WO2017043007A1 - 乗用車用空気入りタイヤ - Google Patents

乗用車用空気入りタイヤ Download PDF

Info

Publication number
WO2017043007A1
WO2017043007A1 PCT/JP2016/003505 JP2016003505W WO2017043007A1 WO 2017043007 A1 WO2017043007 A1 WO 2017043007A1 JP 2016003505 W JP2016003505 W JP 2016003505W WO 2017043007 A1 WO2017043007 A1 WO 2017043007A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
tread
rubber
circumferential
rib
Prior art date
Application number
PCT/JP2016/003505
Other languages
English (en)
French (fr)
Inventor
勲 桑山
秀之 桜井
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN201680051935.XA priority Critical patent/CN108025594A/zh
Priority to US15/756,192 priority patent/US20180244104A1/en
Priority to EP16843880.2A priority patent/EP3348422A4/en
Publication of WO2017043007A1 publication Critical patent/WO2017043007A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C3/00Tyres characterised by the transverse section
    • B60C3/04Tyres characterised by the transverse section characterised by the relative dimensions of the section, e.g. low profile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • B60C2011/0016Physical properties or dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • B60C2011/0016Physical properties or dimensions
    • B60C2011/0025Modulus or tan delta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1209Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe straight at the tread surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • B60C2011/1254Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern with closed sipe, i.e. not extending to a groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/04Tyres specially adapted for particular applications for road vehicles, e.g. passenger cars

