WO2017041280A1 - 一种具有过渡基板的led器件及其封装方法 - Google Patents

一种具有过渡基板的led器件及其封装方法 Download PDF

Info

Publication number
WO2017041280A1
WO2017041280A1 PCT/CN2015/089403 CN2015089403W WO2017041280A1 WO 2017041280 A1 WO2017041280 A1 WO 2017041280A1 CN 2015089403 W CN2015089403 W CN 2015089403W WO 2017041280 A1 WO2017041280 A1 WO 2017041280A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
led
chip
transition
transition substrate
Prior art date
Application number
PCT/CN2015/089403
Other languages
English (en)
French (fr)
Inventor
李宗涛
丁鑫锐
李宏浩
关沃欢
Original Assignee
佛山市国星光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市国星光电股份有限公司 filed Critical 佛山市国星光电股份有限公司
Priority to PCT/CN2015/089403 priority Critical patent/WO2017041280A1/zh
Publication of WO2017041280A1 publication Critical patent/WO2017041280A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Definitions

  • the present invention relates to the field of LED packaging, and in particular to an LED device having a transition substrate and a packaging method thereof.
  • the existing technologies mainly include:
  • COB device for mounting LED chip metal substrate In order to improve the brightness of COB device and good heat dissipation effect, multiple LED chips are usually mounted on the metal substrate, and the electrical connection between the LED chip and the external power source is realized by the gold wire. .
  • devices using gold wires are not reliable in severe cold regions and therefore cannot be used in severe cold regions.
  • flip-chip LED chip metal substrate COB device In order to solve the reliability problem of COB device in severe cold regions, people think of using flip-chip structure without gold wire to achieve electrical connection. However, since the expansion coefficient of the metal substrate material is much larger than the expansion coefficient of the chip material (usually GaN material), the temperature change during packaging tends to cause defects such as cracks, leakage, and short circuit of the active layer of the chip due to stress pulling. It is difficult to mount a chip on a COB device in a flip-chip package of a metal substrate.
  • COB device for flip-chip LED chip ceramic substrate In order to solve the problems caused by the above LED chip package, it has been proposed to package the flip-chip LED chip on the ceramic substrate. However, on the one hand, the cost of the ceramic substrate is much higher than that of the metal substrate. On the other hand, since the ceramic substrate itself is relatively brittle, especially for a large-area package or a strip-shaped package COB device, the flip-chip LED chip ceramic substrate is COB devices are also limited in their ability to produce devices of any shape and size.
  • an object of the present invention to provide an LED device with a transition substrate which has high reliability, low production cost, and is not limited in shape and size.
  • an LED device having a transition substrate, including at least one LED unit, a metal substrate, and an encapsulant.
  • the LED unit includes an LED chip and a transition substrate.
  • the expansion coefficient value of the transition substrate is between the expansion coefficient of the LED chip and the metal substrate, and the difference between the expansion coefficient of the LED chip and the expansion coefficient of the LED chip is 0 to 20%;
  • the LED chip is a flip chip, the bottom of which is provided with positive and negative electrodes;
  • the upper surface of the transition substrate is provided with at least two solder layers insulated from each other;
  • the lower surface of the transition substrate is provided At least two chip pins insulated from each other, the at least two solder layers are respectively electrically connected to the two chip pins;
  • the positive and negative electrodes of the LED chip are respectively connected with the solder layer on the transition substrate to form an LED unit,
  • the LED unit is disposed on the metal substrate through a chip lead of the transition substrate;
  • the encapsulant is disposed around the LED unit and wraps the LED unit
  • the encapsulant encapsulates a plurality or all of the LED units on the metal substrate.
  • the transition substrate is a ceramic substrate or a silicon substrate.
  • the transition substrate between the two solder layers and the two chip pins respectively have two electrode holes; the two electrode holes are filled with a conductor; the two chip pins The electrical conductors in the two electrode holes are electrically connected to the two soldering surfaces.
  • the positive and negative electrodes of the LED chip and the solder layer of the transition substrate are connected by a eutectic layer.
  • the upper surface of the metal substrate is provided with positive and negative conductive layers insulated from each other, and the chip pins of the transition substrate are respectively connected to the positive and negative conductive layers through a solder paste layer.
  • the LED device with a transition substrate further includes a dam; the dam surrounds all the LED units on the metal substrate; the encapsulant is filled in the dam, and covers and wraps around All LED units inside the dam.
  • the LED device with transition substrate of the present invention has the following advantages:
  • the invention adds a transition substrate between the LED chip with low expansion coefficient and the metal substrate with high expansion coefficient.
  • the large internal stress of the metal substrate is absorbed by the transition substrate, and the stress of the metal substrate is blocked to the LED.
  • the path of the chip transfer prevents the active layer of the LED chip from cracking, leakage and short circuit due to stress pulling, and improves the LED core.
  • the reliability of the chip at the same time, the difference of the expansion coefficient of the LED chip of the transition substrate is 0 to 20% of the expansion coefficient of the LED chip, which can make the bonding of the LED chip and the transition substrate closer, and reduce the active layer of the LED chip.
  • the stress makes the LED chip more reliable.
  • the metal substrate used in the package substrate can overcome the shortcomings of the traditional ceramic substrate and the poor seismic resistance. It can overcome the phenomenon that the traditional LED chip is connected by gold wire to realize the electrical connection. , greatly improving the reliability of LED devices.
  • the substrate used in the LED device described in this embodiment is a metal substrate, and can be formed into a device of any size and shape without considering the phenomenon of substrate fracture.
  • Another object of the present invention is to provide a method for packaging an LED with a transition substrate as described above, which is achieved by the following technical solution: a method for packaging an LED device, comprising the following steps:
