells that do not. is there. In addition, it can be used to develop more effective thermotherapy. Alternatively, a material that activates brown adipocytes is screened by introducing a temperature-sensitive probe according to the present invention into brown adipocytes that produce a large amount of heat and measuring the temperature changes caused by adding various materials to the cells. It is also possible to do.
  • the method and temperature measurement kit of the present invention can be applied to elucidation of various physiological phenomena.
  • the activity of TRP channels in a different approach by sensing the temperature outside the body and investigating how the TRP channel, which is a receptor that causes a biological response, is related to the intracellular temperature.
  • by examining the relationship between the intracellular temperature distribution and the biological reaction that occurs inside and outside the cell it is possible to investigate the effect of the local temperature distribution on the biological reaction. Cells by local heating using an infrared laser, etc. It is also possible to perform control.
  • the temperature measurement method and the cell introduction method of the temperature-sensitive probe according to the present invention can be performed both in vitro and in vivo. In one embodiment, these methods are performed in vitro.
  • the intracellular delivery vehicle whose surface is covered with a positive charge.
  • the intracellular delivery vehicle according to (1) above comprising: (3) An intracellular delivery vehicle whose surface is covered with a positive charge, characterized by performing a radical polymerization reaction with a cationic polymerization initiator, a monomer comprising a carbon-carbon double bond, and a crosslinking agent. Production method.
  • R 72 , R 73 , R 75 , R 76 , R 77 , R 78 , R 85 and R 86 are each independently a hydrogen atom, C 1-6 alkyl, C 1-6 alkoxy, C 1-6 alkyl Selected from the group consisting of carbonyl, phenyl and hydroxy, wherein said C 1-6 alkyl, C 1-6 alkoxy, C 1-6 alkylcarbonyl and phenyl are further C 1-6 alkyl, C 1-6 alkoxy, Optionally substituted with 1 or 2 substituents selected from the group consisting of C 1-6 alkylcarbonyl, phenyl and hydroxy, R 72 and R 73 may each independently represent adamantyl or C 1-6 alkyl substituted with Si (OCH 3 ) 2 (CH 3 ), or R 75 and R 76 , Or R 77
  • a compound having the chemical structure (5) The compound according to (4), wherein Y and Z each represents a single bond.
  • R 81 , R 82 , R 83 , and R 84 are each independently selected from the group consisting of methyl, ethyl, methylcarbonyl, isobutyl, and 2-methyl-2-methoxy-propyl.
  • the compound according to (4) or (5) The compound according to any one of (4) to (6), wherein R 71 and R 74 are methyl groups.
  • R 72 and R 73 , R 75 and R 77 , R 76 and R 78 , R 81 and R 84 , R 82 and R 83 , and R 71 and R 74 are the same.
  • R 71 , R 72 , R 73 , R 74 , R 81 , R 82 , R 83 and R 84 are methyl groups
  • R 75 , R 76 , R 77 and R 78 are hydrogen atoms
  • Y is hydrogen atoms
  • a cationic polymerization initiator comprising the compound according to any one of (4) to (9).
  • a temperature-sensitive probe comprising the intracellular delivery complex according to (16) or the copolymer according to any of (17) to (20).
  • a method for measuring an intracellular temperature (A) introducing the temperature-sensitive probe according to (21) into a cell; and (b) measuring fluorescence intensity or fluorescence lifetime under excitation light irradiation.
  • (24) comprising performing a radical polymerization reaction with the cationic polymerization initiator according to (10) above and a monomer containing a carbon-carbon double bond, at least one terminal having a positive charge
  • a process for producing a string polymer comprising performing a radical polymerization reaction with the cationic polymerization initiator according to (10) above and a monomer containing a carbon-carbon double bond, at least one terminal having a positive charge
  • a process for producing a string polymer comprising a radical polymerization reaction with the cationic polymerization initiator according to (10) above and a monomer containing a carbon-carbon double bond, at least one terminal having a positive charge
  • a process for producing a string polymer comprising performing a radical polymerization reaction with the cationic polymerization initiator according to (10) above and a monomer containing a carbon-carbon double bond, at least one terminal having a positive charge
  • a process for producing a string polymer comprising a radical polymerization reaction with the cati
  • AIBN ⁇ '-Azobisisobutyronitrile
  • Example A-1 Synthesis of cationic polymerization initiator
  • ⁇ , ⁇ ′-Azobisisobutyronitrile (AIBN) (20.1 g, 0.12 mol) was suspended in 20 mL of methanol (MeOH) and 200 mL of toluene (Tol).
  • concentrated sulfuric acid (260 mL) was added dropwise to sodium chloride (NaCl) (200 g), and generated hydrogen chloride (HCl) gas was blown into the solution, followed by stirring at room temperature for 5 hours.
  • the precipitated solid was filtered, washed with toluene (Tol), and vacuum-dried to obtain a white solid compound 1a (28.3 g, yield 77%).
  • N-methylethylenediamine (12.6 mL, 0.14 mol) was added to methanol (MeOH) 60 mL, and compound 1a (15.0 g, 49.7 mmol) suspended in toluene (Tol) 100 mL / methanol (MeOH) 6 mL under reduced pressure. ) was added dropwise over 40 minutes. The mixture was stirred at room temperature for 3 hours under reduced pressure (250 Torr), and then filtered. The solvent was distilled off under reduced pressure until the filtrate amount was about 1 ⁇ 2, and the supernatant was separated by decantation. The supernatant was distilled off under reduced pressure and vacuum dried to obtain Compound 1b as a yellow solid (13.2 g, yield 95%).
  • Example A-2 Production of Polystyrene Copolymer Using Cationic Polymerization Initiator 1c Styrene, N, N′-methylenebisacrylamide (hereinafter referred to as MBAM) as a crosslinking agent, and hexadecyltrimethylammonium chloride (as a surfactant)
  • MBAM N, N′-methylenebisacrylamide
  • CTAC hexadecyltrimethylammonium chloride
  • CTAC hexadecyltrimethylammonium chloride
  • the gel particle diameter is measured with a zeta potential and DLS (polymer concentration 0.1%, 20 ° C.), and the gel particle diameter is measured with a transmission electron microscope (TEM) (polymer concentration 0). It was confirmed that a cationic gel was obtained with the results shown in Table 2. In addition, the result of having observed the compound 2b with the transmission electron microscope (TEM) is shown in FIG. This revealed that the newly synthesized cationic polymerization initiator compound 1c functions as a polymerization initiator and contributes to the synthesis of cationic particles.
  • TEM transmission electron microscope
  • the compound 2a having an increased amount of the polymerization initiator has a positive zeta potential as compared with 2b, and the cationic charge amount on the particle surface can be controlled according to the amount of the polymerization initiator. .
  • Example A-3 Production of PEG copolymer using cationic polymerization initiator 1c
  • the copolymer 3c was obtained using the compound 3a, and the copolymer 3d was obtained using the compound 3b.
  • the synthesis method is as follows. Compound 3a (20 mg / ml) or compound 3b (33 mg / ml) was dissolved in water (150 ⁇ L), tetraethylmethylenediamine (17 mM) and compound 1c (50 mM) were added, and the mixture was stirred for 20 minutes. The mixture was allowed to stand at room temperature for 15 minutes, 350 ⁇ L of water or phosphate buffered saline (PBS) was added to the reaction, dialyzed against water or phosphate buffered saline (PBS), purified, and copolymer 3c and 3d was obtained.
  • PBS phosphate buffered saline
  • reaction mixture was allowed to stand at room temperature for 15 minutes, 350 ⁇ L of water or phosphate buffered saline (PBS) was added to the reaction, dialyzed against water or phosphate buffered saline (PBS), purified, and copolymer 3G ( Fluorescein inclusion) and 3h (Rhodamine B inclusion) were obtained.
  • PBS phosphate buffered saline
  • the gel particle diameter by a zeta potential and DLS was measured (20 degreeC), and the gel particle diameter was measured with a transmission electron microscope (hereinafter, TEM) (photographed after air drying).
  • TEM transmission electron microscope
  • FIG. 3 The results shown in Table 3 were obtained, and it was confirmed that a cationic gel was obtained even when PEG-based monomers were used.
  • Example A-4 Production of temperature-sensitive copolymer using cationic polymerization initiator 1c
  • N- (2- ⁇ [7- (N, N-dimethylaminosulfonyl) -2,1,3-benzothiadiazole-4, which is one of the monomers (fluorescent units) necessary for the synthesis of the copolymer -Il]-(methyl) amino ⁇ ethyl) -N-methylacrylamide (DBThD-AA) was performed according to the method described in Reference A (Chemistry A European Journal 2012, 18,9552 , 9563). .
  • thermosensitive unit N-isopropylacrylamide (100 mM), the cross-linking agent MBAM (1 mM), the surfactant CTAC (1.9 mM), the fluorescent unit N- (2- ⁇ [7- (N, N-dimethylaminosulfonyl) -2,1,3-benzothiadiazol-4-yl]-(methyl) amino ⁇ ethyl) -N-methylacrylamide (DBThD-AA) (1 mM), and N, N, N ′, N′-tetramethylenediamine (2.9 mM) was dissolved in water (19 ml) and dissolved oxygen was removed by passing argon gas for 30 minutes.
  • NIPAM N-isopropylacrylamide
  • MBAM 1 mM
  • CTAC 1.9 mM
  • Example B-1 Synthesis of an acrylamide-based cationic unit having the same cationic structure as a novel cationic polymerization initiator
  • IR data of Compound 8 are as follows. IR (neat, cm-1): 3277, 2932, 2097, 1657, 1626, 1550, 1408, 1245, 985, 957, 772
  • the 1 H NMR (400 MHz, CDCl 3 ) data of Compound 8 is as follows.
  • the imidazoline compound 10 is dissolved in anhydrous tetrahydrofuran (THF) (243 mL), and n-butyllithium (n-BuLi) (2.65 M in 96.7 mL of n-hexane, 97.3 mmol) is added dropwise at 0 ° C. at room temperature. Stir for 1 hour. Thereafter, methyl iodide (6.56 mL, 105 mmol) was added dropwise at 0 ° C., and the mixture was stirred for 1 hour until compound 10 was completely eliminated. Water was added to quench the reaction and extracted three times with dichloromethane (CH 2 Cl 2 ).
  • THF tetrahydrofuran
  • n-BuLi n-butyllithium
  • the extract was washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to give the crude product.
  • the crude product was purified by silica gel chromatography (pentane) to obtain a colorless oily iodoalkyl compound 14 (3.12 g, 11.6 mmol, 71% yield).
  • the imidazoline compound 11 (300 mg, 3.06 mmol) is dissolved in dry tetrahydrofuran (THF) (1.8 mL) and diethyl ether (2.7 mL), and n-butyllithium (n-BuLi) (n-hexane, 2.76 mL) is dissolved. 1.55M, 4.28 mmol) was added dropwise at ⁇ 23 ° C., warmed to room temperature, and stirred for 1 hour. Then, iodoalkyl compound 14 (901 mg, 3.38 mmol) dissolved in dry tetrahydrofuran (THF) (3 mL) was added to the stirred mixture via canoe at 0 ° C.
  • IR data of Compound 15 are as follows. IR (neat, cm ⁇ 1 ): 2955, 2862, 2172, 1616, 1453, 1404, 1249, 843, 760, 640 The 1 H NMR (400 MHz, CDCl 3 ) data of Compound 15 is as follows.
  • the imidazoline compound 15 (151 mg, 639 ⁇ mol) was dissolved in dichloromethane (3.19 mL), methyl trifluoromethanesulfonate (MeOTf) (145 ⁇ L, 1.28 mmol) was added at room temperature, and the mixture was stirred for 3 hours. The solvent was removed under reduced pressure to obtain an imidazolium salt.
  • the salt is dissolved in dimethylformamide (DMF) (3.0 mL), amide compound 8 (120 mg, 776 ⁇ mol), copper sulfate pentahydrate (CuSO 4 .5H 2 O) (31.9 mg, 127 ⁇ mol), ascorbic acid (45.0 mg, 256 ⁇ mol) was added and heated at 65 ° C. for 24 hours.
  • the solvent was removed under reduced pressure to obtain the target compound 16.
  • the aqueous layer portion was collected and concentrated under reduced pressure to obtain a brown solid compound 16 (143 mg, 296 ⁇ mol, yield 46%), which is an acrylamide target compound.
  • IR data of Compound 16 are as follows. IR (neat, cm ⁇ 1 ): 3352, 2936, 1660, 1624, 1553, 1467, 1281, 1157, 1031, 638
  • Example B-2 N-isopropylacrylamide (NIPAM), a synthetic thermosensitive unit of a string polymer having the same cation structure as a novel cationic polymerization initiator , a cationic monomer unit compound 16, and a fluorescent unit N- (2- ⁇ [7- (N, N-dimethylaminosulfonyl) -2,1,3-benzothiadiazol-4-yl]-(methyl) amino ⁇ ethyl) -N-methylacrylamide (DBThD-AA) , ⁇ , ⁇ ′-azobisisobutyronitrile (AIBN) was dissolved in dimethylformamide (DMF) (5 ml) in the amounts shown in Table 4, and dissolved oxygen was removed by passing argon gas for 30 minutes.
  • DMF dimethylformamide
  • Table 5 shows the results of evaluating the properties of the copolymer with respect to Lin 40 and Lin 41. Moreover, the ratio of NIPAM: cation monomer unit (compound 16): DBThD-AA calculated by NMR was Lin40 94.5: 5.48: 1.43 in this order. Lin41 93.0: 7.03: 1.43 Met. The zeta potential was measured at 20 ° C. using a 0.5 w / v% aqueous solution.
  • Example B-3 Temperature responsiveness test of Lin40 and Lin41
  • KCl potassium chloride
  • a temperature responsiveness test of Lin40 and Lin41 in a 150 mM potassium chloride (KCl) aqueous solution was performed according to the following procedure. Using a JASCO FP-6500 spectrofluorometer and using ultrapure water obtained from Millipore's Milli-Q reagent system as a solvent, potassium chloride (KCl) purchased from Wako Pure Chemical Co., Ltd. has a concentration of 150 mM. What was melt
  • a JASCO ETC-273T water-cooled Peltier thermostatic cell holder was used for temperature control of the solution, and the temperature was measured with an attached thermocouple. The solution temperature was increased by 1 ° C., and the fluorescence spectrum at 450 to 850 nm at each temperature was measured.
  • FIG. 4 shows an example in which changes in fluorescence intensity of 569 nm and 571 nm of Lin 40 and Lin 41 are plotted. From this result, it was found that a probe responding to temperature could be synthesized even using a newly synthesized cationic unit (compound 16). Furthermore, it was found that when the cationic unit ratio is increased, the degree of increase in fluorescence intensity with respect to temperature change is reduced.
  • Example B-4 Synthesis of various temperature-sensitive probes
  • NN-AP4 string-like acrylamide type polymer
  • AP4-FPT Document A
  • the method was followed.
  • the anion gel k40 was synthesized according to the method described in DBThD nanogel in Reference B (Chemistry A European Journal 2012, Vol. 18, pp. 9552-9563).
  • Example 5 Introduction of temperature probe into animal cells (adherent cells) Plastic bottom dish containing HeLa cells derived from human cervical cancer in DMEM medium (10% FBS, 1% penicillin-streptomycin) (IBIDI) was seeded and cultured. One day later, the medium was replaced with a 5% glucose aqueous solution, and EF043, NN-AP4, Lin40, Lin41, and k40 were added to a final concentration of 0.05%, and the mixture was allowed to stand at 37 ° C. for 10 minutes. Thereafter, the probe was removed, washed with phosphate buffered saline (PBS), replaced with phenol red-free DMEM medium, and observed with a microscope.
  • PBS phosphate buffered saline
  • Microscopic observation was performed using a confocal laser microscope (FV1000, Olympus) and a 40 ⁇ objective lens (Uplan Apo40x NA0.85, Olympus).
  • the cells were irradiated with a 473 nm laser (Multi Ar laser) to obtain a fluorescence image of 500 to 600 nm.
  • FIG. 5 shows an example of the result of photographing the cells. Also, using the resulting micrograph, perform image processing to subtract the fluorescence intensity of a certain area without cells as a background, and count the cells for which fluorescence signals were observed beyond the autofluorescence of untreated cells. Thus, the introduction rate of the probe into the cells was calculated. The results are shown in Table 6. Almost no introduction was observed in the temperature probe k40 having a negatively charged surface made using a conventional polymerization initiator, but the gel type temperature probe EF043 synthesized using a novel cationic polymerization initiator was used. It was confirmed that the cationic probe was introduced into the cell. Furthermore, Lin41 was found to be localized in the cell membrane, and the amount introduced into the cell was not large.
  • Example 6 Toxicity evaluation of probe As in Example 5, EF043, NN-AP4, Lin40, and Lin41 were introduced into HeLa cells, washed with phosphate buffered saline (PBS), and then phenol red-free (phenolred) -Free) DMEM medium. Thereafter, propidium iodide (PI), which is a non-membrane-permeable fluorescent reagent, was added to the medium to a final concentration of 0.67 ⁇ g / ml, treated at 37 ° C. for 30 minutes, and then observed with a microscope. .
  • PBS phosphate buffered saline
  • PI propidium iodide
  • the fluorescent probe was excited with a 473 nm laser, and propidium iodide (PI) was excited with a 559 nm laser, and observation was performed at fluorescent wavelengths of 490 to 550 nm and 655 to 755 nm, respectively.
  • the photomultiplier sensitivity and laser intensity of the camera at the time of observation were adjusted using cells treated with methanol as controls for dead cells.
  • Example 7 Investigation of the effect of temperature probe structure on cell division Human cervical cancer-derived HeLa cells were treated with DMEM medium (10% FBS, 1% penicillin-streptomycin), plastic bottom dish with a grid ⁇ -Dish 35 mm grid- 500 (ibidi) was seeded and cultured. One day later, as in Example 5, three probes EF043, NN-AP4, and Lin40 were introduced, replaced with phenol red-free DMEM medium, and observed with a microscope. Microscopic observation was performed using a confocal laser microscope (FV1000, Olympus) and a 40 ⁇ objective lens (Uplan Apo40x NA0.85, Olympus). Cells were irradiated with a 473 nm laser (Multi Ar laser) to obtain a 500-600 nm fluorescence image.
  • DMEM medium % FBS, 1% penicillin-streptomycin
  • plastic bottom dish with a grid ⁇ -Dish 35 mm grid- 500 (ibidi) was seede
  • the cells into which the fluorescent probe was introduced were counted according to the method of Example 5 and the fluorescent probe after 24 hours was introduced under culture at 37 ° C. and 5% CO 2.
  • the cell proliferation rate after 24 hours was calculated by counting the number of cells again.
  • the results are shown in FIG.
  • EF043, which is a cationic gel has almost no change in cell growth rate compared to the control (Ctrl)
  • NN-AP4 and Lin40 which are string-like temperature probes, inhibit cell growth. It was.
  • This inhibitory effect does not depend on the difference in the structure of the cationic units involved (quaternary ammonium skeleton in NN-AP4, 1,3-dimethyl-4,5-dihydro-1H-imidazol-3-ium skeleton in Lin40) . Furthermore, since the structures of the cationic molecules of EF043 and Lin40 are the same, the inhibitory effect on cell division is greater when the polymer structure is in a string form (Lin40) than the cell growth inhibitory effect of the cationic structure. In the case of a gel (EF043), it was found that there was almost no inhibitory effect. In addition, since the number of cells into which the probe was introduced increased due to the culture, it became clear that the probe was distributed to both cells as it divided.
  • Example 8 Investigation of effects on differentiation into brown adipocytes Brown adipose tissue was collected from euthanized rats (Wistar, male, 3 weeks old), cut into small pieces with scissors, suspended in a collagenase solution and shaken with a stirrer. Incubated for 30 minutes at 37 ° C. Undigested tissue fragments were removed with a 100 ⁇ m cell strainer, the filtrate was centrifuged (400 g, room temperature, 5 minutes), and the resulting pellet was suspended in HBSS ( ⁇ ) and washed by centrifugation.
  • HBSS HBSS
  • the SVF suspension was seeded on a collagen-coated glass bottom dish and cultured at 37 ° C. After 18 hours, the medium was removed and washed twice with HBSS ( ⁇ ) to remove unadherent cells. The growth medium was added again and cultured for 4 days (37 ° C., 5% CO 2 ). After substituting the differentiation medium (Table 8) and culturing for 48 hours (37 ° C., 5% CO 2 ), a temperature sensitive probe EF043 was introduced into the cells.
  • EF043 was added to the cells to a final concentration of 0.05 w / v% in 5% glucose, and incubated at 37 ° C. for 15 minutes. Thereafter, the plate was washed twice with HBSS and observed with a microscope. Furthermore, the cells into which EF043 had been introduced were replaced with a maintenance medium (Table 8) that promotes the induction of lipid droplets, and cultured for 3 days (37 ° C., 5% CO 2 ), followed by microscopic observation. Microscopic observation was performed using a 40 ⁇ objective lens (Uplan Apo40x NA0.85, Olympus) with a confocal laser microscope (FV1000, Olympus). Cells were irradiated with a 473 nm laser (Multi Ar laser) to obtain a fluorescence image of 500 to 600 nm.
  • a maintenance medium Table 8
  • results are shown in FIG. As shown on the left of FIG. 7, fluorescence of the temperature probe was observed in the cells after culturing in the differentiation medium, and it was found that the probes were spontaneously taken into the cells. Furthermore, when the cells are cultured in a maintenance medium to promote the formation of lipid droplets, the fluorescence of the probe can be confirmed in the cells as shown in the right of FIG. 7, and multivesicular lipid droplets characteristic of brown adipocytes are observed. It was. From this result, it was found that the cationic gel type temperature probe EF043 is maintained in the cell without inhibiting the differentiation of the cell.
  • Example 9 Fluorescence intensity response of EF043 to cultured cells (floating cells) MOLT-4 (human acute lymphoblastic leukemia (T-cell)) in RPMI 1640 medium (10% FBS) in a 100 mm dish (Seeding 1 ⁇ 10 4 cells / ml). Two days later, 3 ml of the culture broth was centrifuged (300 g, 2 minutes), the medium was removed, washed with 5% glucose, suspended again in 1 ml of 5% glucose, and each of EF043, NN-AP4, and Lin40 at a final concentration of 0. It added so that it might become 05%.
  • MOLT-4 human acute lymphoblastic leukemia
  • the fluorescent probe was excited with a 473 nm laser, and propidium iodide (PI) was excited with a 559 nm laser, and observation was performed at fluorescent wavelengths of 490 to 550 nm and 655 to 755 nm, respectively. Whether the probe was introduced was confirmed by microscopic observation. Observe with confocal laser microscope (FV1000, Olympus), 40x objective lens (UplanSApo, Olympus), apply 473 nm laser (Multi Ar laser) to cells and observe fluorescence images for fluorescence wavelengths from 500 nm to 600 nm did.
  • confocal laser microscope FV1000, Olympus
  • 40x objective lens UplanSApo, Olympus
  • 473 nm laser Multi Ar laser
  • MOLT-4 cells into which probe EF043 was introduced were suspended in phosphate buffered saline (PBS) and placed in a cuvette.
  • a spherical stirring bar with a diameter was added.
  • the cuvette was set on a JASCO FP-6500 spectrofluorometer and rotated at a speed of about 800 rpm to measure the fluorescence spectrum while preventing the cells from sinking.
  • the excitation wavelength was 440 nm.
  • a JASCO ETC-273T water-cooled Peltier type thermostatic cell holder was used for temperature control of the solution, and the temperature was measured with an attached thermocouple.
  • the solution temperature was increased in increments of 2 ° C., and the temperature was increased for 2 minutes after the temperature was increased so that the temperature inside the cell and the temperature outside were kept constant, and the fluorescence intensity at each temperature was measured.
  • the obtained micrograph is used to perform image processing that subtracts the fluorescence intensity of a certain area without cells as a background, and the fluorescence signal exceeds the autofluorescence of untreated cells. Calculation was performed by counting the observed cells.
  • PI propidium iodide
  • PI toxicity which indicates the permeability of the cell membrane, about 50-200 cells where fluorescence of the temperature probe was observed under a microscope were selected and the fluorescence of propidium iodide (PI) was observed. Cells were counted as dead cells.
  • Table 9 shows the probe introduction rate and propidium iodide (PI) toxicity results, and FIG. 8 shows the temperature response results. It was clarified from the microscopic results that EF043 migrates into the MOLT-4 cells only by mixing. Further, regarding propidium iodide (PI) toxicity, there was no difference between the probes used, and no large toxicity was observed as a whole.
  • PI propidium iodide
  • intracellular EF043 responded sharply to external temperature changes and increased the fluorescence intensity (fluorescence wavelength 570 nm) (FIG. 8). It was confirmed that the intracellular temperature can be measured in a wide temperature range of 25 to 40 ° C., which is a general mammalian cell growth temperature.
  • Example 10 Thermal response test of fluorescence lifetime change Using the MOLT-4 cell suspension into which the probe EF043 prepared in Example 9 was introduced, a thermal response test of fluorescence lifetime change was conducted.
  • the excitation wavelength was 405 nm using a FluoroCube 3000U (Horiba Jobin Yvon) time-correlated single photon counting fluorescence lifetime measurement apparatus.
  • measurement was performed using an LED (NanoLED-456, Horiba) at a pulse repetition rate of 1 MHz.
  • a JASCO ETC-273T water-cooled Peltier thermostatic cell holder was used for temperature control of the solution, and the temperature in the cell holder was measured with an attached thermometer.
  • the fluorescence lifetime at each temperature was measured at a fluorescence wavelength of 580 nm ⁇ 8 nm.
  • the obtained fluorescence decay curve was approximated by the following formula to obtain a two-component fluorescence lifetime.
  • Example 11 Evaluation of temperature resolution As in the result of Example 10, it is assumed that temperature (T) is plotted on the horizontal axis and fluorescence lifetime ( ⁇ ) is plotted on the vertical axis. When ⁇ is a minute amount and ⁇ is an error, the following relationship is established.
  • the temperature resolution ⁇ T indicating how many degrees of temperature difference can be detected is It is indicated.
  • represents a minute amount, Indicates the slope of the tangent of the curve of the graph with temperature (T) on the horizontal axis and fluorescence lifetime ( ⁇ ) on the vertical axis. Since ⁇ represents an error, ⁇ is an error in fluorescence lifetime. Here, the standard deviation was used as the error value.
  • Example 12 Application to cells using PEG-based gel Human embryonic kidney cells HEK293T were cultured in a DMEM medium (10% FBS, 1% penicillin-streptomycin) in a 35 mm glass bottom dish (seeding 1 ⁇ 10 3 cells). / Cm 2 ). One day later, the medium was replaced with 5% glucose, and compound 3G and fluorescein (1 ⁇ g / ml), or compound 3G and rhodamine B (0.5 ⁇ g / ml) were added so that the final concentration of the fluorescent dye was adjusted, It left still at 37 degreeC for 15 minutes.
  • DMEM medium 10% FBS, 1% penicillin-streptomycin
  • the probe and fluorescent dye were removed, washed with phosphate buffered saline (PBS), replaced with phenol red-free DMEM medium, and observed with a microscope. Microscopic observation was performed using a confocal laser microscope (FV1000, Olympus). Fluorescein was excited with a 473 nm laser (Multi Ar laser) and rhodamine B was excited with a 559 nm laser for observation. About 20 cells were selected from the acquired images, and the average signal in the cells was calculated and compared.
  • PBS phosphate buffered saline

