WO2017038488A1 - 低温硬化性被覆組成物 - Google Patents

低温硬化性被覆組成物 Download PDF

Info

Publication number
WO2017038488A1
WO2017038488A1 PCT/JP2016/074177 JP2016074177W WO2017038488A1 WO 2017038488 A1 WO2017038488 A1 WO 2017038488A1 JP 2016074177 W JP2016074177 W JP 2016074177W WO 2017038488 A1 WO2017038488 A1 WO 2017038488A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
hydrogen
atom
functional group
low
Prior art date
Application number
PCT/JP2016/074177
Other languages
English (en)
French (fr)
Inventor
勇 大西
聡宏 久保
由希子 糸山
美登 久司
Original Assignee
日本ペイントホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ペイントホールディングス株式会社 filed Critical 日本ペイントホールディングス株式会社
Priority to DE112016004003.2T priority Critical patent/DE112016004003T5/de
Priority to US15/757,472 priority patent/US10400139B2/en
Publication of WO2017038488A1 publication Critical patent/WO2017038488A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/025Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/06Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/06Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C09D201/08Carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents

Definitions

  • the present invention provides a low-temperature curable coating composition, particularly a low-temperature curable coating composition that forms a solvent-resistant cured film by curing at a low temperature (specifically, 15 ° C. to 100 ° C.).
  • Paint is painted on many products to improve the appearance of the goods.
  • thermosetting coatings that cure at a high temperature of 140 ° C. to 250 ° C. for 20 minutes to 1 hour are used.
  • These use an isocyanate curing agent or a melamine curing agent to react a resin in the paint with the curing agent to form a cured coating film.
  • the high curing temperature and the long curing time require much energy, so that curing has recently been carried out at a curing temperature of 100 ° C to 130 ° C for 20 to 40 minutes from the viewpoint of resource saving and greenhouse gas regulations.
  • the method is used.
  • the curing temperature is required to be further lowered, and the coating is cured at a temperature at which it can be applied to a plastic material, for example, a temperature of 15 to 100 ° C., and a cured film having high solvent resistance is required. It has been.
  • Patent Document 1 discloses a paint for golf balls, a two-component curable urethane paint in which a polyol and a polyisocyanate are blended, a curing catalyst, and a hydrogen bond together with a hydroxyl group of the polyol. And a substance that volatilizes at 70 ° C. or less is proposed.
  • This paint is cured at a low temperature of 70 ° C. or lower, but needs to be cured for a long time (120 minutes in the embodiment), the curing reaction is a urethane reaction, and hydrogen bonding is a temporary reaction of a volatile substance. It is only used for.
  • Patent Document 2 JP-T-2002-503747 discloses a powder containing a resin that can be cross-linked by a functional group capable of generating a hydrogen bond (specifically, OH, COOH, NH 2 , NHR, or SH).
  • a functional group capable of generating a hydrogen bond specifically, OH, COOH, NH 2 , NHR, or SH.
  • a method is described for forming a powder finish on a metal or non-metal surface where the body paint composition is applied to a substrate and melt cured by NIR (near infrared) irradiation.
  • NIR near infrared
  • Patent Document 3 a polymer (a) obtained by polymerizing 50 mol% or more of an unsaturated monomer having a carboxylic acid group interacts with the carboxylic acid group by hydrogen bonding force.
  • a polymer composition for hydrophilization treatment which contains a proton accepting structural unit and which can form a polymer complex by hydrogen bonding with the polymer (a) and a volatile base is disclosed. .
  • the volatile base neutralizes with the carboxylic acid group of the polymer (a) to inhibit the reaction of the polymer complex and has volatility, and organic amines are exemplified.
  • the curing temperature is 180 ° C. for 10 minutes in the example of Patent Document 3, and is not low temperature curing.
  • the volatile base has a relatively strong interaction with the carboxylic acid, and thus may easily remain in the coating film and cause coating film defects such as poor water resistance. Further, this reaction is limited to an aqueous system in which the neutralization reaction product can be dissolved, and when the volatile base is finally volatilized, it adversely affects the environment.
  • JP 2002-53799 A JP-T-2002-503747 JP-A-6-322292
  • the present invention (A) a film-forming polymer having a hydrogen-donating functional group having a hetero atom covalently bonded to a hydrogen atom, (B) a hydrogen-accepting functional group having a heteroatom to which a hydrogen atom is not covalently bonded, and the hydrogen-accepting functional group may or may not have a ring structure, A film-forming polymer in which a heteroatom is a nitrogen atom, an oxygen atom and / or a sulfur atom, and the heteroatom is composed of only a nitrogen atom or both a nitrogen atom and an oxygen atom, and (C ) A non-basic volatile solvent (C-1) having both heteroatoms which are covalently bonded to hydrogen atoms and heteroatoms which are not covalently bonded to hydrogen atoms in the molecule; A mixture of a non-basic volatile solvent (C-2) having a different hetero atom and a non-basic volatile solvent (C-3) having a hetero atom having no hydrogen atom covalently
  • the present invention also provides (D) a hydrogen-accepting functional group having both a hydrogen-donating functional group having a heteroatom covalently bonded to a hydrogen atom and a hydrogen-accepting functional group having a heteroatom to which no hydrogen atom is covalently bonded May or may not have a ring structure.
  • the heteroatom is a nitrogen atom, an oxygen atom and / or a sulfur atom, and when it does not have a ring structure, the heteroatom is a nitrogen atom.
  • Basic volatile solvent (C-1) non-basic volatile solvent (C-2) having a heteroatom covalently bonded to a hydrogen atom in the molecule and heterozygous having no hydrogen atom covalently bonded in the molecule
  • C-3 non-basic volatile solvent selected from the group consisting of combinations thereof;
  • a low temperature curable coating composition is provided.
  • the present invention provides a film-forming property having a hydrogen-donating functional group having a heteroatom covalently bonded to a hydrogen atom in the low-temperature curable coating composition of the above components (D) and (C).
  • a polymer or (B) a hydrogen-accepting functional group having a heteroatom to which a hydrogen atom is not covalently bonded, and the hydrogen-accepting functional group may or may not have a ring structure;
  • the heteroatom is a nitrogen atom, an oxygen atom and / or a sulfur atom, and when it does not have a ring structure, the heteroatom consists of only a nitrogen atom or both a nitrogen atom and an oxygen atom.
  • a low temperature curable coating composition incorporating molecules is provided.
  • the hydrogen donating functional group is preferably a group having an oxygen atom covalently bonded to a hydrogen atom.
  • the hydrogen donating functional group is preferably a carboxy group and / or a hydroxy group.
  • the hydrogen-accepting functional group has a ring structure, and includes an N-substituted lactam group, a cyclic imino ether group, a cyclic imine group, an N-substituted hydrogenated cyclic imino ether group, a cyclic ether group, an N-substituted cyclic imide group, and It is preferably selected from the group consisting of combinations thereof.
  • the hydrogen-accepting functional group is preferably an N-substituted lactam group and / or a cyclic imine group.
  • the hydrogen-accepting functional group preferably has no ring structure and is an N-substituted acyclic imide group or an acyclic tertiary amide group.
  • the non-basic volatile solvent (C-1) is preferably a low molecular weight ether alcohol having an ether group and a hydroxy group.
  • the non-basic volatile solvent (C-2) is preferably a low molecular weight alcohol, and the non-basic volatile solvent (C-3) is preferably a low molecular weight ether.
  • the film-forming polymer (D) is preferably a polymer having a carboxy group and / or a hydroxy group and an N-substituted lactam group and / or a cyclic imine group.
  • the low-temperature curable coating composition of the present invention is cured using hydrogen bonding, it is cured even at a low curing temperature, particularly at a temperature of 15 to 100 ° C., and the resulting film has a high solvent resistance. .
  • a hydrogen bond is a bond formed by a hydrogen atom covalently bonded to a heteroatom, particularly a heteroatom having a high electronegativity such as an oxygen atom, a nitrogen atom, or a sulfur atom, with an unshared electron pair of another nearby functional group.
  • the strength is between 10 and 40 kJ / mol, which is stronger than the van der Waals force (about 1 kJ / mol) but weaker than the covalent bond (about 150 to 500 kJ / mol) and reversible at room temperature.
  • the hydrogen bond is a very weak bond compared to the covalent bond, and it has been considered that the hydrogen bond is inappropriate for the curing reaction of a film-forming resin such as a paint and cannot be used.