  • the expansion coefficient value of the transition substrate is between the expansion coefficient of the LED chip and the metal substrate, and the difference from the expansion coefficient of the LED chip is 0 to 20% of the expansion coefficient of the LED chip;
  • the upper surface of the metal substrate is provided with two positive and negative conductive layers insulated from each other, and the two chip pins of the transition substrate are respectively positively and negatively electrically conductive with the metal substrate.
  • the layer corresponds to the welding;
  • the encapsulant consists of one or more of a high light-transmitting colloid, a phosphor, a silica powder, and a titanium dioxide, and the encapsulant covers and wraps the LED unit.
  • the step (3) and the step (4) further comprise the steps of: forming a circle of dam around the periphery of the metal substrate, the dam surrounding all the LED units on the metal substrate The encapsulant is filled in The inside of the dam covers and seals all LED units in the dam.
  • the step (1) further includes the steps of: firstly providing at least two electrode holes on the transition substrate, filling the electrode holes with electrical conductors, and then forming a cover on the upper surface of the transition substrate; At least two mutually insulated solder layers of at least two electrode holes, and two mutually insulated chip pins covering at least two electrode holes are formed on a lower surface of the transition substrate, and the solder layer passes through the conductors and the chip pins in the electrode holes Electrical connection.
  • the process of providing at least two electrode holes in the transition substrate in the step (1) employs a laser technique, and the electrode holes are formed by using a laser through hole on the transition substrate.
  • the metal film on all surfaces of the transition substrate is thickened, and the electrode holes are filled, so that The inside of the electrode hole is filled with a metal material to form an electrical conductor, and the electrical connection between the upper and lower surfaces of the transition substrate is realized.
  • the wiring is etched by photolithography so that at least two mutually insulating solder layers are formed on the upper surface of each of the transition substrates. At least two mutually insulated chip pins are formed on the lower surface of the transition substrate.
  • the step (2) further comprises the steps of: arranging a plurality of LED chips on the transition substrate, and cutting the ceramic substrate soldered with the LED chips into individual LED units by using a ceramic cutting technique.
  • the process of flip chip soldering to the transition substrate in the step (2) adopts a eutectic soldering technique, and the positive and negative electrodes of the LED chip respectively pass a eutectic between the two solder layers of the transition substrate. Layer connection.
  • the packaging method of the LED with a transition substrate of the present invention has simple steps, is low in cost, and can obtain a reliable LED device.
  • Figure 1 is a cross-sectional view showing the structure of an LED device having a transition substrate of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing the LED unit shown in FIG. 1 disposed on a metal substrate.
  • FIG. 3 is a flow chart showing a method of packaging the LED COB device shown in FIG. 1.
  • step S1 is a schematic diagram of a specific process of step S1 in the packaging method of the LED COB device shown in FIG.
  • Figure 5 is a plan view of the original transition substrate of the ceramic substrate 5 of the LED COB device shown in Figure 1.
  • FIG. 1 is a cross-sectional view of an LED device having a transition substrate according to the present invention.
  • FIG. 2 is a schematic cross-sectional view showing the LED unit shown in FIG. 1 disposed on a metal substrate.
  • the LED COB device with transition substrate of the present invention comprises: at least one LED unit 1, a metal substrate 2, a dam 3, and an encapsulant (not shown).
  • the LED unit 1 is soldered to and electrically connected to the metal substrate 2.
  • the dam 3 is disposed on the edge of the metal substrate 2 and surrounds all of the LED units 1 on the metal substrate to form an enclosing area 4 for packaging.
  • the encapsulant is filled in the enclave 4 and covers all of the LED units 1 that seal its interior.
  • the LED unit 1 includes an LED chip 11 and a transition substrate 12.
  • the LED chip is a flip chip, and the positive and negative electrodes are located on the same side of the chip.
  • the expansion coefficient of the transition substrate 12 is between the expansion coefficient of the LED chip 11 and the metal substrate 2 and the difference between the expansion coefficient of the LED chip and the expansion coefficient of the LED chip is 0 to 20% of the expansion coefficient of the LED chip. It may be a ceramic substrate or a silicon substrate, and in the present embodiment, it is preferably a ceramic substrate.
  • the two sides of the transition substrate 12 are provided with two electrode holes 122 penetrating the upper and lower surfaces thereof, and the electrode holes 122 are filled with a conductor.
  • Two solder layers 121 are insulated from each other on the upper surface of the transition substrate 12, and the solder layer 121 is shaped to match the positive and negative electrodes of the LED chip 11; the two solder layers respectively cover the two electrode holes 122.
  • Two chip pins 123 are disposed on the lower surface of the transition substrate 12, and the two surface pins 123 respectively cover the two electrode holes 122.
  • the solder layer 121 and the chip pins 123 are electrically connected by a conductor filled in the electrode holes 122.
  • the LED chip 11 is flip-chip soldered on the transition substrate 12, and the positive and negative electrodes of the LED chip 11 are respectively soldered to the two solder layers 121 on the upper surface of the transition substrate 12.
  • the welding between the positive and negative electrodes of the LED chip 11 and the solder layer 121 is performed by the eutectic layer 111, wherein the eutectic layer 111 is a eutectic material, preferably a gold-tin alloy.
  • the upper surface of the metal substrate 2 is provided with an LED chip mounting region.
  • the LED chip mounting area is provided with at least one pair of mutually insulated positive and negative conductive layers.
  • the chip pins 123 of the transition substrate 12 are soldered to the positive and negative conductive layers of the metal substrate 2 by solder paste 21. Therefore, the LED chip 11 is disposed on the metal substrate 2 through the transition substrate 12, and the positive and negative electrodes of the LED chip 11 sequentially pass through the solder layer 121, the conductor 122, and the chip pin 123 on the transition substrate 12, respectively, and the metal.
  • the positive and negative conductive layers on the substrate 2 are electrically connected.