Definitions

  • the present invention relates to a pneumatic tire for passenger cars.
  • an object of the present invention is to provide a pneumatic tire for a passenger car that can sufficiently improve the wet performance.
  • a pneumatic tire for a passenger car according to the present invention is for a passenger car including a carcass made of a carcass ply of a radial arrangement cord straddling a toroidal shape between a pair of bead parts, and a tread rubber provided on the outer side in the tire radial direction of the carcass.
  • the tire is incorporated in a rim and the internal pressure is 250 kPa or more, when the tire has a cross-sectional width SW of less than 165 (mm), the tire has a cross-sectional width SW and an outer diameter OD.
  • the sectional width SW and the outer diameter OD (mm) of the tire are related.
  • At least part of the portion of the tread rubber located on the tread rubber surface has a dynamic strain of 1%, a dynamic storage elastic modulus E ′ at 30 ° C. of 4.0 MPa or more, and a diene rubber.
  • the weight average molecular weight in terms of polystyrene measured by thermoplastic resin, oil, and gel permeation chromatography with respect to 100 parts by mass of the rubber component (A) and the rubber component (A) contained at 50% by mass or more is 5,000 to 200,000, characterized in that it is formed from a rubber composition containing 5 to 50 parts by mass of at least one additive component (B) selected from aromatic vinyl compound-conjugated diene compound copolymer.
  • the wet performance can be sufficiently improved.
  • the sectional width SW and the outer diameter OD of the tire refer to the sectional width and outer diameter defined in JIS D 4202-1994, respectively, when the tire is mounted on a rim and the internal pressure is 250 kPa or more.
  • the above-mentioned “rim” is an industrial standard effective for the area where tires are produced and used.
  • JATMA Joint Automobile Tire Association
  • JATMA YEAR BOOK and in Europe, ETRTO (The European Tire and RIM Technical Organization's STANDARDDS MANUAL, TRA (The Tire and Rim Association, Inc.) YEAR BOOK, etc. in the United States, etc.
  • Rim Rim, TRA's YEAR BOOK (Design Rim) (i.e., the above "rim” refers to the industry standard in the future in addition to the current size) Examples of “sizes to be described in the future” include the sizes described as “FUTURE DEVELOPMENTS” in STANDARDDS MANUAL 2013 edition of ETRTO.) In the case of a size not described in the standard, it means a rim having a width corresponding to the tire bead width.
  • dynamic storage elastic modulus E ′ at 30 ° C. with dynamic strain of 1% is related to vulcanized rubber, and an initial load of 160 g is applied to a test piece having a thickness of 2 mm, a width of 5 mm, and a length of 20 mm.
  • the dynamic storage elastic modulus E ′ is a value measured at a dynamic strain of 1% and a temperature of 30 ° C. unless otherwise specified.
  • the dynamic storage elastic modulus E ′ may be simply referred to as “E ′”).
  • the tread rubber means a rubber that does not include a member such as a belt arbitrarily included in the tread portion.
  • the tread surface is partitioned by the tread grounding end and the circumferential main groove extending continuously in the tire circumferential direction, or adjacent to each other in the tire circumferential direction. It is preferable that at least one rib-like land portion defined by two circumferential main grooves extending continuously is provided. According to this configuration, the wet performance can be further improved while improving the rigidity of the land portion in the tire circumferential direction.
  • the “rib-shaped land portion” means that a circumferential main groove whose both ends define the land portion or a groove that will be described later that opens to the tread grounding end and that crosses the land portion is not disposed. Refers to the land.
  • both ends of the rib-like land portion are both the tread grounding end and the circumferential main groove, or both the two circumferential main grooves.
  • One end of the rib-shaped land portion is open to one of the tread grounding end and the circumferential main groove, or one of the two circumferential main grooves, and the other end is
  • a one-end opening sipe that terminates in the rib-like land portion is provided. According to this configuration, the wet performance can be further improved while maintaining the circumferential rigidity of the land portion.
  • “sipe” means that a tire is mounted on a rim and an internal pressure of 30 kPa, which is a pressure sufficient to maintain the shape of the tire, is applied (hereinafter referred to as “the tire is mounted on the rim, In the “no-load state in which an internal pressure of 30 kPa, which is a pressure to maintain the shape, is applied” is also referred to as “low-pressure no-load state”), the opening width to the tread surface is 1.5 mm or less.
  • the “groove” refers to a groove whose opening width to the tread surface exceeds 1.5 mm in a low-pressure no-load state.
  • the dimensions and the like of each element of the tread tread are measured on the development view of the tread tread in a low-pressure no-load state.
  • the one end opening sipe includes a circumferential sipe portion extending in the tire circumferential direction from the other end, and the circumferential main groove extending in the tire width direction from the circumferential sipe portion.
  • the width direction sipe part opened to a tread grounding end According to this configuration, the wet performance can be effectively improved while maintaining the circumferential rigidity of the land portion.
  • the rib-shaped land portion is provided with both-end closed sipes whose both ends terminate in the rib-shaped land portion. According to this structure, wet performance can be improved more effectively, maintaining the circumferential rigidity of a land part.
  • FIG. 1 is a schematic cross-sectional view in the tire width direction of a passenger car pneumatic tire according to a first embodiment of the present invention.
  • FIG. 2 is a development view showing a tread pattern of the passenger car pneumatic tire shown in FIG. 1. It is an expanded view which shows the tread pattern of the pneumatic tire for passenger cars which concerns on the 2nd Embodiment of this invention. It is an expanded view which shows the tread pattern of the pneumatic tire for passenger cars which concerns on the 3rd Embodiment of this invention. It is a tire width direction schematic sectional drawing of the tire width direction half part of the pneumatic tire for passenger cars which concerns on the 4th Embodiment of this invention. It is a schematic plan view showing a first example of a belt structure.
  • the pneumatic tire 1 for a passenger car includes, for example, a carcass 22 formed of a carcass ply of a radial arrangement cord straddling a toroidal shape between a pair of bead portions 21, and the carcass 22.
  • tread rubber 23 provided at the outer side in the tire radial direction. More specifically, the tread portion 24, the pair of sidewall portions 25 extending inward in the tire radial direction continuously to the side portions of the tread portion 24, and the inner end of each sidewall portion 25 in the tire radial direction are continuous.
  • a bead core is embedded in the bead portion 21.
  • a rubber chafer is provided on the outer surface of the bead portion 21, and a belt 26 composed of one or more belt layers is provided on the crown portion of the carcass 22.
  • a tread rubber 23 is provided on the outer side in the tire radial direction of the crown portion of the carcass 22.
  • the cross-sectional width SW (mm) of the tire 1 is When the ratio SW / OD to the outer diameter OD (mm) is 0.26 or less and the sectional width SW of the tire 1 is 165 (mm) or more, the sectional width SW (mm) of the tire 1 and the outer diameter OD (Mm) 2.135 ⁇ SW + 282.3 ⁇ OD (Hereinafter, the tire size in the case of this relationship is also referred to as a narrow-width large-diameter size).
  • the tire 1 Since the tire 1 has the above-described relationship, the tire 1 has a narrow shape and a large diameter, can improve the rolling resistance performance of the tire 1 (reduce the rolling resistance value), and can reduce the weight of the tire 1. . Further, the internal pressure during rolling of the tire 1 is preferably 250 kPa or more, and more preferably 250 to 350 kPa. In the tire 1 having a narrow width and a large diameter, the contact length tends to increase, but by increasing the contact length to 250 kPa or more, the increase in the contact length can be suppressed, the deformation amount of the tread rubber 23 can be reduced, and the rolling resistance can be further reduced. Because it can.
  • the diameter OD (mm) is preferably ⁇ 0.0187 ⁇ SW 2 + 9.15 ⁇ SW ⁇ 380 ⁇ OD.
  • At least a part of the portion of the tread rubber 23 of the tire 1 of the present invention located on the tread rubber surface has a dynamic strain of 1% and a dynamic storage elastic modulus E ′ at 30 ° C. of 4.0 MPa or more.
  • at least a part of the portion of the tread rubber 23 located on the tread rubber surface is thermoplastic with respect to the rubber component (A) containing 50% by mass or more of the diene rubber and 100 parts by mass of the rubber component (A).
  • At least one additive component selected from a resin, oil, and an aromatic vinyl compound-conjugated diene compound copolymer having a polystyrene-reduced weight average molecular weight of 5,000 to 200,000 as measured by gel permeation chromatography ( B) is formed from a rubber composition containing 5 to 50 parts by mass.
  • the cross-sectional width SW of the tire 1 and the outer diameter OD satisfy a predetermined relational expression, and at least a part of the portion of the tread rubber 23 located on the tread rubber surface is 1% dynamic strain, 30
  • the dynamic storage elastic modulus E ′ at 4 ° C. to 4.0 MPa or more, the land portion rigidity (circumferential shear rigidity) of the tread rubber 23 in the tire circumferential direction is improved, and the frictional force against the road surface of the tire 1 is increased. Therefore, wet performance can be improved.
  • the dynamic storage elastic modulus E ′ as described above, it is possible to improve cornering power during cornering and improve steering stability.
  • the tread rubber having the dynamic storage elastic modulus E ′ as described above is relatively high in rigidity, the tread rubber surface is difficult to follow the unevenness of the road surface, and the tire is in contact with the road surface. There was a tendency for the actual ground contact area to decrease. In other words, a portion of the tread rubber surface away from the road surface is generated on a micro scale, and even if the area of the tread tread surface T is the same, the substantial contact area tends to be relatively low, and the wet performance is expected. It has been found that there are cases where it does not improve as much.
  • the rubber composition described above has a property of becoming less elastic as the rubber state changes from a low strain region to a high strain region. At least the rubber composition is placed on the surface of the tread rubber 23 that contacts the road surface. By making it exist, when the surface portion of the tread rubber 23 becomes in a high strain state due to each behavior such as acceleration and braking of the tire 1, the rubber composition becomes less elastic, and the surface of the tread rubber 23 is formed on a micro scale.
  • the inside of the tread rubber 23 that is away from the vicinity of the road surface is not in a high strain state, so that high circumferential rigidity and hence high frictional force can be maintained.
  • at least a part of the portion of the tread rubber 23 located on the tread rubber surface has a predetermined dynamic storage elastic modulus E ′ and is formed from the above rubber composition. (Friction force) and wet performance on a micro scale (actual contact area) can be improved comprehensively.
  • the ground contact property (following property) with respect to the road surface of the tread rubber 23 can be improved by containing a specific amount of the additive component (B) with respect to the rubber component (A).
  • the additive component (B) is particularly highly compatible with a diene rubber such as natural rubber or butadiene rubber
  • the rubber component (A) is a rubber composition containing 50% by mass or more of a diene rubber. The blending effect is easily obtained.
  • tread rubber having the above physical properties and the rubber composition of the tire according to the first embodiment of the present invention will be described below.
  • At least a part of the portion of the tread rubber located on the tread rubber surface has a dynamic strain of 1% and a dynamic storage elastic modulus E ′ at 30 ° C. of 4.0 MPa or more.
  • the circumference of the tread rubber is
  • the dynamic storage elastic modulus E ′ is preferably 6.0 to 12.0 MPa from the viewpoint of improving the directional rigidity and more sufficiently increasing the frictional force against the road surface of the tire.
  • the dynamic storage elastic modulus E ′ can be set within a predetermined range by arbitrarily adjusting the rubber component (A) and the additive component (B) or by a known method.
  • At least a part of the tread rubber located on the tread rubber surface is composed of a rubber component (A) containing 50% by mass or more of a diene rubber, and 100 parts by mass of the rubber component (A). And at least one additive component (B) 5 selected from an aromatic vinyl compound-conjugated diene compound copolymer having a polystyrene-reduced weight average molecular weight of 5,000 to 200,000 as measured by gel permeation chromatography And 50 parts by mass of a rubber composition.
  • the portion of the tread rubber having the predetermined dynamic storage elastic modulus and the rubber composition described above is at least a part of the portion located on the tread rubber surface, in other words, the entire tire where the tire contacts the road surface. Present in at least a part of the circumference.
  • all of the portions located on the surface of the tread rubber can be the dynamic storage elastic modulus and the rubber composition (so-called cap-and-base structure). It can also be comprised with said dynamic storage elastic modulus and the said rubber composition.
  • the rubber component (A) of the rubber composition contains 50% by mass or more of diene rubber, preferably 70% by mass or more, and more preferably 80% by mass or more.
  • diene rubber content in the rubber component (A) preferably 70% by mass or more, and more preferably 80% by mass or more.
  • the upper limit of the content rate of the diene rubber in the rubber component (A) is not particularly limited, and the total amount of the rubber component (A) may be a diene rubber.
  • the diene rubber is not particularly limited, and examples thereof include natural rubber, styrene-butadiene rubber, isoprene rubber, butadiene rubber, chloroprene rubber, acrylonitrile-butadiene rubber, and isobutylene-isoprene rubber.
  • natural rubber or butadiene rubber it is preferable to use natural rubber or butadiene rubber as the diene rubber from the viewpoint that a better wet performance can be realized.
  • the said diene rubber even if it is only one type, you may use multiple types of diene rubber.
  • the natural rubber is contained in an amount of 40% by mass or more, and it is particularly preferable that the natural rubber is contained in an amount of 70% by mass or more.
  • the rubber component (A) preferably contains styrene-butadiene rubber (SBR).
  • SBR styrene-butadiene rubber
  • Tg glass transition point
  • the rubber composition a ratio [%] of the amount of bonded styrene in the whole unit of polymer [%] + a ratio of the amount of vinyl bond in the whole unit of polymer [%] ⁇ 1/2 is 25% by mass or less. It is preferable that the SBR content is 50% by mass or more.
  • the wet performance of the rubber composition can be further improved when the ratio of the bound styrene content and the ratio of the vinyl bond content in the total polymer unit satisfy the above relationship.
  • the additive component (B) of the rubber composition comprises a thermoplastic resin, an oil, and an aromatic vinyl compound-conjugated diene compound having a polystyrene equivalent weight average molecular weight of 5,000 to 200,000 as measured by gel permeation chromatography. It is at least one selected from polymers.
  • thermoplastic resin that can be included in the rubber composition as an additive component (B) is not particularly limited. By blending the thermoplastic resin, the rubber composition can be made low elastic in a high strain region. When the rubber component (A) contains a large amount of natural rubber, the thermoplastic resin is highly compatible with natural rubber, so that the effect of improving the wet performance is particularly easily obtained.
  • thermoplastic resin C 5 resin, C 9 resin, C 5 to C 9 resin, dicyclopentadiene resin, rosin resin, alkylphenol resin from the viewpoint of further improving wet performance. Or it is preferable that it is a terpene phenol-type resin.
  • thermoplastic resins you may use individually by 1 type, or may use multiple types.
  • the A C 5 resins refers to C 5 type synthetic petroleum resins and C 5 fractions, the solid polymer obtained by polymerizing using a Friedel-Crafts catalyst such as AlCl 3 or BF 3 Point to.
  • a copolymer mainly composed of isoprene, cyclopentadiene, 1,3-pentadiene and 1-pentene a copolymer of 2-pentene and dicyclopentadiene, and mainly 1,3-pentadiene.
  • Examples of the polymer are as follows.
  • a C 9 resins refers to C 9 based synthetic petroleum resins
  • the C 9 fraction refers to a solid polymer obtained by polymerizing using a Friedel-Crafts catalyst such as AlCl 3 or BF 3.
  • a Friedel-Crafts catalyst such as AlCl 3 or BF 3.
  • Specific examples include copolymers mainly composed of indene, methylindene, ⁇ -methylstyrene, vinyltoluene and the like.
  • the C 5 to C 9 resin refers to a C 5 to C 9 synthetic petroleum resin, and a C 5 to C 9 fraction is polymerized using a Friedel-Crafts type catalyst such as AlCl 3 or BF 3. It refers to the resulting solid polymer.
  • a copolymer mainly composed of styrene, vinyl toluene, ⁇ -methyl styrene, indene and the like can be mentioned.
  • a resin having a small component of C 9 or more is preferable from the viewpoint of compatibility with the rubber component (A).
  • “the amount of C 9 or more component is small” means that the component of C 9 or more in the total amount of the resin is less than 50% by mass, preferably 40% by mass or less.
  • the dicyclopentadiene-based resin is a petroleum resin using dicyclopentadiene in the C 5 fraction as a main raw material.
  • Specific examples include “Marcaretz M” series (M-890A, M-845A, M-990A, etc.) of Maruzen Petrochemical Co., Ltd.
  • rosin resin examples include natural resin rosin, gum rosin, tall oil rosin, wood rosin, etc. contained in raw pine ani and tall oil.
  • Modified rosin, rosin derivative, modified rosin derivative for example, polymerized rosin, part thereof Hydrogenated rosins; glycerin ester rosins, partially hydrogenated rosins and fully hydrogenated rosins; pentaerythritol ester rosins, partially hydrogenated rosins and polymerized rosins.
  • the alkylphenolic resin is a phenolic resin having an alkyl group.
  • examples thereof include alkylphenol-acetylene resins such as p-tert-butylphenol-acetylene resin, and low-polymerization degree alkylphenol-formaldehyde resins.
  • the terpene phenol-based resin is a resin that can be obtained by reacting a terpene and various phenols using a Friedel-Crafts-type catalyst or further condensing with formalin.
  • the starting terpenes are not particularly limited, and monoterpene hydrocarbons such as ⁇ -pinene and limonene are preferable, those containing ⁇ -pinene are more preferable, and ⁇ -pinene is particularly preferable.
  • a terpene-phenol resin having a high ratio of the phenol component is preferable.
  • the thermoplastic resin includes a novolac type phenol resin.
  • the novolak type phenol resin By containing the novolak type phenol resin in the rubber composition, it is possible to increase the elastic modulus in the rubber composition and improve the steering stability without using a curing agent and without reducing the wet performance.
  • the oil that can be contained as an additive component (B) in the rubber composition is not particularly limited.
  • the oil used include petroleum softeners such as aroma oil, paraffin oil, spindle oil, naphthene oil, MES, TDAE, and SRAE, and plant softeners such as palm oil, castor oil, cottonseed oil, and soybean oil. It is done.
  • petroleum softeners such as aroma oil, paraffin oil, spindle oil, naphthene oil, MES, TDAE, and SRAE
  • plant softeners such as palm oil, castor oil, cottonseed oil, and soybean oil. It is done.
  • petroleum softeners such as aroma oil, paraffin oil and naphthenic oil are included. It is preferable.
  • An aromatic vinyl compound-conjugated diene compound copolymer having a polystyrene-reduced weight average molecular weight of 5,000 to 200,000 as measured by gel permeation chromatography which can be contained as an additive component (B) in the rubber composition Is not particularly limited.
  • the copolymer used is a low molecular weight copolymer of an aromatic vinyl compound-conjugated diene compound, and if the average molecular weight is 5,000 to 200,000, the copolymer is contained.
  • the rubber composition can have physical properties that make it sufficiently low elastic in a high strain region.
  • the amount of the aromatic vinyl compound is preferably 5 to 80% by mass, and the vinyl bond amount of the conjugated diene compound part is preferably 10 to 80% by mass.
  • the additive component (B) is not included in the rubber component (A).
  • the content of the additive component (B) in the rubber composition is 5 to 50 parts by mass with respect to 100 parts by mass of the rubber component (A).
  • the amount is preferably 30 parts by mass, more preferably 10 to 25 parts by mass.
  • the additive component (B) includes thermoplastic resin, oil, and an aromatic vinyl compound-conjugated diene compound copolymer having a polystyrene-reduced weight average molecular weight of 5,000 to 200,000 as measured by gel permeation chromatography.
  • the additive component (B) preferably includes at least a thermoplastic resin, and the content of the thermoplastic resin is The amount is more preferably 10 to 25 parts by mass with respect to 100 parts by mass of the rubber component (A).
  • the rubber composition can contain a filler (C) in addition to the rubber component (A) and the additive component (B).
  • a filler (C) By including the filler (C), high reinforcement and low heat generation can be realized without impairing properties such as rubber flexibility.
  • the content of the filler (C) in the rubber composition is not particularly limited, but is preferably 30 to 110 parts by mass, more preferably 40 to 90 parts by mass with respect to 100 parts by mass of the rubber component (A). is there.
  • the content of the filler (C) By setting the content of the filler (C) to 30 to 110 parts by mass, the reinforcing effect can be obtained without impairing the properties such as flexibility of the rubber component (A).
  • the advantages of reducing the rolling resistance and improving the braking performance on wet road surfaces, and not easily impairing the flexibility of the rubber component (A) are obtained. There is.
  • the filler (C) is not particularly limited, and silica, carbon black, clay, alumina, talc, mica, kaolin, glass balloon, glass beads, calcium carbonate, magnesium carbonate, magnesium hydroxide, calcium carbonate, oxidation Magnesium, titanium oxide, potassium titanate, barium sulfate and the like can be used.
  • silica from the viewpoint of reducing the rolling resistance and improving the wet performance and hardly impairing the flexibility of the rubber component (A).
  • silica By including silica in the rubber composition, the diene rubber of the rubber component (A) and the additive component (B) are well dispersed, and the sufficient reinforcement and low heat generation without impairing its flexibility. Can be imparted.
  • silica examples include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), calcium silicate, aluminum silicate, and the like.
  • Silica can be preferably used.
  • the wet silica preferably has a BET specific surface area of 40 to 350 m 2 / g.
  • Silica having a BET specific surface area within this range has an advantage that both rubber reinforcement and dispersibility in the rubber component (A) can be achieved. From this viewpoint, silica having a BET specific surface area in the range of 80 to 300 m 2 / g is more preferable.
  • the rubber composition contains the silica as the filler (C).
  • the silica content is 40 to 100 parts by mass with respect to 100 parts by mass of the rubber component (A). The range is preferably 70 parts by mass, more preferably 45 to 60 parts by mass.
  • the silica content is 40 parts by mass or more with respect to 100 parts by mass of the rubber component (A)
  • the loss tangent (tan ⁇ ) at 60 ° C. of the rubber composition is reduced, and the tire to which the rubber composition is applied is usually used.
  • the fuel efficiency is improved during running, and if it is 70 parts by mass or less, the flexibility of the rubber composition is high, and the deformation volume of the tread rubber is increased by applying the rubber composition to the tread rubber of the tire.
  • the wet performance of the tire can be improved.
  • the said silica is 50 mass% or more, Preferably it is 70 mass% or more, More preferably, 90 mass% or more will improve wet performance further.
  • the rubber composition preferably contains carbon black as the filler (C), and the content of the carbon black is 1 to 100 parts by mass with respect to 100 parts by mass of the rubber component (A).
  • the range of parts is preferable, and the range of 30 to 80 parts by mass is more preferable.
  • the carbon black is not particularly limited, and examples thereof include GPF, FEF, HAF, ISAF, and SAF grade carbon black. Among these, from the viewpoint of improving the wet performance of the tire, ISAF and SAF grade carbon black is preferable. These carbon blacks may be used alone or in combination of two or more.
  • the carbon black preferably further includes carbon black having a nitrogen adsorption specific surface area of 110 m 2 / g or more and carbon black having a nitrogen adsorption specific surface area of 80 m 2 / g or less.
  • carbon black having a nitrogen adsorption specific surface area of 110 m 2 / g or more wet performance can be secured at a high level, and carbon black having a nitrogen adsorption specific surface area of 80 m 2 / g or less is simultaneously contained.
  • the elastic modulus of the tire can be ensured and the steering stability can be improved.
  • silane coupling agents include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, and bis (2-triethoxysilyl).
  • Ethyl) tetrasulfide bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltri Methoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarba Yl tetrasulfide, 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropylbenzothiazyl tetrasulfide,
  • silane coupling agent bis (3-triethoxysilylpropyl) trisulfide and 3-trimethoxysilylpropylbenzothiazyltetrasulfide are preferred as the silane coupling agent from the viewpoint of improving the reinforcing property.
  • silane coupling agents may be used alone, or two or more thereof may be used in combination.
  • the preferable content of the silane coupling agent in the rubber composition varies depending on the type of the silane coupling agent, but is preferably selected in the range of 2 to 25% by mass with respect to silica. If this amount is less than 2% by mass, the effect as a coupling agent is hardly exhibited, and if it exceeds 25% by mass, the rubber component (A) may be gelled. From the viewpoint of the effect as a coupling agent and prevention of gelation, the more preferred content of this silane coupling agent is in the range of 2 to 20% by mass, and the more preferred content is in the range of 5 to 18% by mass. A particularly preferred content is in the range of 5 to 15% by mass.
  • the rubber composition preferably further contains a fatty acid metal salt in addition to the rubber component (A), additive component (B), and optional filler (C) described above.
  • a fatty acid metal salt in addition to the rubber component (A), additive component (B), and optional filler (C) described above.
  • the metal used in the fatty acid metal salt include Zn, K, Ca, Na, Mg, Co, Ni, Ba, Fe, Al, Cu, and Mn, and Zn is preferable.
  • the fatty acid used in the fatty acid metal salt includes a fatty acid having 4 to 30 carbon atoms, a saturated or unsaturated linear, branched or cyclic structure, or a mixture thereof. Saturated or unsaturated linear fatty acids of ⁇ 22 are preferred.
  • Examples of the saturated linear fatty acid having 10 to 22 carbon atoms include lauric acid, myristic acid, palmitic acid, stearic acid and the like, and examples of the unsaturated linear fatty acid having 10 to 22 carbon atoms include oleic acid and linoleic acid. Linolenic acid, arachidonic acid and the like.
  • the said fatty acid metal salt may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the fatty acid metal salt is preferably in the range of 0.1 to 10 parts by mass, more preferably in the range of 0.5 to 5 parts by mass with respect to 100 parts by mass of the rubber component (A).
  • the rubber composition further comprises a compounding agent usually used in the rubber industry, such as stearic acid, anti-aging agent, zinc oxide (zinc white), vulcanization accelerator, vulcanization accelerator, vulcanization An agent or the like can be appropriately selected within a range that does not impair the object of the present invention, and can be blended within a range of a normal content.
  • a compounding agent usually used in the rubber industry such as stearic acid, anti-aging agent, zinc oxide (zinc white), vulcanization accelerator, vulcanization accelerator, vulcanization
  • an agent or the like can be appropriately selected within a range that does not impair the object of the present invention, and can be blended within a range of a normal content.
  • these compounding agents commercially available products can be suitably used.
  • the rubber composition is prepared by a known method, for example, the rubber component (A), an additive component (B), an optional filler (C), and various compounding agents appropriately selected as necessary. It can be produced by blending, kn
  • the vulcanizing agent examples include sulfur.
  • the content of the vulcanizing agent is preferably in the range of 0.1 to 10.0 parts by mass and more preferably in the range of 1.0 to 4.0 parts by mass with respect to 100 parts by mass of the rubber component (A). preferable. If the content of the vulcanizing agent is 0.1 parts by mass or more as the sulfur content, the fracture strength, wear resistance, etc. of the vulcanized rubber can be secured, and if it is 10.0 parts by mass or less, the rubber elasticity is improved. Enough can be secured. In particular, by setting the content of the vulcanizing agent to 4.0 parts by mass or less as the sulfur content, the wet performance of the tire can be further improved, which is preferable from the viewpoint of enhancing the effects of the present invention.
  • the vulcanization accelerator is not particularly limited, and examples thereof include 2-mercaptobenzothiazole (M), dibenzothiazyl disulfide (DM), N-cyclohexyl-2-benzothiazylsulfenamide ( And thiazole vulcanization accelerators such as CZ) and guanidine vulcanization accelerators such as 1,3-diphenylguanidine (DPG).
  • M 2-mercaptobenzothiazole
  • DM dibenzothiazyl disulfide
  • DPG guanidine vulcanization accelerators
  • the rubber composition of this invention contains 3 types of vulcanization accelerators as mentioned above.
  • the content of the vulcanization accelerator is preferably in the range of 0.1 to 5.0 parts by weight, more preferably in the range of 0.2 to 3.0 parts by weight with respect to 100 parts by weight of the rubber component (A). .
  • the rubber composition can be produced by molding a green tire using at least a portion of the tread rubber located on the surface of the tread rubber and vulcanizing the green tire according to a conventional method.
  • the tire 1 of the first embodiment includes the tread rubber 23 described above and can have the following tread pattern described with reference to FIG.
  • any tread pattern that is, a full lug pattern in which lug grooves are provided over the entire circumference of the tire 1, grooves extending in the tire circumferential direction.
  • a block pattern composed of a plurality of blocks defined by grooves extending in the tire width direction, and a rib pattern having rib-like land portions defined by grooves extending in the tire circumferential direction as shown in FIG. You can also
  • the tire 1 according to the first embodiment includes at least one rib-like land portion 3 on the tread surface T as shown in FIG.
  • the rib-like land portion 3 is partitioned and formed by the tread ground contact edge E and the circumferential main groove 4 continuously extending in the tire circumferential direction, or adjacent to each other and continuously in the tire circumferential direction.
  • a section is formed by two circumferential main grooves 4 extending.