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Genetics & Genomics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

表面が陽性荷電で覆われた細胞内送達ベヒクル、目的の成分または化合物が該細胞内送達ベヒクルに充填されてなる細胞内送達複合体、該細胞内送達複合体を含んでなる温度感受性プローブ、および該温度感受性プローブにより細胞内の温度を測定する方法が開示される。該細胞内送達ベヒクルは細胞増殖を妨げずに細胞内に所望の成分または化合物を容易に送達できる点で有用である。

Description

細胞内送達ベヒクル 関連出願の参照
 本特許出願は、先に出願された日本国における特許出願である特願2015-176106号(出願日:2015年9月7日)に基づく優先権の主張を伴うものである。この先の特許出願における全開示内容は、引用することにより本明細書の一部とされる。
 本発明は、細胞増殖を妨げずに所望の成分または化合物を細胞内に容易に送達できる細胞内送達ベヒクル、その製造方法または使用方法に関する。
 蛋白質などを細胞内に導入するにあたり、蛋白質をカチオン化することにより、効率的に導入できることが知られている(特許文献1)。また、インスリンなどのペプチド性医薬品をキトサンなどのカチオン性高分子などと共に用いると、粘膜上皮細胞に障害を与えることなく粘膜吸収促進が図られることが知られている(非特許文献1)。さらに、ポリカチオンを用いたナノ粒子によるsiRNAの細胞への導入によるRNAi治療の副作用の問題点とその解決手段について検討されている(非特許文献2)。さらに、最近では、温度感受性蛍光プローブとして細胞内に導入するためのカチオン性ポリマーが報告されている(特許文献2)。しかし、カチオンが上述の現象を引き起こすメカニズム、細胞に与える影響、さらにはその応用範囲については、必ずしも解明されているわけではない。
 これら以外にも、カチオンに着目した機能開発は数多くなされている。例えば、カチオン系バイオポリマーであるキトサンとγグルタミン酸によるナノカプセルについて、周囲のpHに連動して膨潤/収縮する性質を見出し、その応用が検討されている(非特許文献3)。また、新型カチオン活性剤のヘアーコンディショナーへの活用の可能性(非特許文献4)や、帯電量を保持しながら低吸湿性に優れているカチオン性重合体の応用(特許文献3)などが報告されている。
 しかしながら、これらの技術により種々のカチオン性のポリマーが与えられたとしても、細胞増殖を妨げずに細胞内に容易に導入することができ、特に、導入した細胞の細胞分裂を阻害しないポリマーを選び出すことは困難であった。
関俊暢 薬学雑誌, vol.130(9), pp.1115-1121, 2010 Borja Ballarin-Gonzalez et.al., Advanced Drug Delivery Reviews vol., 64 p.1717-1729, 2012 Takayuki Imoto et.al., Macromol. Biosci. vol.10, pp.271-277, 2010 三田村譲嗣ら J. Soc. Cosmet. Chem. Jpn. vol.30(1), pp.84-93, 1996
特開2004-49214号公報 国際公開第2013/094748号 特開2011-157503号公報
 本発明の目的は、細胞増殖を妨げずに細胞内に所望の成分または化合物を容易に送達できるベヒクル、その製造方法および使用方法を提供することにある。
 本発明者らは、温度感受性蛍光プローブを細胞内に導入する技術を開発する過程で、細胞内に容易に導入できると共に、導入した細胞の細胞分裂を阻害しない新規なベヒクルの調製方法を見出した。本発明はこの知見に基づくものである。
 すなわち、本発明は以下の発明を包含する。
(1)表面が陽性荷電で覆われた、細胞内送達ベヒクル。
(2)細胞内に送達される目的の成分または化合物が、前記(1)に記載の前記細胞内送達ベヒクルに充填されてなる、細胞内送達複合体。
(3)細胞内に送達される目的の成分または化合物が前記細胞内送達ベヒクルに共有結合している、前記(2)に記載の細胞内送達複合体。
(4)前記化合物が、温度に応じてその特性が変化する感熱性ユニット、および該感熱性ユニットの特性変化に伴って蛍光強度または蛍光寿命が変化する蛍光性ユニットである、前記(2)または(3)に記載の細胞内送達複合体。
(5)前記(4)に記載の細胞内送達複合体を含んでなる、温度感受性プローブ。
(6)細胞内の温度を測定する方法であって、
(a)前記(5)に記載の温度感受性プローブを細胞内に導入する工程、および
(b)励起光照射下、蛍光強度または蛍光寿命を測定する工程
を含んでなる、方法。
 本発明は、マイクロインジェクション等の複雑な操作を必要とせず、所望の成分または化合物を容易に細胞に導入することができる点で有利である。また、導入されたベヒクルが細胞の細胞増殖を妨げない点で有利である。さらに、本発明のベヒクルを利用すれば、所望の成分または化合物を、細胞増殖を妨げずに、容易に細胞内に送達できる点で有利である。さらに、本明細書の実施例では、細胞に導入された本発明のベヒクルが細胞の分化を妨げないという利点を有することも確認されている。
化合物2bのTEMによる観察結果を示した一例である。 化合物3dのTEMによる観察結果を示した一例である。 化合物EF043のTEMによる観察結果を示した一例である。 化合物Lin40とLin41(黒丸:Lin40、白丸:Lin41)の150mM塩化カリウム水溶液中での蛍光強度(Lin40:569nm、Lin41:571nm)の感熱応答性試験結果(0.005w/v%、励起波長450nm)の一例である(n=3)。 EF043,NN-AP4、Lin40、Lin41、k40をそれぞれ5%グルコース溶液中でヒト子宮頸癌由来HeLa細胞と混合(37℃、10分)し、顕微鏡で観察(励起光:473nm、蛍光:500nm~600nm)を行った写真の一例である。 EF043,NN-AP4、Lin40を導入したHeLa細胞を使って、24時間後のプローブが入った細胞数をカウントし、増殖率を評価した一例である(n=3)。 褐色脂肪細胞に分化誘導直後にカチオン性ゲル型温度プローブEF043を導入し、その後、さらに培養を3日間続け、成熟した状態になった褐色脂肪細胞を顕微鏡下で観察した結果の一例である。 EF043を5%グルコース溶液中でMOLT-4 (ヒト急性リンパ芽球性白血病T細胞)と混合(37℃、10分)し、顕微鏡で観察(励起光:473nm、蛍光:500nm~600nm)を行った写真の一例(左)とMOLT-4細胞中のEF043の蛍光強度の感熱応答性試験の結果の一例(右)(n=3)である。 MOLT-4 (ヒト急性リンパ芽球性白血病T細胞)細胞中のEF043の蛍光寿命(Ex:405nm、Em:565nm)の感熱応答性試験の結果(n=3)の一例である。 図9のグラフから算出した温度分解能の結果の一例である。 フルオレセインおよびローダミンBを包含したPEG型のカチオン性ゲルのHEK293T(ヒト由来胎児腎細胞)細胞への導入効率を蛍光分子単独の場合と比較した結果(n=3)の一例である。
発明の具体的説明
1.定義
 本発明において「ベヒクル」(vehicle)とは、所望の成分または化合物を細胞内に送達させる媒体または担体を意味する。
 本発明における「細胞」とは、一般的な分類である原核細胞と真核細胞の両方を含み、特にその生物の種に依らない。例えば、原核細胞は真正細菌と古細菌に分けられるが、真正細菌はその中でも放線菌門のようなグラム陽性菌とプロテオバクテリア門のようなグラム陰性菌に大きく分けられ、ペプチドグリカン層の厚みなどによって、本発明の細胞内送達ベヒクルが適用できる範囲は制限されない。また、真核細胞には、主に真核生物(原生生物、真菌、植物、動物)に属する細胞が当てはまる。例えば、一般的に分子生物学などの研究で利用され、かつ工業的にも利用される酵母は真菌に属する。また、本発明の細胞内送達ベヒクルは、浮遊細胞および接着細胞の両方において好適に用いられる。
 本明細書において「C1-3アルキル」とは、炭素数1~3の直鎖状、分岐鎖状、または環状のアルキル基を意味し、メチル、エチル、n-プロピル、i-プロピル、シクロプロピルが含まれる。
 本明細書において「C1-6アルキル」とは、炭素数1~6の直鎖状、分岐鎖状、環状または部分的に環状のアルキル基を意味し、例えば、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、s-ブチル、i-ブチル、t-ブチル、n-ペンチル、3-メチルブチル、2-メチルブチル、1-メチルブチル、1-エチルプロピル、n-ヘキシル、4-メチルペンチル、3-メチルペンチル、2-メチルペンチル、1-メチルペンチル、3-エチルブチル、および2-エチルブチル、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、およびシクロプロピルメチルなどが含まれ、例えば、C1-4アルキルおよびC1-3アルキルなども含まれる。
 本明細書において「C1-10アルキル」とは、炭素数1~10の直鎖状、分岐鎖状、環状または部分的に環状のアルキル基を意味し、例えば、既に定義したC1-6アルキルおよびC1-3アルキルなどが含まれる。
 本明細書において「C1-20アルキル」とは、炭素数1~20の直鎖状、分岐鎖状、環状または部分的に環状のアルキル基を意味し、例えば、既に定義したC1-10アルキル、C1-6アルキルおよびC1-3アルキルなどが含まれる。
 本明細書において「C1-6アルコキシ」とは、アルキル部分として既に定義した炭素数1~6のアルキル基を有するアルキルオキシ基を意味し、例えば、メトキシ、エトキシ、n-プロポキシ、i-プロポキシ、n-ブトキシ、s-ブトキシ、i-ブトキシ、t-ブトキシ、n-ペントキシ、3-メチルブトキシ、2-メチルブトキシ、1-メチルブトキシ、1-エチルプロポキシ、n-ヘキシルオキシ、4-メチルペントキシ、3-メチルペントキシ、2-メチルペントキシ、1-メチルペントキシ、3-エチルブトキシ、シクロペンチルオキシ、シクロヘキシルオキシ、シクロプロピルメチルオキシなどが含まれ、例えば、C1-4アルコキシおよびC1-3アルコキシなども含まれる。
 本明細書において「アリール」とは、6~10員芳香族炭素環基を意味し、例えば、フェニル、1-ナフチル、2-ナフチルなどが含まれる。
 本明細書において「C7-14アラルキル」とはアリール基を含む炭素数が7~14のアリールアルキル基を意味し、例えば、ベンジル、1-フェネチル、2-フェネチル、1-ナフチルメチル、2-ナフチルメチルなどが含まれる。
 本明細書においてハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子およびヨウ素原子などが挙げられる。
 本明細書において「C1-20アルキレン」とは、炭素数1~20の直鎖状、分岐鎖状、環状または部分的に環状のアルキレン基を意味し、例えば、メチレン、エチレン、プロピレン、ブチレンなど、さらにC1-10アルキレンおよびC1-6アルキレンなどが含まれる。
 本明細書において「C3-20アルケニレン」とは、炭素数3~20の直鎖状、分岐鎖状、環状または部分的に環状のアルケニレン基を意味し、例えば、プロペニレン、ブテニレンなど、さらにC3-10アルケニレンおよびC3-6アルケニレンなどが含まれる。
 本明細書において「C3-20アルキニレン」とは、炭素数3~20の直鎖状、分岐鎖状、環状または部分的に環状のアルキニレン基を意味し、例えば、プロピニレン、ブチニレンなど、さらにC3-10アルキニレンおよびC3-6アルキニレンなどが含まれる。
 本明細書において「C1-6アルキルチオ」とは、アルキル部分として既に定義した炭素数1~6のアルキル基を有するアルキルチオ基を意味し、例えば、メチルチオ、エチルチオ、n-プロピルチオ、i-プロピルチオ、n-ブチルチオ、s-ブチルチオ、i-ブチルチオ、t-ブチルチオなどが含まれる。
 本明細書において「C1-6アルキルスルフィニル」とは、アルキル部分として既に定義した炭素数1~6のアルキル基を有するアルキルスルフィニル基を意味し、例えば、メチルスルフィニル、エチルスルフィニル、n-プロピルスルフィニル、i-プロピルスルフィニル、n-ブチルスルフィニル、s-ブチルスルフィニル、i-ブチルスルフィニル、t-ブチルスルフィニルなどが含まれる。
 本明細書において「C1-6アルキルスルホニル」とは、アルキル部分として既に定義した炭素数1~6のアルキル基を有するアルキルスルホニル基を意味し、例えば、メチルスルホニル、エチルスルホニル、n-プロピルスルホニル、i-プロピルスルホニル、n-ブチルスルホニル、s-ブチルスルホニル、i-ブチルスルホニル、t-ブチルスルホニルなどが含まれる。
 本明細書において「6~18員芳香族炭素環基」とは、例えば、フェニル、ナフチル、アントラセニル、ピレニル、インダニル、テトラリニルなどが含まれる。
 本明細書において「5~18員芳香族ヘテロ環基」とは、酸素、窒素および硫黄から選択される1以上のヘテロ原子を有する芳香族ヘテロ環であり、例えば、ピロリル、ピラゾリル、イミダゾリル、ピリジル、インドリル、キノリル、キノキサリニル、キナゾリニル、ベンゾフラニル、ベンゾチエニル、ベンゾピラニル、ベンゾクロメニルなどが含まれる。
 本明細書において「C2-6アルケニルスルホニル」とは、アルケニル部分として既に定義したC2-6アルケニル基を有するアルケニルスルホニル基を意味し、例えばビニルスルホニル、アリルスルホニルなどが含まれる。
 本明細書において「C2-6アルケニルカルボニル」とは、アルケニル部分として既に定義したC2-6アルケニル基を有するアルケニルカルボニル基を意味し、例えばアクリロイル、メタクリロイルなどが含まれる。
 本明細書において「C2-6アルキニルカルボニル」とは、アルキニル部分として既に定義したC2-6アルキニル基を有するアルキニルカルボニル基を意味し、例えばエチニルカルボニルなどが含まれる。
 本明細書において「C1-6アルキルカルボニル」とは、基-CO(C1-6アルキル)を表し、ここで当該C1-6アルキルは既に定義したとおりである。
 本明細書において「C1-6アルコキシカルボニル」とは、基-CO(C1-6アルコキシ)を表し、ここで当該C1-6アルコキシは既に定義したとおりである。
 本明細書において「C1-6アルキルカルボニルアミノ」とは、基-NHCO(C1-6アルキル)を表し、ここで当該C1-6アルキルは既に定義したとおりである。
 本明細書において「C1-6アリールカルボニルアミノ」とは、基-NHCO(アリール)を表し、ここで当該アリールは既に定義したとおりである。
 本明細書における「5~7員含窒素ヘテロ環」には、例えば、ピロール環、ピロリジン環、ピペリジン環、ホモピペリジン環、ピペラジン環、ホモピペラジン環、モルホリン環、チオモルホリン環など飽和ヘテロ環が含まれる。
 本明細書における「4~8員含窒素ヘテロ環」には、例えば、ピロール環、アゼチジン環、ピロリジン環、ピペリジン環、ホモピペリジン環、ピペラジン環、ホモピペラジン環、モルホリン環、チオモルホリン環など、および5~7員含窒素ヘテロ環が含まれる。
 本明細書における「2つの窒素原子を含む5~7員ヘテロ環」には、例えば、イミダゾリジン、テトラヒドロピリミジンなどが含まれる。
 本明細書において、アルキレンが1以上の個所においてOが挿入されている場合、当該アルキレン鎖は主鎖中にエーテル結合を含むことになり、当該挿入は安定な構造となるために、-O-O-および-O-CH-O-の構造とならないように行われることは当業者であれば容易に理解するはずである。以上のことはアルキレンへのSの挿入においても当てはまる。
 本明細書において、共重合体とは、各ユニットにあたるモノマーを混ぜ、重合反応をしてできた高分子鎖の集合体である。ポリマーとは、モノマーユニットが結合し連なった高分子鎖を示す。
 本明細書において「カウンターアニオン」とは、有機化学の技術分野で有機化合物のカウンターアニオンとして通常用いられるアニオンであれば特に制限されず、例えば、ハロゲン化物アニオン(塩化物イオン、臭化物イオン、フッ化物イオン、ヨウ化物イオン)、有機酸の共役塩基(例えば酢酸イオン、トリフルオロ酢酸イオン)、硝酸イオン、硫酸イオン、炭酸イオンなどが含まれる。本発明において好ましいカウンターアニオンとしては、例えば、トリフルオロメタンスルホン酸イオン、塩化物イオン、硝酸イオンなどが挙げられる。
 なお、カウンターアニオンが2価以上である場合、それに対応する個数のイオン性官能基とイオン結合を形成することは当業者により容易に理解されるとおりである。
2.細胞内送達ベヒクル
 本発明の細胞内送達ベヒクルとは、表面が陽性荷電で覆われた任意の形状のゲル粒子:
Figure JPOXMLDOC01-appb-C000001
である。本発明の細胞内送達ベヒクルの形状は、好ましくは略楕円球形状であり、さらに好ましくは略球形状である。
 この細胞内送達ベヒクルは所望の成分または化合物を充填し細胞内送達複合体を形成することができる。また、この細胞内送達ベヒクルに所望の成分または化合物を共有結合して細胞内送達複合体を形成することができる。細胞内送達ベヒクルおよびこれらの細胞内送達複合体は容易に細胞内に導入することができ、しかも導入した細胞の生存および増殖を妨げない。さらに、本明細書の実施例では、細胞に導入された本発明のベヒクルが細胞の分化を妨げないという利点を有することも確認されている。
 一つの好ましい実施態様によれば、本発明の細胞内送達ベヒクルは、
Figure JPOXMLDOC01-appb-C000002
の構造を有する。
3.細胞内送達ベヒクルの製造方法
 本発明の細胞内送達ベヒクルは、例えば、2つの末端のうち少なくとも一方の末端のユニットまたはその近辺のユニットが陽性荷電を有するポリマーを作製し、これを分子間で架橋させることにより製造することができる。一つの好ましい実施態様によれば、本発明の細胞内送達ベヒクルは、カチオン性重合開始剤と、炭素-炭素二重結合を含んでなるモノマーと、架橋剤とを用いるラジカル重合反応を行うことにより製造される。
(1)カチオン性重合開始剤
 本発明に用いられるカチオン性重合開始剤は、(a)常温で安定であり、(b)水溶性であり、(c)ラジカル重合反応を惹起させるラジカル産生能があり、(d)ラジカル重合反応後の重合体の末端においても幅広いpHの範囲で、少なくとも中性付近で、正電荷を有するものである。
 ここで、カチオン性重合開始剤は、細胞内において正電荷を保持するものであることが好ましい。多くの細胞内のpHは2~9、さらに一般的な動物、植物および微生物の細胞であれば4~8程度である。従って、カチオン性重合開始剤は、このpHの範囲内で正電荷を保持するものであることが望ましい。
 本発明のカチオン性重合開始剤は、例えば、一般式(I):
Figure JPOXMLDOC01-appb-C000003
[式中、
 Yは、単結合またはCR85を表し、
 Zは、単結合またはCR86を表し、
 R72、R73、R75、R76、R77、R78、R85およびR86は、それぞれ独立して、水素原子、C1-6アルキル、C1-6アルコキシ、C1-6アルキルカルボニル、フェニルおよびヒドロキシからなる群から選択され、ここで前記C1-6アルキル、C1-6アルコキシ、C1-6アルキルカルボニルおよびフェニルは、さらにC1-6アルキル、C1-6アルコキシ、C1-6アルキルカルボニル、フェニルおよびヒドロキシからなる群から選択される1または2個の置換基で置換されていてもよく、
 R72およびR73は、さらに、それぞれ独立して、アダマンチル、またはSi(OCH(CH)で置換されたC1-6アルキルを表してもよく、 あるいは、R75およびR76、またはR77およびR78は、一緒になって-(CH3-5-を形成してもよく、
 R81、R82、R83、およびR84は、C1-4アルキル、C1-4アルキルカルボニル、およびC1-3アルコキシからなる群から選択される置換基であり、ここで前記C1-4アルキルは一つのC1-3アルコキシ基で置換されていてもよく、及び
 R71およびR74は、それぞれ独立して、C1-3アルキル基であり、 X はカウンターアニオンである]
の化学構造を有する。
 本発明の一つの実施態様では、式(I)のYおよびZは単結合を表す。
 別の実施態様では、式(I)のR81、R82、R83およびR84は、それぞれ独立して、メチル、エチル、メチルカルボニル、イソブチル、および2-メチル-2-メトキシ-プロピルからなる群から選択される。
 別の実施態様では、式(I)のR71およびR74はメチル基である。
 別の実施態様では、式(I)のR72、R73、R75、R76、R77、R78、R85、およびR86は、それぞれ独立して、水素原子、C1-6アルキル、C1-6アルコキシ、C1-6アルキルカルボニル、フェニルおよびヒドロキシからなる群から選択される。
 別の実施態様では、式(I)のR75およびR76、またはR77およびR78は、一緒になって-(CH-を形成する。
 本発明の好ましい実施態様によれば、式(I)のR72およびR73、R75およびR77、R76およびR78、R81およびR84、R82およびR83、並びにR71およびR74は、それぞれ同一の置換基を表し、かつ、YおよびZは、同一の置換基、または共に単結合を表す。
 本発明のカチオン性重合開始剤のさらに好ましい実施態様によれば、式(I)のR71、R72、R73、R74、R81、R82、R83、およびR84がメチル基であり、R75、R76、R77、およびR78が水素原子であり、YおよびZが単結合である。
 式(I)の化合物の合成法は、特に限定されないが例えば次のようにして合成することができる。
 まず、α,α'-アゾビスイソブチロニトリル(AIBN)誘導体:
Figure JPOXMLDOC01-appb-C000004
を適当な溶媒に溶解し、過剰量のメタノール存在下、室温で塩化水素ガスを通じることによって、活性なイミノエステル誘導体:
Figure JPOXMLDOC01-appb-C000005
を得ることができる。なお、本明細書において構造式中のMeはメチル基を意味する。次に、当該イミノエステル誘導体に、エチレンジアミンなどのアルキレンジアミン誘導体:
Figure JPOXMLDOC01-appb-C000006
を過剰量加え、撹拌することによって環状構造になった化合物:
Figure JPOXMLDOC01-appb-C000007
を得ることができる。さらに、ジクロロメタンに生成物を溶解し、室温、脱酸素条件下において、2.1当量のトリフルオロエタンスルホン酸エステルR71OTfもしくはR74OTfを反応させることにより、Nアルキル化反応が起こり、式(I)に表される目的の化合物を得ることができる。
 上記の式(I)の化合物は新規化合物であり、本発明の一つの態様をなす。
(2)モノマー
 ラジカル重合反応の原料となるモノマーとしては、炭素-炭素二重結合を有する化合物であれば、いずれのものも使用することができる。また、その中で、所望の成分、化合物を充填し、または化学結合するにあたり適当なものを、当業者であれば適宜選択することができる。また、その中で、生体適合性や分解容易性等の観点から適当なものを、当業者であれば適宜選択することができる。さらに、その中で、ラジカル重合反応の効率、経済性、安全性等の観点から適当なものを、当業者であれば適宜選択することができる。
 本発明の一つの実施態様では、例えば、充填する成分または化合物の分子量が1000以下の低分子である場合には、架橋剤濃度を高くしてポアサイズを小さくしたベヒクルを選択することができる。加えて、低分子はそのベヒクルの網目から拡散で外に漏出してしまいやすいため、以下の記載のように低分子の疎水性や電荷などを利用して、ベヒクルとの相互作用を促すか、もしくは共有結合によって、ベヒクルと直接結合できるようなモノマーを選択することが望ましい。一方、分子量が比較的大きな高分子の場合は、架橋剤の濃度を適切に選択することで網目を制御することが挙げられる。
 別の実施態様では、生体適合性を重視する場合には、PEGなどのモノマーを用いることが挙げられる。
 別の実施態様では、充填する成分または化合物が電荷を持っている場合は、その電荷のカウンターとなるイオン性基を持ったモノマーを選択することができる。例えば、充填する成分または化合物が負電荷を持っていれば、アミン等の正電荷を持つ側鎖を有するモノマーなどが挙げられ、充填する成分または化合物が正電荷を持っていれば、カルボン酸糖等の負電荷を持つ側鎖を有するモノマーなどが挙げられる。
 別の実施態様では、充填する成分または化合物の疎水性・親水性によっても、モノマーの選択ができる。例えば、充填する成分または化合物が疎水性の高い分子であれば、側鎖に水酸基やアミン基およびイオン性基を含まず、かつ炭素数の大きなモノマーが挙げられ、さらにその中でも、充填する成分または化合物がベンゼン環を含むような構造であれば、フェニル基を側鎖に持つようなモノマーを選択することで、相互作用により、ベヒクル内での充填成分の安定性を保つことができる。一方、充填する成分または化合物が水に溶けやすいような親水性の高い分子であれば、側鎖に水酸基やアミン基およびイオン性基を含むようなモノマーが挙げられる。
 別の実施態様では、成分または化合物を細胞内送達ベヒクルに共有結合する場合は、アクリルアミド系のモノマーなどに目的の低分子または高分子を共有結合させた化合物を合成することで、該化合物をベヒクルのモノマーとして利用できる。
 別の実施態様では、pHに応答して、充填する成分または化合物をベヒクル外に放出するようなことを考える場合には、pHに応答して化学構造が変わるようなモノマーを選択することで、ベヒクルのポアサイズや充填する成分または化合物との相互作用の強弱をコントロールできる。そのようなモノマーとして、カルボン酸やアミンを側鎖に含むようなモノマーが挙げられる。
 別の実施態様では、温度に応答して、充填する成分または化合物をベヒクル外に放出するようなことを考える場合には、温度に応答してポリマー構造が変わるようなモノマーを選択することで、ベヒクルのポアサイズや充填する成分または化合物との相互作用の強弱をコントロールできる。そのようなモノマーとして、アクリルアミド系のモノマーが挙げられる。
 別の実施態様では、紫外線などの光に応答して、充填する成分または化合物をベヒクル外に放出するようなことを考える場合には、UVに応答してモノマーの一部分の構造が開裂するようなモノマーを選択することで、ベヒクルの構造を大きく変え、充填する成分または化合物をベヒクル外に放出することができる。そのようなモノマーとして、PEG-photo―MA(Murayama, Shuhei, et al. “NanoPARCEL: a method for controlling cellular
 behavior with external light.”Chemical Communications 48.67 (2012): 8380-8382.)のような光開裂性モノマーが挙げられる。
(3)架橋剤
 ラジカル重合反応の原料となる架橋剤としては、分子中に2以上のビニル基を含むモノマーであって、架橋剤として通常使用されているものであれば特に限定されない。当該架橋剤の具体的な例としては、N,N'-メチレンビスアクリルアミド、N,N'-エチレンビスアクリルアミド、N,N'-メチレンビスメタクリルアミド、N,N'-エチレンビスメタクリルアミド、エチレングリコールジアクリレート、エチレングリコールジメタクリレートなどが挙げられる。
 使用する架橋剤モノマーの量は、特には限定されないが、例えば、後述する式(a)、(b)および(c)のモノマーに対して、0.1~20モル%の量を使用することができる。
(4)反応条件
 本発明の細胞内送達ベヒクルは、高分子合成の技術分野における通常の知識に基づいて合成することができ、例えば、ラジカル重合などによる重合体として得ることができる。
 一般的な細胞内送達ベヒクルの製造方法は以下の通りである。
Figure JPOXMLDOC01-appb-C000008
 重合開始剤の使用量は、使用するモノマーに対して0.01モル%以上の量であればよく、ラジカル合成が進行する濃度の範囲内で適量を選択することができる。例えば、0.1モル%以上、好ましくは1モル%以上の重合開始剤を使用することができる。
 重合反応に使用する反応溶媒は、特に限定されないが、例として、水、ジオキサン、ジメチルホルムアミド、ジメチルスルホキシドなどが挙げられる。ラジカル重合は、特に限定はされないが、例えば0~100℃、好ましくは50~70℃の反応温度、および例えば1~48時間、好ましくは2~16時間の反応時間で行うことができる。
 架橋剤モノマーを使用する場合の共重合反応は、当該技術分野で慣用の手法により行うことができる。
 当該共重合反応に使用する反応溶媒としては、特に限定されないが、例えば、界面活性剤(例えば、ドデシル硫酸ナトリウム、ドデシルベンゼン硫酸ナトリウム、ペンタデカン硫酸ナトリウム、N-ドデシル-N,N,N-トリメチルアンモニウムブロマイド、N-セチル-N,N,N-トリメチルアンモニウムブロマイド、トライトンX-100など)を含む水を使用することができる。
 架橋剤モノマーを使用して得られる共重合体のナノゲル(ナノサイズのゲル微粒子)のサイズは、共重合反応における撹拌効率、反応温度、界面活性剤の使用量、反応開始剤の使用量、架橋剤モノマーの使用量により調節することができる。例えば、界面活性剤および/または反応開始剤の使用量を増加させることにより、サイズが小さいナノゲルを得ることができる。得られるナノゲルのサイズは、本発明が属する当業者であれば適宜調節することができ、本発明の共重合体のナノゲルのサイズは、例えば、5~100nmである。
 当該共重合反応は、特に限定はされないが、例えば0~100℃、好ましくは50~70℃の反応温度、および例えば1~48時間、好ましくは2~16時が挙げられる。
4.細胞内送達複合体
 前記細胞内送達ベヒクルに所望の成分または化合物を充填し、またはその成分または化合物を結合させることにより、細胞内送達複合体を製造することができる。
(1)所望の成分または化合物が前記細胞内送達ベヒクルに充填された細胞内送達複合体の製造方法
 所望の成分または化合物を細胞内送達ベヒクルに充填した細胞内送達複合体の調製は、常法に従い、以下の通り行うことができる。
 (i) 重合反応環境下に充填させる化合物・分子をそのまま存在させて、ラジカル重合反応を起こさせる場合、例えば乳化重合などにより化合物・分子を溶解できる状態にして、化合物・分子の安定性が損なわれにくい温度や溶媒条件で重合を行えばよい。その後、遠心、透析および濾過などの操作により、充填させる化合物・分子とベヒクルを分離することで目的のベヒクルは調製できる。
 (ii)  細胞内送達ベヒクルを充填させるべき化合物等を含んだ溶液に浸漬して吸着させる場合、充填される成分または化合物の電荷や極性に応じて、相互作用の強いモノマーを選択することで、吸着を促すことができる。撹拌処理や温度の制御により吸着量を高めることも可能である。またモノマーとして、ビオチンのような側鎖をもつものを使えば、あるいは、充填される化合物がストレプトアビジンとの融合タンパク質などになっていれば、非常に強い力でベヒクルに結合され、充填させるべき化合物が漏出されにくい安定的なベヒクルを合成することができる。
 (iii)  細胞内送達ベヒクルを充填させるべき化合物等を含んだ溶液に浸漬して浸透させる場合、例えばpHや温度などによって、ベヒクルの構造変化が起きるようなモノマーを選択することで、浸漬時には網目構造(孔サイズ)が大きくし、浸漬浸透後に網目構造を小さくすることで、ベヒクル内に化合物(主に高分子)を閉じ込めることができる。その後、遠心、透析および濾過などの操作により、充填させる化合物・分子とベヒクルを分離することで目的のベヒクルは調製できる。
(2)所望の成分または化合物が前記細胞内送達ベヒクルに共有結合した細胞内送達複合体の製造方法
 所望の成分または化合物を細胞内送達ベヒクルと共有結合した細胞内送達複合体の調製は、当業者に知られた常法に従い、以下の通り行うことができる。
 (i)重合前のモノマーに所望の成分または化合物が結合したものを調製し、これをラジカル重合反応に付す場合、重合が促進されるような温度条件において、比較的容易に重合体であるベヒクルを得ることができる。その後、再沈殿や濾過、遠心、塩析などによりベヒクルを精製することができる。
 (ii) 先に細胞内送達ベヒクルを製造し、その後所望の成分または化合物を結合させる場合、重合前のモノマーに特定の活性基を付与して、重合後に、その活性基に特異的に反応する構造をもった所望の成分または化合物とベヒクルを反応させることで、ベヒクルに共有結合で化合物を結合させることができる。例えば、N-ヒドロキシスクシンイミド活性エステルーアミノ基の反応や、マレイミド基―チオール基の特異的な結合反応を利用することができる。
(3)細胞内送達ベヒクルへ充填する成分または化合物の例
 本発明の細胞内送達ベヒクルに充填する所望の成分または化合物の好ましい例として、以下のものが挙げられる。
・インスリンを充填して経皮吸収の促進を図る。
・美白成分、化粧成分を充填して皮膚外皮細胞内への移行促進を図る。
・ヘアカラーリング剤としての染料を充填して、毛髪への浸透力を高める。
・毛髪に良い成分を充填したシャンプー、コンディショナーを調製し、毛髪への浸透力を高める。
・遺伝物質を充填し、細胞分裂を阻害しない特性を活かして当該遺伝物質の細胞内への効率導入を図る。
・薬物を充填して、癌細胞などの標的細胞内への効率的な薬物送達を図る。
・インクを充填してインク成分の分散安定化を図る。
(4)細胞内送達複合体の細胞内移行方法
 本発明の細胞内送達ベヒクルを細胞に導入する際には、イオン強度の低い溶液(溶媒)に置換することが望ましい。このような溶媒としては、例えば、水(好ましくは純水)およびソルビトール水溶液、グルコース溶液などが挙げられる。細胞の種類に応じて、これらグルコース溶液などに0.45mMの塩化カルシウムを添加した溶液なども好適に用いることができる。
 本発明に従って細胞内送達ベヒクルを細胞に導入するときの細胞内送達ベヒクル重合体の濃度は、例えば、共重合体の終濃度を0.001~1%(w/v)、好ましくは0.01~0.5%(w/v)になるように調整し、菌体と混ぜることができる。これは微生物菌体のようなものに限らず、接着細胞などの他の細胞にもあてはまる。
 本発明の細胞内送達複合体も、上と同様の方法で細胞内に導入することができる。
5.カチオン性ゲル型温度感受性プローブ
 本発明の細胞内送達複合体は、温度感受性プローブにも応用することができる。その場合には、感熱性ユニット、蛍光性ユニット、カチオン性重合開始剤および架橋剤を用いた共重合反応により製造することができ、本発明の温度感受性プローブとして用いられる共重合体として得ることができる。
 感熱性ユニットと蛍光性ユニットとの組合せは、周囲の温度に応じて何らかの特性が変化する感熱性ユニットと、その特性変化に応じて蛍光強度または蛍光寿命が変化する蛍光性ユニットとの組合せであれば、いかなるものでも使用できる。当業者であれば、細胞の種類や測定したい温度域に応じて、適切な組合せを選択することができる。本発明の好ましい実施態様によれば、感熱性ユニットは、ポリマーになった場合に温度に応じてその形状や疎水性が変化するもの、例えば、下限臨界溶液温度や上限臨界溶液温度(LCSTやUCST)を有する分子とされる。例えばLCST挙動を示す場合には、ある温度を境にそれより高い温度ではその分子内、或いは分子間の疎水結合が強まりポリマー鎖が凝集し、逆に、低い温度ではポリマー鎖が水分子を結合し水和する相転移挙動を起こす。蛍光性ユニットは、感熱性ユニットの形状変化に応じて蛍光強度または蛍光寿命が変化するものとされる。感熱性ユニットには、温度に応じた形状変化により水への溶解性が変化するものも知られており、その場合には、蛍光性ユニットとして溶媒の極性によって蛍光強度または蛍光波長または蛍光寿命が変化するソルバトクロミックの性質を持つ蛍光性ユニットを用いることができる。
(1)感熱性ユニットの好適な例
 本発明の温度感受性プローブとして用いられる共重合体に含まれる感熱性ユニットの好適な例は、以下の式(a)で表される1種または2種以上のモノマーに由来する1種または2種以上の繰り返し構造である:
Figure JPOXMLDOC01-appb-C000009
[式中、Rは、水素原子およびC1-3アルキルから選択され;
 RおよびRは、独立に、水素原子およびC1-20アルキルから選択され、ここで当該アルキルは、ヒドロキシ、C1-6アルコキシ、およびアリールから選択される1以上の置換基により置換されていてもよく、またはRおよびRはそれらが結合する窒素原子と一緒になって、4~8員含窒素ヘテロ環を形成し、ここで当該ヘテロ環は、C1-6アルキル、C1-6アルコキシ、ニトロ、ハロゲン原子、C1-10アルキルカルボニルアミノおよびアリールカルボニルアミノから選択される1以上の置換基により置換されていてもよい]。
(2)蛍光性ユニットの好適な例
 本発明の温度感受性プローブとして用いられる共重合体に含まれる蛍光性ユニットの好適な例は、以下の式(b)で表される1種または2種以上のモノマーに由来する1種または2種以上の繰り返し構造である:
Figure JPOXMLDOC01-appb-C000010
[式中、Rは、水素原子およびC1-3アルキルから選択され;
 Xは、O、S、またはN-R12であり;
 Xは、直接結合、O、S、SO、SO、N(-R13)、CON(-R16)、N(-R16)CO、N(-R17)CON(-R18)、SON(-R19)またはN(-R19)SOであり;
 Qは、C1-20アルキレン、C3-20アルケニレン、またはC3-20アルキニレンから選択され、ここで前記アルキレンは、1以上の個所において、O、Sまたはフェニレンが独立に挿入されていてもよく;
 Arは、6~18員芳香族炭素環基、または5~18員芳香族ヘテロ環基から選択され、ここで当該芳香族炭素環基および芳香族ヘテロ環基は、含まれる環の1以上が芳香族環である縮合環を含んでいてもよく、当該芳香族炭素環基および芳香族ヘテロ環基に環原子として存在する-CH-は-C(O)-に置換されていてもよく、さらに当該芳香族炭素環基および芳香族ヘテロ環基は、ハロゲン原子、C1-6アルキル、C1-6アルコキシ、C1-6アルキルチオ、C1-6アルキルスルフィニル、C1-6アルキルスルホニル、ニトロ、シアノ、C1-6アルキルカルボニル、C1-6アルコキシカルボニル、カルボキシ、ホルミル、-NR、および-SONR1415から選択される1以上の置換基により置換されていてもよく(ここで前記C1-6アルキル、C1-6アルコキシ、C1-6アルキルチオ、C1-6アルキルスルフィニル、C1-6アルキルスルホニル、C1-6アルキルカルボニルおよびC1-6アルコキシカルボニルに含まれるアルキルは、ハロゲン原子、C1-6アルコキシ、ヒドロキシ、アミノ、C1-6アルキルアミノ、ジ(C1-6アルキル)アミノ、アリール、およびカルボキシから選択される1以上の置換基により置換されていてもよい);
 RおよびRは、独立に、水素原子、C1-10アルキル、アリール、C1-10アルキルカルボニル、アリールカルボニル、C1-10アルキルスルホニル、アリールスルホニル、カルバモイル、N-(C1-10アルキル)カルバモイル、およびN,N-ジ(C1-10アルキル)カルバモイルから選択され、ここで前記C1-10アルキル、C1-10アルキルカルボニル、C1-10アルキルスルホニル、N-(C1-10アルキル)カルバモイル、およびN,N-ジ(C1-10アルキル)カルバモイルに含まれるアルキルは、ハロゲン原子、C1-6アルコキシ、ヒドロキシ、アミノ、C1-6アルキルアミノ、ジ(C1-6アルキル)アミノ、アリール、およびカルボキシから選択される1以上の置換基により置換されていてもよく、さらに前記アリール、アリールカルボニル、およびアリールスルホニルに含まれるアリールは、ハロゲン原子、C1-6アルキル、C1-6アルコキシ、およびカルボキシから選択される1以上の置換基により置換されていてもよく;または
 RおよびRはそれらが結合する窒素原子と一緒になって、4~8員含窒素ヘテロ環を形成し、ここで当該ヘテロ環は、C1-6アルキル、C1-6アルコキシ、ニトロ、ハロゲン原子、C1-10アルキルカルボニルアミノおよびアリールカルボニルアミノから選択される1以上の置換基により置換されていてもよく;
 R12は、水素原子、C1-6アルキル、または-Q-X-Arであり、ここで当該アルキルは、ヒドロキシ、ハロゲン原子、C1-6アルコキシ、C1-6アルキルチオ、C1-6アルキルスルフィニル、およびC1-6アルキルスルホニルから選択される1以上の置換基により置換されていてもよく;
 R13は、水素原子、またはC1-6アルキルであり、ここで当該アルキルは、ヒドロキシ、ハロゲン原子、C1-6アルコキシ、C1-6アルキルチオ、C1-6アルキルスルフィニル、およびC1-6アルキルスルホニルから選択される1以上の置換基により置換されていてもよく;
 R14およびR15は、独立に、水素原子、およびC1-6アルキルから選択され;またはR14およびR15はそれらが結合する窒素原子と一緒になって、4~8員含窒素ヘテロ環を形成し;
 R16、R17、R18およびR19は、独立に、水素原子、およびC1-6アルキルから選択され、ここで当該アルキルは、ヒドロキシ、ハロゲン原子、C1-6アルコキシ、C1-6アルキルチオ、C1-6アルキルスルフィニル、およびC1-6アルキルスルホニルから選択される1以上の置換基により置換されていてもよい]
で表されるモノマーに由来する繰り返し構造である。
 本発明の温度感受性プローブにおいては、場合によって第二の蛍光性ユニットを併用することができる。第二の蛍光性ユニットを併用する場合、これまで説明した蛍光性ユニットを「第一の蛍光性ユニット」という。
 第二の蛍光性ユニットは、第一の蛍光性ユニットとは異なる最大蛍光波長を有するものとされる。第二の蛍光性ユニットを用いる実施態様では、本発明の温度感受性プローブを用いた温度測定において、第一の蛍光性ユニットに由来する蛍光の強度と、第二の蛍光性ユニットに由来する蛍光の強度との比を算出し、これと実際の温度とを対応させることにより、高い精度で、簡便かつ短時間に温度を測定することが可能となる。
 第一の蛍光性ユニットおよび第二の蛍光性ユニットは、同一波長の励起光の照射によって相互に異なる最大蛍光波長の蛍光を生じるものであることが望ましい。また、第一の蛍光性ユニットの最大蛍光波長と、第二の蛍光性ユニットの最大蛍光波長との差は、2つの波長における蛍光強度を同時に測定する上で、測定器によって十分に識別される程度に離れていればよく、特に制限されないが、好ましくは50nm以上とされる。
 本発明の好ましい実施態様によれば、第一の蛍光性ユニットおよび第二の蛍光性ユニットのいずれか一方は、温度の上昇に応じて蛍光強度が上昇するものであり、他方は、温度の上昇に応じて蛍光強度が不変あるいは下降するものであり、望ましくは下降するものとされる。
 式(c)で表される第一の蛍光性ユニットと組み合わせられる第二の蛍光性ユニットの好適な例は、以下の式(c):
Figure JPOXMLDOC01-appb-C000011
[式中、R55は、水素原子およびC1-3アルキルから選択され;
 R51、R52、R53およびR54は、独立に、水素原子およびC1-6アルキルから選択され;
 Xは、直接結合、フェニレン、-Q4-O-C(=O)-(ここで、ボロンジピロメテン骨格に直接結合するのはQ4である)、-Q4-N(-R61)-C(=O)-(ここで、ボロンジピロメテン骨格に直接結合するのはQ4である)であり;
 R61は、水素原子およびC1-6アルキルから選択され;
 Qは、C1-20アルキレン、フェニレン、およびナフチレンから選択され、該フェニレンおよびナフチレンは、ハロゲン原子、C1-6アルコキシ、ヒドロキシ、アミノ、およびカルボキシから選択される1以上の置換基により置換されていてもよい]
で表されるモノマーに由来する繰り返し構造とされる。
(3)本発明の温度感受性プローブとして用いられる共重合体
 本発明の好ましい実施態様によれば、本発明に用いられる共重合体は、主鎖の少なくとも一方の末端に式(I)で表されるカチオン性重合開始剤に由来する構造と、これに続く、式(a)で表されるモノマーおよび式(b)で表されるモノマーのそれぞれに由来する繰り返し構造を含み、さらに架橋剤による架橋構造を含む共重合体とされる。