  • the dam 3 is located at an edge region of the metal substrate 2 and surrounds all the LED units 1 on the metal substrate 2 to form A closed enclosure 4.
  • a single LED unit 1 may be provided in the enclosure 4 or a plurality of LED units 1 may be provided. In the present embodiment, a plurality of LED units 1 are provided in the surrounding area.
  • the encapsulant is filled in the surrounding area of the dam and covers all of the LED chips 11 and the transition substrate 12.
  • the surface precision of the solder layer on the upper surface of the transition substrate 12 is required to be high, and the surface roughness parameter should be Rz less than 3 ⁇ m.
  • the LED COB device with transition substrate of the present invention has the following advantages:
  • the invention adds a transitional ceramic substrate between the LED chip with low expansion coefficient and the metal substrate with high expansion coefficient, and the large internal stress of the metal substrate is absorbed by the ceramic substrate, thereby blocking the stress direction of the metal substrate.
  • the path of the LED chip is effective to prevent cracking, leakage and short circuit of the active layer of the LED chip due to stress pulling, thereby improving the reliability of the LED device; meanwhile, the difference of the expansion coefficient of the LED chip of the transition substrate is the LED chip.
  • the 0 to 20% expansion coefficient can make the LED chip and the transition substrate more closely fit, reduce the stress of the active layer of the LED chip, and make the LED chip more reliable.
  • the metal substrate used in the package substrate can overcome the shortcomings of the traditional ceramic substrate and the poor seismic resistance. It can overcome the phenomenon that the traditional LED chip is connected by gold wire to realize the electrical connection. , greatly improving the reliability of LED devices.
  • the substrate used for the LED COB device described in this embodiment is a metal substrate, and can be formed into a device of any size and shape without considering the phenomenon of substrate fracture.
  • FIG. 3 is a schematic flowchart of a packaging method of the LED COB device shown in FIG. 1 .
  • the packaging method of the LED COB device of the present invention comprises the following steps:
  • step S1 forming a transition substrate, the expansion coefficient value of the transition substrate is between the expansion coefficient of the LED chip and the metal substrate, and the difference from the expansion coefficient of the LED chip is 0 to 20% of the expansion coefficient of the LED chip, in this implementation In the example Ceramic substrate.
  • FIG. 4 is a schematic diagram of a specific process of step S1 in the packaging method of the LED COB device shown in FIG. 3 .
  • the step S1 specifically includes the following steps:
  • S11 forming an electrode hole: performing a laser through hole on a whole ceramic substrate to form an electrode hole.
  • S12 Coating a surface of the ceramic substrate: a sputtering process is used to coat all surfaces of the ceramic substrate having the electrode holes with a metal film.
  • S14 forming a solder layer and a chip lead: etching the circuit by photolithography, so that at least two mutually insulated solder layers are formed on the upper surface of each ceramic substrate, and at least two mutually insulated layers are formed on the lower surface of each ceramic substrate. Patch pins.
  • FIG. 4 is a top view of the original transition substrate.
  • the array on the transition substrate is divided into a plurality of chip regions, and each of the chip regions is provided with two solder layers on the upper surface.
  • the positive and negative electrodes of the plurality of LED chips 11 are respectively soldered to the solder layers 121 on the plurality of chip regions of the transition substrate 12.
  • the soldering technology is a eutectic soldering technology, that is, the eutectic material is used to solder the positive and negative electrodes of the LED chip 11 on the solder layer of the transition substrate 12.
  • the positive and negative soldering surfaces 121 connected thereto are required to have high precision, and the surface roughness parameter Rz is less than 3 ⁇ m.
  • FIG. 5 is a top view of the original transition substrate of the ceramic substrate 5 of the LED COB device shown in FIG. 1. Since the transition substrate of the present invention is a ceramic substrate, the ceramic substrate 5 to which the LED chip 11 is soldered is cut into individual LED units 1 by a ceramic cutting technique.
  • the LED unit 1 is mounted on the metal substrate 2: the metal substrate 2 is provided with positive and negative conductive layers insulated from each other.
  • the SMD Surface Mounted Devices
  • the SMD Surface Mounted Devices
  • a circle of the dam 3 is disposed on the periphery of the metal substrate 2 to form an enclosing area 4, and all the LED units 1 on the metal substrate are located in the surrounding area 4.
  • the enclosing area 4 formed to the dam 3 is filled with an encapsulant, and the encapsulant covers and wraps all the LED units 1 inside the dam.
  • steps S2 and S3 are interchangeable, and steps S4 and S5 are interchangeable, and are not limited to the embodiment.
  • a transition ceramic substrate is added between the LED chip having a low expansion coefficient and the metal substrate having a high expansion coefficient, and a large internal stress of the metal substrate is absorbed by the ceramic substrate. Blocking the path of metal substrate stress transfer to the LED chip, effectively preventing the active layer of the LED chip from being pulled by stress, causing cracks, leakage and short circuit, etc., improving the reliability of the LED chip; the expansion coefficient of the LED chip of the transition substrate The difference is 0 to 20% of the expansion coefficient of the LED chip, which can make the bonding of the LED chip and the transition substrate closer, reduce the stress of the active layer of the LED chip, and make the LED chip more reliable.
  • the transition substrate a pair of electrode holes are opened on the transition substrate, and the electric conductor is filled, so that the electrical connection manner of the positive and negative electrodes of the LED chip and the chip pins is simpler, safer and more reliable, and the traditional positive-mounted LED chip is electrically connected by using a gold wire.
  • the resulting phenomenon of gold wire breakage greatly improves the reliability of the LED device.
  • the eutectic soldering technology and the SMD surface soldering technology are respectively used between the LED chip and the transition substrate, and between the chip pins of the transition substrate and the metal substrate, thereby further improving the process level of the LED device and enabling the LED device. More reliable and durable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