  • two circumferential main grooves 4 are provided on the tread tread surface T, whereby the tread grounding end E and one circumferential main groove 4 are provided on the shoulder side in the tire width direction.
  • a pair of rib-like land portions (hereinafter also referred to as shoulder-rib-like land portions) 3s are defined, and one rib is formed by two circumferential main grooves 4 on the center side in the tire width direction.
  • a land portion (hereinafter also referred to as a center rib-shaped land portion) 3s is formed in a compartment.
  • the circumferential main groove 4 shows an extending form extending linearly along the tire circumferential direction, but if the circumferential main groove 4 extends continuously in the tire circumferential direction, Well, for example, it can be an extended form such as a zigzag shape or a wave shape.
  • the rib-like land portion 3 is not provided with both-end opening sipes crossing the rib-like land portion 3.
  • both ends of the sipe are open at both ends in both the tread ground end E and the circumferential main groove 4, or in both of the two circumferential main grooves 4. Is not provided.
  • the rib-like land portion 3 can be provided with any groove or sipe as long as the groove or sipe does not cross the land portion.
  • both ends of the rib-like land portions 3 are not provided with sipes at both ends as in the illustrated example, but at least one rib-like land portion 3 is provided.
  • the rib-like land portion 3 is provided with one end opening sipe 5 having one end opened to the circumferential main groove 4 or the tread grounding end E and the other end terminating in the rib-like land portion 3. .
  • one end of the one-end opening sipe 5 opens to one of the two circumferential main grooves 4 or opens to one of the tread ground end E and the circumferential main groove 4. Yes.
  • positioned at the rib-shaped land part 3, the center rib-shaped land part 3c in the example of illustration is a tire circumferential direction from the other end of the said one end opening sipe 5c,
  • the opening part to the circumferential main groove 4 of the width direction sipe portion 5c2 of the one-end opening sipe 5c is one end of the one-end opening sipe 5c.
  • the width-direction sipe portion can be opened to the circumferential main groove or the tread grounding end E.
  • a plurality of one-end opening sipes 5 are provided in the tire circumferential direction, and each one-end opening sipes 5 are in the land portion halves on both sides in the width direction with respect to the width direction center line of the rib-like land portion 3.
  • a pitch length L of a predetermined length is arranged side by side in the tire circumferential direction. Further, in the center rib-shaped land portion 3c, the one end opening sipes 5c of each row are shifted from each other in the tire circumferential direction and can be made point-symmetric.
  • the pitch length L may be constant without changing in the tire circumferential direction, or may not be constant changing in the tire circumferential direction. In the example shown in FIG.
  • the patterns P1 to P3 are obtained by changing the pitch length L of the one-end opening sipes 5c on the tire circumference.
  • the patterns P1 to P3 in FIG. 2 each have a relatively longer pitch length in order, and the tread pattern shown in FIG. 2 has the patterns P1 to P3 repeatedly provided on the tire circumference.
  • three types of patterns in which the pitch length L is changed are shown.
  • two or more types of patterns are arbitrary.
  • the patterns P1 to P3 are repeatedly provided in order, the pattern arrangement order is arbitrary. For example, after only one pattern is repeatedly arranged a plurality of times, another pattern can be arranged once or a plurality of times. .
  • Both ends of the rib-shaped land portion 3 terminate in the rib-shaped land portion 3 and do not open directly or indirectly to the circumferential main groove 4 or the tread grounding end E (through other sipes or grooves). Both ends closed sipes 6 (not communicating with the circumferential main groove 4 and the tread grounding end E) are provided.
  • the both-end closed sips 6c are circular sipes as viewed from the tread tread surface T, that is, circular small holes, and the circumferential sipes 5c1 of the one-end open sipes 5c.
  • the rib-like land portion 3c is disposed outside in the width direction.
  • the both-end closed sipes 6s are arranged as circular sipes and curved sipes as viewed from the tread surface T.
  • the effect by the tread pattern of 1st Embodiment is demonstrated. Since the tire 1 of the first embodiment includes the rib-like land portion 3 in which the groove crossing the land portion 3 is not provided, the land portion rigidity (circumferential shear rigidity) in the circumferential direction of the tire 1 is improved. Thus, the frictional force with respect to the road surface of the tire 1 is further increased, and therefore the wet performance can be further improved.
  • the rib-like land portion 3 is not provided with both-end opening sipes crossing the rib-like land portion 3, so that the circumferential rigidity of the rib-like land portion 3 is maintained in a high state. Therefore, high wet performance can be realized.
  • the rib-like land portion 3 is provided with the one-end opening sipe 5, the tire 1 is placed on a wet road surface while maintaining the circumferential rigidity of the rib-like land portion 3 in a high state. In the grounded state, the one-end opening sipe 5 can remove the road surface and the water film of the tire 1 to increase the actual ground contact area between the tread surface T and the road surface. As a result, the wet performance can be more sufficiently improved.
  • the one-end opening sipe 5c is configured to include the circumferential sipe portion 5c1 and the width-direction sipe portion 5c2 so as to be disposed in the center rib-shaped land portion 3c
  • the circumferential sipe portion 5c1 While maintaining the circumferential rigidity of the rib-like land 3, the tread compressive rigidity (tire radial rigidity) is effectively reduced to increase the actual contact area, and the width that opens to the circumferential main groove 4 and the like
  • the directional sipe portion 5c2 can remove the water film that may be formed between the sipe portion 5c2 and the road surface, and therefore, the wet performance can be further sufficiently improved.
  • the rib-like land portion 3 is provided with both-end closed sipes 6, so that compression rigidity is prevented while preventing, for example, a decrease in circumferential rigidity due to opening of the sipe end into the circumferential main groove 4 or the like. Can be reduced. Therefore, the actual ground contact area increases and the wet performance can be further improved.
  • the circumferential sipe portion 5c1 and the widthwise sipe are formed only in the rib-like land portion 3 that is defined by the two circumferential main grooves 4, in this case, the center rib-like land portion 3c.
  • the one end opening sipe 5c including the portion 5c2 is provided, but the one end opening sipe 5 including the circumferential sipe portion 5c1 and the width direction sipe portion 5c2 is connected to the shoulder rib-shaped land portion 3s together with the center rib-shaped land portion 3c. Or it can also arrange
  • the one end opening sipe 5c disposed in the center rib land portion 3c is disposed with a predetermined pitch length L (mm) measured along the tire circumferential direction, and the land portion 3c.
  • the compression rigidity can be reduced and the actual road contact area can be improved while suppressing the decrease in the circumferential shear rigidity and maintaining the adhesion limit.
  • drainage performance is improved by setting the tire width direction sipe component total length Ws (mm) within a range of one pitch length L (mm) to 0.4 times or more the land width W (mm). It can be improved, and by making the land width W (mm) 1.2 times or less, it is possible to suppress a decrease in circumferential shear rigidity. Further, by making the total tire circumferential sipe component length Ls (mm) within the range of one pitch length L (mm) 0.6 times or more of the pitch length L (mm), the compression rigidity is sufficiently reduced.
  • the cornering power can be sufficiently maintained by setting the pitch length L (mm) to three times or less, and therefore, it is possible to suppress a decrease in steering stability performance.
  • the tread rubber 23 As described above, the cornering power is increased compared to a tire having a normal tread rubber, and the steering stability performance is improved. Even if Ls is increased, it is possible to suppress a decrease in steering stability performance.
  • the pitch length L of the one-end opening sipe 5 c is a pattern that is changed on the tire circumference, but at least the center rib-shaped land portion 3 c is arranged with the pitch length L (mm).
  • the one end opening sipe 5c satisfies 0.4W ⁇ Ws ⁇ 1.2W and 0.6L ⁇ Ls ⁇ 3L in all the patterns P1 to P3.
  • the “pitch length L” refers to the one end opening sipe from one end in the tire circumferential direction to the corresponding one end opening sipe and one end opening sipe adjacent to the one end opening sipe in the tire circumferential direction. It is the length on the development view measured along the circumferential direction.
  • “Land width W” refers to the length of the land measured along the tire width direction.
  • the tire width direction sipe component total length Ws of the one-end opening sipe in the land portion disposed in the range of one pitch length L” means the in-land portion disposed in the range of one pitch length L.
  • the length measured along the tire width direction by projecting the one-end opening sipes and when projecting the one-end opening sipes in the range in the tire circumferential direction, for example, there are a plurality of one-end opening sipes or When there is an overlapping portion in the projected one-end opening sipe by bending the one-end opening sipe, the length obtained by adding the overlapping portion to the overlapping portion is meant.
  • the tire circumferential direction sipe component total length Ls of the one-end opening sipe in the land portion disposed in the range of one pitch length L means the in-land portion disposed in the range of one pitch length L.
  • the opening area S (mm 2 ) of the both-end closed sipes 6c to the tread surface is preferably in the range of 0.1 ⁇ S ⁇ 4. More preferably, the both-end closed sipes 6c are small holes. According to this configuration, as described above, the compression rigidity can be reduced while maintaining the circumferential shear rigidity, so that the wet performance can be further improved.
  • the center rib-shaped land portion 3c only the arrangement of the one-end closed sipe 5c forms a block-shaped portion surrounded by, for example, the one-end closed sipe 5c in the land portion 3c.
  • the block-like portion By disposing the block-like portion, the compression rigidity can be reduced uniformly.
  • the average value of the plurality of both-end closed sipes 6c is meant.
  • the two closed-end sipes (small holes here) 6c are arranged within one pitch length L (mm)
  • the patterns In P3 three closed sipes 6c at both ends are arranged within one pitch length L (mm).
  • both ends disposed within the range of the pitch length L (mm) and one pitch length L (mm).
  • the relationship with the number N (pieces) of the closed sipes 6c is preferably 0.1 ⁇ N / L ⁇ 0.3.
  • the wet performance can be further improved.
  • the compression rigidity can be sufficiently reduced by setting N / L (pieces / mm) to 0.1 or more, and N / L (pieces / mm) to 0.3 or less. As a result, it is possible to prevent the area of the center rib-shaped land portion 3c from decreasing, and to prevent the cornering power from decreasing.
  • the tread tread T has two circumferential main grooves 4 and three rib-like land portions 3, but the tread tread T has three circumferential main grooves 4.
  • the sipe of the present invention can also be disposed with some of the plurality of land portions as rib-like land portions 3.
  • each rib-shaped land portion 3 is provided with both the one-end open sipe 5 and the both-end closed sipe 6, but only one of them can be provided.
  • each sipe is preferably a sipe that extends linearly in the depth direction (two-dimensional sipe) from the viewpoint of improving drainage, but is bent in a zigzag shape, for example, in the depth direction. It can also be an extending sipe (three-dimensional sipe).
  • the rib-shaped land portion 3 is not provided with both-end opening sipes.
  • a rib is used as a modification of the first embodiment. In all or a part of the land portions 3, the rib-shaped land portions 3 can be provided with both-end opening sipes extending in a depth direction, for example, zigzag.
  • the pneumatic tire for a passenger car of the present invention is not limited to the above example, and can be appropriately changed as described below. Can be added.
  • the tire size of the pneumatic tire for passenger cars of the present invention is 105 / 50R16, 115 / 50R17, 125 / 55R20, 125 / 60R18, 125 / 65R19, 135 / 45R21, 135 / 55R20, 135 / 60R17.
  • a negative rate is obtained between the tire width direction half of the vehicle mounting inner side and the vehicle mounting outer side with the tire equator plane CL as a boundary. A difference may be provided.
  • a pattern having a width direction groove 100 extending in the tire width direction from the vicinity of the tire equatorial plane CL to the tread ground contact end E may be used. May not be included. According to such a pattern mainly composed of the width direction grooves 100, it is possible to effectively exhibit the performance on snow.
  • the shoulder rib-shaped land portions that are separated by the outermost circumferential main groove in the tire width direction and the tread contact end E.
  • the width in the tire width direction of the shoulder rib-shaped land portion on the vehicle mounting outside and inside can be changed.
  • the width in the tire width direction of the shoulder rib-shaped land portion outside the vehicle mounting is larger than the width in the tire width direction of the shoulder rib-shaped land portion inside the vehicle mounting.
  • a pneumatic tire for a passenger car having a narrow width and a large diameter when the tire is mounted on the vehicle, it is mounted on the vehicle mounting inner side from the circumferential main groove. It is preferable to provide a one-end opening groove extending in the direction. Specifically, as shown in FIG. 4, in the tread tread surface T, at least one half of the tire equatorial plane CL as a boundary is adjacent to the tread ground contact edge E and in the tread width direction with the tread ground contact edge E.
  • Tread end side main groove 110 extending in the tread circumferential direction and having a distance of 25% or more of the tread width TW, and is defined by the tread end side main groove 110 and the tread ground end E.
  • at least one end opening groove 112 extending in the tread width direction from the tread grounding end side main groove 110 and staying in the adjacent land part 111 is provided in one of the land parts 111 adjacent to the part.
  • the groove 113 is a shallow groove having a groove depth smaller than that of the main groove.
  • the ground contact surface rises.
  • the one-end opening groove 112 stays in the land portion, the rigidity against the tensile stress on the inner side of the vehicle mounting becomes higher as compared with the case where the one-end opening groove 112 extends to the inner side of the vehicle mounting. Belt deformation is suppressed.
  • a pneumatic tire for a passenger car having a narrow width and a large diameter in the tire width direction cross section, it passes through a point P on the tread surface in the tire equatorial plane CL in the tire width direction.
  • the parallel straight line is m1
  • the straight line passing through the ground contact E ′ and parallel to the tire width direction is m2
  • the distance in the tire radial direction between the straight line m1 and the straight line m2 is the height LCR
  • the tire tread width is TW ′.
  • the ratio L CR / TW ′ is preferably 0.045 or less.
  • the “grounding end E ′” refers to each vehicle on which a tire is mounted on a rim, filled with a maximum air pressure specified for each vehicle on which the tire is mounted, and placed vertically on a flat plate. It refers to both end points in the tire width direction on the contact surface with the flat plate when a weight corresponding to the specified maximum load is applied.
  • the tread rubber may be formed of a plurality of rubber layers different in the tire width direction.
  • the plurality of rubber layers those having different loss tangent, modulus, hardness, glass transition temperature, material and the like can be used.
  • the tire of the present invention preferably has an inclined belt layer composed of a rubberized layer of cords extending incline with respect to the tire circumferential direction.
  • the inclined belt layer may be only one layer.
  • the shape of the ground contact surface during turning tends to be distorted, and the inclined belt layer extends in the direction in which the cords cross each other between two or more layers. It is preferable that In the pneumatic tire for passenger cars of the present invention, a belt structure in which two belt layers form an inclined belt layer is most preferable.
  • the width in the tire width direction of the maximum width inclined belt layer having the largest width in the tire width direction is preferably 90% to 115% of the tread width TW, and is 100% to 105% of the tread width TW. It is particularly preferred.
  • a metal cord particularly a steel cord is most commonly used as the belt cord of the inclined belt layer, but an organic fiber cord can also be used.
  • the steel cord is mainly composed of steel and can contain various trace contents such as carbon, manganese, silicon, phosphorus, sulfur, copper, and chromium.
  • a monofilament cord or a cord obtained by twisting a plurality of filaments can be used as the belt cord of the inclined belt layer.
  • Various designs can be adopted for the twist structure, and various cross-sectional structures, twist pitches, twist directions, and distances between adjacent filaments can be used.
  • the cord which twisted the filament of a different material can also be used, and it does not specifically limit as a cross-sectional structure, Various twisted structures, such as a single twist, a layer twist, a double twist, can be taken.
  • the inclination angle of the belt cord of the inclined belt layer is preferably 10 ° or more with respect to the tire circumferential direction.
  • the inclination angle of the belt cord of the inclined belt layer is preferably set to a high angle, specifically 35 ° or more with respect to the tire circumferential direction, and particularly within a range of 55 ° to 85 ° with respect to the tire circumferential direction. .
  • This is because by setting the inclination angle to 35 ° or more, the rigidity in the tire width direction can be increased, and in particular, the steering stability performance during cornering can be improved.
  • the rolling resistance performance can be improved by reducing the shear deformation of the interlayer rubber.
  • the tire of the present invention can have a circumferential belt composed of one or more circumferential belt layers outside the inclined belt layer in the tire radial direction.
  • the circumferential belt has a tire circumferential rigidity per unit width of the central region C including the tire equatorial plane CL, and other regions. It is preferably higher than the tire circumferential rigidity per unit width.
  • FIG. 6 schematically shows an example of a belt structure, in which circumferential belt layers 123 and 124 are laminated on the outer side in the tire radial direction of the inclined belt layers 121 and 122, and in the central region C, the circumferential belt layer 123 and 124 overlap each other in the tire radial direction.
  • the tire circumferential rigidity per unit width of the central region C can be reduced to the unit of other regions. It can be higher than the tire circumferential rigidity per width.
  • the tread in a tire having increased rigidity in the tire circumferential direction in the central region including the tire equatorial plane CL, the tread has a land portion continuous in the tire circumferential direction in the region including at least the tire equatorial plane CL of the tread surface. It is preferable to have. If the circumferential main groove is disposed on or near the tire equator plane CL, the rigidity of the tread in the region may be reduced, and the contact length in the land portion defining the circumferential main groove may be extremely short. Therefore, it is preferable to dispose land portions (rib-shaped land portions) continuous in the tire circumferential direction over a certain region including the tire equatorial plane CL from the viewpoint of improving noise performance without reducing cornering power.
  • FIG. 7 schematically shows another example of the belt structure, in which one circumferential belt layer 133 is laminated on the outer side in the tire radial direction of the two inclined belt layers 131 and 132.
  • the inclined belt layer is inclined in two layers having different widths in the tire width direction.
  • the inclination angle ⁇ 1 with respect to the tire circumferential direction of the cord that includes at least the belt layer and forms the widest inclined belt layer, and the inclination angle ⁇ 2 with respect to the tire circumferential direction of the cord that forms the narrowest inclined belt layer are 35 ° ⁇ ⁇ 1 It is preferable that ⁇ 85 °, 10 ° ⁇ ⁇ 2 ⁇ 30 °, and ⁇ 1> ⁇ 2 are satisfied.
  • Many tires having an inclined belt layer having a belt cord inclined at an angle of 35 ° or more with respect to the tire circumferential direction have first, second and third vibration modes in the cross-sectional direction in a high frequency range of 400 Hz to 2 kHz.
  • the tread surface Since the tread surface has a shape that vibrates greatly uniformly, a large radiated sound is generated. Therefore, if the tire circumferential direction rigidity of the tread tire width direction central region is locally increased, the tread tire width direction central region becomes difficult to spread in the tire circumferential direction, and the spread of the tread surface in the tire circumferential direction is suppressed. As a result, radiated sound can be reduced.
  • FIG. 8 schematically shows another example of the belt structure, in which one circumferential belt layer 143 is laminated on the outer side in the tire radial direction of the two inclined belt layers 141 and 142.
  • the circumferential belt layer is preferably highly rigid, more specifically, a rubberized layer of a cord extending in the tire circumferential direction.
  • the number of driving is n (lines / 50 mm)
  • the circumferential belt layer is m layers
  • X Y ⁇ n ⁇ m, it is preferable that 1500 ⁇ X ⁇ 750.
  • the ground contact surface has a substantially triangular shape, that is, in the circumferential direction depending on the position in the tire width direction.
  • the contact length tends to change greatly.
  • the ring rigidity of the tire is improved, and deformation in the tire circumferential direction is suppressed. Deformation is also suppressed, and the ground contact shape is less likely to change.
  • the eccentric deformation is promoted by improving the ring rigidity, and the rolling resistance performance is also improved at the same time. The effect of improving the rolling resistance performance is particularly wide in the pneumatic tire for passenger cars having a narrow width and a large diameter.
  • the inclination angle of the inclined belt layer with respect to the tire circumferential direction of the belt cord is a high angle, specifically 35 ° or more.
  • the contact length may be reduced depending on the tire due to the increased rigidity in the tire circumferential direction. Therefore, by using a high-angle inclined belt layer, it is possible to reduce the out-of-plane bending rigidity in the tire circumferential direction, increase the elongation in the tire circumferential direction of the rubber when the tread surface is deformed, and suppress the decrease in the contact length. it can.
  • a wavy cord may be used for the circumferential belt layer in order to increase the breaking strength.
  • a high elongation cord (for example, elongation at break is 4.5 to 5.5%) may be used.
  • various materials can be used for the circumferential belt layer, and representative examples include rayon, nylon, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), aramid, and glass fiber. Carbon fiber, steel, etc. can be used. From the viewpoint of weight reduction, an organic fiber cord is particularly preferable.
  • the cord of the circumferential belt layer may be a monofilament cord, a cord in which a plurality of filaments are combined, or a hybrid cord in which filaments of different materials are combined.
  • the number of circumferential belt layers to be driven can be in the range of 20 to 60/50 mm, but is not limited to this range.
  • the distribution of rigidity, material, number of layers, driving density, etc. can be given in the tire width direction.
  • the number of circumferential belt layers can be increased only at the end in the tire width direction.
  • the number of circumferential belt layers can be increased only in the center portion.
  • the circumferential belt layer can be designed to be wider or narrower than the inclined belt layer.
  • the width in the tire width direction can be 90% to 110% of the maximum width inclined belt layer having the largest width in the tire width direction among the inclined belt layers.
  • the circumferential belt layer is configured as a spiral layer.
  • the carcass maximum width position can be brought closer to the bead portion side or closer to the tread side.
  • the carcass maximum width position can be provided in the range of 50% to 90% relative to the tire cross-section height on the outer side in the tire radial direction from the bead base portion.
  • the carcass can adopt various structures.
  • the number of carcass shots can be in the range of 20 to 60 pieces / 50 mm, but is not limited thereto.
  • the folded end of the carcass can be positioned on the inner side in the tire radial direction from the end of the bead filler in the tire radial direction, and the folded end of the carcass is positioned on the tire from the outer end in the tire radial direction of the bead filler and the tire maximum width position. It can be located on the radially outer side, and in some cases can extend to the inner side in the tire width direction from the end in the tire width direction of the inclined belt layer. Furthermore, when the carcass is constituted by a plurality of carcass plies, the position of the carcass folded end in the tire radial direction can be varied. In addition, a structure in which a plurality of bead core members are sandwiched or wound around a bead core without using a carcass folded portion can be employed.
  • “Thinning the tire side portion” means, for example, that the cross-sectional area S1 of the bead filler in the tire width direction is 1 to 4 times the cross-sectional area S2 of the bead core in the tire width direction. Further, the ratio Ts / Tb between the gauge Ts of the sidewall portion at the tire maximum width portion and the bead width Tb at the tire radial direction center position of the bead core can be 15% or more and 40% or less.
  • the ratio Ts / Tc between the gauge Ts of the sidewall portion in the tire maximum width portion and the diameter Tc of the carcass cord can be set to 5 or more and 10 or less.
  • the gauge Ts is the sum of the thicknesses of all members such as rubber, a reinforcing member, and an inner liner. In the case where the bead core is divided into a plurality of small bead cores by the carcass, the distance between the innermost end in the width direction and the outermost end of all the small bead cores is Tb.
  • the tire maximum width position can be provided in the range of 50% to 90% in comparison with the tire cross-section height, on the outer side in the tire radial direction from the bead base portion.
  • the tire of the present invention may have a structure having a rim guard.
  • the tire of the present invention may have a structure without a bead filler.
  • the bead core can adopt various structures such as a circular cross section and a polygonal cross section.
  • a structure in which the carcass is wound around the bead core a structure in which the carcass is sandwiched between a plurality of bead core members may be employed.
  • the bead portion may be further provided with a rubber layer, a cord layer or the like for the purpose of reinforcement or the like.
  • additional members can be provided at various positions with respect to the carcass and bead filler.
  • the thickness of the inner liner from the viewpoint of reducing in-vehicle noise of 80-100 Hz. Specifically, it is preferably about 1.5 mm to 2.8 mm thicker than usual (about 1.0 mm). It has been found that pneumatic tires for passenger cars having a narrow width and a large diameter are likely to deteriorate in-vehicle noise of 80 to 100 Hz, particularly under the use of high internal pressure. By increasing the thickness of the inner liner, it is possible to improve vibration damping and reduce in-vehicle noise of 80-100 Hz. In addition, since the loss which contributes to rolling resistance is small compared with other members, such as a tread, an inner liner can improve noise performance, suppressing deterioration of rolling resistance to the minimum.
  • the inner liner can be formed of a film layer mainly composed of a resin in addition to a rubber layer mainly composed of butyl rubber.
  • a porous member in order to reduce cavity resonance noise, can be disposed on the tire inner surface, or electrostatic flocking can be performed.
  • the tire of the present invention can also be provided with a sealant member for preventing air leakage during puncture on the tire inner surface.
  • the pneumatic tire for a passenger car of the present invention can be a side-reinforced run-flat tire having a crescent-shaped reinforcing rubber on the tire side portion.
  • FIG. 9 is a tire width direction cross-sectional view of a tire according to a third embodiment of the present invention when the tire of the present invention is a run-flat tire.
  • the folded end A of the carcass folded portion is located on the inner side in the tire radial direction from the maximum tire width position P.
  • the tire is assembled in the rim, filled with a predetermined internal pressure,
  • the tire radial direction maximum length of the side reinforcing rubber 151 in the tire width direction cross section in the reference state as a load is H1
  • the tire radial direction outermost point of the bead filler and the tire radial direction outermost point of the bead core are When the length of the connected line segment is H2, 1.8 ⁇ H1 / H2 ⁇ 3.5 is satisfied.
  • a tire is incorporated into the rim, filled with a predetermined internal pressure, and is unloaded.
  • FIG. 10 is a tire width direction cross-sectional view of a tire according to a fourth embodiment of the present invention when the tire of the present invention is a run-flat tire.
  • the tire has a maximum width in the tire width direction among one or more belt layers in a cross section of the tire width direction in a reference state in which the tire is incorporated into the rim, filled with a predetermined internal pressure, and is unloaded.
  • the half width in the tire width direction of the belt layer is WB, and the outer circumferential main groove 161 on the outermost side in the tire width direction among the one or more circumferential main grooves from the tire width direction end of the belt layer having the largest width in the tire width direction.
  • the distance in the tire width direction to the center position in the tire width direction is WG, it is preferable that the relational expression 0.5 ⁇ WG / WB ⁇ 0.8 is satisfied.
  • the tire of Example 1 is a tire having a tire size of 165 / 60R19 as shown in FIGS.
  • the tread rubber has a dynamic strain of 1% and a dynamic storage elastic modulus E ′ at 30 ° C. of 8.6 MPa or more. It is made up of.
  • the tires of Examples 2 to 11 and Comparative Example 1 are the same as the tires of Example 1 except that the specifications are changed as shown in Table 1.
  • Anti-aging agent N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, manufactured by Ouchi Shinsei Chemical Co., Ltd., trade name “NOCRACK 6C”
  • 11 Vulcanization accelerator: 1,3-diphenylguanidine, manufactured by Sumitomo Chemical Co., Ltd., trade name “Soccinol (registered trademark) DG”
  • Table 1 shows that Examples 1 to 11 have improved wet performance as compared with the tire of Comparative Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、ウェット性能を十分に向上させることが可能な乗用車用空気入りタイヤとして、タイヤの内圧を250kPa以上とした際に、タイヤの断面幅SWが165(mm)未満である場合は、断面幅SWと外径OD(mm)との比SW/ODが0.26以下であり、断面幅SWが165(mm)以上である場合は、断面幅SWおよび外径OD(mm)が、関係式2.135×SW+282.3≦ODを満たし、トレッドゴムのトレッドゴム表面に位置する部分の少なくとも一部は、動的貯蔵弾性率E'が4.0MPa以上であり、且つ、ジエン系ゴムを50質量%以上含有するゴム成分(A)と、該ゴム成分(A)100質量部に対し、熱可塑性樹脂、オイル及び低分子量芳香族ビニル化合物-共役ジエン化合物共重合体、から選ばれる少なくとも1種の添加成分(B)5~50質量部と、を含むゴム組成物から形成されることを特徴とする、乗用車用空気入りタイヤを提供する。