  • hydrogen bonds are weak bonds by themselves, but when they are formed in large numbers between polymers having a large number of functional groups that form hydrogen bonds, the bond becomes very strong and has high solvent resistance. It is thought that gender can be achieved.
  • ⁇ G Gibbs energy
  • the hydrogen-donating functional group has a degree of freedom in the combined state that can maintain the cross-linked state as a whole of the hydrogen-bonding network while recombining the binding partner with other hydrogen-accepting functional groups, and the energy of the entropy term (-T ⁇ S) It can be understood from the fact that a large amount of energy is required and a large amount of energy is required to break the bond. Further, in addition to the so-called thermodynamic bonding factor described above, it is considered that a substantially strong crosslinked network can be formed in terms of the kinetic bonding factor described below.
  • this solvent caps functional groups capable of forming hydrogen bonds of individual polymers to temporarily suppress the cross-linking reaction, but this solvent has a high vapor pressure.
  • the coating film is formed, even if the curing temperature is low (for example, a temperature of about 60 ° C.), the solvent evaporates in the air, and the functional group of the polymer released from the bond of the hydrogen bond of the solvent It is understood that the ability to form hydrogen bonds with the polymer is restored, hydrogen bonds between the polymers are formed, and a strong film is formed by many hydrogen bonds as described above.
  • the first composition of the present invention comprises (A) a film-forming polymer having a hydrogen-donating functional group having a hetero atom covalently bonded to a hydrogen atom, (B) a hydrogen-accepting functional group having a heteroatom to which a hydrogen atom is not covalently bonded, and the hydrogen-accepting functional group may or may not have a ring structure, A film-forming polymer in which a heteroatom is a nitrogen atom, an oxygen atom and / or a sulfur atom, and the heteroatom is composed of only a nitrogen atom or both a nitrogen atom and an oxygen atom, and (C ) A non-basic volatile solvent (C-1) having both heteroatoms which are covalently bonded to hydrogen atoms and heteroatoms which are not covalently bonded to hydrogen atoms in the molecule; A mixture of a non-basic volatile solvent (C-2) having a different hetero atom and a non-basic volatile solvent (C-3) having a hetero atom having no hydrogen atom
  • Component (A) of the low-temperature curable coating composition of the present invention is a film-forming polymer having a hydrogen-donating functional group having a hetero atom covalently bonded to a hydrogen atom.
  • the heteroatom is an atom having a high electronegativity such as an oxygen atom (O), a nitrogen atom (N), or a sulfur atom (S), and is a hydrogen atom covalently bonded thereto.
  • a group having an atom is a hydrogen-donating functional group, specifically, a carboxy group (—COOH), a hydroxy group (—OH), an amino group (—NHR or —NH 2 ; wherein R is an alkyl group or an aryl group Group) or a thiol group (—SH).
  • the hydrogen-donating functional group is preferably a group having oxygen covalently bonded to hydrogen, specifically a carboxy group or a hydroxy group, and more preferably a carboxy group.
  • Component (A) of the present invention is a polymer having a hydrogen-donating functional group as described above, and polymerization of an unsaturated monomer having a hydrogen-donating functional group or an unsaturated group having a hydrogen-donating functional group. It can be obtained by copolymerizing a monomer with another copolymerizable monomer.
  • Examples of unsaturated monomers having a carboxy group include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, 2-acryloyloxyethyl phthalic acid, 2-acryloyloxyethyl succinic acid, ⁇ -carboxy-polycaprolactone mono (meth) Examples thereof include acrylate, isocrotonic acid, fumaric acid, and maleic acid.
  • (meth) acrylate means acrylate or methacrylate.
  • unsaturated monomers having a hydroxy group examples include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, or 4-hydroxybutyl (meth) acrylate, allyl alcohol, methallyl alcohol, 2-hydroxy -3-Phenoxypropyl (meth) acrylate, pentaerythritol mono (meth) acrylate, glycerol mono (meth) acrylate, and adducts thereof with ⁇ -caprolactone.
  • unsaturated monomers having an amino group examples include aminostyrene, vinylbenzylamine, vinylethylamine or vinylbenzylamine, N-isopropyl-2- (4-vinylphenyl) ethylamine, and the like.
  • Examples of the unsaturated monomer having a thiol group include 2-sulfanylethyl (meth) acrylate, 3-sulfanylpropyl (meth) acrylate, 4-sulfanylbutyl (meth) acrylate, 2-vinylbenzenethiol and the like.
  • monomers that are copolymerized with unsaturated monomers having a hydrogen-donating functional group as described above monomers such as (meth) acrylic acid alkyl esters and styrene can be used.
  • This copolymerization reaction may be aqueous solution polymerization, suspension polymerization, emulsion polymerization using water as a medium, solution polymerization or precipitation polymerization using an organic solvent, or bulk polymerization.
  • a solution as a medium such as solution polymerization or precipitation polymerization
  • bulk polymerization if necessary, the solvent is removed in the case of solution polymerization, and if necessary, using an emulsifier or a neutralizing agent, You may carry out by melt
  • the molecular weight of the film-forming polymer (A) is usually 1,000 to 2,000,000, preferably 2,000 to 1,500,000, more preferably 3,000 to 1, in terms of number average molecular weight. , 000,000. When the number average molecular weight is less than 1,000, the solvent resistance cannot be sufficiently improved. When the number average molecular weight is more than 20,000,000, the viscosity becomes extremely large and it becomes difficult to produce and paint.
  • Component (B) of the low-temperature curable coating composition of the present invention has a hydrogen-accepting functional group having a hetero atom to which a hydrogen atom is not covalently bonded, and the hydrogen-accepting functional group has a ring structure. If it has a ring structure, the heteroatom is a nitrogen atom, an oxygen atom and / or a sulfur atom. If it does not have a ring structure, the heteroatom is composed of only a nitrogen atom or a nitrogen atom and an oxygen atom. It is a film-forming polymer composed of both.
  • the heteroatom is an atom having a high electronegativity such as an oxygen atom (O), a nitrogen atom (N), or a sulfur atom (S) as described above for the hydrogen bond
  • the functional group when it has a ring structure, the heteroatom may be an oxygen atom, a nitrogen atom and / or a sulfur atom, and when the hydrogen-accepting functional group does not have a ring structure, the heteroatom is only a nitrogen atom or nitrogen. Has both atoms and oxygen atoms. If the hydrogen-accepting functional group has a ring structure, the hydrogen-accepting functional group can maintain a high hydrogen acceptability regardless of the hetero atoms that are generated by the formation of the ring. When there is no nitrogen, it is considered that hydrogen acceptability can be maintained at a high level when only nitrogen atoms or both nitrogen and oxygen atoms are present.
  • the hydrogen-accepting functional group of component (B) has a ring structure
  • the N-substituted lactam group, cyclic imino ether group, cyclic imine group, N-substituted hydrogenated cyclic imino ether group, cyclic ether group, N- Examples thereof include a substituted cyclic imide group or a combination thereof.
  • an N-substituted acyclic imide group, an acyclic tertiary amide group, and the like can be given.
  • an acyclic ether or acyclic ester that is an oxygen atom that does not have a ring structure, and an acyclic thiol or acyclic thioester that is a sulfur atom that does not have a ring structure are used as the hydrogen-accepting functional group of component (B).
  • it is a group having both a nitrogen atom and an oxygen atom, and when it takes a ring structure, it is an N-substituted lactam group or a cyclic imino ether group, and when it does not take a ring structure, it is an N-substituted acyclic imide group or An acyclic tertiary amide group.
  • the hydrogen-accepting functional group is more preferably a heterocyclic group having a ring structure and having a carbonyl group at the ⁇ -position of the nitrogen atom, specifically, an N-substituted lactam group such as a pyrrolidone group, an N-substituted cyclic group.
  • Component (B) of the present invention is a polymer having a hydrogen-accepting functional group as described above, and polymerization of an unsaturated monomer having a hydrogen-accepting functional group, or an unsaturated compound having a hydrogen-accepting functional group. It can be obtained by copolymerizing a monomer with another copolymerizable monomer.