一种具有过渡基板(12)的LED器件,包括至少一个LED单元(1)、金属基板(2)以及封装胶体。LED单元(1)包括一个LED芯片(11)与一个过渡基板(12),过渡基板(12)的膨胀系数值处于该LED芯片(11)与金属基板(2)的膨胀系数之间,且与LED芯片(11)的膨胀系数的差值为LED芯片(11)的膨胀系数的0到20%。LED芯片(11)为倒装芯片,其底部设置有正、负电极。过渡基板(12)的上表面设有至少两个相互绝缘的焊接层(121)。过渡基板(12)的下表面设有相互绝缘的至少两个贴片引脚(123)。至少两焊接层(121)分别与两贴片引脚(123)电连接。LED芯片(11)的正、负电极分别与过渡基板(12)上的焊接层(121)连接以形成LED单元(1),该LED单元(1)通过过渡基板(12)的贴片引脚(123)设置在金属基板(2)上。封装胶体覆盖并包裹该LED单元(1)。该LED器件可靠性高,生产成本低,其形状及大小不受限制。

Description

一种具有过渡基板的LED器件及其封装方法 技术领域
本发明涉及LED封装领域,尤其涉及一种具有过渡基板的LED器件及其封装方法。
背景技术
随着LED封装向薄型化及低成本化方向发展,板上芯片(COB)封装技术逐步兴起。LED COB器件的生产成本,亮度,可靠性均是衡量LED COB器件质量的重要指标。因此,人们也一直致力于提高LED COB器件的可靠性,降低生产成本的研究。
为了提高LED COB器件的亮度和可靠性,降低生产成本,现有的技术主要有:
一、正装LED芯片金属基板的COB器件:为了提高COB器件的亮度,且散热效果好,通常将多个LED芯片正装在金属基板上,采用金线实现LED芯片与外界电源之间的电性连接。然而,使用金线的器件在严寒地区的可靠性差,因此无法在严寒地区使用。
二、倒装LED芯片金属基板的COB器件:为了解决COB器件在严寒地区的可靠性问题,人们想到使用倒装结构不采用金线实现电连接。但是由于金属基板材料的膨胀系数远远大于芯片材料(通常为GaN材料)的膨胀系数,封装时的温度变化容易造成芯片有源层因应力拉扯而产生的裂纹、漏电、短路等缺陷,故倒装芯片难以用于金属基板倒装封装的COB器件上。
三、倒装LED芯片陶瓷基板的COB器件:为了解决上述LED芯片封装时产生的问题,人们又提出了将倒装LED芯片封装在陶瓷基板上。然而,一方面,陶瓷基板的成本远远高于金属基板,另一方面,由于陶瓷基板本身比较脆,尤其是大面积封装的或条形封装的COB器件,因此,倒装LED芯片陶瓷基板的COB器件也受到限制,不能生产任意形状及大小的器件。
因此,有必要提出一种可靠性高,生产成本低,形状及大小不受限制的LED COB器件。
发明内容
为了解决上述现有技术的不足,本发明的目的在于,提供一种带过渡基板的LED器件,该LED器件可靠性高,生产成本低,其形状及大小不受限制。
为了实现上述目的,采用如下技术方案:一种具有过渡基板的LED器件,包括至少一个LED单元、金属基板以及封装胶体。所述LED单元包括一个LED芯片与一个过渡基板,该过渡基板的膨胀系数值处于该LED芯片与金属基板的膨胀系数之间,且与LED芯片的膨胀系数的差值为LED芯片的膨胀系数的0到20%;所述LED芯片为倒装芯片,其底部设置有正、负电极;所述过渡基板的上表面设有至少两个相互绝缘的焊接层;所述过渡基板的下表面设有相互绝缘的至少两个贴片引脚,所述至少两焊接层分别与两贴片引脚电连接;该LED芯片的正、负电极分别与过渡基板上的焊接层连接以形成LED单元,该LED单元通过过渡基板的贴片引脚设置在金属基板上;所述封装胶体设置在LED单元周围并包裹该LED单元。
作为本发明的进一步改进,所述封装胶体包裹金属基板上的多个或所有LED单元。
作为本发明的进一步改进,所述过渡基板为陶瓷基板或硅基板。
作为本发明的进一步改进,所述两焊接层与所述两贴片引脚之间的过渡基板分别开有两电极孔;所述两电极孔内填充有导电体;所述两贴片引脚通过两电极孔内的导电体与分别两焊接面电连接。
作为本发明的进一步改进,所述LED芯片的正、负极与过渡基板的焊接层之间通过一共晶层连接。
进一步,该金属基板的上表面设有相互绝缘的正、负导电层,该过渡基板的贴片引脚分别与该正、负导电层之间通过一锡膏层连接。
作为本发明的进一步改进,所述具有过渡基板的LED器件还包括围坝;所述围坝包围所有金属基板上的LED单元;所述封装胶体填充于所述围坝内,且覆盖并包裹围坝内部所有的LED单元。
相比于现有技术,本发明的具有过渡基板的LED器件具有以下优点:
1、芯片可靠性高:本发明在低膨胀系数的LED芯片与高膨胀系数的金属基板之间增加一过渡基板,金属基板较大的内应力被过渡基板吸收,阻断了金属基板应力向LED芯片传递的路径,有效防止LED芯片有源层因应力拉扯而产生裂纹,漏电及短路等现象,提高LED芯 片的可靠性;同时,该过渡基板的LED芯片的膨胀系数的差值为LED芯片的膨胀系数的0到20%,能使LED芯片与过渡基板的贴合更紧密,降低LED芯片有源层的应力,使LED芯片更可靠。
2、器件可靠性高:封装基板采用金属基板,既可以克服传统陶瓷基板易碎,抗震能力差的缺点,又可以克服传统正装LED芯片采用金线实现电连接,而导致的金线断裂等现象,大大提高了LED器件的可靠性。
3、成本低:本实施例仅LED芯片对应位置需要用到陶瓷基板,陶瓷基板的用量少,故成本低。