 本発明のさらに好ましい実施態様によれば、本発明に用いられる共重合体は、式(I’)、式(A)、および式(B):
Figure JPOXMLDOC01-appb-C000012
[式中、R71、R72、R75、R76、R81、R82およびY、R、RおよびR、ならびにR、X、X、QおよびArは、既に定義したとおりであり、a、およびbは、各繰り返し単位の比を表す0より大きい数である]
で表される繰り返し単位を含み、さらに架橋剤Mによる架橋構造を含む共重合体とされる。この共重合体では、aは100であり、bは、好ましくは0.05~2とされる。また、この共重合体では、式(I’)の構造が末端に存在することを条件として、他の繰り返し構造、つまり、式(A)および式(B)の繰り返し単位ならびに架橋剤Mによる架橋構造は、どのような順番で並んでいてもよい。さらに、この共重合体は、それぞれの繰り返し単位に関して、各式で表される一種または二種以上の繰り返し単位を含んでいてもよい。この共重合体は、物質そのものとして本発明の一つの態様をなす。
 本発明の他の好ましい実施態様によれば、本発明に用いられる共重合体は、主鎖の少なくとも一方の末端に式(I)で表されるカチオン性重合開始剤に由来する構造と、これに続く、式(a)で表されるモノマー、式(b)で表されるモノマーおよび式(c)で表されるモノマーのそれぞれに由来する繰り返し構造を含み、さらに架橋剤による架橋構造を含む共重合体とされる。
 本発明のさらに好ましい実施態様によれば、本発明に用いられる共重合体は、式(I’)、式(A)、式(B)および式(C):
Figure JPOXMLDOC01-appb-C000013
[式中、R71、R72、R75、R76、R81、R82およびY、R、RおよびR、ならびにR、X、X、QおよびAr、ならびにR55、X、R51、R52、R53およびR54は、既に定義したとおりであり、a、b、およびcは、各繰り返し単位の比を表す0より大きい数である]
で表される繰り返し単位を含み、さらに架橋剤Mによる架橋構造を含む共重合体とされる。この共重合体では、aは100であり、bは好ましくは0.05~2とされ、cは、好ましくは0.005~1とされる。また、この共重合体では、式(I’)の構造が末端に存在することを条件として、他の繰り返し構造、つまり、式(A)、式(B)および式(C)の繰り返し単位ならびに架橋剤Mによる架橋構造は、どのような順番で並んでいてもよい。さらに、この共重合体は、それぞれの繰り返し単位に関して、各式で表される一種または二種以上の繰り返し単位を含んでいてもよい。この共重合体は、物質そのものとして本発明の一つの態様をなす。
 本発明の好ましい実施態様によれば、前記共重合体は2種以上の感熱性ユニットを含むものとされる。感熱性ユニットには様々な種類のものがあり、その種類に応じて、最も高い温度反応性を示す温度域が異なる。この実施態様では、2種以上の感熱性ユニットを組み合わせることにより、所望の温度域において共重合体の温度反応性が高くなるように調整することができる。本発明のより好ましい実施態様によれば、前記共重合体は、前記式(a)で表される2種以上の感熱性ユニットを含むものとされる。また、一つの実施態様では、2種類の感熱性ユニットが用いられる。例えば、動物細胞の一般的な培養温度である35℃付近の測定では、N-n-プロピルアクリルアミド(NNPAM)とN-イソプロピルアクリルアミド(NIPAM)との組み合わせを用いることが好ましい。また、酵母等の微生物の発酵をモニターする等の目的で25℃以下の温度領域の測定が必要になる場合には、N―tert-ブチルアクリルアミド(NTBAM)とNNPAMとの組み合わせを用いることが好ましい。
 式(A)におけるaは、感熱性ユニット全体の総和を表すものであり、2種以上の感熱性ユニットを用いた場合には、全ての感熱性ユニットの繰り返し単位数の比率の和を意味する。
 本発明の好ましい実施態様によれば、上述の共重合体において、Arは、下式:
Figure JPOXMLDOC01-appb-C000014
により表される基から選択される芳香族炭素環基または芳香族ヘテロ環基であり、これらの基は当該環上をハロゲン原子、C1-6アルキル、C1-6アルコキシ、C1-6アルキルチオ、C1-6アルキルスルフィニル、C1-6アルキルスルホニル、ニトロ、シアノ、C1-6アルキルカルボニル、C1-6アルコキシカルボニル、カルボキシ、ホルミル、-NR、および-SONR1415から選択される1以上の置換基により置換されていてもよく(ここで前記C1-6アルキル、C1-6アルコキシ、C1-6アルキルチオ、C1-6アルキルスルフィニル、C1-6アルキルスルホニル、C1-6アルキルカルボニルおよびC1-6アルコキシカルボニルに含まれるアルキルは、ハロゲン原子、C1-6アルコキシ、ヒドロキシ、アミノ、C1-6アルキルアミノ、ジ(C1-6アルキル)アミノ、アリール、およびカルボキシから選択される1以上の置換基により置換されていてもよい);
 X10は、O、SまたはSeから選択され;
 Rは、水素原子、C1-10アルキル、およびアリールから選択され、当該アルキルは、
ハロゲン原子、C1-6アルコキシ、ヒドロキシ、アミノ、C1-6アルキルアミノ、ジ(C1-6アルキル)アミノ、アリール、およびカルボキシから選択される1以上の置換基により置換されていてもよく、さらに前記アリールは、ハロゲン原子、C1-6アルキル、C1-6アルコキシ、およびカルボキシから選択される1以上の置換基により置換されていてもよい。
 本発明のさらに好ましい実施態様によれば、Arは、下式:
Figure JPOXMLDOC01-appb-C000015
により表される基から選択される芳香族炭素環基または芳香族ヘテロ環基であり、これらの基は当該環上をハロゲン原子、C1-6アルキル、C1-6アルコキシ、C1-6アルキルチオ、C1-6アルキルスルフィニル、C1-6アルキルスルホニル、ニトロ、C1-6アルキルカルボニルアミノ、アリールカルボニルアミノ、シアノ、ホルミル、C1-6アルキルカルボニル、C1-6アルコキシカルボニル、カルボキシおよび-SONR1415から選択される1以上の置換基により置換されていてもよい。
 本発明において、R、R、RおよびR55は、好ましくは、水素原子およびメチルから選択される。
 式(a)および式(A)における-NRは、特には限定されないが、例えば、Rが水素原子であり、RはC2-10アルキルであってもよい。また、RおよびRはそれらが結合する窒素原子と一緒になって、4~8員含窒素ヘテロ環を形成する場合、例えば、ピロリジン環、ピペリジン環、ホモピペリジン環、ピペラジン環、ホモピペラジン環、モルホリン環、チオモルホリン環などを形成してもよい。
 式(b)および式(B)における-X-Q-は、好ましくは、Xは、O、NHまたはN(C1-6アルキル)であり、QはC2-10アルキレンである。
 式(b)および式(B)における-Arは、好ましくは、下式(V)~(XII):
Figure JPOXMLDOC01-appb-C000016
[式中、R31は水素原子、ハロゲン原子、ニトロ、シアノ、および-SONR1415から選択され;R32はC1-6アルキルであり;X11は、N-R33、OまたはSであり;R33は水素原子またはC1-6アルキルであり;X10、R14およびR15は、既に定義したとおりである]
から選択される基である。
 式(V)について好ましいXとしては、例えば、直接結合、CON(-R16)、N(-R16)CO、SON(-R19)またはN(-R19)SOが挙げられる。
 式(VI)について好ましいXとしては、例えば、N-R13(ここで、好ましいR13としてはメチルなどのC1-3アルキルが挙げられる)、またはSが挙げられる。
 式(VII)について好ましいXとしては、例えば、直接結合、CON(-R16)、N(-R16)CO、SON(-R19)またはN(-R19)SOが挙げられる。
 式(VIII)について好ましいXとしては、例えば、直接結合、CON(-R16)、N(-R16)CO、SON(-R19)またはN(-R19)SOが挙げられる。
 式(IX)について好ましいXとしては、例えば、直接結合が挙げられる。
 式(X)について好ましいXとしては、例えば、直接結合が挙げられる。
 式(XI)について好ましいXとしては、例えば、CO、SO、SON(-R19)またはCON(-R16)(ここで前記SON(-R19)およびCON(-R16)は、それぞれ硫黄原子および炭素原子がArに結合する)が挙げられる。
 式(XII)について好ましいXとしては、例えば、CO、SO、SON(-R19)またはCON(-R16)(ここで前記SON(-R19)およびCON(-R16)は、それぞれ硫黄原子および炭素原子がArに結合する)が挙げられる。
 本発明において、基-X-Arは環境応答性の蛍光団として機能し、例えば、式(V)または(VII)の蛍光団を使用した場合は温度の上昇に伴い蛍光強度が低下する温度センサーが、式(VI)または(VIII)~(XII)の蛍光団を使用した場合は、温度の上昇に伴い蛍光強度も上昇する温度センサーが得られる。
 式(c)および式(C)におけるR51、R52、R53およびR54は、好ましくは水素原子およびメチル基から独立に選択される。
 式(c)および式(C)における好ましいXは、例えば、直接結合、フェニレン、-Q4-O-C(=O)-(ここで、ボロンジピロメテン骨格に直接結合するのはQ4である)、または-Q4-NH-C(=O)-(ここで、ボロンジピロメテン骨格に直接結合するのはQ4である)である。
 式(c)および式(C)におけるQは、好ましくはフェニレンとされる。
 本発明の特に好ましい実施態様によれば、Rは、水素原子、メチルおよびエチルから選択され;Rは、n-プロピル、イソプロピルおよびt-ブチルから選択され、Rは水素原子であり;Rは、水素原子およびC1-3アルキルから選択され;Xは、O、またはN-R12であり;Xは、直接結合、O、N(-R13)、CON(-R16)、N(-R16)CO、またはN(-R17)CON(-R18)であり;Qは、C1-20アルキレン、C3-20アルケニレン、またはC3-20アルキニレンから選択され、ここで前記アルキレンは、1以上の個所において、O、Sまたはフェニレンが独立に挿入されていてもよく;Arは、下式:
Figure JPOXMLDOC01-appb-C000017
により表される基から選択される芳香族炭素環基または芳香族ヘテロ環基であり、これらの基は当該環上をハロゲン原子、C1-6アルコキシ、ニトロ、シアノ、-NR、および-SONR1415から選択される1以上の置換基により置換されており、さらに、C1-6アルキルにより置換されていてもよく;X10は、O、SまたはSeから選択され;Rは、水素原子、C1-10アルキル、およびアリールから選択され;RおよびRは、独立に、水素原子、C1-10アルキル、アリール、C1-10アルキルカルボニル、アリールカルボニル、C1-10アルキルスルホニル、アリールスルホニル、およびカルバモイルから選択され;またはRおよびRはそれらが結合する窒素原子と一緒になって、5~7員含窒素ヘテロ環を形成し、ここで当該ヘテロ環は、C1-6アルキル、C1-6アルコキシ、ニトロ、およびハロゲン原子から選択される1以上の置換基により置換されていてもよく;R12は、水素原子、C1-6アルキル、または-Q-X-Arであり、ここで当該アルキルは、ヒドロキシおよびハロゲン原子から選択される1以上の置換基により置換されていてもよく;R13は、水素原子、またはC1-6アルキルであり、ここで当該アルキルは、ヒドロキシおよびハロゲン原子から選択される1以上の置換基により置換されていてもよく;R14およびR15は、独立に、水素原子、およびC1-6アルキルから選択され;またはR14およびR15はそれらが結合する窒素原子と一緒になって、5~7員含窒素ヘテロ環を形成し;R16、R17およびR18は、独立に、水素原子、およびC1-6アルキルから選択され、ここで当該アルキルは、ヒドロキシおよびハロゲン原子から選択される1以上の置換基により置換されていてもよく;R51、R52、R53、R54およびR55は、水素原子およびメチル基から独立して選択され;Xは、直接結合、フェニレン、-Q4-O-C(=O)-(ここで、ボロンジピロメテン骨格に直接結合するのはQ4である)、または-Q4-NH-C(=O)-(ここで、ボロンジピロメテン骨格に直接結合するのはQ4である)とされ、Qはフェニレンとされる。
 式(A)、式(B)および式(C)におけるa、b、およびcは式中の各繰り返し単位の比を表す0より大きい数であり、特に限定されないが、例えば、aを100とした時に、bは0.01~10であり、具体的には0.02~5であり、好ましくは0.05~2であり、より好ましくは0.1~1.5である。cは0.001~5であり、具体的には0.002~2であり、好ましくは0.005~1であり、より好ましくは0.01~1である。bとcの比を表すb/cは、特に限定されないが、好ましくは0.1~30、より好ましくは1~20、さらに好ましくは3~10とされる。上述のように、aは感熱性ユニットの総和であり、例えば、2種類の感熱性ユニットを使う場合の感熱性ユニットの比は、ある数pを用いて、p:a-pとなる。また、本発明の共重合体の大きさは、特には限定されないが、例えば1~100000nm、好ましくは1~10000nm、より好ましくは、1~1000nmである。
 本発明の共重合体は周囲の温度変化に対して非常に素早く応答し、その構造変化は数ミリ秒程度である。つまり、本発明の温度感受性蛍光プローブは、細胞内の温度変化に敏捷に応答し蛍光強度を変化させるため、顕微鏡などを用いて、細胞内の温度分布を可視化した場合には、その蛍光強度比から細胞内の各微小空間における細胞内の温度を定量することができる。
 本発明の共重合体を含む溶液中のpHや塩濃度に影響を受けずに温度測定を行うために、当該共重合体に含まれるカチオン性官能基は、広範囲のpHにおいてイオン性を維持するという方が望ましい。しかしながら、細胞内温度を測定するという用途に限って言えば、細胞内のpHは2~9、さらに通常の状態、一般的な動物、植物、微生物細胞であればpH4~8程度である。
(4)測定方法
 本発明に用いられる共重合体の感熱応答性による蛍光強度の変化は、通常の蛍光強度測定方法により測定することができる。測定での励起波長および測定する蛍光波長は、特に限定はされないが、例えば、測定試料の励起スペクトルを測定した際の最大励起波長またはその付近の波長を使用することができる。また、測定する蛍光波長も特には限定されないが、例えば、ある温度で測定試料の蛍光スペクトルを測定した際の最大蛍光波長またはその付近の波長を使用することができる。
 本発明では、ある独立した2つの蛍光波長における蛍光強度を測定してこれらの比をとり、その蛍光強度比から温度に換算するという方法をとることもできる。この手法により、共重合体から発せられる蛍光強度が、微小空間内の共重合体の濃度や励起するレーザー強度に起因する可能性を排除し、温度と実験で得られる蛍光強度比を1対1に対応させることが可能である。これにより同一細胞での温度比較だけでなく、同一条件下に置かれた別の細胞の細胞内温度の比較も可能となる。例えば、酵母集団中における個々の細胞温度の違いを測定することにより、各酵母細胞の生理状態を把握することが可能となる。
 蛍光強度比の算出法は、特に限定されるものではなく、異なる波長を含んだ2つの領域の蛍光強度からその比を算出することができる。例えば、一方の領域は第一の蛍光性ユニットから生じる蛍光の最大強度を示す波長を含む20nm程度の波長領域として蛍光強度の積分値をS1とし、他方の領域は第二の蛍光性ユニットから生じる蛍光の最大強度を示す波長を含む20nm程度の波長領域として蛍光強度の積分値をS2とし、S1/S2を蛍光強度比としてよい。さらに、S1およびS2の領域は同じ幅でも異なる幅でもよい。
例えば、蛍光強度がノイズを無視できる充分な値を示せば、S1は20nm幅の波長領域を含む一方で、S2は1nm幅の単独波長でもよい。波長の選択基準も特に限定されるものではないが、得られる蛍光強度を考慮すると、温度感受性プローブに含まれるそれぞれの蛍光性ユニットを与えるモノマー(例えば、式(b)または式(c)で示される蛍光モノマー)の常温(約25℃)における水中および水中に近い極性溶媒での励起スペクトルを測定した際の最大蛍光強度を示す波長に基づいて、その周辺の波長から選択することが望ましい。
 実験で得られた蛍光強度比から温度を求める際には、自らが作成した検量線を使用することが可能である。具体的に、どの条件で測定した検量線を使用するかは限定されないが、例えば、細胞内を模倣した塩化カリウム溶液中での、共重合体の感熱応答性による蛍光強度の変化をプロットした曲線、共重合体を導入した細胞集団を蛍光光度計に供し、感熱応答性による蛍光強度の変化をプロットした曲線、あるいは共重合体を導入した細胞集団を蛍光顕微鏡に供し、複数の細胞での感熱応答性による蛍光強度の変化の平均値をプロットした曲線などを用いることができる。さらに具体的には、共重合体を導入した細胞集団を用いて、感熱応答性試験を行い、蛍光強度の変化をプロットする際には、細胞は代謝活動を積極的に行わないような状態、例えば、水中や資化することのできない化合物が含まれた緩衝液中に細胞を懸濁した状態で、特定の温度に一定期間保持し、外部温度と細胞内部温度が平衡状態に達したと考えられる状況下で、蛍光強度を測定する方法などが挙げられる。
 また、本発明に用いられる共重合体の感熱応答性による変化として、蛍光寿命を指標にすることもできる。この変化は通常の蛍光寿命測定法により測定することができる。測定での励起波長は特に限定されないが、例えば、測定試料の励起スペクトルを測定した際の最大励起波長またはその付近の波長を使用することができる。実験によって得られた蛍光減衰曲線から、測定する試料の状態に応じて、1成分近似、2成分近似などの一般的な解析手法を用いることにより、蛍光寿命値を得ることができる。
 本発明に用いられる共重合体の感熱応答性による蛍光寿命の変化は、一般的な蛍光寿命測定方法、例えば、単一光子計数法、位相変調法、パルスサンプリング法、励起プローブ法などの手法により測定することができる。このうち、単一光子計数法は、時間軸上の発光強度分布と光子1個の発光確率とが相関関係にあることを利用して蛍光寿命を測定する方法であり、蛍光団を50ps~1ns程度の非常に短い(パルス)光で励起した後、検出される光の発生時刻を測定し、励起を多数回繰り返して得られるヒストグラムを蛍光減衰曲線として指数関数の和で近似して蛍光寿命を決定する。単一光子計数法による蛍光寿命の測定は、市販されている時間相関単一光子計数法蛍光寿命測定装置およびそれに付随している測定・解析プログラムを使用して行うことができる。
(5)キット
 以上に説明した方法を実施するために、必要な試薬等をまとめてキットとすることができる。従って、本発明の他の態様によれば、上述の方法を用いて温度を測定するためのキットが提供され、該キットは、本発明の温度感受性プローブまたは本発明の共重合体を含んでなる。この温度測定用試薬キットは、微小空間内の温度測定、特に細胞内の温度測定に好適に使用することができる。当該試薬キットは、医学・生物学・生物工学等の研究分野、診断・治療等の医療分野において使用することができる。
(6)本発明の方法およびキットの用途
 本発明の方法および温度測定用キットは、様々な研究開発の分野に応用することができる。例えば、生物工学の分野では、微生物を用いた有用物質の発酵生産において、これまで正確な測定が困難であった細胞内温度を解析パラメータに加えることにより、培養条件の検討の効率化が期待される。
 本発明の方法および温度測定用キットは、様々な医療用途に応用することができる。例えば、本発明による温度感受性プローブを患者の組織の一部に対して使用することにより、熱産生量が多いとされているがん細胞と、そうでない正常細胞との識別を行うことも可能である。さらにそれを応用する事でより効果的な温熱治療法の開発などにも使える。あるいは、熱産生量が多い褐色脂肪細胞に本発明による温度感受性プローブを導入し、その細胞に様々な素材を添加することによる温度変化を測定することにより、褐色脂肪細胞を活性化する素材をスクリーニングすることも可能である。
 本発明の方法および温度測定用キットは、様々な生理現象の解明にも応用可能である。
例えば、生体外の温度を感知し、生体反応を引き起こす受容体であるTRPチャネルが細胞内の温度とどのように関連しているのかを調べることで今までとは異なるアプローチでのTRPチャネルの活性化が考えられる。また細胞内温度分布と細胞内外で起こる生体反応との関わりを調べる事により、局所的な温度分布が生体反応に及ぼす影響を調べる事が可能で、赤外線レーザーなどを用いた局所的な加熱による細胞のコントロールを行う事なども可能である。
 本発明による温度測定法および温度感受性プローブの細胞導入法は、in vitroおよびin vivoのいずれにおいても行うことができる。一つの実施態様では、これらの方法はin vitroにおいて行われる。
6.まとめ
 以上のように、本発明によれば、以下の発明が提供される。
(1)表面が陽性荷電で覆われた、細胞内送達ベヒクル。
(2)以下の化学構造:
Figure JPOXMLDOC01-appb-C000018
を有する、前記(1)に記載の細胞内送達ベヒクル。
(3)カチオン性重合開始剤と、炭素-炭素二重結合を含んでなるモノマーと、架橋剤によるラジカル重合反応を行うことを特徴とする、表面が陽性荷電で覆われた細胞内送達ベヒクルの製造方法。
(4)一般式(I):
Figure JPOXMLDOC01-appb-C000019
[式中、
 Yは、単結合またはCR85を表し、
 Zは、単結合またはCR86を表し、
 R72、R73、R75、R76、R77、R78、R85およびR86は、それぞれ独立して、水素原子、C1-6アルキル、C1-6アルコキシ、C1-6アルキルカルボニル、フェニルおよびヒドロキシからなる群から選択され、ここで前記C1-6アルキル、C1-6アルコキシ、C1-6アルキルカルボニルおよびフェニルは、さらにC1-6アルキル、C1-6アルコキシ、C1-6アルキルカルボニル、フェニルおよびヒドロキシからなる群から選択される1または2個の置換基で置換されていてもよく、