  • Examples of unsaturated monomers having N-substituted lactam groups include N-vinylpyrrolidone, N-vinylcaprolactam, N-vinyl-4-methylpyrrolidone, N-vinyl-4-ethylpyrrolidone, N-vinyl-4-propyl Pyrrolidone, N-vinyl-4-butylpyrrolidone, N-vinyl-4-methyl-5-ethylpyrrolidone, N-vinyl-4-methyl-5-propylpyrrolidone, N-vinyl-5-methyl-5-ethylpyrrolidone, N-vinyl-5-propylpyrrolidone, N-vinyl-5-butylpyrrolidone, N-vinyl-4-methylcaprolactam, N-vinyl-6-methylcaprolactam, N-vinyl-6-propylcaprolactam, N-vinyl-7 -Butyl caprolactam and the
  • Examples of unsaturated monomers having a cyclic imino ether group include 2-vinyl-2-oxazoline, 5-methyl-2-vinyl-2-oxazoline, 4,4-dimethyl-2-vinyl-2-oxazoline, 4, 4-dimethyl-2-isopropenyl-2-oxazoline, 4-acryloyl-oxymethyl-2,4-dimethyl-2-oxazoline, 4-methacryloyl-oxymethyl-2,4-dimethyl-2-oxazoline, 4-methacryloyl -Osimethyl-2-phenyl-4-methyl-2-oxazoline, 2- (4-vinylphenyl) -4,4-dimethyl-2-oxazoline, 4-ethyl-4-carboethoxymethyl-2-isopropenyl-2 -Oxazoline, 2-vinyl-5,6-dihydro-4H-1,3-oxazine, 2-isopropenyl-5 6-dihydro -4H-1,
  • Examples of the unsaturated monomer having a cyclic imine include 2-vinylpyridine, 4-vinylpyridine and the like.
  • Examples of the unsaturated monomer having an N-substituted hydrogenated cyclic imino ether group include N-vinylmorpholine, N- (meth) acryloylmorpholine and the like.
  • Examples of the unsaturated monomer having a cyclic ether include tetrahydrofurfuryl acrylate, 2-vinyl-1,4-dioxane, 5-ethyl-1,3-dioxane-5-ylmethyl acrylate, and the like.
  • Examples of the unsaturated monomer having an N-substituted cyclic imide group include N-vinylmaleimide, N- (4-vinylphenyl) maleimide, N-vinylphthalimide and the like.
  • Examples of unsaturated monomers having an N-substituted acyclic imide group include N-vinyldiacetamide, N-vinyldibenzamide, N-vinyl-N-acetylbenzamide, N-acetyl-N-3-vinylpropanoylbenzamide N-acetyl-N-3- (meth) acryloylpropanoylbenzamide, N-vinyldi-2-furoylamine and the like.
  • Examples of unsaturated monomers having an acyclic tertiary amide group include N, N-dimethylacrylamide, N, N-diethylacrylamide, N, N-diisopropylacrylamide, N-methyl-N-isopropylacrylamide and the like.
  • the synthesis of the vinyl polymer having a hydrogen-accepting functional group can be produced in the same manner as the vinyl polymer having a hydrogen-donating functional group as the component (A).
  • the molecular weight of the film-forming polymer (B) is usually 1,000 to 2,000,000 in terms of number average molecular weight, preferably 2,000 to 1,500,000, more preferably 3,000 to 1. , 000,000. When the number average molecular weight is less than 1,000, the solvent resistance cannot be sufficiently improved. When the number average molecular weight is more than 2,000,000, the viscosity becomes extremely large and it becomes difficult to produce and paint.
  • Component (C) of the low-temperature curable coating composition of the present invention comprises a non-basic volatile solvent having both heteroatoms that are covalently bonded to hydrogen atoms and heteroatoms that are not covalently bonded to hydrogen atoms in the molecule ( C-1), a non-basic volatile solvent (C-2) having a hetero atom covalently bonded to a hydrogen atom in the molecule and a non-basic having a hetero atom having no hydrogen atom covalently bonded in the molecule
  • a non-basic volatile solvent selected from the group consisting of mixtures with volatile solvents (C-3) and combinations thereof.
  • the heteroatom is usually an oxygen atom (O), a nitrogen atom (N), or a sulfur atom (S), and is divided into one in which a hydrogen atom is bonded to one in which it is not bonded.
  • the non-basic volatile solvent (C) must be non-basic, and the hetero atom is mainly an oxygen atom (O) or a sulfur atom (S).
  • Component (C) is a non-basic volatile solvent, and the volatility is expressed as a relative evaporation rate at 20 ° C. when the evaporation rate of n-butyl acetate is 100, and the relative evaporation rate is 0.1. Above, preferably 0.2 or more, more preferably 0.3 or more.
  • the non-basic volatile solvent (C-1) used in the present invention has a hetero atom having both a hetero atom covalently bonded to a hydrogen atom and a hetero atom not covalently bonded to a hydrogen atom in the molecule.
  • Alcohol having both an ether group and an ether group also called cellosolve in the case of a monoether compound of ethylene glycol), specifically methoxypropanol, ethoxypropanol, propoxypropanol, butoxypropanol, methoxyethanol , Ethoxyethanol, propoxypropanol, butoxyethanol, solfit, dipropylene glycol monomethyl ether, ethyl diglycol or butyl diglycol.
  • the non-basic volatile solvent (C-1) is preferably methoxypropanol, ethoxypropanol, propoxypropanol, ethoxyethanol, propoxypropanol, butoxyethanol or dipropylene glycol monomethyl ether, more preferably methoxypropanol, propoxypropanol, Butoxyethanol.
  • the non-basic volatile solvent (C-2) has a hetero atom covalently bonded to a hydrogen atom in the molecule
  • the non-basic volatile solvent (C-3) has a hydrogen atom in the molecule. It has a hetero atom which is not covalently bonded, and a mixture of the two kinds of solvents is used as the component (C) in the present invention.
  • the hetero atom in this case is also an oxygen atom (O) or a sulfur atom (S).
  • Volatility in the non-basic volatile solvents (C-2) and (C-3) can also be expressed as a relative value when the evaporation rate of the above-mentioned n-butyl acetate is set to 100. Similar to (C-1), the relative evaporation rate needs to be 0.1 or more, preferably 0.2 or more, more preferably 0.3 or more.
  • the non-basic volatile solvent (C-2) used in the present invention is an alcohol satisfying the above-mentioned volatility, and specifically, an alkyl alcohol (for example, methanol, ethanol, propanol, n-butanol). , Iso-butanol, t-butanol, pentanol, 2-ethylhexanol), cyclic alcohols (for example, cyclohexanol), and the like.
  • an alkyl alcohol for example, methanol, ethanol, propanol, n-butanol
  • cyclic alcohols for example, cyclohexanol
  • the non-basic volatile solvent (C-3) is an ether that satisfies the above volatility, specifically, a dialkyl ether (for example, diethyl ether, dipropyl ether, diisopropyl ether, or dibutyl ether), Dialkyl ethers of diols (for example, dimethyl glycol, dimethyl diglycol, methyl ethyl diglycol, diethyl diglycol or dibutyl diglycol), cyclic ethers (for example, tetrahydrofuran or dioxane), compounds having an ether group and an ester group in the molecule ( For example, propylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate or ethyl 3-ethoxypropionate) And the like.
  • a dialkyl ether for example, diethyl ether, dipropyl ether, diis
  • dialkyl sulfide for example, dimethyl sulfide, diethyl sulfide, dipropyl sulfide or dipropyl disulfide
  • cyclic sulfide for example, thiophene, tetrahydrothiophene
  • the second type of component (C) is a mixture of the non-basic volatile solvent (C-2) and (C-3) as described above, and the non-basic volatile solvent (C-2) includes Ethanol, iso-propanol, n-butanol, iso-butanol, t-butanol, and 2-ethylhexanol are particularly preferred.
  • Dioxane, tetrahydrofuran, dimethyl glycol, dimethyl are used as the volatile non-basic low molecular weight solvent (C-3). Diglycol is particularly preferred.
  • Blending amount of components (A) to (C) The blending amount of the film-forming polymer (A) and the film-forming polymer (B) is 1 by weight ratio of component (A): component (B). : 100 to 100; 1, preferably 1:50 to 50: 1, more preferably 1:30 to 30: 1.
  • component (A) is more than 100: 1, it has a defect that only about the same solvent resistance as that of the component (A) can be obtained.
  • the component (A) is less than 1: 100, it is almost the same as the component (B). It has the disadvantage that only a certain degree of solvent resistance can be obtained.
  • the ratio of components (A) and (B) can also be expressed as a molar ratio of functional groups, and the molar ratio of hydrogen donating functional group: hydrogen accepting functional group is usually from 1: 100 to 100; 1, preferably 1. : 50 to 50: 1, more preferably 1:30 to 30: 1.