4、任意形状及大小:本实施例所述的LED器件所用的基板为金属基板,可以做成任意大小和形状的器件,无需考虑基板断裂现象。
本发明的另一个目的是提供一种上述带有过渡基板的LED的封装方法,其通过以下技术方案实现:一种LED器件的封装方法,包括以下步骤:
(1)设置一过渡基板,该过渡基板的膨胀系数值处于LED芯片与金属基板的膨胀系数之间,且与LED芯片的膨胀系数的差值为LED芯片的膨胀系数的0到20%;在过渡基板的上表面形成至少两相互绝缘的焊接层,在过渡基板的下表面形成两相互绝缘的贴片引脚,并使该至少两相互绝缘的焊接层分别与贴片引脚电连接;
(2)将一LED芯片倒装焊接到过渡基板上,所述LED芯片的正、负电极与所述过渡基板的两焊接层对应焊接,形成LED单元;
(3)将LED单元焊接在一金属基板上,该金属基板的上表面设有两相互绝缘的正、负导电层,所述过渡基板的两贴片引脚分别与金属基板的正、负导电层对应焊接;
(4)配置封装胶体,封装胶体由高透光胶体、荧光粉、二氧化硅粉、钛白粉中的一种或几种组成,所述封装胶体覆盖并包裹该LED单元。
作为本发明的进一步改进,步骤(3)与步骤(4)之间还包括如下步骤:在金属基板的外围形成一圈围坝,所述围坝将金属基板上的所有LED单元围在其内部;所述封装胶体填充于 所述围坝内部,且覆盖并密封围坝内所有LED单元。
作为本发明的进一步改进,步骤(1)中还包括以下步骤:首先在所述过渡基板上设置至少两电极孔,并在电极孔内填充导电体,然后再在该过渡基板的上表面形成覆盖至少两电极孔的至少两相互绝缘的焊接层,在过渡基板的下表面形成覆盖至少两电极孔的两相互绝缘的贴片引脚,该焊接层通过电极孔内的导电体与贴片引脚电连接。
作为本发明的进一步改进,步骤(1)中在过渡基板设置至少两电极孔的过程采用激光技术,通过在过渡基板上使用激光打通孔,形成所述电极孔。
作为本发明的进一步改进,在步骤(1)中形成至少两电极孔后,在具有所述电极孔的过渡基板上的所有表面均镀上一层金属膜。
作为本发明的进一步改进,在步骤(1)中将具有通孔的过渡基板所有表面均镀上一层金属膜后,将所述过渡基板所有表面的金属膜加厚,并填充电极孔,使得电极孔孔内部充满金属材料以形成导电体,实现过渡基板上下表面的电性连接。
作为本发明的进一步改进,在步骤(1)中在通孔内部填充满金属后,采用光刻的方法刻蚀线路,使得每个过渡基板上表面形成至少两个相互绝缘的焊接层,在每个过渡基板下表面形成至少两个相互绝缘的贴片引脚。
作为本发明的进一步改进,步骤(2)还包括以下步骤:该过渡基板上倒装有多个LED芯片,采用陶瓷切割技术将焊接有LED芯片的陶瓷基板切割成一个个独立的LED单元。
作为本发明的进一步改进,步骤(2)中LED芯片倒装焊接到过渡基板的过程采用共晶焊接技术,所述LED芯片的正、负电极分别与过渡基板的两焊接层之间通过一共晶层连接。
相较于现有技术,本发明的带有过渡基板的LED的封装方法步骤简单,成本低廉,并且能够获得可靠性的LED器件。
附图说明
图1是本发明一种具有过渡基板的LED器件的剖面图结构示意图。
图2是图1所示LED单元设置在金属基板上的剖面结构示意图。
图3是图1所示的LED COB器件的封装方法的流程示意图。
图4是图3所示LED COB器件的封装方法中步骤S1的具体流程示意图
图5是图1所示的LED COB器件的陶瓷基板5的原始过渡基板的俯视图。
下面参见附图及具体实施例,对本发明作进一步说明。
具体实施方式
请同时参阅图1和图2,其中,图1是本发明一种具有过渡基板的LED器件的剖面图结 构示意图,图2是图1所示的LED单元设置在金属基板上的剖面结构示意图。
如图1所示,本发明的具有过渡基板的LED COB器件包括:至少一个LED单元1、金属基板2、围坝3以及封装胶体(图未示)。所述LED单元1焊接在所述金属基板2上并与其电连接。所述围坝3设在所述金属基板2的边缘上,并包围金属基板上的所有LED单元1,形成封装用的包围区4。所述封装胶体填充于所述包围区4并覆盖密封其内部的所有LED单元1。
具体地,如图2所示,所述LED单元1包括一LED芯片11和一过渡基板12。该LED芯片为倒装芯片,其正、负电极位于芯片的同一侧。所述过渡基板12的膨胀系数处于该LED芯片11与金属基板2的膨胀系数之间且与LED芯片的膨胀系数且与LED芯片的膨胀系数的差值为LED芯片的膨胀系数的0到20%,可以是陶瓷基板或硅基板,在本实施例中优选为陶瓷基板。该过渡基板12的两侧设有贯穿其上下表面的两电极孔122,该电极孔122内填充有导电体。在该过渡基板12的上表面设有互相绝缘的两焊接层121,所述焊接层121形状与LED芯片11的正、负电极匹配;该两焊接层分别覆盖两电极孔122。在该过渡基板12的下表面设有两贴片引脚123,该两贴面引脚123分别覆盖两电极孔122。该焊接层121和贴片引脚123通过电极孔122内填充的导电体电连接。该LED芯片11倒装焊接在该过渡基板12上,且该LED芯片11的正、负电极分别与过渡基板12上表面的两焊接层121对应焊接。所述LED芯片11的正、负电极与所述焊接层121之间通过共晶层111实现焊接,其中,该共晶层111为共晶材料,优选为金锡合金。
所述金属基板2的上表面设有LED芯片安装区。所述LED芯片安装区设有至少一对互相绝缘的正、负导电层。所述过渡基板12的贴片引脚123通过锡膏21焊接在该金属基板2的正、负导电层上。从而,该LED芯片11通过过渡基板12设置在金属基板2上,且LED芯片11的正、负电极依序通过过渡基板12上的焊接层121、导电体122和贴片引脚123分别与金属基板2上的正、负导电层实现电连接。