Description

乗用車用空気入りタイヤ
 本発明は、乗用車用空気入りタイヤに関する。
 従来、タイヤの内圧と断面幅(SW)とタイヤの外径(OD)とが特定の関係を満たす、狭幅(狭いタイヤ断面幅)、大径(大きなタイヤ外径)の乗用車用空気入りタイヤが、転がり抵抗を低減させて低燃費性を実現したタイヤとして種々提案されている。そして、例えば特許文献1に記載のタイヤでは、上記の特定の関係を満たしつつ、トレッドゴムの30℃における動的貯蔵弾性率E’を6.0~12.0MPaとし、トレッドゴムの60℃における損失正接tanδを、0.05~0.15とすることにより、狭幅・大径のタイヤにおいて湿潤路面での制動性能に関する指標であるウェット性能を向上させ、転がり抵抗を低減させることができるとされている。
国際公開第2014/178174号
 ところで、上記のような乗用車用空気入りタイヤによってウェット性能を向上させることができるものの、さらに検討の余地があり、ウェット性能のさらなる向上が望まれていた。
 そこで、本発明は、ウェット性能を十分に向上させることが可能な乗用車用空気入りタイヤを提供することを目的とする。
 本発明の乗用車用空気入りタイヤは、一対のビード部間でトロイダル状に跨るラジアル配列コードのカーカスプライからなるカーカスと、当該カーカスのタイヤ半径方向外側に設けられたトレッドゴムとを備えた乗用車用空気入りタイヤであって、前記タイヤをリムに組み込み、内圧を250kPa以上とした際に、前記タイヤの断面幅SWが165(mm)未満である場合は、前記タイヤの断面幅SWと外径OD(mm)との比SW/ODが0.26以下であり、前記タイヤの断面幅SWが165(mm)以上である場合は、前記タイヤの断面幅SWおよび外径OD(mm)が、関係式、
   2.135×SW+282.3≦OD
を満たし、前記トレッドゴムのトレッドゴム表面に位置する部分の少なくとも一部は、動歪1%、30℃における動的貯蔵弾性率E’が、4.0MPa以上であり、且つ、ジエン系ゴムを50質量%以上含有するゴム成分(A)と、該ゴム成分(A)100質量部に対し、熱可塑性樹脂、オイル、及び、ゲル浸透クロマトグラフィーで測定したポリスチレン換算重量平均分子量が5,000~200,000の、芳香族ビニル化合物-共役ジエン化合物共重合体、から選ばれる少なくとも1種の添加成分(B)5~50質量部と、を含むゴム組成物から形成されていることを特徴とする。
 本発明の乗用車用空気入りタイヤによれば、ウェット性能を十分に向上させることができる。
 なお、本発明において、タイヤの断面幅SWおよび外径ODは、それぞれ、タイヤをリムに装着し、内圧を250kPa以上とした場合におけるJIS D 4202-1994に規定の断面幅、外径をいう。
 なお、上記の「リム」とは、タイヤが生産され、使用される地域に有効な産業規格であって、日本ではJATMA(日本自動車タイヤ協会)のJATMA YEAR BOOK、欧州ではETRTO(The European Tyre and Rim Technical Organisation)のSTANDARDS MANUAL、米国ではTRA(The Tire and Rim Association,Inc.)のYEAR BOOK等に記載されているまたは将来的に記載される、適用サイズにおける標準リム(ETRTOのSTANDARDS MANUALではMeasuring Rim、TRAのYEAR BOOKではDesign Rim)を指す(即ち、上記の「リム」には、現行サイズに加えて将来的に上記産業規格に含まれ得るサイズも含む。「将来的に記載されるサイズ」の例としては、ETRTOのSTANDARDS MANUAL 2013年度版において「FUTURE DEVELOPMENTS」として記載されているサイズを挙げることができる。)が、上記産業規格に記載のないサイズの場合は、タイヤのビード幅に対応した幅のリムをいう。
 本発明において、動歪1%、30℃における動的貯蔵弾性率E’とは、加硫ゴムに関し、厚さ:2mm、幅:5mm、長さ:20mmの試験片に初期荷重:160gを与え、動歪:1%、振動数50Hzの条件で測定した値(MPa)をいい、動的貯蔵弾性率E’は、別段の記載がない限り、動歪1%、温度30℃で測定した値である(以下、動的貯蔵弾性率E’を単に「E’」ということがある)。
 本発明において、トレッドゴムとは、トレッド部に任意に含まれるベルト等の部材を含まないゴムを意味する。
 ここで、本発明の乗用車用空気入りタイヤでは、トレッド踏面に、トレッド接地端とタイヤ周方向に連続して延びる周方向主溝とで区画形成され、または、相互に隣り合う、タイヤ周方向に連続して延びる2本の周方向主溝で区画形成されるリブ状陸部を少なくとも1本備えることが好ましい。
 この構成によれば、陸部の、タイヤ周方向の剛性を向上させつつウェット性能をより向上させることができる。
 なお、本発明において「リブ状陸部」とは、両端が陸部を区画形成する周方向主溝やトレッド接地端に開口する、当該陸部を横断する、後述する溝が配設されていない陸部を指す。
 また、本発明の乗用車用空気入りタイヤでは、前記リブ状陸部には、両端が、前記トレッド接地端と前記周方向主溝との両方に、または、2本の前記周方向主溝の両方に、開口する両端開口サイプが設けられておらず、
 前記リブ状陸部には、一端が、前記トレッド接地端と前記周方向主溝とのいずれか一方に、または、2本の前記周方向主溝のいずれか一方に、開口し、他端が、当該リブ状陸部内で終端する、一端開口サイプが設けられることが好ましい。
 この構成によれば、陸部の周方向剛性を保持しつつ、ウェット性能をさらに向上させることができる。
 なお、本発明において「サイプ」とは、タイヤをリムに装着し、タイヤの形状を保持する程度の圧力である内圧30kPaを適用した無負荷状態(以下、「タイヤをリムに装着し、タイヤの形状を保持する程度の圧力である内圧30kPaを適用した無負荷状態」を「低圧無負荷状態」とも称す)において、そのトレッド踏面への開口幅が1.5mm以下のものをいう。また「溝」とは、低圧無負荷状態において、トレッド踏面への開口幅が1.5mm超となるものをいう。
 以下、特に断りのない限り、トレッド踏面の各要素の寸法等は、低圧無負荷状態においてトレッド踏面の展開図上で測定されるものとする。
 さらに、本発明の乗用車用空気入りタイヤでは、前記一端開口サイプは、前記他端からタイヤ周方向に延びる周方向サイプ部分と、当該周方向サイプ部分からタイヤ幅方向に延びて前記周方向主溝またはトレッド接地端に開口する幅方向サイプ部分と、を備えることが好ましい。
 この構成によれば、陸部の周方向剛性を保持しつつ、ウェット性能を効果的に向上させることができる。
 また、本発明の乗用車用空気入りタイヤでは、前記リブ状陸部には、当該リブ状陸部内で両端が終端する両端閉口サイプが設けられることが好ましい。
 この構成によれば、陸部の周方向剛性を保持しつつ、ウェット性能をより効果的に向上させることができる。
 本発明によれば、ウェット性能を十分に向上させることが可能な乗用車用空気入りタイヤを提供することができる。
本発明の第1の実施形態に係る乗用車用空気入りタイヤのタイヤ幅方向概略断面図である。 図1に示す乗用車用空気入りタイヤのトレッドパターンを示す、展開図である。 本発明の第2の実施形態に係る乗用車用空気入りタイヤのトレッドパターンを示す、展開図である。 本発明の第3の実施形態に係る乗用車用空気入りタイヤのトレッドパターンを示す、展開図である。 本発明の第4の実施形態に係る乗用車用空気入りタイヤのタイヤ幅方向半部のタイヤ幅方向概略断面図である。 ベルト構造の第1の例を示す概略的な平面図である。 ベルト構造の第2の例を示す概略的な平面図である。 ベルト構造の第3の例を示す概略的な平面図である。 本発明の第5の実施形態に係る乗用車用空気入りタイヤのタイヤ幅方向半部のタイヤ幅方向概略断面図である。 本発明の第6の実施形態に係る乗用車用空気入りタイヤのタイヤ幅方向半部のタイヤ幅方向概略一部断面図である。
 以下に、図面を参照しながら本発明の第1の実施形態に係る乗用車用空気入りタイヤ(以下、単に「タイヤ」とも称す)について、詳細に例示説明する。なお、以下の記載および図面は、本発明に係るタイヤを説明するための一例であり、本発明は記載および図示された形態に何ら限定されない。
 第1の実施形態の乗用車用空気入りタイヤ1は、図1に示すように、例えば、一対のビード部21間でトロイダル状に跨るラジアル配列コードのカーカスプライからなるカーカス22と、当該カーカス22のタイヤ半径方向外側に設けられたトレッドゴム23とを少なくとも備えている。
 より具体的には、トレッド部24と、トレッド部24の側部に連続してタイヤ半径方向内側に延びる一対のサイドウォール部25と、各サイドウォール部25のタイヤ半径方向の内端に連続するビード部21とを備えるとともに、一方のビード部21から他方のビード部21までトロイダル状に延びて上記各部を補強する1枚以上のカーカスプライからなるカーカス22を備えている。ビード部21にはビードコアが埋設されている。そしてさらに、上記ビード部21の補強部材として、ビード部21の外側面にゴムチェーファを備え、カーカス22のクラウン部に1層以上のベルト層からなるベルト26を備えている。また、カーカス22のクラウン部のタイヤ半径方向外側にはトレッドゴム23が設けられている。
 このタイヤ1では、タイヤ1をリムに組み込み、内圧を250kPa以上とした無負荷状態において、タイヤ1の断面幅SWが165(mm)未満である場合は、タイヤ1の断面幅SW(mm)と外径OD(mm)との比SW/ODが0.26以下であり、タイヤ1の断面幅SWが165(mm)以上である場合は、タイヤ1の断面幅SW(mm)と外径OD(mm)との関係が、
   2.135×SW+282.3≦OD
を満たす(以下、この関係になる場合のタイヤサイズを狭幅大径サイズとも称す)。タイヤ1が、上記の関係であることにより、狭幅、大径の形状となり、タイヤ1の転がり抵抗性能を向上させ(転がり抵抗値を低減させ)、かつ、タイヤ1を軽量化することができる。
 また、タイヤ1の転動時の内圧は、250kPa以上であることが好ましく、250~350kPaであることがより好ましい。狭幅大径サイズのタイヤ1では、接地長が増大しやすいが、250kPa以上とすることにより接地長の増大を抑えて、トレッドゴム23の変形量を低減し、転がり抵抗をさらに低減することができるからである。
 また、タイヤ1の転がり抵抗値を低減し、かつ、タイヤ1を軽量化する観点から、タイヤ1の転動時の内圧が、250kPa以上の場合に、タイヤ1の断面幅SW(mm)と外径OD(mm)は、-0.0187×SW2+9.15×SW-380≦ODであることが好ましい。
 そして、本発明のタイヤ1のトレッドゴム23のトレッドゴム表面に位置する部分の少なくとも一部は、動歪1%、30℃における動的貯蔵弾性率E’が、4.0MPa以上である。且つ、トレッドゴム23のトレッドゴム表面に位置する部分の少なくとも一部は、ジエン系ゴムを50質量%以上含有するゴム成分(A)と、該ゴム成分(A)100質量部に対し、熱可塑性樹脂、オイル、及び、ゲル浸透クロマトグラフィーで測定したポリスチレン換算重量平均分子量が5,000~200,000の、芳香族ビニル化合物-共役ジエン化合物共重合体、から選ばれる少なくとも1種の添加成分(B)5~50質量部と、を含むゴム組成物から形成されている。
 ここで、本発明のタイヤ1の作用効果について説明する。
 本発明のタイヤ1は、タイヤ1の断面幅SWと外径ODとが所定の関係式を満たすとともに、トレッドゴム23のトレッドゴム表面に位置する部分の少なくとも一部を、動歪1%、30℃における動的貯蔵弾性率E’を4.0MPa以上とすることにより、トレッドゴム23のタイヤ周方向の陸部剛性(周方向せん断剛性)が向上し、タイヤ1の路面に対する摩擦力が増加するので、ウェット性能を向上させることができる。また、上記の動的貯蔵弾性率E’とすることで、コーナリング時のコーナリングパワーを向上させ操縦安定性を改良することもできる。
 しかし、一方で、上記のような動的貯蔵弾性率E’を有するトレッドゴムは比較的高剛性であるので、トレッドゴム表面が路面の凸凹に対して十分に追従しにくく、タイヤが路面に接地した際の実接地面積が低下する傾向があった。すなわち、ミクロなスケールで、トレッドゴム表面において路面から離れる部分が生じ、トレッド踏面Tの面積が同じであっても実質的な接触面積が相対的に低くなる傾向があり、ウェット性能が所期したほどには大きく向上しない場合があることがわかった。
 本発明では、トレッドゴム23のトレッドゴム表面に位置する部分の少なくとも一部が上記の組成を有するゴム組成物から形成されているので、トレッドゴム23表面の路面に対する追従性を向上させて路面に対する実接地面積を増大させ、ウェット性能を向上させることができる。具体的には、上記のゴム組成物は、ゴムの状態が低歪領域から高歪領域になるほど低弾性化する性質を有するところ、路面に接地するトレッドゴム23表面に、当該ゴム組成物を少なくとも存在させることにより、トレッドゴム23表面部分がタイヤ1の加速・制動などの各挙動によって高歪状態になった際には、当該ゴム組成物が低弾性化してミクロなスケールでトレッドゴム23表面を路面へ接するようにさせることができ、実質的な接触面積を増大させることができる。なお、この際、路面近傍から離れているトレッドゴム23内部は、高歪状態にならないことから、高い周方向剛性、それ故の高い摩擦力を維持することができる。
 以上より、トレッドゴム23のトレッドゴム表面に位置する部分の少なくとも一部が、所定の動的貯蔵弾性率E’であり、且つ、上記のゴム組成物から形成されることにより、マクロなスケール(摩擦力)、およびミクロなスケール(実接地面積)のウェット性能を総合的に向上させることができる。
 また、上記のゴム組成物において、ゴム成分(A)に対して、特定量の添加成分(B)を含有させることで、トレッドゴム23の路面に対する接地性(追従性)を向上させることができるが、添加成分(B)は、特に天然ゴム又はブタジエンゴム等のジエン系ゴムとの相溶性が高いため、ゴム成分(A)として、ジエン系ゴムを50質量%以上含むゴム組成物において、特にその配合効果が得られやすい。
 ここで、本発明の第1の実施形態に係るタイヤの、上記の物性およびゴム組成物を有するトレッドゴムについて以下、説明する。
[トレッドゴム]
 トレッドゴムのトレッドゴム表面に位置する部分の少なくとも一部は、動歪1%、30℃における動的貯蔵弾性率E’が、4.0MPa以上であるが、本実施形態では、トレッドゴムの周方向剛性を向上させてより十分にタイヤの路面に対する摩擦力を増加させる観点から、動的貯蔵弾性率E’は、6.0~12.0MPaであることが好ましい。
 また、上記のゴム成分(A)、添加成分(B)を任意に調整することにより、或いは、公知の方法により、動的貯蔵弾性率E’を所定の範囲とすることができる。
 トレッドゴムのトレッドゴム表面に位置する部分の少なくとも一部は、ジエン系ゴムを50質量%以上含有するゴム成分(A)と、該ゴム成分(A)100質量部に対し、熱可塑性樹脂、オイル、及び、ゲル浸透クロマトグラフィーで測定したポリスチレン換算重量平均分子量が5,000~200,000の、芳香族ビニル化合物-共役ジエン化合物共重合体、から選ばれる少なくとも1種の添加成分(B)5~50質量部と、を含むゴム組成物から形成されている。
 なお、所定の動的貯蔵弾性率とし、且つ、上記のゴム組成物とするトレッドゴム中の部分は、トレッドゴム表面に位置する部分の少なくとも一部、換言すればタイヤが路面に接地するタイヤ全周にわたる部分の少なくとも一部に存在している。なお、本実施形態では、トレッドゴム表面に位置する部分の全てを上記の動的貯蔵弾性率および当該ゴム組成物とすることもでき(所謂、キャップアンドベース構造)、さらに、トレッドゴムの全体を上記の動的貯蔵弾性率および当該ゴム組成物で構成することもできる。
[ゴム成分(A)]
 ゴム組成物のゴム成分(A)は、ジエン系ゴムを50質量%以上含有しており、好ましくは70質量%以上、より好ましくは80質量%以上含む。前記ゴム成分(A)中のジエン系ゴム含有量を50質量%以上とすることで、後述する添加成分(B)配合の効果を充分に発揮させることができる。
 なお、ゴム成分(A)中のジエン系ゴムの含有率の上限は特に限定されず、ゴム成分(A)の全量がジエン系ゴムであってもよい。
 ここで、前記ジエン系ゴムとしては、特に限定はされず、例えば、天然ゴム、スチレン-ブタジエンゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、アクリロニトリル-ブタジエンゴム、イソブチレン-イソプレンゴム等が挙げられる。その中でも、より優れたウェット性能を実現できるという点からは、前記ジエン系ゴムとしては天然ゴム又はブタジエンゴムを用いることが好ましい。なお、前記ジエン系ゴムについては、1種類のみであっても、複数種のジエン系ゴムを用いてもよい。さらにまた、前記天然ゴムを40質量%以上含むことがより好ましく、前記天然ゴムを70質%以上含むことが特に好ましい。
 さらに、前記ゴム成分(A)は、スチレン-ブタジエンゴム(SBR)を含むことが好ましい。SBRを配合することで、ゴム組成物のガラス転移点(Tg)を高め、乾燥路面での制動性能と、操縦安定性を向上させることができるからである。
 さらにまた、前記ゴム組成物は、前記SBRとして、ポリマー全単位中における結合スチレン量の割合[%]+ポリマー全単位中におけるビニル結合量の割合[%]×1/2が、25%質量以下であるSBRを用い、該SBRの含有量が50質量%以上であることが好ましい。ポリマー全単位中における結合スチレン量の割合とビニル結合量の割合が上記関係を満たすことで、ゴム組成物のウェット性能をより向上させることができる。
[添加成分(B)]
 ゴム組成物の添加成分(B)は、熱可塑性樹脂、オイル、及び、ゲル浸透クロマトグラフィーで測定したポリスチレン換算重量平均分子量が5,000~200,000の、芳香族ビニル化合物-共役ジエン化合物共重合体、から選ばれる少なくとも1種である。
 前記ゴム組成物に添加成分(B)として含まれ得る前記熱可塑性樹脂については、特に限定されない。熱可塑性樹脂を配合することで、ゴム組成物を、高歪領域で低弾性化させることができる。前記ゴム成分(A)として、天然ゴムを多く含有する場合には、熱可塑性樹脂が天然ゴムとの相溶性が高いため、上述のウェット性能の向上効果が特に得られやすい。