  • the molar amount of the hydrogen-donating functional group is more than 100: 1, there is a disadvantage that only about the same solvent resistance as that of the component (A) can be obtained, and when it is less than 1: 100, the component (B ) Has a defect that only solvent resistance of approximately the same degree as that of the above can be obtained.
  • Component (C) basically functions as both a solvent and a hydrogen-donating functional group cap agent, but is not particularly limited as long as component (A) and component (B) are dissolved. Usually, it is 10 to 99% by weight, preferably 20 to 95% by weight, more preferably 25 to 90% by weight of the total amount of the components (A) to (C). The component (C) may be more than 99% by weight, but it takes time to evaporate and is wasted. On the other hand, if it is less than 10% by weight, the capping function of the solubility and hydrogen donating functional group is not sufficient, and unnecessary reaction between the hydrogen donating functional group and the hydrogen accepting functional group occurs, resulting in solidification and viscosity. An increase occurs.
  • the low-temperature curable coating composition of the present invention has a hydrogen-donating functional group having a hetero atom covalently bonded to a hydrogen atom having both functions instead of the film-forming polymers (A) and (B). And a hydrogen-accepting functional group having a hetero atom to which a hydrogen atom is not covalently bonded, and the hydrogen-accepting functional group may or may not have a ring structure.
  • the film-forming polymer (D) may coexist with either one or both of the film-forming polymer (A) and (B).
  • the hydrogen-donating functional group having a heteroatom covalently bonded to a hydrogen atom can be the same as the component (A) described above, and the hydrogen atom is not covalently bonded.
  • the hydrogen-accepting functional group having a hetero atom the same one as the above-mentioned component (B) can be used.
  • the hydrogen-accepting functional group may or may not have a ring structure.
  • the heteroatom is a nitrogen atom, an oxygen atom and / or a sulfur atom and has a ring structure. Otherwise, the heteroatom is a functional group consisting of only a nitrogen atom or both a nitrogen atom and an oxygen atom.
  • the molecular weight of the film-forming polymer (D) is usually 1,000 to 3,000,000 in terms of number average molecular weight, preferably 2,000 to 2,000,000, more preferably 3,000 to 1. , 500,000. If the number average molecular weight is less than 1,000, the solvent resistance cannot be sufficiently improved, and if it is greater than 3,000,000, the viscosity becomes very large, making it difficult to produce and paint. Have.
  • the molar ratio of hydrogen donating functional group: hydrogen accepting functional group in the film-forming polymer (D) is usually 1: 100 to 100: 1, preferably 1:50 to 50: 1, more preferably 1:30. ⁇ 30: 1.
  • the molar amount of the hydrogen-donating functional group is greater than 100: 1, only about the same solvent resistance as that obtained when no hydrogen-accepting functional group is used is obtained. The solvent resistance is almost the same as when no functional group is used.
  • the film-forming polymer of component (D) can be further used in combination with component (A) or component (B).
  • the molar ratio of hydrogen donating functional group: hydrogen accepting functional group is usually 1: 100 to 100; 1, preferably 1: 50 to 50: 1, more preferably 1:30 to 30: 1.
  • the molar amount of the hydrogen-donating functional group is more than 100: 1, it has a drawback that only about the same solvent resistance as when the film-forming component having a hydrogen-accepting functional group is not used can be obtained.
  • it is less than 1: 100 there is a drawback that only about the same solvent resistance as that obtained when a film-forming component having a hydrogen-donating functional group is not used can be obtained.
  • component (C) basically functions as both a solvent and a cap agent for a hydrogen-donating functional group.
  • the amount of the component (C) is not particularly limited as long as the component (D) is dissolved.
  • the component (C) is 10 to 99% by weight of the total amount of the component (D) and the component (C). , Preferably 20 to 95% by weight, more preferably 25 to 90% by weight.
  • the component (C) may be more than 99% by weight, but it takes time to evaporate and is wasted.
  • the capping function of the solubility and hydrogen donating functional group is not sufficient, and unnecessary reaction between the hydrogen donating functional group and the hydrogen accepting functional group occurs, resulting in solidification and viscosity. An increase occurs.
  • the component (D) is combined with the component (A) or the component (B), it is 10 to 99% by weight, preferably 20 to 95% by weight, more preferably 25 to 90% by weight of the total amount of the composition. .
  • the low-temperature curable coating composition in the present invention may contain a solvent other than the component (C) such as heptane, toluene, xylene and the like in addition to the components (A) to (D).
  • a solvent other than the component (C) such as heptane, toluene, xylene and the like in addition to the components (A) to (D).
  • the low-temperature curable coating composition of the present invention may contain other components as required in addition to the components (A) to (D).
  • other components include pigments, design materials (sand, dredged sand, colored sand, beads, colored chips, mineral chips, glass chips, wooden chips, colored beads, etc.), film-forming aids, surface conditioners, preservatives, Examples include antifungal agents, antifoaming agents, light stabilizers, ultraviolet absorbers, antioxidants, pH adjusters and the like.
  • the pigment is not particularly limited, for example, an azo chelate pigment, an insoluble azo pigment, a condensed azo pigment, a monoazo pigment, a disazo pigment, a diketopyrrolopyrrole pigment, a benzimidazolone pigment, a phthalocyanine pigment, Indigo pigment, thioindigo pigment, perinone pigment, perylene pigment, dioxane pigment, quinacridone pigment, isoindolinone pigment, naphthol pigment, pyrazolone pigment, anthraquinone pigment, anthorapyrimidine pigment, metal complex Organic color pigments such as pigments: yellow lead, yellow iron oxide, chromium oxide, molybdate orange, bengara, titanium yellow, zinc white, carbon black, titanium dioxide, cobalt green, phthalocyanine green, ultramarine, cobalt blue, phthalocyanine blue, Cobalt buy Inorganic pigments such as lettuce; mica pigments (titanium dioxide-coated mica,
  • the pigment mass concentration (PWC) with respect to the solid content of the coating composition is preferably in the range of 5 to 70% by mass.
  • the PWC is less than 5% by mass, the base concealing property is inferior, and when the PWC exceeds 70% by mass, the weather resistance may be lowered.
  • the pigment mass concentration (PWC) is more preferably 20 to 45% by mass.
  • the method for preparing the low-temperature curable coating composition of the present invention is not particularly limited, and can be prepared by stirring the above-described components with a stirrer or the like.
  • pigments or design materials are included in the low-temperature curable coating composition, those having good dispersibility can be mixed with a stirrer.
  • the pigment dispersion resin is preliminarily dispersed using a sand grind mill or the like. You can also add them.
  • the low-temperature curable coating composition of the present invention such as a coating method can be formed on a surface of an object to be coated such as a metal surface, and then heated to a predetermined temperature to form a highly solvent-resistant film.
  • Such low temperature curable coating composition can be applied by a usual method such as dipping, brushing, spraying or roll coater.
  • the heating conditions after coating may be heating conditions in which the non-basic volatile solvent (C) volatilizes and hydrogen bonds are formed.
  • the temperature is 50 to 100 ° C. for several tens of minutes to 15 ° C. In a few days. Of course, it is not limited to these coating conditions.
  • Synthesis of film-forming polymer AI having a hydrogen-donating functional group 500 parts of methoxypropanol were charged into a 2 liter reaction vessel equipped with a stirrer, temperature controller, and cooling tube, and 150 parts of acrylic acid and 180 parts of styrene were added thereto.
  • an initiator solution consisting of 10 parts of methoxypropanol and 2 parts of t-amyl peroxyoctoate was added dropwise at 115 ° C. for 30 minutes, and stirring was continued for 30 minutes, whereby Gardner bubble viscosity X, solid content acid value 200 mg KOH. / G and an acrylic varnish with a solid content of 50% by weight were obtained.
  • the number average molecular weight of this acrylic resin is “HLC8220GPC” (trade name, manufactured by Tosoh Corporation) as a GPC apparatus, “Shodex KF-606M”, “Shodex KF-603” (both manufactured by Showa Denko KK) as columns.
  • the film formation height is high except that 75 parts of acrylic acid, 175 parts of styrene, 40 parts of n-butyl acrylate, and 300 parts of n-butyl methacrylate are used as a synthetic monomer solution for the film-forming polymer A-II having a hydrogen-donating functional group.
  • An acrylic varnish having a Gardner cell viscosity U and a solid content acid value of 100 mgKOH / g was obtained in the same manner as in the molecule AI.
  • the number average molecular weight was 14,000.