所述围坝3位于金属基板2的边缘区域且包围该金属基板2上的所有LED单元1,形成 一个封闭的包围区4。该包围区4内可以设有单个LED单元1,也可以设置多个LED单元1。在本实施例中,包围区内设有多个LED单元1。所述封装胶体填充在围坝包围区,并覆盖所有LED芯片11与过渡基板12。
另外,由于LED芯片11的正、负电极之间的间距很小,故要求过渡基板12上表面的焊接层的表面精度高,其表面粗糙度参数应Rz小于3微米。
相比于现有技术,本发明的具有过渡基板的LED COB器件具有以下优点:
1、芯片可靠性高:本发明在低膨胀系数的LED芯片与高膨胀系数的金属基板之间增加一过渡陶瓷基板,金属基板较大的内应力被陶瓷基板吸收,阻断了金属基板应力向LED芯片传递的路径,有效防止LED芯片有源层因应力拉扯而产生裂纹,漏电及短路等现象,提高LED器件的可靠性;同时,该过渡基板的LED芯片的膨胀系数的差值为LED芯片的膨胀系数的0到20%,能使LED芯片与过渡基板的贴合更紧密,降低LED芯片有源层的应力,使LED芯片更可靠。
2、器件可靠性高:封装基板采用金属基板,既可以克服传统陶瓷基板易碎,抗震能力差的缺点,又可以克服传统正装LED芯片采用金线实现电连接,而导致的金线断裂等现象,大大提高了LED器件的可靠性。
3、成本低:本实施例仅LED芯片对应位置需要用到陶瓷基板,陶瓷基板的用量少,故成本低。
4、任意形状及大小:本实施例所述的LED COB器件所用的基板为金属基板,可以做成任意大小和形状的器件,无需考虑基板断裂现象。
以下详细说明该具有过渡基板的LED COB器件的封装方法。
请参阅图3,其是图1所示的LED COB器件的封装方法的流程示意图。本发明的LED COB器件的封装方法包括以下步骤:
S1:形成过渡基板,该过渡基板的膨胀系数值处于LED芯片与金属基板的膨胀系数之间,且与LED芯片的膨胀系数的差值为LED芯片的膨胀系数的0到20%,在本实施例中采用 陶瓷基板。请参阅图4,其是图3所示LED COB器件的封装方法中步骤S1的具体流程示意图。该步骤S1具体包括如下步骤:
S11:形成电极孔:在一整块陶瓷基板上进行激光打通孔,形成电极孔。
S12:在陶瓷基板表面镀膜:采用溅射镀膜工艺,将具有电极孔的陶瓷基板的所有表面均镀上一层金属膜。
S13:电极孔内填充金属以形成导电体:采用电镀的方法将陶瓷基板所有表面的金属膜加厚,并填充电极孔,使得电极孔内部充满金属以形成导电体,实现陶瓷基板上下表面的电性连接;
S14:形成焊接层与贴片引脚:采用光刻的方法刻蚀线路,使得每个陶瓷基板上表面形成至少两个相互绝缘的焊接层,在每个陶瓷基板下表面形成至少两个相互绝缘的贴片引脚。
S2:将所述LED芯片11倒装焊接到过渡基板12上:具体地,请参阅图4,其是原始过渡基板的俯视图。该过渡基板上阵列划分了多个芯片区,每一个芯片区的上表面分别设有两焊接层。将多个LED芯片11的的正负电极分别与所述过渡基板12的多个芯片区上的焊接层121对应焊接。其中,该焊接技术为共晶焊接技术,即采用共晶材料使LED芯片11的正负电极焊接在过渡基板12的焊接层上。另外,由于LED芯片11较小,其表面上的正负电极更为精密,故与其相连接的正负焊接面121要求精度较高,其表面粗糙度参数Rz小于3微米。
S3:切割过渡基板:请参阅图5,其是图1所示的LED COB器件的陶瓷基板5的原始过渡基板的俯视图。由于本发明的过渡基板为陶瓷基板,因此采用陶瓷切割技术将焊接有LED芯片11的陶瓷基板5切割成一个个独立的LED单元1。
S4:将LED单元1安装在金属基板2上:在金属基板2上设置有相互绝缘的正、负导电层。采用SMD(Surface Mounted Devices)技术,将过渡基板12的贴片引脚123与金属基板2的正、负电极层通过锡膏对应焊接并使其机械连接及电连接。
S5:在金属基板2的外围设置一圈围坝3,形成包围区4,该金属基板上所有LED单元1均位于该包围区4内。
S6:往所述围坝3形成的包围区4内部填充封装胶体,所述封装胶体覆盖并包裹围坝内部所有LED单元1。
其中,步骤S2和S3可以互换,步骤S4和S5可以互换,不限于本实施例。
在本发明的具有过渡基板的LED COB器件的封装方法中,在低膨胀系数的LED芯片与高膨胀系数的金属基板之间增加一过渡陶瓷基板,金属基板较大的内应力被陶瓷基板吸收,阻断了金属基板应力向LED芯片传递的路径,有效防止LED芯片有源层应应力拉扯而产生裂纹,漏电及短路等现象,提高LED芯片的可靠性;该过渡基板的LED芯片的膨胀系数的差值为LED芯片的膨胀系数的0到20%,能使LED芯片与过渡基板的贴合更紧密,降低LED芯片有源层的应力,使LED芯片更可靠。同时,在过渡基板上开有一对电极孔,并填充导电体,使LED芯片的正、负电极与贴片引脚的电连接方式更简单安全可靠,克服传统正装LED芯片采用金线实现电连接,而导致的金线断裂等现象,大大提高了LED器件的可靠性。此外在本发明中,LED芯片与过渡基板之间、过渡基板的贴片引脚与金属基板之间分别采用共晶焊接技术与SMD表面焊接技术,进一步提高了LED器件的工艺水平,使LED器件更可靠、耐用。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (13)