 また、前記熱可塑性樹脂については、ウェット性能のさらなる向上という観点からは、C5系樹脂、C9系樹脂、C5~C9系樹脂、ジシクロペンタジエン系樹脂、ロジン系樹脂、アルキルフェノール系樹脂、または、テルペンフェノール系樹脂であることが好ましい。これら熱可塑性樹脂については、1種類単独で用いても、複数種を用いても良い。
 ここで、前記C5系樹脂とは、C5系合成石油樹脂を指し、C5留分を、AlCl3やBF3などのフリーデルクラフツ型触媒を用いて重合して得られる固体重合体を指す。具体的には、イソプレン、シクロペンタジエン、1,3-ペンタジエン及び1-ペンテンなどを主成分とする共重合体、2-ペンテンとジシクロペンタジエンとの共重合体、1,3-ペンタジエンを主体とする重合体などが例示される。
 前記C9系樹脂とは、C9系合成石油樹脂を指し、C9留分を、AlCl3やBF3などのフリーデルクラフツ型触媒を用いて重合して得られる固体重合体を指す。具体的には、インデン、メチルインデン、α-メチルスチレン、ビニルトルエンなどを主成分とする共重合体等が例示される。
 前記C5~C9系樹脂とは、C5~C9系合成石油樹脂を指し、C5~C9留分を、AlCl3やBF3などのフリーデルクラフツ型触媒を用いて重合して得られる固体重合体を指す。例えば、スチレン、ビニルトルエン、α-メチルスチレン、インデンなどを主成分とする共重合体などが挙げられる。本発明においては、このC5~C9樹脂として、C9以上の成分の少ない樹脂が、ゴム成分(A)との相溶性の観点から好ましい。ここで、「C9以上の成分が少ない」とは、樹脂全量中のC9以上の成分が50質量%未満、好ましくは40質量%以下であることをいうものとする。
 前記ジシクロペンタジエン系樹脂とは、前記C5留分中のジシクロペンタジエンを主原料として用いた石油樹脂のことである。具体的には、丸善石油化学(株)の商品名「マルカレッツM」シリーズ(M-890A、M-845A、M-990A等)が挙げられる。
 前記ロジン系樹脂としては、天然樹脂ロジンとして、生松ヤニやトール油に含まれるガムロジン、トール油ロジン、ウッドロジンなどがあり、変性ロジン、ロジン誘導体、変性ロジン誘導体として、例えば、重合ロジン、その部分水添ロジン;グリセリンエステルロジン、その部分水添ロジンや完全水添ロジン;ペンタエリスリトールエステルロジン、その部分水添ロジンや重合ロジンなどがある。
 前記アルキルフェノール系樹脂とは、アルキル基を有するフェノール系樹脂のことである。例えば、p-tert-ブチルフェノール-アセチレン樹脂などのアルキルフェノール-アセチレン樹脂、低重合度のアルキルフェノール-ホルムアルデヒド樹脂などが挙げられる。
 前記テルペンフェノール系樹脂とは、テルペン類と種々のフェノール類とを、フリーデルクラフツ型触媒を用いて反応させたり、あるいはさらにホルマリンで縮合する方法で得ることができる樹脂である。原料のテルペン類としては特に制限はなく、α-ピネンやリモネンなどのモノテルペン炭化水素が好ましく、α-ピネンを含むものがより好ましく、特にα-ピネンであることが好ましい。本発明においては、フェノール成分の比率の多いテルペン-フェノール系樹脂が好適である。
 さらにまた、前記熱可塑性樹脂としては、ノボラック型フェノール樹脂を含むことが好ましい。ノボラック型フェノール樹脂をゴム組成物に含有させることにより、硬化剤を用いることなく、しかもウェット性能を低下させずに、ゴム組成物における弾性率を増大させ、操縦安定性を向上させることができる。
 前記ゴム組成物に添加成分(B)として含まれ得る前記オイルについては、特に限定されない。用いられるオイルとしては、例えば、アロマオイル、パラフィンオイル、スピンドルオイル、ナフテンオイル、MES、TDAE、SRAE等の石油系軟化剤や、パーム油、ひまし油、綿実油、大豆油等の植物系軟化剤が挙げられる。前記オイルを配合する場合には、取り扱い容易性の観点から、上述した中でも、25℃等の常温で液体であるもの、例えば、アロマオイル、パラフィンオイル、ナフテンオイル等の石油系軟化剤を含有させることが好ましい。
 前記ゴム組成物に添加成分(B)として含まれ得る、前記ゲル浸透クロマトグラフィーで測定したポリスチレン換算重量平均分子量が5,000~200,000の、芳香族ビニル化合物-共役ジエン化合物共重合体については、特に限定されない。用いられる当該共重合体としては、芳香族ビニル化合物-共役ジエン化合物の低分子量の共重合体であって、その平均分子量が5,000~200,000であれば、当該共重合体を含有するゴム組成物を、高歪領域で十分に低弾性化する物性にすることができる。さらに、同様の観点から、前記芳香族ビニル化合物量が5~80質量%で、共役ジエン化合物部分のビニル結合量が10~80質量%であることが好ましい。また、添加成分(B)は、ゴム成分(A)に含まれないものとする
 ここで、前記ゴム組成物中の添加成分(B)の含有量は、ゴム成分(A)100質量部に対して5~50質量部であるが、ウェット性能の向上の点からは、10~30質量部であることが好ましく、10~25質量部がより好ましい。また、添加成分(B)には、熱可塑性樹脂、オイル、及び、ゲル浸透クロマトグラフィーで測定したポリスチレン換算重量平均分子量が5,000~200,000の、芳香族ビニル化合物-共役ジエン化合物共重合体、から選ばれる少なくとも1種が含まれていれば限定されるものではないが、添加成分(B)には、熱可塑性樹脂が少なくとも含まれることが好ましく、当該熱可塑性樹脂の含有量は、ゴム成分(A)100質量部に対して10~25質量部であることがより好ましい。
[充填剤(C)]
 前記ゴム組成物は、前記ゴム成分(A)、前記添加成分(B)の他にも、充填剤(C)を含むことができる。充填剤(C)を含むことで、ゴムの柔軟性等の特性を損ねることなく、高い補強性及び低発熱性を実現できる。
 前記ゴム組成物における充填剤(C)の含有量は、特に限定はされないが、前記ゴム成分(A)100質量部に対して好ましくは30~110質量部、より好ましくは40~90質量部である。
 充填剤(C)の含有量を30~110質量部とすることで、ゴム成分(A)の柔軟性等の特性を損ねることなく、その補強効果を奏することができ、充填剤(C)の含有量を40~90質量部とすることで、特に、転がり抵抗の低減、湿潤路面での制動性能の向上といった効果を奏しつつ、かつ、ゴム成分(A)の柔軟性を損ねにくい、という利点がある。
 前記充填剤(C)としては、特に限定はされず、シリカ、カーボンブラック、クレー、アルミナ、タルク、マイカ、カオリン、ガラスバルーン、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、酸化マグネシウム、酸化チタン、チタン酸カリウム、硫酸バリウム等を用いることができる。
 上述した充填剤(C)の中でも、転がり抵抗の低減、ウェット性能の向上といった効果を奏しつつ、かつ、ゴム成分(A)の柔軟性を損ねにくい、という観点からは、シリカを用いることが好ましい。ゴム組成物中にシリカを含むことで、ゴム成分(A)のジエン系ゴムと添加成分(B)とが良好に分散した状態で、その柔軟性を損ねることなく、充分な補強性と低発熱性とを付与することができる。
 充填剤(C)に含めることができる前記シリカの種類としては、例えば湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウムなどが挙げられるが、中でも、湿式シリカを好適に使用できる。この湿式シリカのBET比表面積は40~350m2/gであるのが好ましい。BET比表面積がこの範囲であるシリカは、ゴム補強性とゴム成分(A)中への分散性とを両立できるという利点がある。この観点から、BET比表面積が80~300m2/gの範囲にあるシリカがさらに好ましい。このようなシリカとしては東ソー・シリカ(株)社製、商品名「ニプシルAQ」、「ニプシルKQ」、デグッサ社製、商品名「ウルトラジルVN3」等の市販品を用いることができる。このシリカは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 さらに、上述のように、ゴム組成物には充填剤(C)としての前記シリカを含有させることが好ましいところ、前記シリカの含有量は、前記ゴム成分(A)100質量部に対して40~70質量部の範囲であることが好ましく、45~60質量部の範囲であることがより好ましい。シリカの含有量がゴム成分(A)100質量部に対して40質量部以上であれば、ゴム組成物の60℃における損失正接(tanδ)が低下し、該ゴム組成物を適用したタイヤの通常走行時の燃費性能が向上し、また、70質量部以下であれば、ゴム組成物の柔軟性が高く、該ゴム組成物をタイヤのトレッドゴムに適用することで、トレッドゴムの変形体積が大きくなって、タイヤのウェット性能を向上させることができる。また、前記充填剤(C)の中で、前記シリカが50質量%以上、好ましくは70質量%以上、さらに好ましくは90質量%以上であれば、ウェット性能がさらに向上する。
 また、ゴム組成物には、前記充填剤(C)としてのカーボンブラックを含むことが好ましく、また、該カーボンブラックの含有量は、前記ゴム成分(A)100質量部に対して1~100質量部の範囲が好ましく、30~80質量部の範囲が更に好ましい。カーボンブラックの含有量を1質量部以上とすることで、ゴム組成物の剛性が向上し、含有量を100質量部以下とすることで、損失正接(tanδ)の上昇を抑制できるため、該ゴム組成物をタイヤのトレッドゴムに適用することで、タイヤの燃費性能とウェット性能を高いレベルで両立できる。前記カーボンブラックとしては、特に限定されるものではなく、例えば、GPF、FEF、HAF、ISAF、SAFグレードのカーボンブラックが挙げられる。この中から、タイヤのウェット性能を向上する観点から、ISAF、SAFグレードのカーボンブラックが好ましい。これらカーボンブラックは、1種単独で使用してもよいし、2種以上を併用してもよい。
 さらに、前記カーボンブラックとして、窒素吸着比表面積が110m2/g以上のカーボンブラックおよび窒素吸着比表面積が80m2/g以下のカーボンブラックをさらに含むことが好ましい。窒素吸着比表面積が110m2/g以上のカーボンブラックを含有させることにより、ウェット性能を高いレベルで確保することができるとともに、窒素吸着比表面積が80m2/g以下のカーボンブラックを同時に含有させることで、タイヤの弾性率を確保することができ、操縦安定性を向上させることができる。
 なお、前記ゴム組成物が、前記充填剤(C)としてシリカを含む場合には、含有するシリカの補強性および低発熱性をさらに向上させる目的で、シランカップリング剤をさらに含むことが好ましい。
 シランカップリング剤としては、例えばビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアジルテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアジルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、3-メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾリルテトラスルフィドなどが挙げられる。シランカップリング剤としては、これらの中で補強性改善効果などの点から、ビス(3-トリエトキシシリルプロピル)トリスルフィドおよび3-トリメトキシシリルプロピルベンゾチアジルテトラスルフィドが好適である。
 これらのシランカップリング剤は、1種を単独で用いてもよく、2種以上組み合わせて用いてもよい。
 前記ゴム組成物での、好ましいシランカップリング剤の含有量は、シランカップリング剤の種類などにより異なるが、シリカに対して、好ましくは2~25質量%の範囲で選定される。この量が2質量%未満ではカップリング剤としての効果が充分に発揮されにくく、また、25質量%を超えるとゴム成分(A)のゲル化を引き起こすおそれがある。
 カップリング剤としての効果およびゲル化防止などの点から、このシランカップリング剤のより好ましい含有量は2~20質量%の範囲であり、さらに好ましい含有量は5~18質量%の範囲であり、特に好ましい含有量は5~15質量%の範囲である。
[その他の成分]
 前記ゴム組成物は、上述した、ゴム成分(A)、添加成分(B)、任意の充填剤(C)の他にも、更に、脂肪酸金属塩を含むことが好ましい。該脂肪酸金属塩に用いられる金属としては、Zn、K、Ca、Na、Mg、Co、Ni、Ba、Fe、Al、Cu、Mn等が挙げられ、Znが好ましい。一方、前記脂肪酸金属塩に用いられる脂肪酸としては、炭素数4~30の飽和又は不飽和の直鎖、分岐もしくは環状構造を有する脂肪酸、あるいはそれらの混合物が挙げられ、これらの中でも、炭素数10~22の飽和又は不飽和の直鎖脂肪酸が好ましい。炭素数10~22の飽和直鎖脂肪酸としては、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等が挙げられ、また、炭素数10~22の不飽和直鎖脂肪酸としては、オレイン酸、リノール酸、リノレン酸、アラキドン酸等が挙げられる。前記脂肪酸金属塩は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 前記脂肪酸金属塩の含有量は、前記ゴム成分(A)100質量部に対して0.1~10質量部の範囲が好ましく、0.5~5質量部の範囲が更に好ましい。
 また、前記ゴム組成物は、更に、ゴム工業界で通常使用される配合剤、例えば、ステアリン酸、老化防止剤、酸化亜鉛(亜鉛華)、加硫促進剤、加硫促進助剤、加硫剤等を、本発明の目的を害しない範囲内で適宜選択して、通常の含有量の範囲内で配合することができる。これら配合剤としては、市販品を好適に使用することができる。なお、前記ゴム組成物は、公知の方法、例えば、前記ゴム成分(A)に、添加成分(B)と、任意の充填剤(C)と、必要に応じて適宜選択した各種配合剤とを配合して、混練り、熱入れ、押出等することにより製造することができる。
 前記加硫剤としては、硫黄等が挙げられる。
 前記加硫剤の含有量は、ゴム成分(A)100質量部に対し、硫黄分として0.1~10.0質量部の範囲が好ましく、1.0~4.0質量部の範囲が更に好ましい。加硫剤の含有量が硫黄分として0.1質量部以上であれば、加硫ゴムの破壊強度、耐摩耗性等を確保でき、また、10.0質量部以下であれば、ゴム弾性を十分に確保できる。特に、加硫剤の含有量を硫黄分として4.0質量部以下とすることで、タイヤのウェット性能をさらに向上でき、本発明の効果を高める面から好ましい。
 また、前記加硫促進剤としては、特に限定されるものではなく、例えば、2-メルカプトベンゾチアゾール(M)、ジベンゾチアジルジスルフィド(DM)、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド(CZ)等のチアゾール系加硫促進剤、1,3-ジフェニルグアニジン(DPG)等のグアニジン系加硫促進剤等が挙げられる。なお、本発明のゴム組成物は、上述のように、3種の加硫促進剤を含むことが好ましい。
 前記加硫促進剤の含有量は、前記ゴム成分(A)100質量部に対して0.1~5.0質量部の範囲が好ましく、0.2~3.0質量部の範囲が更に好ましい。
 なお、前記ゴム組成物を、前記トレッドゴムに用いる方法についても、公知の方法を採用することができる。例えば、上述のゴム組成物を、トレッドゴムの少なくともトレッドゴム表面に位置する部分に用いて生タイヤを成形し、常法に従って生タイヤを加硫することで製造できる。
[トレッドパターン]
 第1の実施形態のタイヤ1は、上記のトレッドゴム23を備えるとともに、図2を用いて説明する以下のトレッドパターンを有するものとすることができる。
 なお、本発明のタイヤ1では、上記のトレッドゴム23を備えていれば、任意のトレッドパターン、即ち、タイヤ1の全周にわたって、ラグ溝が設けられたフルラグパターン、タイヤ周方向に延びる溝およびタイヤ幅方向に延びる溝によって区画形成された複数のブロックからなるブロックパターン、さらに図2に示すような、タイヤ周方向に延びる溝によって区画形成されたリブ状陸部を有するリブパターンのいずれにもすることができる。
 第1の実施形態のタイヤ1は、図2に示すように、トレッド踏面Tにおいて少なくとも1本のリブ状陸部3を備えている。具体的には、リブ状陸部3は、トレッド接地端Eとタイヤ周方向に連続して延びる周方向主溝4とで区画形成され、または、相互に隣り合う、タイヤ周方向に連続して延びる2本の周方向主溝4で区画形成される。なお、図示の例では、トレッド踏面Tに2本の周方向主溝4が設けられ、それにより、タイヤ幅方向外側のショルダー側に、トレッド接地端Eと1本の当該周方向主溝4とで1対のリブ状陸部(以下、ショルダーリブ状陸部とも称す)3sが区画形成され、また、タイヤ幅方向内側のセンター側に、2本の当該周方向主溝4で1本のリブ状陸部(以下、センターリブ状陸部とも称す)3sが区画形成されている。また、図2では、周方向主溝4は、タイヤ周方向に沿って直線状に延びる延在形態を示しているが、周方向主溝4はタイヤ周方向に連続的に延びるものであればよく、例えば、ジグザグ状、波状等の延在形態とすることができる。
 また、この実施形態では、リブ状陸部3には、当該リブ状陸部3を横断する両端開口サイプは設けられていない。具体的には、リブ状陸部3においては、両端が、トレッド接地端Eと周方向主溝4との両方に、または、2本の周方向主溝4の両方に、開口する両端開口サイプが設けられていない。なお、この実施形態では、リブ状陸部3には、陸部を横断する溝やサイプでなければ任意の溝やサイプを配設することができる。また、リブ状陸部3が複数存在する場合には、図示の例のように全てのリブ状陸部3に両端開口サイプが設けられないことが好ましいが、少なくとも1本のリブ状陸部3に両端開口サイプが設けられないようにすることもできる。
 また、リブ状陸部3には、一端が、周方向主溝4またはトレッド接地端Eに開口し、他端が、当該リブ状陸部3内で終端する一端開口サイプ5が設けられている。具体的には、一端開口サイプ5の一端は、2本の周方向主溝4のいずれか一方に開口し、または、トレッド接地端Eと周方向主溝4とのいずれか一方に開口している。
 さらに、第1の実施形態では、リブ状陸部3、図示の例ではセンターリブ状陸部3cに配設された一端開口サイプ5cは、当該一端開口サイプ5cの他端からタイヤ周方向に、好ましくはタイヤ周方向に対して30°以下の傾斜角度で延びる周方向サイプ部分5c1と、当該周方向サイプ部分5c1からタイヤ幅方向に、好ましくはタイヤ幅方向にタイヤ幅方向に対して30°以下の傾斜角度で延びて周方向主溝4に開口する幅方向サイプ部分5c2と、を備えている。なお、一端開口サイプ5cの幅方向サイプ部分5c2の周方向主溝4への開口部は、一端開口サイプ5cの一端となっている。また、一端開口サイプ5cがショルダーリブ状陸部3sに配設される場合には、幅方向サイプ部分は周方向主溝またはトレッド接地端Eに開口させることができる。