 R72およびR73は、さらに、それぞれ独立して、アダマンチル、またはSi(OCH(CH)で置換されたC1-6アルキルを表してもよく、 あるいは、R75およびR76、またはR77およびR78は、一緒になって-(CH3-5-を形成してもよく、
 R81、R82、R83、およびR84は、C1-4アルキル、C1-4アルキルカルボニル、およびC1-3アルコキシからなる群から選択される置換基であり、ここで前記C1-4アルキルは一つのC1-3アルコキシ基で置換されていてもよく、及び
 R71およびR74は、それぞれ独立して、C1-3アルキル基であり、 X はカウンターアニオンである]
の化学構造を有する化合物。
(5)前記YおよびZが単結合を表す、(4)に記載の化合物。
(6)前記R81、R82、R83、およびR84が、それぞれ独立して、メチル、エチル、メチルカルボニル、イソブチル、および2-メチル-2-メトキシ-プロピルからなる群から選択される、(4)または(5)に記載の化合物。
(7)前記R71およびR74がメチル基である、(4)~(6)のいずれかに記載の化合物。
(8)前記R72およびR73、前記R75およびR77、前記R76およびR78、前記R81およびR84、前記R82およびR83、並びに前記R71およびR74が、それぞれ同一の置換基を表し、かつ、前記YおよびZが、同一の置換基または共に単結合を表す、(4)~(7)のいずれかに記載の化合物。
(9)R71、R72、R73、R74、R81、R82、R83およびR84がメチル基であり、R75、R76、R77およびR78が水素原子であり、YおよびZが単結合である、(4)に記載の化合物。
(10)前記(4)~(9)のいずれかに記載の化合物からなるカチオン性重合開始剤。
(11)前記(10)に記載のカチオン性重合開始剤と、炭素-炭素二重結合を含んでなるモノマーと、架橋剤によるラジカル重合反応を行うことを含んでなる、細胞内送達ベヒクルの製造方法。
(12)前記(11)の製造方法によって得られる細胞内送達ベヒクル。
(13)細胞内に送達される目的の成分または化合物が、前記(1)に記載の細胞内送達ベヒクルに充填されてなる、細胞内送達複合体。
(14)前記(1)に記載の細胞内送達ベヒクルに、細胞内に送達される目的の成分または化合物を充填することを含んでなる、細胞内送達複合体の製造方法。
(15)細胞内に送達される目的の成分または化合物が前記細胞内送達ベヒクルに共有結合している、前記(13)に記載の細胞内送達複合体。
(16)前記化合物が、温度に応じてその特性が変化する感熱性ユニット、および該感熱性ユニットの特性変化に伴って蛍光強度または蛍光寿命が変化する蛍光性ユニットである、前記(13)または(15)に記載の細胞内送達複合体。
(17)主鎖の少なくとも一方の末端に式(I’)で表されるカチオン性重合開始剤に由来する構造と、これに続く、式(a)で表されるモノマーおよび式(b)で表されるモノマーのそれぞれに由来する繰り返し構造を含み、さらに架橋剤による架橋構造を含む、共重合体。
(18)式(I’)、式(A)、および式(B)で表される繰り返し単位を含み、さらに架橋剤による架橋構造を含む、共重合体。
(19)主鎖の少なくとも一方の末端に式(I’)で表されるカチオン性重合開始剤に由来する構造と、これに続く、式(a)で表されるモノマー、式(b)で表されるモノマーおよび式(c)で表されるモノマーのそれぞれに由来する繰り返し構造を含み、さらに架橋剤による架橋構造を含む、共重合体。
(20)式(I’)、式(A)、式(B)および式(C)で表される繰り返し単位を含み、さらに架橋剤による架橋構造を含む、共重合体。
(21)前記(16)に記載の細胞内送達複合体、または前記(17)~(20)のいずれかに記載の共重合体を含んでなる、温度感受性プローブ。
(22)細胞内の温度を測定する方法であって、
(a)前記(21)に記載の温度感受性プローブを細胞内に導入する工程、および
(b)励起光照射下、蛍光強度または蛍光寿命を測定する工程
を含んでなる、方法。
(23)細胞内の温度を測定するためのキットであって、前記(16)に記載の細胞内送達複合体、前記(17)~(20)のいずれかに記載の共重合体、または前記(21)に記載の温度感受性プローブを含んでなる、キット。
(24)前記(10)に記載のカチオン性重合開始剤と、炭素-炭素二重結合を含んでなるモノマーによるラジカル重合反応を行うことを含んでなる、少なくとも一方の末端が陽性荷電を帯びたひも状ポリマーの製造方法。
(25)主鎖の少なくとも一方の末端に式(I’)で表されるカチオン性重合開始剤に由来する構造と、これに続く、炭素-炭素二重結合を含んでなるモノマーに由来する繰り返し構造を含む共重合体からなる、少なくとも一方の末端が陽性荷電を帯びたひも状ポリマー。
(26)前記(24)の製造方法によって得られる、少なくとも一方の末端が陽性荷電を帯びたひも状ポリマー。
(27)少なくとも一方の末端が陽性荷電を帯びたひも状ポリマーと陰性荷電を帯びたインク粒子からなる複合体。
 以下に実施例を示すことにより本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
試薬及びデータ測定
 カチオン性重合開始剤の合成のための原料となるα,α'-アゾビスイソブチロニトリル(AIBN)はメタノールを用いた再結晶、感熱性ユニットであるN-イソプロピルアクリルアミド(NIPAM)はn―ヘキサンを用いた再結晶により精製して用いた。その他の試薬は購入したものをさらに精製することなく使用した。
 H-NMRはBRUKER AVANCE400スペクトロメーター(400MHz)を使用して測定し、ケミカルシフトはppmで表示した。数平均分子量および重量平均分子量はJASCO GPC system(JASCO PU-2080ポンプ、JASCO RI-2031示差屈折計、JASCO CO-2060カラムオーブン、Shodex GPC KD-806Mカラム)を使用し、ポリスチレン標準試料により得られる較正曲線を用いて算出した。シリカゲルカラムクロマトグラフィーには、関東化学silica gel 60N(40-50μm)を使用した。吸光度の測定には、JASCO V-650紫外可視光分光光度計を使用した。IRの測定には、SHIMADZU
 FTIR-8300を用いた。質量分析は、JMS-700またはBrucker micrOTOF II (ESI)を用いた。ゲル粒子径は、動的光散乱法(DLS)に基づき、Zetasizer Nano ZS (Malvern)を用いて測定した。
実施例A-1:カチオン性重合開始剤の合成
Figure JPOXMLDOC01-appb-C000020
 α,α'-アゾビスイソブチロニトリル(AIBN)(20.1g、0.12mol)をメタノール(MeOH)20mLとトルエン(Tol)200mLに懸濁した。この溶液に、塩化ナトリウム(NaCl)(200g)に濃硫酸(260mL)を滴下し、発生する塩化水素(HCl)ガスを吹き込み、室温で5時間撹拌した。析出している固体をろ過し、トルエン(Tol)で洗い、真空乾燥することで白色固体の化合物1aを得た(28.3g、収率77%)。
 化合物1aのH NMR (400MHz,MeOD-d)は以下の通り。
δ3.35(s.6H),1.57(s,12H)
化合物1aの質量分析の結果は以下の通り。
HRMS(EI):calcd for[C10NO],100.0757;found,100.0761
また、化合物1aの元素分析の結果は以下の通り。
Anal.Calcd for C1022Cl:C,39.87;H,7.36;N,18.60.Found:C,39.16;H,7.41;N.18.25
Figure JPOXMLDOC01-appb-C000021
 N-メチルエチレンジアミン(12.6mL,0.14mol)をメタノール(MeOH)60mLに加え、減圧下でトルエン(Tol)100mL/メタノール(MeOH)6mLに懸濁した化合物1a(15.0g,49.7mmol)を40分かけて滴下した。減圧下(250Torr)、室温で3時間撹拌した後、ろ過した。ろ液量が1/2量程度になるまで溶媒を減圧留去し、デカンテーションにより上澄みを分離した。その上澄みを減圧留去し、真空乾燥することで黄色固体である化合物1bを得た(13.2g,収率95%)。
 化合物1bのH NMR (400MHz,MeOD-d)は以下の通り。
δ3.66(t.4H,J=10.0Hz),3.42(t,4H,J=10.0Hz),2.75(s,6H),1.47(s,12H)。
 化合物1bの13C NMR(100MHz,MeOH-d)は以下の通り。
δ171.0,72.7,55.1,52.3,36.0,25.0
 化合物1bの質量分析の結果は以下の通り。
HRMS(EI):calcd for[C13125.1073;found,125.1092
 また、化合物1bの元素分析の結果は以下の通り。
Anal.Calcd for C1426:C,60.40;H,9.41;N30.19.Found:C,59.79;H9.45;N,29.68.
Figure JPOXMLDOC01-appb-C000022
 アルゴン環境下で、化合物1b(2.7g,9.7mmol)をジクロロメタン(CHCl)30mLに溶解し、トリフルオロメタンスルホン酸メチル(MeOTf)(2.3mL,20.3mmol)を滴下した。室温で3.5時間撹拌した後、溶媒を減圧留去することで目的物であるカチオン性重合開始剤化合物1cを得た(5.6g,収率95%)。
 化合物1cのH NMR(400MHz,MeOD-d)は以下の通り。
δ4.00(s.8H),3.24(s,12H)1.73(s,12H)
 化合物1cの13C NMR(100MHz,MeOH-d)は以下の通り。
δ169.0,74.5,53.3,38.4,24.7
 化合物1cの質量分析の結果は以下の通り。
HRMS(EI): calcd for[C13.125.1073;found,125.1073
 また、化合物1cの元素分析の結果は以下の通り。
Anal.Calcd for C1832:C,35.64;H5.32;N,13.85Found:C,35.37;H5.02;13.59.
実施例A-2:カチオン性重合開始剤1cを使ったポリスチレン共重合体の製造
 スチレン、架橋剤としてN,N’-メチレンビスアクリルアミド(以下、MBAM)と界面活性剤としてヘキサデシルトリメチルアンモニウムクロリド(以下、CTAC)を表1に示す量で水25mLに溶解し、30分間アルゴンガスを通じることにより溶存酸素を除去した。その後、表1の量のカチオン性重合開始剤化合物1cを添加し、メカニカルスターラーを用いて、70℃で1時間、乳化重合を行った。室温に冷やした後、反応液に塩化ナトリウムを加え塩析をし、透析によって精製を行った。得られた重合体の収率は表1に示す。
Figure JPOXMLDOC01-appb-T000023
 得られた重合体について、ゼータ電位とDLSによるゲル粒子径の測定(重合体濃度0.1%、20℃)を行い、透過型電子顕微鏡(TEM)によるゲル粒子径の測定(重合体濃度0.01%で風乾後測定)を行い、表2の結果を得て、カチオン性のゲルが得られたことが確認された。なお透過型電子顕微鏡(TEM)で化合物2bを観察した結果を図1に示す。これにより、今回新たに合成したカチオン性重合開始剤化合物1cが重合開始剤として機能し、かつカチオン性の粒子の合成に寄与することが明らかとなった。また重合開始剤の量を増やした化合物2aの方が、2bと比較してゼータ電位がプラスになっており、重合開始剤の量に応じて、粒子表面のカチオン電荷量を制御できることもわかった。
Figure JPOXMLDOC01-appb-T000024
実施例A-3:カチオン性重合開始剤1cを使ったPEG共重合体の製造
Figure JPOXMLDOC01-appb-C000025
 化合物3aを用いて共重合体3cを、化合物3bを用いて共重合体3dを得た。合成法は以下の通り。化合物3a(20mg/ml)または化合物3b(33mg/ml)を、水(150μL)に溶かし、テトラエチルメチレンジアミン(17mM)と化合物1c(50mM)を追加し、20分間撹拌した。15分間室温で静置し、反応物に水またはリン酸緩衝生理食塩水(PBS)を350μL加え、水またはリン酸緩衝生理食塩水(PBS)で透析を行い、精製し、共重合体3cおよび3dを得た。
 化合物3e(4.2mM)、p-ジビニルベンゼン(2.8mM)、界面活性剤CTAC(1.82mM)を水45mLに溶解し、30分間アルゴンガスを通じることにより溶存酸素を除去した。そこに、カチオン性重合開始剤化合物1c(終濃度9.0mM)が溶解した水5mLを加え、メカニカルスターラーを用いて、70℃で乳化重合を1.5時間行った。室温に冷やした後、リン酸緩衝生理食塩水(PBS)で透析を行い、精製し、共重合体化合物3fを得た(収率4.2%)。
 化合物3b(33mg/ml)とフルオレセイン(33μg/mL)およびローダミンB(33μg/mL)を、水(150μL)に溶かし、テトラエチルメチレンジアミン(17mM)と化合物1c(50mM)を追加し、20分間撹拌した。15分間室温で静置し、反応物に水またはリン酸緩衝生理食塩水(PBS)を350μL加え、水またはリン酸緩衝生理食塩水(PBS)で透析を行い、精製し、共重合体3G(フルオレセイン包含)および3h(ローダミンB包含)を得た。
 得られた重合体について、ゼータ電位とDLSによるゲル粒子径を測定(20℃)し、透過型電子顕微鏡(以下TEM)によるゲル粒子径の測定(風乾後撮影)を行った。例として化合物3dの透過型電子顕微鏡(TEM)像を図2に示す。以下表3のような結果を得て、PEG系のモノマーを用いた場合でもカチオン性のゲルが得られたことが確認された。
Figure JPOXMLDOC01-appb-T000026
実施例A-4:カチオン性重合開始剤1cを使った温度感受性共重合体の製造
Figure JPOXMLDOC01-appb-C000027
 共重合体の合成に必要な単量体(蛍光性ユニット)の1つであるN-(2-{[7-(N,N-ジメチルアミノスルホニル)-2,1,3-ベンゾチアジアゾール-4-イル]-(メチル)アミノ}エチル)-N-メチルアクリルアミド(DBThD-AA)は、文献A(Chemistry A European Journal 2012年, 第18巻,第9552 - 9563頁)に記載の方法に従って行った。
 感熱性ユニットであるN-イソプロピルアクリルアミド(NIPAM)(100mM)、架橋剤MBAM(1mM)、界面活性剤CTAC(1.9mM)、蛍光性ユニットであるN-(2-{[7-(N,N-ジメチルアミノスルホニル)-2,1,3-ベンゾチアジアゾール-4-イル]-(メチル)アミノ}エチル)-N-メチルアクリルアミド(DBThD-AA)(1mM)、およびN,N,N’,N’-テトラメチレンジアミン(2.9mM)を水(19ml)に溶解し、30分間アルゴンガスを通じることにより溶存酸素を除去した。その後、水(1ml)に溶解した化合物1c(28mM)を加え、70℃にてメカニカルスターラーを用いて1時間乳化重合させた。室温に冷やした後、反応液に塩化ナトリウムを加え塩析をし、水で透析を行い、精製し、共重合体化合物EF043、75.3gを得た(収率31%)。得られたゲルを透過型電子顕微鏡(TEM)で観察した結果を図3に示す。観察結果から明白なように、球状の粒子が合成されたことを確認できた。
実施例B-1:新規のカチオン性重合開始剤と同一のカチオン構造をもったアクリルアミド系カチオン性ユニットの合成
Figure JPOXMLDOC01-appb-C000028
 塩化チオニル(SOCl)(2.65mL,36.5mmol)とトリクロロメタン(CHCl)(15.0mL)の撹拌混合物に、0℃で、アミノアルコール化合物6(2.27mL,29.7mmol)を添加した。化合物6が完全に消失するまで、3時間の加熱還流を行った。懸濁液を室温まで冷やし、ろ過し、トリクロロメタン(CHCl)でよく洗浄し、褐色固体を得た。さらにそこにアジ化ナトリウム(NaN)(2.91g,44.7mmol)と水(40mL)を添加し、80℃で24時間、褐色固体が完全に反応するまで加熱した。2M水酸化ナトリウム(NaOH)を添加し反応を止め、ジクロロメタン(CHCl)で3回抽出した。抽出液をブラインで洗浄し、無水硫酸ナトリウムで乾燥し、濾過し、減圧下で濃縮することで、アジド化合物7を得た。
 ジクロロメタン(CHCl)(132mL)にアジド化合物7とトリエチルアミン(EtN)(6.85mL,49.3mmol)を溶かし、さらにアクリルクロライド(2.69mL,32.9mmol)を0℃で添加した。混合物を室温に温め、アジド化合物7がなくなるまで45分撹拌した。水を添加し反応を止め、ジクロロメタン(CHCl)で3回抽出した。抽出液をブラインで洗浄し、無水硫酸ナトリウムで乾燥し、濾過し、減圧下で濃縮し粗生成物を得た。その後、シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=1/1)で精製し、黄色結晶アミド化合物8を得た(2.87g,18.6mmol,収率63%)。
 化合物8のIRデータは以下の通り。
IR(neat,cm-1):3277,2932,2097,1657,1626,1550,1408,1245,985,957,772
 化合物8のH NMR(400MHz,CDCl)データは以下の通り。
δ6.29(dd,1H,J=17.2,1.2Hz),6.09(dd,1H,J=17.2,10.0Hz),5.73(brs,1H),5.66(dd,1H,J=10.0,1.6Hz),3.48-3.35(m,4H),1.85(tt,2H,J=6.8,6.8Hz)
 化合物8の13C NMR(100MHz,CDCl)データは以下の通り。
δ165.7,130.7,126.6,49.4,37.2,28.7
 化合物8の質量分析の結果は以下の通り。
HRMS(FAB+)calcd.for C13NO(M+H+),155.0933; found,155.0936.
Figure JPOXMLDOC01-appb-C000029
 パール圧力反応器に、エチレンジアミン(化合物9)(5.42mL,81.1mmol)、アセトニトリル(8.47mL,162mmol)、メタノール(4.39mL)。および塩化アンモニウム(270mg,4.06mmol)を入れ、封をした。200℃で4時間加熱後、反応物をろ過し、減圧下で濃縮して、イミダゾリン化合物10を得た。
 無水テトラヒドロフラン(THF)(243mL)にイミダゾリン化合物10を溶かし、n-ブチルリチウム(n-BuLi)(n-ヘキサン36.7mL中、2.65M、97.3mmol)を0℃で滴下し、室温で1時間、撹拌した。その後、ヨウ化メチル(6.56mL,105mmol)を0℃で滴下し、化合物10が完全になくなるまで、1時間撹拌した。水を添加し、反応を止め、ジクロロメタン(CHCl)で3回抽出した。抽出液をブラインで洗浄し、無水硫酸ナトリウムで乾燥し、濾過し、減圧下で濃縮し粗生成物を得た。精製のため蒸留(54℃/27hPa)をし、無色油状のジメチルイミダゾリン化合物11を得た(4.22g,43.0mmol,収率53%)。
 化合物11の分析データは、Ye,G;Henry,W.P;Chen,C;Zhou,A.;PittmanJr.,C.U. Tetrahedron Lett.2009,50,2135-2139.に示す通りであり、以下にTLCから求めたR値を示す。
=0.42(ヘキサン/n-プロピルアミン=10/3)
Figure JPOXMLDOC01-appb-C000030
 乾燥したテトラヒドロフラン(THF)(30.0mL)に4-ペンチン-1-オール(4-pentyn-1-ol)(化合物12)(1.53mL,16.5mmol)を溶かし、n-ブチルリチウム(n-BuLi)(n-ヘキサン13.6mL中、2.66M、36.2mmol)を-78℃で滴下し、2時間撹拌した。その後、クロロトリメチルシラン(TMSCl)(4.80mL,37.9mmol)を-78℃で滴下し、室温にあたためて、化合物12が完全になくなるまで10時間撹拌し、反応を進めた。1M塩酸(5mL)を加え反応を止め、ジクロロメタン(CHCl)で3回抽出した。抽出液をブラインで洗浄し、無水硫酸ナトリウムで乾燥し、濾過し、減圧下で濃縮することで、粗生成物アルコール化合物13を得た。
 乾燥ジエチルエーテル(32.1mL)とアセトニトリル(22.5mL)に化合物13、トリフェニルホスファン(PPh)(7.58g,28.9mmol)、イミダゾール(2.08g,30.5mmol)を添加し、撹拌した。混合物に0℃でヨウ素(8.15g,32.1mmol)を添加し、化合物13が完全に反応するまで、2時間撹拌を行った。飽和ピロ硫酸ナトリウム溶液を加えて反応を止め、ジエチルエーテルで3回抽出した。抽出液をブラインで洗浄し、無水硫酸ナトリウムで乾燥し、濾過し、減圧下で濃縮することで、粗生成物を得た。粗生成物をシリカゲルクロマトグラフィー(ペンタン)で精製し、無色油状のヨードアルキル化合物14を得た(3.12g,11.6mmol,収率71%)。
 化合物14の分析データは、Braese,S.;Wertal,H.;Frank,D.;Vidovic,D.; de Meijere,A. Eur.J.Org.Chem.2005,4167-4178.に示す通りであり、以下にTLCから求めたR値を示す。
=0.24(ペンタン)
 化合物14のIRデータは以下の通り。
IR(neat,cm-1):2958,2898,2176,1426,1250,1221,901,842,760,698,638
 化合物14のH NMR(400MHz,CDCl)データは以下の通り。
δ3.29(t,2H,J=6.8Hz),2.36(t,2H,J=6.8Hz),2.00(tt,2H,J=6.8,6.8Hz),0.15(s,9H)
 化合物14の13C NMR(100MHz,CDCl)データは以下の通り。
δ104.7,85.7,32.0,20.8,4.9,0.1
 化合物14の質量分析の結果は以下の通り。
HRMS(FAB calcd.for C16SiI(M+H),267.0066;found,267.0087.
Figure JPOXMLDOC01-appb-C000031