  • Film-forming polymer A-IV having a hydrogen-donating functional group S-LEC BL-1 (butyral resin) commercially available from Sekisui Chemical Co., Ltd. is used.
  • ESREC BL-1 is a butyral resin having a calculated molecular weight of about 19,000 and a degree of butyralization of about 63.
  • Film-forming polymer AV having a hydrogen-donating functional group SN thickener N-1 (polycarboxylic acid) commercially available from San Nopco is used.
  • SN thickener N-1 is a polycarboxylic acid resin aqueous solution having a pH of about 1.8, a viscosity of about 15,000 mPa ⁇ s, and a resin solid content of about 25%.
  • Gardner cell viscosity is the same as that of the film-forming polymer AI except that the organic solvent used for the synthesis of the film-forming polymer A-VI having a hydrogen-donating functional group was changed from methoxypropanol to methyl isobutyl ketone. An acrylic varnish with X and a number average molecular weight of 15,000 was obtained.
  • Film-forming polymer BI having a hydrogen-accepting functional group Sokalan K30P commercially available from BASF Japan Ltd. is used.
  • Socaran K30P is a polyvinylpyrrolidone having a molecular weight of 45,000.
  • Film-forming polymer B-II having a hydrogen-accepting functional group Sokalan VA64P commercially available from BASF Japan Ltd. is used.
  • Socaran VA64P is a 60/40 copolymer of vinylpyrrolidone and vinyl acetate.
  • Coating film except that 220 parts of 2-vinylpyridine, 180 parts of styrene, 150 parts of n-butyl acrylate and 20 parts of n-butyl methacrylate were used as a synthetic monomer solution for the film-forming polymer B-III having a hydrogen-accepting functional group.
  • a polymer solution was obtained in the same manner as the forming polymer AI, and the polymer solid content obtained by drying under reduced pressure with an evaporator while heating at 60 ° C. was diluted with methoxypropanol to obtain a solid content of 25%.
  • a vinylpyridine copolymer varnish having a partial pyridine number of 200 mg KOH / g was obtained.
  • the number average molecular weight measured with a GPC apparatus using “Shodex KF-806M” (trade name, manufactured by Showa Denko KK) as a column and dimethylformamide (DMF) added with 10 mM LiBr as a mobile phase is 8 000.
  • Epocros WS-500 is an oxazoline group-containing polymer having a number average molecular weight of 20,000.
  • Film-forming polymer XI having an acyclic ether group (for comparative example)
  • a new pole LB-1715 commercially available from Sanyo Chemical Industries, Ltd. is used.
  • Newpol LB-1715 is a polyoxypropylene alkyl ether having a number average molecular weight of 2,390.
  • Example 1 30 parts by weight of the film-forming polymer (AI) was mixed with 70 parts by weight of methoxypropanol (MP) to prepare a film-forming polymer (AI) varnish. Next, 15 parts by weight of Sokaran K30P (100% solid content), which is a film-forming polymer (BI), and 85 parts by weight of methoxypropanol (MP) are mixed to form a film-forming polymer (BI). Created a varnish. Both were mixed to make a composite varnish.
  • Table 1 shows the mixing properties of the obtained composite varnish.
  • Table 1 also shows the composition of the composite varnish, the non-volatile content (NV) concentration (% by weight) of the composite varnish, and the weight ratio of the film-forming polymer (AI) to the film-forming polymer (BI). Described.
  • Mixability was evaluated according to the following criteria. Evaluation x: When mixed, a precipitate such as a gel mass is formed. ⁇ : No precipitate is formed even when mixed.
  • the varnish (AI) or varnish (B-1) was coated on a tin plate with a bar coater and dried at 60 ° C. for 30 minutes in the same manner as the composite varnish.
  • This single varnish coating was also subjected to a solvent resistance test in the same manner as the composite varnish of the present invention.
  • This single varnish was used for comparison to show the superiority of the composite varnish of the example. The results are shown in Table 1.
  • Solvent resistance test Each chemical is placed on the coating film with 2 ml polyspoid, and 20 cycles of rubbing with a fingertip with latex gloves, and the process of wiping with a waste cloth is one cycle, and the number of cycles until the coating film dissolves is evaluated. Described.
  • A When the solvent resistance of the composite sample is higher than both single samples.
  • When the solvent resistance of the composite sample is higher than either one.
  • - When the solvent resistance of the composite sample is the same as both single samples.
  • X When the evaluation of the solvent resistance of the composite sample is inferior to either one.
  • Examples 2 to 16 The combinations of the film-forming polymer A and its solvent described in Tables 1 to 6 are A varnish (specifically, AI varnish to AV varnish), the film-forming polymer B and its solvent.
  • the combination is B varnish (specifically, BI varnish to B-IV varnish), and a mixture of the two is used as a composite varnish, and the non-volatile content% (NV%) and A / B of the composite varnish
  • NV% non-volatile content%
  • the parts by weight ratio is also listed in the table.
  • Each varnish was subjected to a mixing property, water spot spot whitening property, solvent resistance test, and comprehensive judgment in the same manner as in Example 1. The results are listed in each example in Tables 1-6.
  • Example 8 the molar ratios of the hydrogen-donating functional groups and the hydrogen-accepting functional groups of the film-forming polymers A and B are also listed in the table.
  • Example 14 to 16 as the film-forming polymer, the film-forming polymer D having both a hydrogen-donating functional group and a hydrogen-accepting functional group (specifically, the film-forming polymer D) -I and D-II) are shown as examples, Example 14 is a formulation of film-forming polymer DI alone, and Examples 15 and 16 are film-forming polymers. It is an example of a combination of DI or D-II and a film-forming polymer AI.
  • the A varnish and B varnish used for comparison in solvent resistance in Table 6 are the AI varnish and B-II varnish of Example 8 in Example 14, and Examples 15 and 16 are also carried out in the same manner as Example 14.
  • Example 8 AI varnish and B-II varnish are also carried out in the same manner as Example 14.
  • Example 17 the curability at a low temperature (for example, room temperature) is examined.
  • 30 parts by weight of the film-forming polymer (AI) was mixed with 70 parts by weight of methoxypropanol (MP) to prepare a film-forming polymer (AI) varnish.
  • 15 parts by weight of Sokaran VA64P (100% solid content), which is a film-forming polymer (B-II), and 85 parts by weight of methoxypropanol (MP) are mixed to form a film-forming polymer (B-II). Created a varnish. Both were mixed to make a composite varnish.
  • Examples 18-22 are examples in which the solvent of component C used was changed. Examples 20 and 21 were changed to other solvents (toluene or toluene and methyl ethyl ketone (MEK)) at the same time as the solvent of component C used was changed. This is an example in which is added.
  • A-VI was used as the film-forming polymer A.
  • Example 22 heptane was added to each varnish of Example 18 as another solvent.
  • the mixing property, water spot whitening property, solvent resistance, and comprehensive evaluation were performed. The results are shown in Table 8 and Table 9.
  • tetrahydrofuran was represented as THF, dimethyldiglycol as DMDG, and n-butanol as nBuOH.
  • Comparative Examples 1 and 2 Using the film-forming polymers A-VI (methyl isobutyl ketone (MIBK) solution) and B-II used in the examples, a solvent that is not the solvent of component C, specifically, methyl ethyl ketone (MEK) and acetylacetone are used. Each was mixed to prepare A-VI varnish and B-II varnish, and then both were mixed at a weight ratio of 1: 1 to confirm the mixing property. The results are shown in Table 10. Comparative Examples 1 and 2 had poor mixing properties, and the water droplet spot whitening test and solvent resistance test for forming a film were not performed.
  • MIBK methyl isobutyl ketone
  • MEK methyl ethyl ketone
  • Comparative Example 3 The film-forming polymer A-VI (methyl isobutyl ketone solution) used in the examples is not a solvent of component C, specifically a mixed solution of N, N-dimethylethanolamine (DMEA) and deionized water. To prepare an A-VI varnish. Next, the BI-varnish was prepared by mixing the film-forming polymer BI used in the Examples with a solvent that is not the solvent of Component C, specifically with deionized water. Both were mixed at a weight ratio of 1: 1, and a mixing test and a water drop spot whitening test were conducted in the same manner as in Example 1 to make the same determination. The results are shown in Table 11. In Comparative Example 3, the water spot whitening property was poor, and the solvent resistance test was not performed.