 また、一端開口サイプ5は、それぞれタイヤ周方向に複数設けられており、それぞれの一端開口サイプ5は、リブ状陸部3の幅方向中心線に対して幅方向両側の陸部半部において、所定の長さのピッチ長Lで、タイヤ周方向に並んで配設されている。また、センターリブ状陸部3cにおいては、各列の一端開口サイプ5cは、相互にタイヤ周方向にずれ、また、点対称にすることができる。なお、ピッチ長Lは、タイヤ周方向で変化せず一定であってもよいし、タイヤ周方向で変化して一定ではなくてもよい。図2に示す例では、一端開口サイプ5cのピッチ長Lを、タイヤ周上で変化させたパターンP1~P3となっている。図2のパターンP1~P3は、それぞれ順に相対的にピッチ長が長くなっており、図2に示すトレッドパターンはタイヤ周上においてパターンP1~P3が順に繰り返し設けられている。なお、図2の例では、ピッチ長Lを変更した3種類のパターンを示したが、2種類または4種類以上のパターンとすることは任意である。また、パターンP1~P3を順に繰り返し設けているが、パターン配置の順序は任意であり、例えば1つパターンのみを複数回繰り返し配置した後、他のパターンを1回または複数回配置することもできる。
 リブ状陸部3には、当該リブ状陸部3内で両端が終端し、周方向主溝4やトレッド接地端Eに対して直接的および間接的に開口しない(他のサイプや溝を介して周方向主溝4やトレッド接地端Eに連通しない)両端閉口サイプ6が設けられている。なお、図示の例では、センターリブ状陸部3cでは、両端閉口サイ6cは、トレッド踏面T視で円形のサイプ、すなわち、円形の小穴であり、一端開口サイプ5cの周方向サイプ部分5c1に対してリブ状陸部3cの幅方向外側に配設されている。また、ショルダーリブ状陸部3sでは、両端閉口サイプ6sは、トレッド踏面T視で円形のサイプ、および湾曲したサイプとして配設されている。
 ここで、第1の実施形態のトレッドパターンによる作用効果を説明する。
 第1の実施形態のタイヤ1では、陸部3を横断する溝が配設されていないリブ状陸部3を備えるので、タイヤ1の周方向の陸部剛性(周方向せん断剛性)が向上して、タイヤ1の路面に対する摩擦力がより増加し、それ故に、ウェット性能をさらに向上させることができる。
 また、この実施形態では、リブ状陸部3には、当該リブ状陸部3を横断する両端開口サイプが設けられていないので、リブ状陸部3の周方向剛性を高い状態で維持することができ、それゆえに高いウェット性能を実現することができる。
 また、この実施形態では、リブ状陸部3には一端開口サイプ5が設けられているので、リブ状陸部3の周方向剛性を高い状態で維持しつつ、また、タイヤ1が湿潤路面に接地した状態においては、一端開口サイプ5が路面とタイヤ1の水膜を除去してトレッド踏面Tと路面との実接地面積を増大させることができる。その結果として、ウェット性能をより十分に向上させることができる。
 また、センターリブ状陸部3cに配設するように、一端開口サイプ5cを、周方向サイプ部分5c1と幅方向サイプ部分5c2とを含むように構成した場合には、周方向サイプ部分5c1によって、リブ状陸部3の周方向剛性を保持しつつトレッドの圧縮剛性(タイヤ径方向の剛性)を効果的に低下させて実接地面積を増大させ、また、周方向主溝4等に開口する幅方向サイプ部分5c2によって、上述のように、路面との間に生じ得る水膜を除去することができ、それゆえに、ウェット性能をさらに十分に向上させることができる。
 さらに、この実施形態では、リブ状陸部3には両端閉口サイプ6が設けられているので、サイプ端の周方向主溝4等への開口による例えば周方向剛性の低下を防止しつつ圧縮剛性を低減させることができる。それゆえに、実接地面積が増大し、ウェット性能をより向上させることができる。
 なお、図示の例では、コーナリング性能の観点から2本の周方向主溝4で区画形成するリブ状陸部3、ここではセンターリブ状陸部3cにのみ、周方向サイプ部分5c1と幅方向サイプ部分5c2とを備える一端開口サイプ5cを設けているが、周方向サイプ部分5c1と幅方向サイプ部分5c2とを備える一端開口サイプ5を、センターリブ状陸部3cとともにショルダーリブ状陸部3sに、またはショルダーリブ状陸部3sのみに、配設することもできる。
 また、この実施形態では、センターリブ状陸部3cに配設された一端開口サイプ5cは、タイヤ周方向に沿って測った所定ピッチ長L(mm)で配設されるとともに、当該陸部3cの陸部幅W(mm)と、1つのピッチ長L(mm)の範囲内に配設された当該陸部3c内の一端開口サイプ5cのタイヤ幅方向サイプ成分総長Ws(mm)と、ピッチ長L(mm)と、1つのピッチ長L(mm)の範囲内に配設された当該陸部3c内の一端開口サイプ5cのタイヤ周方向サイプ成分総長Ls(mm)との関係が、
   0.4W≦Ws≦1.2W、および、0.6L≦Ls≦3L
を満たすことが好ましい。
 この構成によれば、周方向せん断剛性の低下を抑制して粘着限界を維持しつつ、圧縮剛性を低減して実路接地面積を向上させることができるので、ウェット性能を向上させることができる。具体的には、1つのピッチ長L(mm)の範囲内のタイヤ幅方向サイプ成分総長Ws(mm)を、陸部幅W(mm)の0.4倍以上にすることにより、排水性を向上させることができ、陸部幅W(mm)の1.2倍以下にすることにより、周方向せん断剛性の低下を抑制することができる。また、1つのピッチ長L(mm)の範囲内のタイヤ周方向サイプ成分総長Ls(mm)を、ピッチ長L(mm)の0.6倍以上にすることにより、圧縮剛性を十分に低減することができ、ピッチ長L(mm)の3倍以下にすることにより、コーナリングパワーを十分に維持することができ、それゆえに、操縦安定性能の低下を抑制することができる。上記のようなトレッドゴム23を有することで、通常のトレッドゴムを有するタイヤと比較してコーナリングパワーが大きくなり、操縦安定性能が向上するところ、操縦安定性能が良好であるのでタイヤ周方向サイプ成分Lsを大きくしても操縦安定性能の低下を抑制することができる。
 なお、図2の例では、一端開口サイプ5cのピッチ長Lが、タイヤ周上で変化させたパターンとなっているが、少なくともセンターリブ状陸部3cで、ピッチ長L(mm)で配設した一端開口サイプ5cが、すべてのパターンP1~P3中で、0.4W≦Ws≦1.2W、および、0.6L≦Ls≦3Lを満たしている。
 ここで、「ピッチ長L」とは、一の一端開口サイプのタイヤ周方向一端から、当該一の一端開口サイプとタイヤ周方向に隣り合う一端開口サイプの対応するタイヤ周方向一端までを、タイヤ周方向に沿って測った展開図上での長さをいう。また、「陸部幅W」とは、陸部をタイヤ幅方向に沿って測った長さをいう。また、「1つのピッチ長Lの範囲内に配設された陸部内の一端開口サイプのタイヤ幅方向サイプ成分総長Ws」とは、1つのピッチ長Lの範囲内に配設された陸部内の一端開口サイプをタイヤ周方向に投影してタイヤ幅方向に沿って測った長さであり、当該範囲の一端開口サイプをタイヤ周方向に投影した際に、例えば一端開口サイプが複数本存在し或いは一端開口サイプが折れ曲がる等することによって、投影した一端開口サイプに重複した部分がある場合には、当該重複した部分を重複した分だけ加算した長さをいうものとする。また、「1つのピッチ長Lの範囲内に配設された陸部内の一端開口サイプのタイヤ周方向サイプ成分総長Ls」とは、1つのピッチ長Lの範囲内に配設された陸部内の一端開口サイプをタイヤ幅方向に投影してタイヤ周方向に沿って測った長さであり、「タイヤ幅方向サイプ成分総長Ws」と同様に、投影した一端開口サイプに重複した部分がある場合には、当該重複した部分を重複した分だけ加算した長さをいうものとする。
 さらに、この実施形態では、一端開口サイプ5cが配設されたセンターリブ状陸部3cにおいて、1つのピッチ長L(mm)の範囲内に、両端閉口サイプ6cが少なくとも1個配設されるとともに、両端閉口サイプ6cの、トレッド踏面への開口面積S(mm2)が0.1≦S≦4の範囲内であることが好ましい。また、より好ましくは両端閉口サイプ6cが小穴である。
 この構成によれば、上述のように、周方向せん断剛性を保持しつつ圧縮剛性を低減することができるので、ウェット性能をより向上させることができる。また、センターリブ状陸部3cでは、一端閉口サイプ5cの配設だけでは、陸部3c内に、例えば一端閉口サイプ5cで囲まれるブロック状部分が形成されるところ、上記の両端閉口サイプ6cを当該ブロック状部分に配設することにより、圧縮剛性を均一に低減させることができる。
 なお、両端閉口サイプ6cが1つのピッチ長L(mm)の範囲内に複数個配設される場合には、それら複数の両端閉口サイプ6cの平均値をいうものとする。
 また、図2の例では、パターンP1、P2では、両端閉口サイプ(ここでは小穴)6cを、1つのピッチ長L(mm)の範囲内に2個配設しているのに対して、パターンP3においては、両端閉口サイプ6cを、1つのピッチ長L(mm)の範囲内に3個配設している。
 さらに、この実施形態では、一端開口サイプ5cが配設されたセンターリブ状陸部3cにおいて、ピッチ長L(mm)と、1つの当該ピッチ長L(mm)の範囲内に配設された両端閉口サイプ6cの個数N(個)との関係が、0.1≦N/L≦0.3であることが好ましい。
 この構成によれば、ウェット性能をさらに向上させることができる。具体的には、N/L(個/mm)を、0.1以上にすることにより、圧縮剛性を十分低減することができ、N/L(個/mm)を0.3以下にすることにより、センターリブ状陸部3cの面積の低下を防止することができ、また、コーナリングパワーが低下するのを防止することができる。
 ところで、図2に示すタイヤ1では、トレッド踏面Tに、周方向主溝4を2本設けてリブ状陸部3を3本設けているが、トレッド踏面Tに、周方向主溝4を3本以上設けて、当該3本以上の周方向主溝4およびトレッド接地端Eで区画形成される複数の陸部の全てをリブ状陸部3にして本発明のサイプを配設することや、当該複数の陸部のうちの一部の陸部をリブ状陸部3にして本発明のサイプを配設することもできる。
 また、図2では、各リブ状陸部3に、一端開口サイプ5および両端閉口サイプ6の両方を配設しているが、一方のみを配設することもできる。
 さらに、本実施形態では、各サイプは、その深さ方向に直線状に延びるサイプ(二次元サイプ)であることが排水性を高める観点から好ましいが、深さ方向に例えばジグザグ状に屈曲して延びるサイプ(三次元サイプ)とすることもできる。
 また、本実施形態(第1の実施形態)では、上述のように、リブ状陸部3には両端開口サイプが設けられていないことが好ましいが、第1の実施形態の変形例として、リブ状陸部3のうちの全てまたは一部において、リブ状陸部3に、深さ方向に例えばジグザグ状に屈曲して延びる両端開口サイプを配設することもできる。
 以上、図面を参照して本発明の第1の実施形態を説明したが、本発明の乗用車用空気入りタイヤは、上記一例に限定されることは無く、以下に説明するように、適宜変更を加えることができる。
 本発明の乗用車用空気入りタイヤのタイヤサイズとしては、具体的には、105/50R16、115/50R17、125/55R20、125/60R18、125/65R19、135/45R21、135/55R20、135/60R17、135/60R18、135/60R19、135/65R19、145/45R21、145/55R20、145/60R16、145/60R17、145/60R18、145/60R19、145/65R19、155/45R18、155/45R21、155/55R18、155/55R19、155/55R21、155/60R17、155/65R13、155/65R18、155/70R17、155/70R19、165/45R22、165/55R16、165/55R18、165/55R19、165/55R20、165/55R21、165/60R19、165/65R19、165/70R18、175/45R23、175/55R18、175/55R19、175/55R20、175/55R22、175/60R18、175/65R15、185/45R22、185/50R16、185/50R20、185/55R19、185/55R20、185/60R17、185/60R19、185/60R20、195/50R20、195/55R20、195/60R19、195/65R17、205/50R21、205/55R16、205/55R20、205/60R16、205/60R18、215/50R21、215/60R17、225/65R17が例として挙げられる。
 ここで、本発明にあっては、タイヤの車両装着方向が指定される場合には、タイヤ赤道面CLを境界とした車両装着内側と車両装着外側とのタイヤ幅方向半部間でネガティブ率に差を設けてもよい。
 本発明にあっては、図3に示すように、タイヤ赤道面CLの近傍からトレッド接地端Eまでタイヤ幅方向に延びる幅方向溝100を有するパターンとしてもよく、この場合は、周方向主溝を含まなくてもよい。このような幅方向溝100が主体のパターンによれば、特に雪上性能を効果的に発揮することができる。
 本発明では、リブ状陸部のうち、タイヤ幅方向最外側の周方向主溝とトレッド接地端Eにより区分されるショルダーリブ状陸部に関しては、様々な構成を採用することができる。例えば、車両装着方向が指定されるタイヤおいて、車両装着外側と内側におけるショルダーリブ状陸部のタイヤ幅方向の幅を変えることもできる。なお、操縦安定性を考慮した場合には車両装着外側のショルダーリブ状陸部のタイヤ幅方向の幅を車両装着内側のショルダーリブ状陸部のタイヤ幅方向の幅よりも大きくすることが好ましい。
 本発明の狭幅大径サイズの乗用車用空気入りタイヤの場合には、バックリングを抑制してコーナリングパワーを向上させる観点からは、タイヤを車両に装着した際に周方向主溝から車両装着内側に延びる一端開口溝を設けることが好ましい。
 具体的には、図4に示すように、トレッド踏面Tにおける、タイヤ赤道面CLを境界とする少なくとも一方の半部において、トレッド接地端Eに隣接し、且つトレッド接地端Eとのトレッド幅方向の距離が、トレッド幅TWの25%以上離間した、トレッド周方向に延びるトレッド端側主溝110を有し、トレッド端側主溝110とトレッド接地端Eとによって区画されるトレッド接地端側陸部に隣接する陸部111の1つに、トレッド接地端側主溝110からトレッド幅方向に延びて隣接陸部111内に留まる、少なくとも1本の一端開口溝112を有することが好ましい。なお、図4における、溝113は、主溝より溝深さの小さい浅溝である。
 狭幅大径サイズの乗用車用空気入りタイヤの場合には、車両装着外側では圧縮応力を受け、車両装着内側では引張応力を受けることとなり、これらの応力により、トレッドゴムが変形し、ベルトが変形して、接地面が浮き上がってしまう。
 ここで、トレッド接地端側主溝110からトレッド幅方向に延びて陸部111内に留まる一端開口溝112を有するため、陸部内の車両装着外側においては、圧縮応力により一端開口溝112が閉じる構造となるため、一端開口溝112を設けない場合や、一端開口溝112が車両装着外側まで延びていない場合と比べて、圧縮応力によるトレッドやベルトの変形が抑制される。
 さらに、一端開口溝112が陸部内に留まるため、車両装着内側まで一端開口溝112が延在している場合と比較して、車両装着内側での引張応力に対する剛性が高くなり、これによりトレッドやベルトの変形が抑制される。
 本発明の狭幅大径サイズの乗用車用空気入りタイヤの場合には、図5に示すように、タイヤ幅方向断面にて、タイヤ赤道面CLにおけるトレッド表面上の点Pを通りタイヤ幅方向に平行な直線をm1とし、接地端E’を通りタイヤ幅方向に平行な直線をm2として、直線m1と直線m2とのタイヤ径方向の距離を落ち高LCRとし、タイヤのトレッド幅をTW’とするとき、比LCR/TW’を0.045以下とすることが好ましい。比LCR/TW’を上記の範囲とすることにより、タイヤのクラウン部がフラット化(平坦化)し、接地面積が増大して、路面からの入力(圧力)を緩和して、タイヤ径方向の撓み率を低減し、タイヤの耐久性及び耐摩耗性を向上させることができる。
 ここで、上記「接地端E’」とは、タイヤをリムに装着し、タイヤを装着する車両毎に規定される最高空気圧を充填して平板上に垂直に置き、タイヤを装着する車両毎に規定される最大負荷に相当する重量を負荷した際の、平板との接触面における、タイヤ幅方向両端点をいう。
 本発明では、トレッドゴムはタイヤ幅方向に異なる複数のゴム層で形成されていてもよい。上記の複数のゴム層としては損失正接、モジュラス、硬度、ガラス転移温度、材質等が異なっているものを使用することができる。
 本発明のタイヤは、タイヤ周方向に対して傾斜して延びるコードのゴム引き層からなる傾斜ベルト層を有することが好ましく、この場合、傾斜ベルト層は1層のみとすることもできる。但し、狭幅大径サイズの乗用車用タイヤにおいては、傾斜ベルト層が1層のみでは旋回時の接地面形状が歪みやすいため、2層以上の層間でコードが互いに交差する方向に延びる傾斜ベルト層とすることが好ましい。本発明の乗用車用空気入りタイヤでは、2層のベルト層が傾斜ベルト層を形成するベルト構造が最も好ましい。
 本発明では、最もタイヤ幅方向の幅の大きい最大幅傾斜ベルト層のタイヤ幅方向の幅が、トレッド幅TWの90%~115%であることが好ましく、トレッド幅TWの100%~105%であることが特に好ましい。
 本発明において、傾斜ベルト層のベルトコードとしては、金属コード、特にスチールコードを用いるのが最も一般的であるが、有機繊維コードを用いることも可能である。スチールコードはスチールを主成分とし、炭素、マンガン、ケイ素、リン、硫黄、銅、クロムなど種々の微量含有物を含むことができる。
 本発明において、傾斜ベルト層のベルトコードはモノフィラメントコードや、複数のフィラメントを撚り合せたコードを用いることができる。撚り構造も種々の設計が採用可能であり、断面構造、撚りピッチ、撚り方向、隣接するフィラメント同士の距離も様々なものを用いることができる。さらには異なる材質のフィラメントを撚り合せたコードを用いることもでき、断面構造としても特に限定されず、単撚り、層撚り、複撚りなど様々な撚り構造を取ることができる。
 本発明では、傾斜ベルト層のベルトコードの傾斜角度は、タイヤ周方向に対して10°以上とすることが好ましい。
 本発明では、傾斜ベルト層のベルトコードの傾斜角度を高角度、具体的にはタイヤ周方向に対して35°以上、特にタイヤ周方向に対して55°~85°の範囲とすることが好ましい。