 乾燥したテトラヒドロフラン(THF)(1.8mL)とジエチルエーテル(2.7mL)にイミダゾリン化合物11(300mg,3.06mmol)を溶かし、n-ブチルリチウム(n-BuLi)(n-ヘキサン,2.76mL中、1.55M、4.28mmol)を-23℃で滴下し、室温にあたためて、1時間撹拌した。その後、乾燥したテトラヒドロフラン(THF)(3mL)に溶かしたヨードアルキル化合物14(901mg,3.38mmol)を、カヌーレを介して撹拌した混合物に0℃で添加した。室温に温め、化合物11が完全になくなるまで1時間撹拌し、反応を進めた。水を加え反応を止め、トリクロロメタン(CHCl)で3回抽出した。溶媒を減圧下で除去し、シリカゲルクロマトグラフィー(ヘキサン/n-プロピルアミン=5/1)で精製し、黄色油状の化合物15を得た(370mg,1.57mmol,収率51%)。
 化合物15のIRデータは以下の通り。
IR(neat,cm-1):2955,2862,2172,1616,1453,1404,1249,843,760,640
 化合物15のH NMR(400MHz,CDCl)データは以下の通り。
δ3.63(t,2H,J=9.2Hz),3.24(t,2H,J=9.2Hz),2.78(s,3H),2.26(t,2H,J=7.2Hz),2.21(t,2H,J=7.6Hz),1.79-1.67(m,2H),1.60(tt,2H,J=7.2,7.2Hz),0.14(s,9H)
 化合物15の13C NMR(100MHz,CDCl)データは以下の通り。
δ167.9,107.1,84.6,53.3,51.9,33.9,28.4,27.1,25.4,19.5,0.1
 化合物15の質量分析の結果は以下の通り。
HRMS(ESI)calcd.for C1225Si(M+H),237.1782;found,237.1789.
Figure JPOXMLDOC01-appb-C000032
 ジクロロメタン(3.19mL)にイミダゾリン化合物15(151mg,639μmol)を溶かし、室温でトリフルオロメタンスルホン酸メチル(MeOTf)(145μL,1.28mmol)を添加し、3時間撹拌した。減圧下で溶媒を除き、イミダゾウリウム塩を得た。ジメチルホルムアミド(DMF)(3.0mL)にその塩を溶かし、アミド化合物8(120mg,776μmol)、硫酸銅・五水和物(CuSO・5HO)(31.9mg,127μmol),アスコルビン酸(45.0mg,256μmol)を添加して、65℃で24時間加熱した。減圧下で溶媒を除き、目的の化合物16を得た。残渣をODSシリカゲルクロマトグラフィー(メタノール/水=1/5to1/2)で精製し、目的画分に水を加え、ジクロロメタンで3回洗浄した。水層部分を回収し、減圧下で濃縮し、アクリルアミド系目的化合物である褐色固体化合物16(143mg,296μmol,収率46%)を得た。
 化合物16のIRデータは以下の通り。
IR(neat,cm-1):3352,2936,1660,1624,1553,1467,1281,1157,1031,638
 化合物16のH NMR(400MHz,CDCl)データは以下の通り。
δ7.93(s,1H),7.43(brs,1H),6.32(d,1H,J=9.2Hz),6.30(d,1H,J=2.8Hz),5.60(dd,1H,J=9.2,2.8Hz),4.44(t,2H,J=6.4Hz),3.95(s,4H),3.24(dt,2H,J=6.4,6.4Hz),3.12(s,6H),2.83(t,2H,J=6.4Hz),2.55(t,2H,J=8.0Hz),2.20(tt,2H,J=6.4,6.4Hz),1.85(tt,2H,J=6.8,6.8Hz)
 化合物16の13C NMR(100MHz,CDCl)データは以下の通り。
δ168.4,166.4,146.1,131.3,125.8,123.0,49.9,47.5,36.0,34.0,29.8,28.4,24.6,24.0,23.9
 化合物16の質量分析の結果は以下の通り。
HRMS(ESI)calcd.for C1729O(M),333.2397;found,333.2387.
実施例B-2:新規のカチオン性重合開始剤と同一のカチオン構造をもったひも状ポリマーの合成
 感熱性ユニットであるN-イソプロピルアクリルアミド(NIPAM)、カチオンモノマーユニット化合物16、蛍光性ユニットであるN-(2-{[7-(N,N-ジメチルアミノスルホニル)-2,1,3-ベンゾチアジアゾール-4-イル]-(メチル)アミノ}エチル)-N-メチルアクリルアミド(DBThD-AA)、α,α'-アゾビスイソブチロニトリル(AIBN)を表4の量でジメチルホルムアミド(DMF)(5ml)に溶解し、30分間アルゴンガスを通じることにより溶存酸素を除去した。その後、60℃にて8時間反応させ、室温に冷やした。この溶液を、ジエチルエーテル(100ml)に攪拌しながら注いだ。得られた結晶を濾取し、減圧乾燥させた後、さらにメタノール(MeOH)(1mL)に溶かして再沈殿を行った後、純水に溶かし、直径28.6mmのヴィスキングチューブ(透析用セルロースチューブ)を使用し、透析外液を1000mlとして、充分に透析を行い、精製を行った。精製品を凍結乾燥し、表題の共重合体Lin40とLin41を淡黄色粉末として得た。収率は表4に示す。
Figure JPOXMLDOC01-appb-T000033
 Lin40とLin41に関して共重合体の特性を評価した結果を表5に示す。またNMRにより算出したNIPAM:カチオンモノマーユニット(化合物16):DBThD-AAの比は、この順に
Lin40   94.5 : 5.48 : 1.43
Lin41   93.0 : 7.03 : 1.43
であった。なお、ゼータ電位測定は0.5w/v%水溶液を用いて、20℃で行った。
Figure JPOXMLDOC01-appb-T000034
実施例B-3:Lin40,Lin41の温度応答性試験
 Lin40,Lin41の150mM塩化カリウム(KCl)水溶液中での温度応答性試験を以下の手順で行った。JASCO FP-6500分光蛍光光度計を使用し、溶媒として、Millipore社のMilli-Q reagent systemから得た超純水を用いて、和光純薬より購入した塩化カリウム(KCl)を150mMの濃度になるように溶かしたものを用いた。当実験における化合物の初期濃度は0.005w/v%とし、励起波長は450nmとした。溶液の温度制御にはJASCO ETC-273T水冷ペルチェ式恒温セルホルダを使用し、付属の熱電対により温度を測定した。溶液温度を1℃刻みで上昇させ、各温度における450~850nmの蛍光スペクトルを測定した。
 Lin40およびLin41の569nmおよび571nmの蛍光強度変化をプロットした例を図4に示す。この結果より、新たに合成したカチオン性ユニット(化合物16)を用いても、温度に応答するプローブを合成できたことがわかった。さらに、カチオン性ユニット比率を上げると、温度変化に対する蛍光強度の上昇度は小さくなることがわかった。
実施例B-4:各種温度感受性プローブの合成
 NN-AP4(ひも状のアクリルアミド型高分子)の合成は、文献A(PloS One 2015年、第10(2)巻)中のAP4-FPTに記載の方法に従って行った。アニオンゲルk40の合成は、文献B(Chemistry A European Journal 2012年, 第18巻,第9552 - 9563頁)中のDBThD nanogelに記載の方法に従って行った。
実施例5:動物細胞(接着細胞)への温度プローブの導入
 ヒト子宮頸癌由来HeLa細胞をDMEM培地(10%FBS,1%ペニシリン(penicillin)-ストレプトマイシン(streptomycin))が入った、プラスチックボトムディッシュ(ibidi社)に播種し、培養した。1日後、培地を5%グルコース水溶液に置換し、EF043,NN-AP4、Lin40、Lin41、k40をそれぞれ終濃度0.05%となるように添加し、37℃で10分静置した。その後、プローブを取り除き、リン酸緩衝生理食塩水(PBS)で洗浄後、フェノールレッドフリー(phenolred-free)のDMEM培地に置換し、顕微鏡観察を行った。顕微鏡観察は、共焦点レーザー顕微鏡(FV1000、Olympus)、40倍対物レンズ(Uplan Apo40x NA0.85, Olympus)を用いて観察した。
細胞に473nmのレーザー(Multi Arレーザー)に照射し、500~600nmの蛍光画像を取得した。
 細胞を撮影した結果例を図5に示す。また、得られた顕微鏡写真を用いて、バックグラウンドとして細胞のないある領域の蛍光強度を差し引く画像処理を行い、未処理の細胞が持つ自家蛍光以上に蛍光シグナルが観察された細胞についてカウントすることで細胞へのプローブの導入率を算出した。結果を表6に示す。従来の重合開始剤を用いて作られた表面が負電荷を帯びた温度プローブk40では導入がほとんど認められなかったが、新規のカチオン性重合開始剤を用いて合成したゲル型温度プローブEF043を始め、カチオン性を帯びたプローブは細胞内への導入が確認できた。さらにLin41は細胞膜への局在が認められ、細胞内への導入量が多くなかった。
Figure JPOXMLDOC01-appb-T000035
実施例6:プローブの毒性評価
 実施例5のようにして、HeLa細胞にEF043,NN-AP4、Lin40、Lin41を導入し、リン酸緩衝生理食塩水(PBS)で洗浄後、フェノールレッドフリー(phenolred-free)のDMEM培地に置換した。その後、非膜透過性の蛍光試薬であるヨウ化プロピジウム(PI)を終濃度0.67μg/mlとなるように培地中に添加し、37℃で30分間処理した後、顕微鏡で観察を行った。蛍光プローブは473nmのレーザーで励起し、ヨウ化プロピジウム(PI)は559nmのレーザーで励起し、それぞれ490~550nm、655~755nmの蛍光波長で観察を行った。なお、観察時のカメラの光増倍管感度やレーザー強度は、メタノールで処理した細胞を死滅した細胞のコントロールとして用いて調整を行った。
 顕微鏡下で温度プローブの蛍光が観察された細胞を約100細胞選んで、ヨウ化プロピジウム(PI)の蛍光が観察された細胞を死滅細胞として数をカウントし、100分率を算出した。その結果、表7のような結果となった。EF043、Lin40,NN-AP4に関しては、ヨウ化プロピジウム(PI)による細胞毒性はほとんど見らなかったが、Lin41に関しては細胞膜透過性が向上し、細胞毒性があることがわかった。つまり、ひも状高分子である温度プローブを用いた場合に、カチオン性ユニットの導入量を多くすると、細胞毒性が生じることが明らかとなった。
Figure JPOXMLDOC01-appb-T000036
実施例7:温度プローブの構造による細胞分裂に与える影響の調査
 ヒト子宮頸癌由来HeLa細胞をDMEM培地(10%FBS,1%penicillin-streptomycin)、グリッド付きのプラスチックボトムディッシュμ-Dish 35mm grid-500(ibidi社)に播種、培養した。1日後、実施例5のようにEF043,NN-AP4、Lin40の3つのプローブを導入し、フェノールレッドフリー(phenolred-free)のDMEM培地に置換し、顕微鏡観察を行った。顕微鏡観察は、共焦点レーザー顕微鏡(FV1000、Olympus)、40倍対物レンズ(Uplan Apo40x NA0.85, Olympus)を用いて観察した。細胞に473nmのレーザー(Multi Arレーザー)に照射し、500~600nmの蛍光画像を取得した
 特定のグリッド内の含まれる細胞のうち、蛍光プローブが導入されている細胞を実施例5の方法に従ってカウントし、37℃、5%COで培養下、24時間後の蛍光プローブが導入されている細胞を再度カウントすることで、24時間後の細胞増殖率を算出した。
結果を図6に示す。なお、未処理の対照(Ctrl)では、プローブが導入されていない細胞をすべてカウントした。その結果、カチオン性ゲルであるEF043は対照(Ctrl)と比較して、細胞増殖率がほとんど変わらず、ひも状の温度プローブであるNN-AP4やLin40は細胞増殖を阻害していることがわかった。この阻害効果は含まれるカチオン性ユニットの構造の違い(NN-AP4では4級アンモニウム骨格、Lin40では、1,3-ジメチル-4,5-ジヒドロ-1H-イミダゾール-3-イウム骨格)に依存しない。さらに、EF043とLin40はカチオン性分子の構造が同一であることから、カチオン性構造による細胞増殖阻害効果よりも高分子の構造がひも状である場合(Lin40)に細胞分裂に与える阻害効果が大きく、ゲル状である場合(EF043)には阻害効果がほとんどないことがわかった。またプローブが導入されている細胞が培養によって増えたことから、プローブが分裂に伴って両細胞に分配されていることが明らかとなった。
実施例8:褐色脂肪細胞への分化に与える影響の調査
 安楽殺したラット(Wistar、オス、3週齢)より褐色脂肪組織を採取し、ハサミで細かく切り、コラゲナーゼ溶液に浮遊させてスターラーで振盪しながら30分、37℃でインキュベートした。100μmセルストレーナーで未消化組織片を除き、ろ過液を遠心分離し(400g,室温,5分)、得られたペレットをHBSS(-)に懸濁し、遠心して洗浄した。溶血バッファーに懸濁し、室温で10分置いたのち、HBSS(-)を添加して遠心分離し、ペレットを増殖培地(表8)に懸濁し、40μmセルストレーナーに通したものをSVF懸濁液とした。SVF懸濁液をコラーゲンコートされたガラスボトムディッシュに播種し、37℃で培養した。18時間後に培地を除去してHBSS(-)で2回洗浄し、未接着細胞を除去し、再度増殖培地を添加して4日間培養(37℃、5%CO)した。分化培地(表8)に置換して48時間培養(37℃、5%CO)した後、温度感受性プローブEF043を細胞に導入した。導入は、細胞を5%グルコースで洗浄し、5%グルコース中で終濃度0.05w/v%となるようにEF043を細胞に添加し、37℃、15分インキュベートした。その後、HBSSで2回洗浄を行い、顕微鏡観察を行った。さらにEF043を導入した細胞を脂肪滴の誘導を促す維持培地(表8)に置換し、3日間培養した(37℃、5%CO)後に、顕微鏡観察を行った。微鏡観察は、共焦点レーザー顕微鏡(FV1000、Olympus)により、40倍対物レンズ(Uplan Apo40x NA0.85, Olympus)を用いて観察した。細胞に473nmのレーザー(Multi Arレーザー)を照射し、500~600nmの蛍光画像を取得した。
Figure JPOXMLDOC01-appb-T000037
 結果を図7に示す。図7左で示すように、分化培地で培養後の細胞内に温度プローブの蛍光が認められ、プローブが自発的に細胞内へ取り込まれることがわかった。さらにその細胞を維持培地で培養し、脂肪滴の形成を促すと、図7右のように、プローブの蛍光が細胞内に確認でき、かつ褐色脂肪細胞に特徴的な多胞性の脂肪滴が認められた。この結果より、カチオン性ゲル型温度プローブEF043は細胞の分化を阻害することなく、細胞内に維持されることがわかった。
実施例9:培養細胞(浮遊細胞)に対してのEF043の蛍光強度応答
 MOLT-4 (ヒト急性リンパ芽球性白血病(T-細胞))をRPMI1640培地(10%FBS)を用いて、100mmディッシュにて培養した(播種1×104cells/ml)。2日後、培養液3mlを遠心分離(300g、2分)して培地を取り除き、5%グルコースで洗浄後、再度5%グルコース1mlに懸濁し、EF043、NN-AP4、Lin40をそれぞれ終濃度0.05%となるように添加した。37℃、10分後、遠心分離(300g、2分)して上清を取り除き、リン酸緩衝生理食塩水(PBS)で洗浄後、リン酸緩衝生理食塩水(PBS)に再懸濁し、非膜透過性の蛍光試薬であるヨウ化プロピジウム(PI)を終濃度0.67μg/mlとなるようにリン酸緩衝生理食塩水(PBS)中に添加し、37℃で30分間処理した後、顕微鏡で観察を行った。蛍光プローブは473nmのレーザーで励起し、ヨウ化プロピジウム(PI)は559nmのレーザーで励起し、それぞれ490~550nm、655~755nmの蛍光波長で観察を行った。プローブが導入されているかの確認を顕微鏡観察にて行った。共焦点レーザー顕微鏡(FV1000、Olympus)、40倍対物レンズ(UplanSApo,Olympus)を用いて観察し、細胞に473nmのレーザー(Multi Arレーザー)を当て、500nmから600nmまでの蛍光波長に対する蛍光像を観察した。
 また、プローブEF043が導入されたMOLT-4細胞(ヨウ化プロピジウム(PI)で処理していない)をリン酸緩衝生理食塩水(PBS)に懸濁した状態でキュベットに入れ、さらにキュベット内に2mm直径の球状の攪拌子を入れた。キュベットをJASCO FP-6500分光蛍光光度計にセットし、約800rpmの速度で回転させ、細胞が沈むのを防ぎながら、蛍光スペクトルを測定した。励起波長は440nmとした。溶液の温度制御にはJASCO ETC-273T水冷ペルチェ式恒温セルホルダを使用し、付属の熱電対により温度を測定した。溶液温度を2℃刻みで上昇させ、細胞内部の温度と外部の温度を一定にするよう温度上昇後2分静置し、各温度における蛍光強度を測定した。
 細胞へのプローブの導入率については、得られた顕微鏡写真を用いて、バックグラウンドとして細胞のないある領域の蛍光強度を差し引く画像処理を行い、未処理の細胞が持つ自家蛍光以上に蛍光シグナルが観察された細胞についてカウントすることで算出した。また、細胞膜の透過性を示すヨウ化プロピジウム(PI)毒性については、顕微鏡下で温度プローブの蛍光が観察された細胞を約50―200細胞選んで、ヨウ化プロピジウム(PI)の蛍光が観察された細胞を死滅細胞として数をカウントした。
 プローブ導入率、およびヨウ化プロピジウム(PI)毒性の結果を表9に、温度応答性の結果を図8に示す。EF043はMOLT-4細胞においても混ぜるだけで細胞内へと移行することが顕微鏡の結果より明らかとなった。またヨウ化プロピジウム(PI)毒性に関しても、用いたプローブ間で差がなく、全体として大きな毒性は認められなかった。
 また、細胞内のEF043は、外部の温度変化に鋭敏に反応し、蛍光強度(蛍光波長570nm)を上昇させた(図8)。一般的な哺乳類細胞の生育温度である25~40℃の幅広い温度領域で細胞内温度を計測できることが確認できた。
Figure JPOXMLDOC01-appb-T000038
実施例10:蛍光寿命変化の感熱応答試験
 実施例9で作製したプローブEF043が導入されたMOLT-4細胞懸濁液を用いて、蛍光寿命変化の感熱性応答試験を行った。FluoroCube 3000U(Horiba Jobin Yvon)時間相関単一光子計数法蛍光寿命測定装置を使用して、励起波長は405nmとした。溶液の励起には、LED(NanoLED-456,Horiba)を用いて、パルス繰り返し数1MHzで測定を行った。溶液の温度制御にはJASCO ETC-273T水冷ペルチェ式恒温セルホルダを使用し、付属の温度計によりセルホルダ内の温度を測定した。測定前に熱電対により溶液の温度が安定したことを確認した後、各温度における蛍光寿命を蛍光波長580nm±8nmとして測定した。得られた蛍光減衰曲線を以下に示す式により近似し、2成分の蛍光寿命を得た。
Figure JPOXMLDOC01-appb-M000039
 得られた蛍光寿命から、以下に示す式を用いて各温度における平均蛍光寿命を算出した。
Figure JPOXMLDOC01-appb-M000040
 試験結果を図9に示す。高温になるにつれて平均蛍光寿命が延長し、温度の変化に鋭敏に反応して平均蛍光寿命が変化することが確認された。
実施例11:温度分解能の評価
 実施例10の結果のように、温度(T)を横軸に蛍光寿命(τ)を縦軸に取った場合を想定する。∂を微小量、δを誤差とした場合、次のような関係が成り立つ。
Figure JPOXMLDOC01-appb-M000041
 つまり何℃の温度差を検出できるかを示す温度分解能δTは、
Figure JPOXMLDOC01-appb-M000042
と示される。ここで、∂が微小量を表すことから、
Figure JPOXMLDOC01-appb-M000043
は温度(T)を横軸に蛍光寿命(τ)を縦軸に取ったグラフの曲線の接線の傾きを示している。δは誤差を表しているので、δτは蛍光寿命の誤差である。ここでは標準偏差を誤差値として用いた。
 つまり、(温度分解能)=(温度(T)を横軸に蛍光寿命(τ)を縦軸に取ったグラフの曲線の接線の傾きの逆数)×(蛍光寿命の誤差)として算出することができる。
 実施例10の結果である図9について温度分解能を評価した結果、図10のようになった。EF043に関しては、0.2℃程度の温度分解能があり、非常に定量性が高いことがわかった。
実施例12:PEG系ゲルを用いた細胞への応用
 ヒト由来胎児腎細胞HEK293TをDMEM培地(10%FBS,1%penicillin-streptomycin)、35mmガラスボトムディッシュにて培養した(播種1×10cells/cm)。1日後、培地を5%グルコースに置換し、蛍光色素の最終濃度を合わせるようにして、化合物3Gおよびフルオレセイン(1μg/ml)、または化合物3GおよびローダミンB(0.5μg/ml)を添加し、37℃で15分静置した。その後、プローブおよび蛍光色素を取り除き、リン酸緩衝生理食塩水(PBS)で洗浄後、フェノールレッドフリー(phenolred-free)のDMEM培地に置換し、顕微鏡観察を行った。顕微鏡観察は、共焦点レーザー顕微鏡(FV1000、Olympus)を用いて観察した。フルオレセインは473nmのレーザー(Multi Arレーザー)で、ローダミンBは559nmのレーザーで励起し、観察を行った。取得した像から20個程度の細胞を選択し、細胞内の平均シグナルを算出し、比較を行った。
 結果を図11に示す。蛍光色素をカチオン性のゲルに包埋させた場合の方が、蛍光色素単独の場合よりも細胞に導入される量が多いことがわかった。この現象は分子としてマイナス電荷を帯びているフルオレセインと分子としてプラス電荷を帯びているローダミンBの両方で認められたことから、包埋する分子の性質にあまり影響を受けずに細胞内への取り込みを促進していることが示唆された。別の言い方をすれば、今回のカチオン性ゲルは、低分子を始めとした分子の、細胞内デリバリー技術としても利用できることがわかった。