  • DMEA N-dimethylethanolamine
  • Comparative Examples 4 and 5 The film-forming polymer AI used in the examples was mixed with a solvent of component C, specifically methoxypropanol, to prepare an AI varnish. Next, a polymer that is not the polymer of component B, specifically, the film-forming polymer XI and the film-forming polymer X-II are mixed with the solvent of component C, specifically, methoxypropanol, respectively. XI varnish and X-II varnish were prepared. The AI varnish was mixed with the XI varnish and the X-II varnish at a weight ratio of 1: 1, respectively, and in the same manner as in Example 1, the mixing test of each varnish and the water spot spot whitening test of the coating film In addition, a solvent resistance test was conducted and the same determination was made. The results are listed in each comparative example in Table 12.
  • Example 17 shows an example in which the temperature is cured at a temperature of 15 ° C. or less, but a high solvent-resistant film is also obtained.
  • Comparative Examples 1 and 2 the experiment was conducted using a solvent that was not the component C of the present invention, but the film-forming polymer A and the film-forming polymer B could not be mixed themselves.
  • Comparative Example 3 is an example using N, N-dimethylethanolamine, a solvent used in Japanese Patent Application Laid-Open No. 6-322292, which is a prior art document.
  • Comparative Examples 4 and 5 are examples using linear oxygen-containing polymers (specifically, acyclic ethers and acyclic esters) as the hydrogen-accepting functional group as the film-forming polymer B.
  • the mixing property and the water spot whitening property are similar to those of the Examples, but it is understood that the solvent resistance is very poor and it cannot be used.
  • the low-temperature curable coating composition of the present invention is cured at a low temperature (15 to 100 ° C., and sometimes 15 ° C. or lower) to form a highly solvent-resistant coating film, it is widely used in the field of paints and protective coatings. Available to:

Abstract

本発明は、低温で硬化して、耐溶剤性の高い硬化被膜を形成する被覆組成物を提供する。 本発明は、(A)水素原子に共有結合しているヘテロ原子を有する水素供与性官能基を有する被膜形成性高分子、 (B)水素原子が共有結合していないヘテロ原子を有する水素受容性官能基の内特定のものを有する被膜形成性高分子、および (C)分子内に水素原子と共有結合するヘテロ原子および水素原子と共有結合しないヘテロ原子の両方のヘテロ原子を有する非塩基性揮発性溶媒(C-1);分子内に水素原子に共有結合しているヘテロ原子を有する非塩基性揮発性溶媒(C-2)と分子内に水素原子が共有結合していないヘテロ原子を有する非塩基性揮発性溶媒(C-3)との混合物;およびその組合せから成る群から選択される非塩基性揮発性溶媒、 を含有する低温硬化性被覆組成物を提供する。

Description

低温硬化性被覆組成物
 本発明は、低温硬化性被覆組成物、特に低温(具体的には15℃~100℃)で硬化して耐溶剤性の硬化被膜を形成する低温硬化性被覆組成物を提供する。 
 塗料は、物品の外観をよくするために多くの製品に塗装されている。自動車などの製品には、140℃~250℃の高温で20分~1時間硬化する熱硬化性塗料が用いられている。これらは、イソシアネート硬化剤やメラミン硬化剤を用いて、塗料中の樹脂を硬化剤と反応させて硬化塗膜を形成している。しかし、硬化温度が高く、硬化時間が長いことは、それだけエネルギーが必要であることから、最近は省資源や温室ガス規制の観点から100℃~130℃の硬化温度で20~40分間の硬化する方法が用いられている。
 硬化温度は、さらに低下が求められていて、プラスチック材料に塗布することができるような温度、例えば15~100℃の温度で塗料が硬化して、しかも耐溶剤性の高い硬化フィルムの形成が求められている。
 特開2002-53799号公報(特許文献1)には、ゴルフボール用の塗料であるが、ポリオールとポリイソシアネートが配合された2液硬化型ウレタン塗料と、硬化触媒と、ポリオールの水酸基とともに水素結合を形成してかつ70℃以下で揮発する物質とを配合するものが提案されている。この塗料は、70℃以下の低温で硬化するが、長時間(実施例では120分)の硬化が必要であり、硬化反応はウレタン反応であって、水素結合は揮発する物質の一時的な反応に用いられているだけである。
 特表2002-503747号公報(特許文献2)には、水素結合を生ずることができる官能基(具体的には、OH、COOH、NH、NHRまたはSH)によって架橋されうる樹脂を含有する粉体塗料組成物が基材に適用され、NIR(近赤外線)照射によって溶融硬化される、金属または非金属の表面に粉体仕上げを形成する方法が記載されている。この塗料は、実施例ではカルボキシ基を有するポリエステルを、エポキシ硬化剤などの硬化剤で硬化する際に、近赤外線を照射して短時間で硬化するものであり、水素結合は硬化には利用されていないと思われる。
 特開平6-322292号公報(特許文献3)には、カルボン酸基を有する不飽和モノマー50モル%以上を重合してなる高分子(a)と、カルボン酸基と水素結合力で相互作用するプロトン受容性の構造単位を有し、高分子(a)と水素結合によるポリマーコンプレックスを形成しうる高分子(b)と、揮発性塩基を含有する親水化処理用ポリマー組成物が開示されている。揮発性塩基は、上記高分子(a)のカルボン酸基と中和反応して、ポリマーコンプレックスの反応を阻害し、かつ揮発性を有するものであり、有機アミンが例出されている。この組成物では、硬化温度は特許文献3の実施例では180℃10分であり、低温硬化では無い。また、揮発性塩基はカルボン酸と比較的強い相互作用を持つことで、塗膜中に残存しやすく耐水性不良など塗膜欠陥の原因となる場合がある。さらに、この反応は中和反応生成物が溶解可能な水系に用途が限定されるのに加え、最終的に揮発性塩基が揮散した場合、環境に悪影響を与える。
特開2002-53799号公報 特表2002-503747号公報 特開平6-322292号公報
 本発明者等は、低温で硬化して、耐溶剤性の高い硬化被膜を形成する被覆組成物を鋭意検討の結果、水素結合を用いて形成した塗膜が、低温硬化と高い耐溶剤性を達成することを見出し、本発明をなすに至った。
 即ち、本発明は、
 (A)水素原子に共有結合しているヘテロ原子を有する水素供与性官能基を有する被膜形成性高分子、