  1. 一种具有过渡基板的LED器件,包括至少一个LED单元、金属基板以及封装胶体,其特征在于:所述LED单元包括一个LED芯片与一个过渡基板,该过渡基板的膨胀系数值处于该LED芯片与金属基板的膨胀系数之间,且与LED芯片的膨胀系数的差值为LED芯片的膨胀系数的0到20%;所述LED芯片为倒装芯片,其底部设置有正、负电极;所述过渡基板的上表面设有至少两个相互绝缘的焊接层;所述过渡基板的下表面设有相互绝缘的至少两个贴片引脚,所述至少两焊接层分别与两贴片引脚电连接;该LED芯片的正、负电极分别与过渡基板上的焊接层连接以形成LED单元,该LED单元通过过渡基板的贴片引脚设置在金属基板上;所述封装胶体覆盖并包裹该LED单元。
  2. 根据权利要求1所述的一种具有过渡基板的LED器件,其特征在于:所述封装胶体覆盖并包裹金属基板上的多个或所有LED单元。
  3. 根据权利要求1所述的一种具有过渡基板的LED器件,其特征在于:所述过渡基板为陶瓷基板或硅基板。
  4. 根据权利要求1或2所述的一种具有过渡基板的LED器件,其特征在于:所述焊接层形状与LED芯片的正、负电极匹配,且焊接层其对应的贴片引脚之间的过渡基板分别开有电极孔;所述电极孔内填充有导电体;所述贴片引脚通过电极孔内的导电体与焊接面电连接。
  5. 根据权利要求1所述的一种具有过渡基板的LED器件,其特征在于:所述LED芯片的正、负极与过渡基板的焊接层之间通过一共晶层连接。
  6. 根据权利要求1所述的一种具有过渡基板的LED器件,其特征在于:该金属基板的上表面设有相互绝缘的正、负导电层,该过渡基板的贴片引脚分别与该正、负导电层之间通过一锡膏层连接。
  7. 根据权利要求1或2所述的一种具有过渡基板的LED器件,其特征在于:还包括围坝,所 述围坝包围所有金属基板上的LED单元;所述封装胶体填充于所述围坝内,且覆盖并包裹围坝内部所有的LED单元。
  8. 一种权利要求1所述的具有过渡基板的LED器件的封装方法,其特征在于包括以下步骤:
    S1:设置一过渡基板,该过渡基板的膨胀系数值处于LED芯片与金属基板的膨胀系数之间,且与LED芯片的膨胀系数的差值为LED芯片的膨胀系数的0到20%;在过渡基板的上表面形成至少两相互绝缘的焊接层,在过渡基板的下表面形成至少两相互绝缘的贴片引脚,并使该至少两相互绝缘的焊接层分别与贴片引脚电连接;
    S2:将所述LED芯片倒装共晶焊接到过渡基板上,所述LED芯片的正、负电极与所述过渡基板的焊接层对应焊接,形成LED单元;
    S3:将LED单元焊接在一金属基板上,该金属基板的上表面设有两相互绝缘的正、负导电层,所述过渡基板的至少两贴片引脚分别与金属基板的正、负导电层对应焊接。
    S4:配置封装胶体,封装胶体由高透光胶体、荧光粉、二氧化硅粉、钛白粉中的一种或几种组成,所述封装胶体覆盖并包裹该LED单元。
  9. 根据权利要求8所述的LED器件的封装方法,其特征在于:步骤S3与步骤S4之间还包括步骤:在金属基板的外围形成一圈围坝,所述围坝将金属基板上的所有LED单元围在其内部;所述封装胶体填充于所述围坝内部,且覆盖并包裹围坝内所有LED单元。
  10. 根据权利要求8所述的LED器件的封装方法,其特征在于:步骤S1包括以下步骤:
    S11:在所述过渡基板上形成至少两电极孔;
    S12:在具有所述电极孔的过渡基板上的所有表面均镀上一层金属膜;
    S13:将所述过渡基板所有表面的金属膜加厚,并填充电极孔,使得电极孔内部填充金属材料以形成导电体,实现过渡基板上下表面的电性连接;
    S14:刻蚀线路,在过渡基板上表面形成至少两个相互绝缘的焊接层,在过渡基板下表面形成至少两个相互绝缘的贴片引脚。
  11. 根据权利要求8所述的LED器件的封装方法,其特征在于:步骤S2中LED芯片倒装焊接到过渡基板的过程采用共晶焊接技术,所述LED芯片的正、负电极分别与过渡基板的两焊接层之间通过一共晶层连接。
  12. 根据权利要求8所述的LED器件的封装方法,其特征在于:步骤S1所述的过渡基板为陶瓷基板或硅基板。
  13. 根据权利要求8至12任一所述的LED器件的封装方法,其特征在于:步骤S2包括:该过渡基板上倒装有多个LED芯片,采用切割技术将焊接有LED芯片的过渡基板切割成一个个独立的LED单元。
PCT/CN2015/089403 2015-09-11 2015-09-11 一种具有过渡基板的led器件及其封装方法 WO2017041280A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/089403 WO2017041280A1 (zh) 2015-09-11 2015-09-11 一种具有过渡基板的led器件及其封装方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/089403 WO2017041280A1 (zh) 2015-09-11 2015-09-11 一种具有过渡基板的led器件及其封装方法