Claims (6)

  1.  表面が陽性荷電で覆われた、細胞内送達ベヒクル。
  2.  細胞内に送達される目的の成分または化合物が、請求項1に記載の細胞内送達ベヒクルに充填されてなる、細胞内送達複合体。
  3.  細胞内に送達される目的の成分または化合物が前記細胞内送達ベヒクルに共有結合している、請求項2に記載の細胞内送達複合体。
  4.  前記化合物が、温度に応じてその特性が変化する感熱性ユニット、および該感熱性ユニットの特性変化に伴って蛍光強度または蛍光寿命が変化する蛍光性ユニットである、請求項2または3に記載の細胞内送達複合体。
  5.  請求項4に記載の細胞内送達複合体を含んでなる、温度感受性プローブ。
  6.  細胞内の温度を測定する方法であって、
    (a)請求項5に記載の温度感受性プローブを細胞内に導入する工程、および
    (b)励起光照射下、蛍光強度または蛍光寿命を測定する工程
    を含んでなる、方法。
PCT/JP2016/076175 2015-09-07 2016-09-06 細胞内送達ベヒクル WO2017043484A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN202110469355.5A CN113214422B (zh) 2015-09-07 2016-09-06 细胞内递送媒介物
KR1020187009510A KR102205918B1 (ko) 2015-09-07 2016-09-06 세포 내 송달 비히클
EP20191485.0A EP3760193B9 (en) 2015-09-07 2016-09-06 Intracellular delivery vehicle
CN201680051805.6A CN108350479B (zh) 2015-09-07 2016-09-06 细胞内递送媒介物
EP16844345.5A EP3348648B1 (en) 2015-09-07 2016-09-06 Intracellular delivery vehicle
KR1020217001218A KR102403515B1 (ko) 2015-09-07 2016-09-06 세포 내 송달 비히클
SG11201801783VA SG11201801783VA (en) 2015-09-07 2016-09-06 Intracellular delivery vehicle
US15/756,677 US10712346B2 (en) 2015-09-07 2016-09-06 Intracellular delivery vehicle
US16/899,943 US11452697B2 (en) 2015-09-07 2020-06-12 Intracellular delivery vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-176106 2015-09-07
JP2015176106A JP6666673B2 (ja) 2015-09-07 2015-09-07 細胞内送達ベヒクル