 (B)水素原子が共有結合していないヘテロ原子を有する水素受容性官能基を有し、水素受容性官能基が環構造を有しても有さなくてもよく、環構造を有する場合はヘテロ原子が窒素原子、酸素原子および/または硫黄原子であり、環構造を有さない場合はヘテロ原子が窒素原子のみまたは窒素原子と酸素原子の両方からなる、被膜形成性高分子、および
 (C)分子内に水素原子と共有結合するヘテロ原子および水素原子と共有結合しないヘテロ原子の両方のヘテロ原子を有する非塩基性揮発性溶媒(C-1);分子内に水素原子に共有結合しているヘテロ原子を有する非塩基性揮発性溶媒(C-2)と分子内に水素原子が共有結合していないヘテロ原子を有する非塩基性揮発性溶媒(C-3)との混合物;およびその組合せから成る群から選択される非塩基性揮発性溶媒、
を含有する低温硬化性被覆組成物を提供する。
 本発明は、また、
 (D)水素原子に共有結合しているヘテロ原子を有する水素供与性官能基と水素原子が共有結合していないヘテロ原子を有する水素受容性官能基との両方を有し、水素受容性官能基が環構造を有しても有さなくてもよく、環構造を有する場合はヘテロ原子が窒素原子、酸素原子および/または硫黄原子であり、環構造を有さない場合はヘテロ原子が窒素原子のみまたは窒素原子と酸素原子の両方からなる、被膜形成性高分子、および
 (C)分子内に水素原子と共有結合するヘテロ原子および水素原子と共有結合しないヘテロ原子の両方のヘテロ原子を有する非塩基性揮発性溶媒(C-1);分子内に水素原子に共有結合しているヘテロ原子を有する非塩基性揮発性溶媒(C-2)と分子内に水素原子が共有結合していないヘテロ原子を有する非塩基性揮発性溶媒(C-3)との混合物;およびその組合せから成る群から選択される非塩基性揮発性溶媒、
を含有する低温硬化性被覆組成物を提供する。
 本発明は、上記の成分(D)および成分(C)の低温硬化性被覆組成物に、更に(A)水素原子に共有結合しているヘテロ原子を有する水素供与性官能基を有する被膜形成性高分子、または、(B)水素原子が共有結合していないヘテロ原子を有する水素受容性官能基を有し、水素受容性官能基が環構造を有しても有さなくてもよく、環構造を有する場合はヘテロ原子が窒素原子、酸素原子および/または硫黄原子であり、環構造を有さない場合はヘテロ原子が窒素原子のみまたは窒素原子と酸素原子の両方からなる、被膜形成性高分子を配合した低温硬化性被覆組成物を提供する。
 上記水素供与性官能基は、水素原子と共有結合した酸素原子を有する基であるのが好ましい。
 上記水素供与性官能基は、カルボキシ基および/またはヒドロキシ基であるのが好ましい。
 上記水素受容性官能基は、環構造を有し、N-置換ラクタム基、環状イミノエーテル基、環状イミン基、N-置換水添環状イミノエーテル基、環状エーテル基、N-置換環状イミド基およびそれらの組合せからなる群から選択されるのが好ましい。
 上記水素受容性官能基は、N-置換ラクタム基および/または環状イミン基であるのが好ましい。
 上記水素受容性官能基は、環構造を有さず、N-置換非環状イミド基または非環状3級アミド基であるのが好ましい。
 上記非塩基性揮発性溶媒(C-1)は、エーテル基とヒドロキシ基とを有する低分子量エーテルアルコールであるのが好ましい。
 上記非塩基性揮発性溶媒(C-2)は、好ましくは低分子量アルコールであり、非塩基性揮発性溶媒(C-3)は好ましくは低分子量エーテルである。
 上記被膜形成性高分子(D)は、カルボキシ基および/またはヒドロキシ基と、N-置換ラクタム基およびまたは環状イミン基とを、有する高分子であるのが好ましい。
 本発明の低温硬化性被覆組成物は、水素結合を用いて硬化するので、低い硬化温度、特に15~100℃の温度でも硬化し、それにより得られた被膜は耐溶剤性の高いものとなる。
 何故、水素結合を用いると硬化温度が低くても、高い耐溶剤性の被膜が形成されるかは、まだ十分には解明されていないが、本発明者等は次のように考えている。水素結合とは、ヘテロ原子、特に酸素原子、窒素原子、硫黄原子等の電気陰性度の高いヘテロ原子に共有結合した水素原子が、近傍の他の官能基の非共有電子対と作る結合であり、その強さは10~40kJ/molの間であり、ファンデルワールス力(1kJ/mol程度)よりは強いが、共有結合(150~500kJ/mol程度)より弱く、室温で可逆的な結合・解離が可能である結合を言う。従って、水素結合は共有結合に比べて非常に弱い結合であり、塗料などの被膜形成性樹脂の硬化反応には不適切で使用できないと考えられてきた。しかし、水素結合は、単独では、弱い結合であるが、それが水素結合を形成する官能基をたくさん有する高分子間で数多く形成されると、非常に強力な結合力になって、高い耐溶剤性を達成できるのではないかと考えられる。また、ギブスエネルギー(ΔG)で考えると、ΔG=ΔH-TΔS(式中、Hはエンタルピー、Tは温度、Sはエントロピーである。)であり、水素結合は可逆性を有することから、それぞれの水素供与性官能基は他の複数の水素受容性官能基と結合相手を組み替えながらも水素結合ネットワーク全体としては架橋状態を保ちうる結合状態組合せの自由度を持ち、エントロピー項のエネルギー(-TΔS)の因子が大きくなって、結合を切断するには大きなエネルギーが必要になることからも理解できる。更に、上記のいわゆる熱力学的な結合の因子に加えて、次に述べる速度論的な結合の因子による面でも実質的に強い架橋ネットワーク形成が可能となるものと考えられる。即ち、可逆性を有する水素結合による架橋ネットワークが切断されるに至るには、一つの高分子鎖に含まれる水素結合が同時に全て切断され、なおかつ、その高分子鎖が他の高分子鎖の水素結合性官能基と接近しても、水素結合を一つも形成しない状態を常に保ちながら、水素結合ネットワークから脱離させていく必要がある。しかし、水素結合性高分子を適切に選択すれば、このような現象が起こる確率を極めて小さくすることができ、実質的に強い架橋ネットワーク形成が可能となると考えられる。
 そして、水素結合を硬化反応に用いる際には、本発明の成分(C)の非塩基性揮発性溶媒の存在が重要である。塗料などの状態では、この溶媒が個々の高分子の水素結合を形成する能力のある官能基をキャップして、一時的に架橋反応を抑制しているが、この溶媒が高い蒸気圧を有するので、塗膜形成時には、低い硬化温度(例えば、60℃ぐらいの温度)であっても、この溶媒が空気中に蒸発し、溶媒の水素結合の束縛より解放された高分子の官能基が他の高分子と水素結合を形成する能力を取り戻し、高分子間の水素結合が形成され、上記のようにたくさんの水素結合による強固な被膜が形成されるものと理解している。
 本発明の第一の組成物は、(A)水素原子に共有結合しているヘテロ原子を有する水素供与性官能基を有する被膜形成性高分子、
 (B)水素原子が共有結合していないヘテロ原子を有する水素受容性官能基を有し、水素受容性官能基が環構造を有しても有さなくてもよく、環構造を有する場合はヘテロ原子が窒素原子、酸素原子および/または硫黄原子であり、環構造を有さない場合はヘテロ原子が窒素原子のみまたは窒素原子と酸素原子の両方からなる、被膜形成性高分子、および
 (C)分子内に水素原子と共有結合するヘテロ原子および水素原子と共有結合しないヘテロ原子の両方のヘテロ原子を有する非塩基性揮発性溶媒(C-1);分子内に水素原子に共有結合しているヘテロ原子を有する非塩基性揮発性溶媒(C-2)と分子内に水素原子が共有結合していないヘテロ原子を有する非塩基性揮発性溶媒(C-3)との混合物;およびその組合せから成る群から選択される非塩基性揮発性溶媒、
を含有する低温硬化性被覆組成物である。
 成分(A)
 本発明の低温硬化性被覆組成物の成分(A)は、水素原子に共有結合しているヘテロ原子を有する水素供与性官能基を有する被膜形成性高分子である。ヘテロ原子は、上記の水素結合の説明で述べたように、酸素原子(O)、窒素原子(N)、硫黄原子(S)などの電気陰性度の高い原子であって、それに共有結合する水素原子を有する基が水素供与性官能基であり、具体的にはカルボキシ基(-COOH)、ヒドロキシ基(-OH)、アミノ基(-NHRまたは―NH;式中、Rはアルキル基またはアリール基である。)またはチオール基(-SH)などが挙げられる。水素供与性官能基は、好ましくは水素と共有結合した酸素を有する基であり、具体的にはカルボキシ基またはヒドロキシ基であり、より好ましくはカルボキシ基である。
 本発明の成分(A)は、上記のような水素供与性官能基を有する高分子であって、水素供与性官能基を有する不飽和モノマーの重合、または、水素供与性官能基を有する不飽和モノマーと、他の共重合性モノマーとを共重合することなどにより得られる。
 カルボキシ基を有する不飽和モノマーの例としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、2-アクリロイルオキシエチルフタル酸、2-アクリロイルオキシエチルコハク酸、ω-カルボキシ-ポリカプロラクトンモノ(メタ)アクリレート、イソクロトン酸、フマル酸またはマレイン酸などが挙げられる。尚、本明細書中において、「(メタ)アクリレート」は、アクリレートまたはメタクリレートを意味する。