Publications (1)

Publication Number Publication Date
WO2017041280A1 true WO2017041280A1 (zh) 2017-03-16

Family

ID=58239076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089403 WO2017041280A1 (zh) 2015-09-11 2015-09-11 一种具有过渡基板的led器件及其封装方法

Country Status (1)

Country Link
WO (1) WO2017041280A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106972095A (zh) * 2017-05-26 2017-07-21 厦门市东太耀光电子有限公司 一种led晶片结构
CN106992169A (zh) * 2017-04-27 2017-07-28 山东晶泰星光电科技有限公司 一种倒装rgb‑led封装模组及其显示屏
CN106997918A (zh) * 2017-05-26 2017-08-01 厦门市东太耀光电子有限公司 一种led芯片正面焊盘结构
CN107946269A (zh) * 2017-12-18 2018-04-20 华天科技(西安)有限公司 一种传感芯片的封装结构及其封装方法
CN111745245A (zh) * 2020-05-14 2020-10-09 山西华微紫外半导体科技有限公司 氮化硅陶瓷基板上围坝的共晶焊接方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201112413Y (zh) * 2007-09-21 2008-09-10 万喜红 大功率led封装结构
CN203536467U (zh) * 2013-09-30 2014-04-09 佛山市国星光电股份有限公司 一种具有过渡基板的led器件
CN104518066A (zh) * 2013-09-30 2015-04-15 佛山市国星光电股份有限公司 一种具有过渡基板的led器件及其封装方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201112413Y (zh) * 2007-09-21 2008-09-10 万喜红 大功率led封装结构
CN203536467U (zh) * 2013-09-30 2014-04-09 佛山市国星光电股份有限公司 一种具有过渡基板的led器件
CN104518066A (zh) * 2013-09-30 2015-04-15 佛山市国星光电股份有限公司 一种具有过渡基板的led器件及其封装方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106992169A (zh) * 2017-04-27 2017-07-28 山东晶泰星光电科技有限公司 一种倒装rgb‑led封装模组及其显示屏
CN106972095A (zh) * 2017-05-26 2017-07-21 厦门市东太耀光电子有限公司 一种led晶片结构
CN106997918A (zh) * 2017-05-26 2017-08-01 厦门市东太耀光电子有限公司 一种led芯片正面焊盘结构
CN107946269A (zh) * 2017-12-18 2018-04-20 华天科技(西安)有限公司 一种传感芯片的封装结构及其封装方法
CN107946269B (zh) * 2017-12-18 2024-03-26 华天科技(西安)有限公司 一种传感芯片的封装结构及其封装方法
CN111745245A (zh) * 2020-05-14 2020-10-09 山西华微紫外半导体科技有限公司 氮化硅陶瓷基板上围坝的共晶焊接方法

Similar Documents

Publication Publication Date Title
WO2017041280A1 (zh) 一种具有过渡基板的led器件及其封装方法
WO2012012975A1 (zh) 一种基于硅基板的led表面贴片封装结构及其封装方法
TWI515930B (zh) 發光二極體次基板、發光二極體封裝及其製造方法
TW201631722A (zh) 功率轉換電路的封裝模組及其製造方法
TWI466282B (zh) 一種影像感測模組封裝結構及製造方法
US10147691B2 (en) Semiconductor structure and manufacturing method thereof
TWI590395B (zh) 多功率晶片的功率封裝模組及功率晶片單元的製造方法
CN201904369U (zh) 一种基于硅基板的led表面贴片式封装结构
CN106856218A (zh) 一种免封装led结构及其制作方法
JP2008130701A (ja) 配線基板とそれを用いた半導体装置及び半導体装置の製造方法
TW201340261A (zh) 半導體裝置及其製造方法
TW201539695A (zh) 半導體裝置及其製造方法
US9634180B2 (en) Method for forming semiconductor device package with slanting structures
CN103887256A (zh) 一种高散热芯片嵌入式电磁屏蔽封装结构及其制作方法
CN203536467U (zh) 一种具有过渡基板的led器件
CN104518066B (zh) 一种具有过渡基板的led器件及其封装方法
CN103650135B (zh) 半导体装置
CN204130525U (zh) 陶瓷基板和散热衬底的大功率led集成封装结构
CN104009028A (zh) 陶瓷基板和散热衬底的大功率led集成封装方法及结构
TWI620258B (zh) 封裝結構及其製程
TWM558999U (zh) 發光封裝元件
US20130181351A1 (en) Semiconductor Device Package with Slanting Structures
TW201407732A (zh) 封裝結構及其製造方法
CN103887187B (zh) 半导体封装结构的形成方法
CN105990298A (zh) 一种芯片封装结构及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15903387

Country of ref document: EP

Kind code of ref document: A1