 傾斜角度を35°以上とすることにより、タイヤ幅方向に対する剛性を高め、特にコーナリング時の操縦安定性能を向上させることができるからである。また、層間ゴムのせん断変形を減少させて、転がり抵抗性能を向上させることができるからである。
 本発明のタイヤは、傾斜ベルト層のタイヤ径方向外側に1層以上の周方向ベルト層からなる周方向ベルトを有することができる。
 傾斜ベルト層のベルトコードの傾斜角度θ1、θ2が35°以上の場合には、周方向ベルトは、タイヤ赤道面CLを含む中央領域Cの単位幅あたりのタイヤ周方向剛性が、その他の領域の単位幅あたりのタイヤ周方向剛性より高いことが好ましい。
 図6は、ベルト構造の一例を概略的に示しており、傾斜ベルト層121、122のタイヤ径方向外側に周方向ベルト層123、124が積層されており、中央領域Cにおいて、周方向ベルト層123、124が互いにタイヤ径方向に重なっている。
 例えば、図6に示すように、当該中央領域Cにおける周方向ベルト層の層数をその他の領域より多くすることにより、中央領域Cの単位幅あたりのタイヤ周方向剛性を、その他の領域の単位幅あたりのタイヤ周方向剛性より高くすることができる。
 傾斜ベルト層のベルトコードがタイヤ周方向に対して35°以上で傾斜するタイヤの多くは、400Hz~2kHzの高周波域において、断面方向の1次、2次および3次等の振動モードにて、トレッド踏面が一律に大きく振動する形状となるため、大きな放射音が生じる。そこで、トレッドのタイヤ幅方向中央領域のタイヤ周方向剛性を局所的に増加させると、トレッドのタイヤ幅方向中央領域がタイヤ周方向に広がり難くなり、トレッド踏面のタイヤ周方向への広がりが抑制される結果、放射音を減少させることができる。
 さらに、上述のごとく、タイヤ赤道面CLを含む中央領域のタイヤ周方向の剛性を高めたタイヤでは、トレッドはトレッド踏面の少なくともタイヤ赤道面CLを含む領域に、タイヤ周方向に連続する陸部を有することが好ましい。タイヤ赤道面CL上又はその付近に周方向主溝を配置すると、当該領域におけるトレッドの剛性が低下して、該周方向主溝を区画する陸部における接地長が極端に短くなる場合がある。そこで、タイヤ赤道面CLを含む一定領域にわたって、タイヤ周方向に連続する陸部(リブ状陸部)を配置することが、コーナリングパワーを低減させることなく騒音性能を改善する観点から好ましい。
 図7は、ベルト構造の他の例を概略的に示しており、2層の傾斜ベルト層131、132のタイヤ径方向外側に、1層の周方向ベルト層133が積層されている。
 本発明にあっては、図7に示す例のように、傾斜ベルト層のベルトコードの傾斜角度が35°以上の場合には、傾斜ベルト層は、タイヤ幅方向の幅の異なる2層の傾斜ベルト層を少なくとも含み、最広幅の傾斜ベルト層をなすコードのタイヤ周方向に対する傾斜角度θ1と、最狭幅の傾斜ベルト層をなすコードのタイヤ周方向に対する傾斜角度θ2とが、35°≦θ1≦85°、10°≦θ2≦30°、及び、θ1>θ2を満たすことが好ましい。
 タイヤ周方向に対して35°以上で傾斜するベルトコードを有する傾斜ベルト層を備えたタイヤの多くは、400Hz~2kHzの高周波域において、断面方向の1次、2次および3次等の振動モードにて、トレッド踏面が一律に大きく振動する形状となるため、大きな放射音が生じる。そこで、トレッドのタイヤ幅方向中央領域のタイヤ周方向剛性を局所的に増加させると、トレッドのタイヤ幅方向中央領域がタイヤ周方向に広がり難くなり、トレッド面のタイヤ周方向への広がりが抑制される結果、放射音を減少させることができる。
 図8は、ベルト構造の別の例を概略的に示しており、2層の傾斜ベルト層141、142のタイヤ径方向外側に、1層の周方向ベルト層143が積層されている。
 狭幅大径サイズの乗用車用タイヤにおいては、周方向ベルト層は高剛性であることが好ましく、より具体的にはタイヤ周方向に延びるコードのゴム引き層からなり、コードのヤング率をY(GPa)、打ち込み数をn(本/50mm)とし、周方向ベルト層をm層として、X=Y×n×mと定義するとき、1500≧X≧750であることが好ましい。狭幅大径サイズの乗用車用タイヤにおいては、路面からの旋回時における入力に対しタイヤ周方向において局所的な変形を起こし、接地面は略三角形状、すなわち、タイヤ幅方向の位置によって周方向の接地長が大きく変化する形状となりやすい。これに対し、高剛性の周方向ベルト層とすることにより、タイヤのリング剛性が向上して、タイヤ周方向の変形が抑制されることとなるため、ゴムの非圧縮性により、タイヤ幅方向の変形も抑制され、接地形状が変化しにくくなる。さらには、リング剛性が向上することにより偏心変形が促進され、転がり抵抗性能も同時に向上する。この転がり抵抗性能の向上効果は、狭幅大径サイズの乗用車用空気入りタイヤにおいて、特に向上効果の幅が大きくなる。
 さらに、上記のように高剛性の周方向ベルト層を用いた場合には、傾斜ベルト層のベルトコードのタイヤ周方向に対する傾斜角度を高角度、具体的には35°以上とすることが好ましい。高剛性の周方向ベルト層を用いた場合には、タイヤ周方向の剛性が高くなるこいとにより、タイヤによっては、接地長が減少してしまうことがある。そこで、高角度の傾斜ベルト層を用いることにより、タイヤ周方向の面外曲げ剛性を低下させて、踏面変形時のゴムのタイヤ周方向の伸びを増大させ、接地長の減少を抑制することができる。
 また、本発明では、周方向ベルト層には、破断強度を高めるために波状のコードを用いてもよい。同様に破断強度を高めるために、ハイエロンゲーションコード(例えば破断時の伸びが4.5~5.5%)を用いてもよい。
 さらに、本発明では、周方向ベルト層には、種々の材質が採用可能であり、代表的な例としては、レーヨン、ナイロン、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)、アラミド、ガラス繊維、カーボン繊維、スチール等が採用できる。軽量化の点から、有機繊維コードが特に好ましい。
 ここで、本発明では、周方向ベルト層のコードはモノフィラメントコードや、複数のフィラメントを縒り合せたコード、さらには異なる材質のフィラメントを縒り合せたハイブリットコードを採用することもできる。
 また、本発明では、周方向ベルト層の打ち込み数は、20~60本/50mmの範囲とすることができるが、この範囲に限定されるのもではない。
 さらに、本発明では、タイヤ幅方向に剛性・材質・層数・打ち込み密度等の分布を持たせることもでき、例えばタイヤ幅方向端部のみにおいて、周方向ベルト層の層数を増やすこともでき、一方でセンター部のみにおいて、周方向ベルト層の層数を増やすこともできる。
 また、本発明では、周方向ベルト層は、傾斜ベルト層よりも広幅または狭幅に設計することができる。例えば、傾斜ベルト層のうちタイヤ幅方向の幅の最も大きい最大幅傾斜ベルト層の90%~110%のタイヤ幅方向の幅とすることができる。
 ここで、周方向ベルト層は、スパイラル層として構成することが製造の観点から特に有利である。
 なお、本発明では、周方向ベルト層を設けないことも可能である。
 本発明では、カーカスラインには様々な構造を採用することができる。例えば、タイヤ径方向において、カーカス最大幅位置をビード部側に近づけることも、トレッド側に近づけることもできる。例えば、カーカス最大幅位置は、ビードベース部からタイヤ径方向外側に、タイヤ断面高さ対比で50%~90%の範囲に設けることができる。
 また、本発明では、カーカスも様々な構造を採用することができる。例えば、カーカスの打ち込み数としては、20~60本/50mmの範囲とすることができるが、これに限定されるものではない。
 さらに、例えば、カーカスの折り返し端をビードフィラーのタイヤ径方向端よりもタイヤ径方向内側に位置させることができ、またカーカス折り返し端をビードフィラーのタイヤ径方向外側端やタイヤ最大幅位置よりもタイヤ径方向外側に位置させ、場合によっては傾斜ベルト層のタイヤ幅方向端よりもタイヤ幅方向内側まで延在させることもできる。さらに、カーカスが複数枚のカーカスプライで構成される場合には、カーカス折り返し端のタイヤ径方向位置を異ならせることもできる。また、そもそもカーカス折り返し部を存在させずに、複数のビードコア部材で挟みこんだり、ビードコアに巻きつけた構造を採用したりすることもできる。
 狭幅大径サイズの乗用車用空気入りタイヤにおいて、タイヤサイド部を薄くすることが好ましい。「タイヤサイド部を薄くする」とは、例えば、ビードフィラーのタイヤ幅方向断面積S1を、ビードコアのタイヤ幅方向断面積S2の1倍以上4倍以下とすることができる。また、タイヤ最大幅部におけるサイドウォール部のゲージTsと、ビードコアのタイヤ径方向中心位置におけるビード幅Tbとの比Ts/Tbを、15%以上40%以下とすることができる。また、タイヤ最大幅部におけるサイドウォール部のゲージTsと、カーカスコードの径Tcとの比Ts/Tcを5以上10以下とすることができる。
 なお、ゲージTsはゴム、補強部材、インナーライナーなどすべての部材の厚みの合計となる。また、ビードコアがカーカスによって複数の小ビードコアに分割されている構造の場合には、全小ビードコアのうち幅方向最内側端部と最外側端部の距離をTbとする。
 本発明では、タイヤ最大幅位置は、ビードベース部からタイヤ径方向外側に、タイヤ断面高さ対比で50%~90%の範囲に設けることができる。
 本発明のタイヤは、リムガードを有する構造とすることもできる。
 本発明のタイヤは、ビードフィラーを設けない構造とすることもできる。
 本発明では、ビードコアは断面円形や断面多角形状など、様々な構造を採用することができる。また、カーカスをビードコアに巻きつける構造のほか、カーカスを複数のビードコア部材で挟みこむ構造とすることもできる。
 本発明では、ビード部には補強等を目的としてゴム層・コード層等をさらに設けることもできる。このような追加部材はカーカスやビードフィラーに対して様々な位置に設けることができる。
 本発明では、インナーライナーを厚くすることが、80-100Hzの車内騒音を低減する観点から好ましい。具体的には通常(1.0mm程度)よりも厚い1.5mm~2.8mm程度とすることが好ましい。
 狭幅大径サイズの乗用車用空気入りタイヤは特に高内圧使用下において80-100Hzの車内騒音が悪化しやすいという知見が得られている。インナーライナーを厚くすることで振動減衰性を高め、80-100Hzの車内騒音を低減することができる。なお、インナーライナーは転がり抵抗に寄与するロスが、トレッド等の他の部材と比較すると小さいため、転がり抵抗の悪化を最小限にとどめつつ、騒音性能を改善することができる。
 本発明では、インナーライナーは、ブチルゴムを主体としたゴム層のほか、樹脂を主成分とするフィルム層によって形成することもできる。
 本発明では、空洞共鳴音を低減するために、タイヤ内面に、多孔質部材を配置したり、静電植毛加工を行ったりすることもできる。
 本発明のタイヤは、タイヤ内面に、パンク時の空気の漏れを防ぐためのシーラント部材を備えることもできる。
 本発明の乗用車用空気入りタイヤは、タイヤサイド部に断面三日月型の補強ゴムを有した、サイド補強型ランフラットタイヤとすることもできる。
 狭幅大径サイズの乗用車用空気入りタイヤにおいて、サイド補強型ランフラットタイヤとする場合には、サイド部を簡素化させた構造により、ランフラット耐久性と燃費性能の両立を実現することができる。これは、狭幅大径サイズの乗用車用空気入りランフラットタイヤの場合には、ランフラット走行時に、サイド部及びトレッド部の変形が相対的に小さく、一方でショルダー部からバットレス部にかけて相対的に変形が大きくなるという知見に基づくものである。この変形は、従来サイズではサイド部に変形が相対的に大きくなるのと対照的である。
 このような、狭幅大径サイズに特徴的な変形のために、簡素化構造によってもランフラット耐久性を十分に確保し、かつ燃費性能をさらに向上させることができる。
 具体的な簡素化手法としては少なくとも以下の(i)~(iii)のいずれか1つの条件を満たすことにより可能となる。
 図9は、本発明のタイヤがランフラットタイヤである場合における、本発明の第3の実施形態にかかるタイヤのタイヤ幅方向断面図である。
 (i)図9に示すように、カーカス折り返し部の折り返し端Aが、タイヤ最大幅位置Pよりタイヤ径方向内側に位置する、(ii)タイヤをリムに組み込み、所定の内圧を充填し、無負荷とした、基準状態の際のタイヤ幅方向断面における、サイド補強ゴム151のタイヤ径方向最大長さをH1とし、ビードフィラーのタイヤ径方向最外側点とビードコアのタイヤ径方向最外側点とを結んだ線分の長さをH2とするとき、1.8≦H1/H2≦3.5、を満たす、(iii)タイヤをリムに組み込み、所定の内圧を充填し、無負荷とした、基準状態の際のタイヤ幅方向断面における、サイド補強ゴム151のタイヤ径方向最大長さをH1(mm)とするとき、関係式、10(mm)≦(SW/OD)×H1≦20(mm)を満たす。
 狭幅大径サイズの乗用車用空気入りタイヤにおいて、サイド補強型ランフラットタイヤとする場合には、タイヤ幅方向最外側の周方向主溝を、タイヤ幅方向のタイヤ赤道面CLよりに配置することにより、ランフラット耐久性の更なる向上を実現することができる。これは、狭幅大径サイズの乗用車用空気入りランフラットタイヤの場合には、ランフラット走行時に、サイド部及びトレッド部の変形が相対的に小さく、一方でショルダー部からバットレス部にかけて相対的に変形が大きくなるという知見に基づくものである。この変形は、従来サイズではサイド部に変形が相対的に大きくなるのと対照的である。このような、狭幅大径サイズに特徴的な変形のために、タイヤ幅方向最外側の周方向主溝をタイヤ赤道面CLよりに配置することで、ランフラット走行時のショルダー陸部からバットレス部にかけての接地性を高めることができ接地圧が緩和される。この結果として、ランフラット耐久性をさらに向上させることができる。
 図10は、本発明のタイヤがランフラットタイヤである場合における、本発明の第4の実施形態にかかるタイヤのタイヤ幅方向断面図である。
 具体的には、タイヤをリムに組み込み、所定の内圧を充填し、無負荷とした、基準状態の際のタイヤ幅方向断面における、1層以上のベルト層のうちタイヤ幅方向の幅が最大のベルト層のタイヤ幅方向の半幅をWBとし、タイヤ幅方向の幅が最大のベルト層のタイヤ幅方向端部から1本以上の周方向主溝のうちタイヤ幅方向最外側の周方向主溝161のタイヤ幅方向中心位置までのタイヤ幅方向距離をWGとするとき、関係式、0.5≦WG/WB≦0.8を満たすことが好ましい。
 以下、実施例により本発明を更に詳細に説明するが、本発明は下記の実施例になんら限定されるものではない。
 本発明の効果を確かめるため、以下の実施例1~11および比較例1のタイヤをそれぞれ試作した。
 実施例1のタイヤは、図1、2に示すような、タイヤサイズ165/60R19であるタイヤである。また、実施例1のタイヤは、トレッドゴムの、動歪1%、30℃における動的貯蔵弾性率E’が、8.6MPa以上であり、トレッドゴムが表1に示す諸元のゴム組成物からなっている。
 実施例2~11および比較例1のタイヤは、各諸元を表1に示すように変化させた以外、実施例1のタイヤと同様である。
 上記の各供試タイヤを以下に示す方法で評価した。
[ウェット性能]
 上記の各供試タイヤを、リム(リムサイズ5.5J19)に装着し内圧(300kPa)を充填して、車両に装着した後、ウェット路面を時速80km/hで走行させた。そして、上記状態で走行後、フルブレーキを行った際の、停止距離(m)を計測し、このときの平均減速度(m/s2)=V2/25.92Lを算出した(平均減速度a、初速v、質量m、停止距離Lとすると、mv2/2=maLより、a=v2/2Lと計算できる。ウェット時の摩擦係数(wet μ))。評価結果は、各供試タイヤについての値を逆数にして、比較例1に記載のタイヤを100とする指数にて示した。この指数値が大きいほどウェット性能がよいことを意味する。
Figure JPOXMLDOC01-appb-T000001
*1・・・JSR(株)製、製品名「SL584」、スチレン5質量%、ビニル28質量%
*2・・・JX日鉱日石エネルギー(株)製、製品名「A/O MIX」(ナフテン系オイル)
*3・・・エクソンモービルケミカル社製、商品名「ECR1102」
*4・・・エクソンモービルケミカル社製、商品名「ECR213」
*5・・・JX日鉱日石エネルギー(株)製、商品名「日石ネオポリマー(登録商標)140」
*6・・・ヤスハラケミカル社製、商品名「YSポリスターT100」
*7・・・住友ベークライト(株)製、スミライトレジン「PR50235」
*8・・・旭カーボン(株)製、商品名「#80」、N2SA 115m2/g、N220(ISAF)
*9・・・東ソー・シリカ(株)社製、商品名「ニプシルAQ」
*10・・・老化防止剤:N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、大内新興化学工業株式会社製、商品名「ノクラック6C」
*11・・・加硫促進剤:1,3-ジフェニルグアニジン、住友化学株式会社製、商品名「ソクシノール(登録商標)D-G」
 表1より実施例1~11は、比較例1のタイヤと比較して、ウェット性能が向上していることがわかる。
 本発明によれば、ウェット性能を十分に向上させることが可能な乗用車用空気入りタイヤを提供することができる。
1:乗用車用空気入りタイヤ、 21:ビード部、 22:カーカス、 23:トレッドゴム、 24:トレッド部、 25:サイドウォール部、 26:ベルト、 3:リブ状陸部、 3s:ショルダーリブ状陸部、 3c:センターリブ状陸部、 4:周方向主溝、 5:一端開口サイプ、 5c:(センターリブ状陸部の)一端開口サイプ、 5s:(ショルダーリブ状陸部の)一端開口サイプ、 5c1:周方向サイプ部分、 5c2:幅方向サイプ部分、 6:両端閉口サイプ、 6c:(センターリブ状陸部の)両端閉口サイプ、 6s:(ショルダーリブ状陸部の)両端閉口サイプ、 100:幅方向溝、 110:トレッド端側主溝、 111:隣接陸部、 112:一端開口溝、 113:浅溝、 121、122:傾斜ベルト層、 123、124:周方向ベルト層、 131、132:傾斜ベルト層、 133:周方向ベルト層、 141、142:傾斜ベルト層、 143:周方向ベルト層、 151:サイド補強ゴム、 161:周方向主溝、 CL:タイヤ赤道面、 E:トレッド接地端、 L:ピッチ長、 P1~P3:パターン、 T:トレッド踏面、 W:陸部幅