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/756,677 A-371-Of-International US10712346B2 (en) 2015-09-07 2016-09-06 Intracellular delivery vehicle
US16/899,943 Division US11452697B2 (en) 2015-09-07 2020-06-12 Intracellular delivery vehicle

Publications (1)

Publication Number Publication Date
WO2017043484A1 true WO2017043484A1 (ja) 2017-03-16

Family

ID=58239804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076175 WO2017043484A1 (ja) 2015-09-07 2016-09-06 細胞内送達ベヒクル

Country Status (7)

Country Link
US (2) US10712346B2 (ja)
EP (2) EP3760193B9 (ja)
JP (1) JP6666673B2 (ja)
KR (2) KR102403515B1 (ja)
CN (2) CN108350479B (ja)
SG (2) SG10202108915VA (ja)
WO (1) WO2017043484A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208674A1 (ja) 2018-04-26 2019-10-31 キリンホールディングス株式会社 抗微生物性樹脂および塗材
JP2021080215A (ja) * 2019-11-20 2021-05-27 キリンホールディングス株式会社 カチオン性重合開始剤
WO2023101016A1 (ja) * 2021-12-03 2023-06-08 キリンホールディングス株式会社 イミダゾリウム系カチオン性重合開始剤を用いた高強度高粘性高分子ゲル

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7154088B2 (ja) * 2017-09-29 2022-10-17 キリンホールディングス株式会社 毛髪用化粧料組成物
JP7154089B2 (ja) * 2018-09-27 2022-10-17 キリンホールディングス株式会社 皮膚用化粧料組成物
CN110455430B (zh) * 2019-08-16 2021-04-02 中国科学院理化技术研究所 一种靶向线粒体的荧光寿命温度传感器及其制备方法及应用
JP7540890B2 (ja) 2020-01-10 2024-08-27 キリンホールディングス株式会社 低毒性のポリマー粒子の製法
CN117836354A (zh) 2021-08-26 2024-04-05 麒麟控股株式会社 含有阳离子性聚合物的抗菌粒子
CN116462796A (zh) * 2023-04-21 2023-07-21 广东广纳安疗科技有限公司 温敏凝胶聚合物及其制备方法、示踪剂和栓塞剂

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068120A (ja) * 2003-08-21 2005-03-17 Keiichi Kato 脂質膜ベシクルおよびその調製法
JP2012521398A (ja) * 2009-03-23 2012-09-13 エヌティーエヌユー テクノロジー トランスファー エーエス 遺伝子療法に使用される組成物
JP2013256531A (ja) * 2003-04-09 2013-12-26 Alnylam Pharmaceuticals Inc iRNA複合体

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE765876A (fr) * 1970-04-17 1971-09-16 Minnesota Mining & Mfg Composes anti-voile pour emulsions photographiques
DE3239091A1 (de) * 1982-10-22 1984-04-26 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung kationischer latices
DE4344224A1 (de) * 1993-12-23 1995-06-29 Stockhausen Chem Fab Gmbh Vernetzte synthetische Polymerisate mit poröser Struktur, hoher Aufnahmegeschwindigkeit für Wasser, wäßrige Lösungen und Körperflüssigkeiten, ein Verfahren zu ihrer Herstellung und ihre Verwendung zur Absorption und/oder Retention von Wasser und/oder wäßrigen Flüssigkeiten
NL1000884C2 (nl) * 1995-07-25 1997-01-28 Univ Groningen Transportvehikels voor macromoleculen.
JP2001187764A (ja) * 1999-10-19 2001-07-10 Kansai Research Institute 界面活性化合物
JP2004049214A (ja) 2001-11-29 2004-02-19 Nippon Shokubai Co Ltd 蛋白質またはペプチドの細胞内導入方法
US7115683B2 (en) * 2002-02-04 2006-10-03 Lg Chem, Ltd. Organic-inorganic nanocomposite and preparation thereof
KR100484726B1 (ko) * 2002-02-04 2005-04-20 주식회사 엘지화학 유기-무기 나노복합체 및 그의 제조방법
ES2702942T3 (es) * 2003-04-17 2019-03-06 Alnylam Pharmaceuticals Inc Agentes de ARNi modificados
CN1861648A (zh) * 2006-06-16 2006-11-15 青岛宏丰氟硅科技有限公司 涂料用氟碳乳液的制造方法及工艺
JP5441098B2 (ja) * 2006-09-05 2014-03-12 国立大学法人 東京大学 蛍光性分子温度計
CL2008001933A1 (es) * 2007-06-29 2009-09-25 Millennium Pharm Inc Compuestos derivados de pirimidina, inhibidores de la raf quinasa; compuestos intermediarios; procedimiento de preparacion; composicion farmaceutica; y su uso para tratar trastornos proliferativos, cardiacos, neurodegenerativos, inflamatorios, oseos, inmunologicos enfermedad viral, entre otros.
JP5660661B2 (ja) 2010-02-02 2015-01-28 積水化成品工業株式会社 カチオン性重合体粒子、およびその製造方法
JP5514368B2 (ja) * 2011-12-21 2014-06-04 キリンホールディングス株式会社 細胞内に導入するための温度感受性蛍光プローブ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013256531A (ja) * 2003-04-09 2013-12-26 Alnylam Pharmaceuticals Inc iRNA複合体
JP2005068120A (ja) * 2003-08-21 2005-03-17 Keiichi Kato 脂質膜ベシクルおよびその調製法
JP2012521398A (ja) * 2009-03-23 2012-09-13 エヌティーエヌユー テクノロジー トランスファー エーエス 遺伝子療法に使用される組成物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAYASHI TERUYUKI. ET AL.: "A cell-permeable fluorescent polymeric thermometer for intracellular temperature mapping in mammalian cell lines", PLOS ONE, vol. 10, no. 2, February 2015 (2015-02-01), pages 1 - 18, XP055374092 *
TSUJI TOSHIKAZU. ET AL.: "Cationic fluorescent polymeric thermometers with the ability to enter yeast and mammalian cells for practical intracellular temperature measurements", ANALYTICAL CHEMISTRY, vol. 85, no. 20, 2013, pages 9815 - 9823, XP055374085 *
UCHIYAMA SEIICHI. ET AL.: "A cationic fluorescent polymeric thermometer for the ratiometric sensing of intracellular temperature", ANALYST, vol. 140, no. 13, May 2015 (2015-05-01), pages 4498 - 4506, XP055374099 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208674A1 (ja) 2018-04-26 2019-10-31 キリンホールディングス株式会社 抗微生物性樹脂および塗材
US11891494B2 (en) 2018-04-26 2024-02-06 Kirin Holdings Kabushiki Kaisha Antimicrobial resin and coating material
JP2021080215A (ja) * 2019-11-20 2021-05-27 キリンホールディングス株式会社 カチオン性重合開始剤
WO2021100797A1 (ja) 2019-11-20 2021-05-27 キリンホールディングス株式会社 カチオン性重合開始剤
KR20220101620A (ko) 2019-11-20 2022-07-19 기린 홀딩스 가부시키가이샤 양이온성 중합 개시제
JP7356875B2 (ja) 2019-11-20 2023-10-05 キリンホールディングス株式会社 カチオン性重合開始剤
WO2023101016A1 (ja) * 2021-12-03 2023-06-08 キリンホールディングス株式会社 イミダゾリウム系カチオン性重合開始剤を用いた高強度高粘性高分子ゲル

Also Published As

Publication number Publication date
EP3348648A4 (en) 2019-03-20
EP3348648A1 (en) 2018-07-18
CN113214422A (zh) 2021-08-06
EP3760193B1 (en) 2023-07-05
US20200309782A1 (en) 2020-10-01
CN113214422B (zh) 2023-10-10
US11452697B2 (en) 2022-09-27
JP2017051113A (ja) 2017-03-16
US10712346B2 (en) 2020-07-14
SG11201801783VA (en) 2018-04-27
JP6666673B2 (ja) 2020-03-18
KR20210008174A (ko) 2021-01-20
KR102403515B1 (ko) 2022-05-31
CN108350479B (zh) 2021-05-14
CN108350479A (zh) 2018-07-31
EP3760193A1 (en) 2021-01-06
EP3760193B9 (en) 2023-11-01
EP3348648B1 (en) 2020-08-19
US20190137503A1 (en) 2019-05-09
KR20180040714A (ko) 2018-04-20
KR102205918B1 (ko) 2021-01-20
SG10202108915VA (en) 2021-09-29

Similar Documents

Publication Publication Date Title
WO2017043484A1 (ja) 細胞内送達ベヒクル
US11649311B2 (en) Temperature-sensitive fluorescent probe for introduction into cell
Zhao et al. Building single-color AIE-active reversible micelles to interpret temperature and pH stimuli in both solutions and cells
Guan et al. A new thermo‐, pH‐and CO2‐responsive fluorescent four‐arm star polymer with aggregation‐induced emission for long‐term cellular tracing
Qiao et al. Folic acid-conjugated fluorescent polymer for up-regulation folate receptor expression study via targeted imaging of tumor cells
WO2012112440A2 (en) Fluorescent potassium ion sensors
Otsuka et al. Fluorescent labeling method re-evaluates the intriguing thermoresponsive behavior of poly (acrylamide-co-acrylonitrile) s with upper critical solution temperatures
JP6254045B2 (ja) 細胞内の温度を測定するためのレシオ型蛍光性プローブ
CN104276936A (zh) 一种双芘类化合物及其荧光纳米聚集体和应用
Deng et al. Tricolor core/shell polymeric ratiometric nanosensors for intracellular glucose and oxygen dual sensing
Li et al. Water-soluble chitosan-g-PMAm (PMAA)-Bodipy probes prepared by RAFT methods for the detection of Fe3+ ion
JP7111312B2 (ja) 細胞内送達ベヒクル
Shen et al. A one-step synthesis of novel high pH-sensitive nitrogen-doped yellow fluorescent carbon dots and their detection application in living cells
CN108424766B (zh) 一种具有多响应性聚合物量子点tpe-pdeaeam的制备和应用
JP5441098B2 (ja) 蛍光性分子温度計
Liu et al. Flavylium-Containing Stimuli-Responsive RAFT Polymers: Synthesis and Enhanced Stability
CN117801812A (zh) 红色荧光硅纳米点、其制备方法及应用
Kim Monosaccharide-Responsive Polymers of Boronic acid Derivatives and Their Medical Applications
JPWO2006118249A1 (ja) アミド基含有高分子化合物およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844345

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201801783V

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187009510

Country of ref document: KR

Kind code of ref document: A