Claims (5)

  1.  一対のビード部間でトロイダル状に跨るラジアル配列コードのカーカスプライからなるカーカスと、当該カーカスのタイヤ半径方向外側に設けられたトレッドゴムとを備えた乗用車用空気入りタイヤであって、
     前記タイヤをリムに組み込み、内圧を250kPa以上とした際に、
     前記タイヤの断面幅SWが165(mm)未満である場合は、前記タイヤの断面幅SWと外径OD(mm)との比SW/ODが0.26以下であり、
     前記タイヤの断面幅SWが165(mm)以上である場合は、前記タイヤの断面幅SWおよび外径OD(mm)が、関係式、
       2.135×SW+282.3≦OD
    を満たし、
     前記トレッドゴムのトレッドゴム表面に位置する部分の少なくとも一部は、動歪1%、30℃における動的貯蔵弾性率E’が、4.0MPa以上であり、且つ、ジエン系ゴムを50質量%以上含有するゴム成分(A)と、該ゴム成分(A)100質量部に対し、熱可塑性樹脂、オイル、及び、ゲル浸透クロマトグラフィーで測定したポリスチレン換算重量平均分子量が5,000~200,000の、芳香族ビニル化合物-共役ジエン化合物共重合体、から選ばれる少なくとも1種の添加成分(B)5~50質量部と、を含むゴム組成物から形成されていることを特徴とする、乗用車用空気入りタイヤ。
  2.  トレッド踏面に、トレッド接地端とタイヤ周方向に連続して延びる周方向主溝とで区画形成され、または、相互に隣り合う、タイヤ周方向に連続して延びる2本の周方向主溝で区画形成されるリブ状陸部を少なくとも1本備える、請求項1に記載の乗用車用空気入りタイヤ。
  3.  前記リブ状陸部には、両端が、前記トレッド接地端と前記周方向主溝との両方に、または、2本の前記周方向主溝の両方に、開口する両端開口サイプが設けられておらず、
     前記リブ状陸部には、一端が、前記トレッド接地端と前記周方向主溝とのいずれか一方に、または、2本の前記周方向主溝のいずれか一方に、開口し、他端が、当該リブ状陸部内で終端する、一端開口サイプが設けられる、請求項2に記載の乗用車用空気入りタイヤ。
  4.  前記一端開口サイプは、前記他端からタイヤ周方向に延びる周方向サイプ部分と、当該周方向サイプ部分からタイヤ幅方向に延びて前記周方向主溝またはトレッド接地端に開口する幅方向サイプ部分と、を備える、請求項3に記載の乗用車用空気入りタイヤ。
  5.  前記リブ状陸部には、当該リブ状陸部内で両端が終端する両端閉口サイプが設けられる、請求項2~4のいずれかに記載の乗用車用空気入りタイヤ。
PCT/JP2016/003505 2015-09-07 2016-07-28 乗用車用空気入りタイヤ WO2017043007A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680051935.XA CN108025594A (zh) 2015-09-07 2016-07-28 乘用车用充气轮胎
US15/756,192 US20180244104A1 (en) 2015-09-07 2016-07-28 Passenger vehicle pneumatic tire
EP16843880.2A EP3348422A4 (en) 2015-09-07 2016-07-28 Passenger vehicle pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015176060A JP2017052329A (ja) 2015-09-07 2015-09-07 乗用車用空気入りタイヤ
JP2015-176060 2015-09-07

Publications (1)

Publication Number Publication Date
WO2017043007A1 true WO2017043007A1 (ja) 2017-03-16

Family

ID=58239339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003505 WO2017043007A1 (ja) 2015-09-07 2016-07-28 乗用車用空気入りタイヤ

Country Status (5)

Country Link
US (1) US20180244104A1 (ja)
EP (1) EP3348422A4 (ja)
JP (1) JP2017052329A (ja)
CN (1) CN108025594A (ja)
WO (1) WO2017043007A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3496957A4 (en) * 2016-08-08 2020-01-08 Bridgestone Bandag, LLC TIRES COMPRISING A LOW-TEAR BASE COMPOUND FOR A TIRE TREAD

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6558297B2 (ja) * 2016-04-26 2019-08-14 横浜ゴム株式会社 空気入りタイヤ
JP6878813B2 (ja) * 2016-10-03 2021-06-02 住友ゴム工業株式会社 ベーストレッド用ゴム組成物
JP7360314B2 (ja) * 2019-12-13 2023-10-12 株式会社ブリヂストン ベーストレッド用ゴム組成物及びタイヤ
EP4074519B1 (en) * 2019-12-13 2023-12-13 Bridgestone Corporation Base tread rubber composition and tyre
JP6863503B1 (ja) * 2020-04-24 2021-04-21 住友ゴム工業株式会社 タイヤ
EP4164898A1 (fr) * 2020-06-11 2023-04-19 Compagnie Generale Des Etablissements Michelin Pneumatique émettant un bruit réduit
WO2022025008A1 (ja) 2020-07-28 2022-02-03 住友ゴム工業株式会社 空気入りタイヤ
JP6835284B1 (ja) * 2020-07-28 2021-02-24 住友ゴム工業株式会社 空気入りタイヤ
JP6800435B1 (ja) * 2020-07-28 2020-12-16 住友ゴム工業株式会社 空気入りタイヤ
JP6880541B1 (ja) 2020-08-28 2021-06-02 住友ゴム工業株式会社 空気入りタイヤ
CN115989152A (zh) 2020-09-04 2023-04-18 住友橡胶工业株式会社 充气轮胎
JP7533139B2 (ja) * 2020-11-11 2024-08-14 住友ゴム工業株式会社 タイヤ
US20240051339A1 (en) * 2020-12-28 2024-02-15 Sumitomo Rubber Industries, Ltd. Pneumatic tire
JP2024014499A (ja) * 2022-07-22 2024-02-01 住友ゴム工業株式会社 タイヤ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224770A (ja) * 2005-02-16 2006-08-31 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2013063765A (ja) * 2011-08-26 2013-04-11 Bridgestone Corp 乗用車用空気入りラジアルタイヤ及びその使用方法
WO2013065319A1 (ja) * 2011-11-02 2013-05-10 株式会社ブリヂストン 乗用車用空気入りラジアルタイヤ及びその使用方法
WO2014178174A1 (ja) * 2013-04-30 2014-11-06 株式会社ブリヂストン 乗用車用空気入りラジアルタイヤ
JP5810204B1 (ja) * 2014-10-08 2015-11-11 株式会社ブリヂストン 乗用車用空気入りラジアルタイヤ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6797757B2 (en) * 2001-06-29 2004-09-28 The Goodyear Tire & Rubber Company Article, including tires, having component or rubber composition which contains particles of pre-vulcanized rubber and blend of tetrathiodipropionic and trithiodipropionic acids
WO2005023564A1 (ja) * 2003-09-05 2005-03-17 Bridgest0Ne Corporation 空気入りタイヤ
JP4124758B2 (ja) * 2004-08-17 2008-07-23 住友ゴム工業株式会社 ゴム組成物およびそれを用いたタイヤ
EP2261283A3 (en) * 2003-11-28 2012-03-21 Sumitomo Rubber Industries, Ltd. Rubber composition for a tire and tire using the same
JP2008260517A (ja) * 2007-03-16 2008-10-30 Bridgestone Corp 空気入りタイヤ
US20090005481A1 (en) * 2007-06-27 2009-01-01 Sumitomo Rubber Industries, Ltd. Rubber composition for tire, tire member and tire
US9387729B2 (en) * 2010-08-25 2016-07-12 Bridgestone Corporation Pneumatic tire
JP5447667B2 (ja) * 2010-12-03 2014-03-19 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
JP5905112B2 (ja) * 2011-10-24 2016-04-20 ブリヂストン アメリカズ タイヤ オペレイションズ エルエルシー シリカ充填ゴム組成物およびその製造方法
JP6317140B2 (ja) * 2014-03-05 2018-04-25 株式会社ブリヂストン 空気入りタイヤ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224770A (ja) * 2005-02-16 2006-08-31 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2013063765A (ja) * 2011-08-26 2013-04-11 Bridgestone Corp 乗用車用空気入りラジアルタイヤ及びその使用方法
WO2013065319A1 (ja) * 2011-11-02 2013-05-10 株式会社ブリヂストン 乗用車用空気入りラジアルタイヤ及びその使用方法
WO2014178174A1 (ja) * 2013-04-30 2014-11-06 株式会社ブリヂストン 乗用車用空気入りラジアルタイヤ
JP5810204B1 (ja) * 2014-10-08 2015-11-11 株式会社ブリヂストン 乗用車用空気入りラジアルタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3348422A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3496957A4 (en) * 2016-08-08 2020-01-08 Bridgestone Bandag, LLC TIRES COMPRISING A LOW-TEAR BASE COMPOUND FOR A TIRE TREAD

Also Published As

Publication number Publication date
EP3348422A4 (en) 2018-08-08
CN108025594A (zh) 2018-05-11
JP2017052329A (ja) 2017-03-16
EP3348422A1 (en) 2018-07-18
US20180244104A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
WO2017043007A1 (ja) 乗用車用空気入りタイヤ
JP6758088B2 (ja) 空気入りタイヤ
WO2017043008A1 (ja) 空気入りタイヤ
US11207925B2 (en) Tire
JP6581574B2 (ja) 乗用車用空気入りラジアルタイヤ
JP6605460B2 (ja) 乗用車用空気入りラジアルタイヤ
JP6445915B2 (ja) タイヤ
JP6527750B2 (ja) 空気入りタイヤ
JP7140310B1 (ja) タイヤ
JP2016074357A (ja) 乗用車用空気入りラジアルタイヤ
JP2022029764A (ja) タイヤ
JP2016074408A (ja) 乗用車用空気入りラジアルタイヤ
WO2017043003A1 (ja) 空気入りタイヤ
CN115916557A (zh) 轮胎
JPWO2019026477A1 (ja) 空気入りタイヤ
JP7159999B2 (ja) 空気入りタイヤ
CN115884883A (zh) 轮胎
JP2022029368A (ja) タイヤ
JP2023025806A (ja) タイヤ
JP6393658B2 (ja) 空気入りタイヤ
JP7362956B1 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16843880

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15756192

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016843880

Country of ref document: EP