 ヒドロキシ基を有する不飽和モノマーの例としては、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、または4-ヒドロキシブチル(メタ)アクリレート、アリルアルコール、メタリルアルコール、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、ペンタエリスリトールモノ(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、およびこれらとε-カプロラクトンとの付加物等があげられる。
 アミノ基を有する不飽和モノマーの例としては、アミノスチレン、ビニルベンジルアミン、ビニルエチルアミンまたはビニルベンジルアミン、N-イソプロピル-2-(4-ビニルフェニル)エチルアミン等が挙げられる。
 チオール基を有する不飽和モノマーの例としては、2-スルファニルエチル(メタ)アクリレート、3-スルファニルプロピル(メタ)アクリレート、または4-スルファニルブチル(メタ)アクリレート、2-ビニルベンゼンチオール等があげられる。
 上記のような水素供与性官能基を有する不飽和モノマーと共重合するモノマーの例としては、(メタ)アクリル酸アルキルエステルやスチレンなどのモノマーを用いることができる。
 この共重合反応は、水を媒体とした水溶液重合、懸濁重合、乳化重合、また有機溶媒による溶液重合や沈殿重合、また塊状重合であってもよい。また、溶液を媒体とする重合(溶液重合または沈殿重合など)または塊状重合をした後、必要であれば溶液重合の場合脱溶剤をして、必要であれば乳化剤や中和剤を用いて、水へ溶解または乳化することで行ってもよい。更に、水を媒体とする重合(水溶液重合、乳化重合、懸濁重合など)をした後、必要であれば脱水を行い、溶媒に溶解または必要であれば乳化剤を用いて溶媒に分散する方法を行ってもよい。被膜形成性高分子(A)の分子量は、通常、数平均分子量で1,000~2,000,000であり、好ましくは2,000~1,500,000、より好ましくは3,000~1,000,000である。数平均分子量が1,000より小さいと、耐溶剤性の向上が十分に得られなくなり、20,000,000より大きいと、粘度が極めて大きくなって塗料の作製や塗装が困難になる。
 成分(B)
 本発明の低温硬化性被覆組成物の成分(B)は、水素原子が共有結合していないヘテロ原子を有する水素受容性官能基を有し、水素受容性官能基が環構造を有しても有さなくてもよく、環構造を有する場合はヘテロ原子が窒素原子、酸素原子および/または硫黄原子であり、環構造を有さない場合はヘテロ原子が窒素原子のみまたは窒素原子と酸素原子の両方からなる、被膜形成性高分子である。前述のように、ヘテロ原子は、上記の水素結合で述べたように、酸素原子(O)、窒素原子(N)、硫黄原子(S)などの電気陰性度の高い原子であるが、水素受容性官能基としては環構造を有する時にはヘテロ原子は酸素原子、窒素原子および/または硫黄原子であってよく、水素受容性官能基が環構造を有さない時にはヘテロ原子は窒素原子のみか、窒素原子と酸素原子の両方を有する。水素受容性官能基が環構造を有すると、環を形成することにより生じる歪がどのようなヘテロ原子であっても水素受容性を高く維持することができるが、水素受容性官能基が環構造を有さない時には窒素原子のみか、窒素原子と酸素原子の両方があるときに、水素受容性が高く維持できるものと考えられる。
 成分(B)の水素受容性官能基は、環構造をとる時は、N-置換ラクタム基、環状イミノエーテル基、環状イミン基、N-置換水添環状イミノエーテル基、環状エーテル基、N-置換環状イミド基またはそれらの組合せなどが挙げられ、環構造をとらない時はN-置換非環状イミド基、非環状3級アミド基等が挙げられる。従って、環構造をとらない酸素原子である非環状エーテルあるいは非環状エステル、更には環構造をとらない硫黄原子である非環状チオールや非環状チオエステルは、成分(B)の水素受容性官能基としては好適でない。好ましくは窒素原子と酸素原子の両方を有する基であり、環構造をとる場合にはN-置換ラクタム基、環状イミノエーテル基であり、環構造をとらない場合はN-置換非環状イミド基または非環状3級アミド基である。水素受容性官能基は、さらに好ましくは環構造をとり、かつ窒素原子のα位にカルボニル基がある複素環基であり、具体的にはピロリドン基などのN-置換ラクタム基、N-置換環状イミド基または環状3級アミド基である。
 本発明の成分(B)は、上記のような水素受容性官能基を有する高分子であって、水素受容性官能基を有する不飽和モノマーの重合、または、水素受容性官能基を有する不飽和モノマーと、他の共重合性モノマーとを共重合することなどにより得られる。
 N-置換ラクタム基を有する不飽和モノマーの例としては、N-ビニルピロリドン、N-ビニルカプロラクタム、N-ビニル-4-メチルピロリドン、N-ビニル-4-エチルピロリドン、N-ビニル-4-プロピルピロリドン、N-ビニル-4-ブチルピロリドン、N-ビニル-4-メチル-5-エチルピロリドン、N-ビニル-4-メチル-5-プロピルピロリドン、N-ビニル-5-メチル-5-エチルピロリドン、N-ビニル-5-プロピルピロリドン、N-ビニル-5-ブチルピロリドン、N-ビニル-4-メチルカプロラクタム、N-ビニル-6-メチルカプロラクタム、N-ビニル-6-プロピルカプロラクタム、N-ビニル-7-ブチルカプロラクタムなどが挙げられる。
 環状イミノエーテル基を有する不飽和モノマーの例としては、2-ビニル-2-オキサゾリン、5-メチル-2-ビニル-2-オキサゾリン、4,4-ジメチル-2-ビニル-2-オキサゾリン、4,4-ジメチル-2-イソプロペニル-2-オキサゾリン、4-アクリロイル-オキシメチル-2,4-ジメチル-2-オキサゾリン、4-メタクリロイル-オキシメチル-2,4-ジメチル-2-オキサゾリン、4-メタクリロイル-オシメチル-2-フェニル-4-メチル-2-オキサゾリン、2-(4-ビニルフェニル)-4,4-ジメチル-2-オキサゾリン、4-エチル-4-カルボエトキシメチル-2-イソプロペニル-2-オキサゾリン、2-ビニル-5,6-ジヒドロ-4H-1,3-オキサジン、2-イソプロペニル-5,6-ジヒドロ-4H-1,3-オキサジン等があげられる。
 環状イミンを有する不飽和モノマーの例としては、2-ビニルピリジン、4-ビニルピリジン等が挙げられる。
 N-置換水添環状イミノエーテル基を有する不飽和モノマーの例としては、N-ビニルモルホリン、N-(メタ)アクリロイルモルホリン等が挙げられる。
 環状エーテルを有する不飽和モノマーの例としては、アクリル酸テトラヒドロフルフリル、2-ビニル-1,4-ジオキサン、アクリル酸5-エチル-1,3-ジオキサン-5-イルメチル等が挙げられる。
 N-置換環状イミド基を有する不飽和モノマーの例としては、N-ビニルマレインイミド、N-(4-ビニルフェニル)マレインイミド、N-ビニルフタルイミド等が挙げられる。
 N-置換非環状イミド基を有する不飽和モノマーの例としては、N-ビニルジアセトアミド、N-ビニルジベンズアミド、N-ビニル-N-アセチルベンズアミド、N-アセチル-N-3-ビニルプロパノイルベンズアミド、N-アセチル-N-3-(メタ)アクリロイルプロパノイルベンズアミド、N-ビニルジ-2-フロイルアミン等が挙げられる。
 非環状3級アミド基を有する不飽和モノマーの例としては、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、N,N-ジイソプロピルアクリルアミド、N-メチル-N-イソプロピルアクリルアミド等が挙げられる。
 水素受容性官能基を有するビニルポリマーの合成は、上記成分(A)の水素供与性官能基を有するビニルポリマーと同様の方法で製造することができる。被膜形成性高分子(B)の分子量は、通常、数平均分子量で1,000~2,000,000であり、好ましくは2,000~1,500,000、より好ましくは3,000~1,000,000である。数平均分子量が1,000より小さいと、耐溶剤性の向上が十分に得られなくなり、2,000,000より大きいと、粘度が極めて大きくなって塗料の作製や塗装が困難になる。
 成分(C)
 本発明の低温硬化性被覆組成物の成分(C)は、分子内に水素原子と共有結合するヘテロ原子および水素原子と共有結合しないヘテロ原子の両方のヘテロ原子を有する非塩基性揮発性溶媒(C-1)、分子内に水素原子に共有結合しているヘテロ原子を有する非塩基性揮発性溶媒(C-2)と分子内に水素原子が共有結合していないヘテロ原子を有する非塩基性揮発性溶媒(C-3)との混合物、およびその組合せから成る群から選択される非塩基性揮発性溶媒である。ヘテロ原子は、前述のように、酸素原子(O)、窒素原子(N)、硫黄原子(S)が通常であり、それと水素原子が結合しているものと結合していないものに分けている。但し、この非塩基性揮発性溶媒(C)は、非塩基性でなければならず、ヘテロ原子は主として酸素原子(O)または硫黄原子(S)である。成分(C)は、非塩基性揮発性溶媒であり、揮発性は酢酸n-ブチルの蒸発速度を100とした場合の20℃における相対蒸発速度で表した場合に、相対蒸発速度が0.1以上、好ましくは0.2以上、より好ましくは0.3以上である必要がある。
 本発明で用いる非塩基性揮発性溶媒(C-1)は、分子内に水素原子と共有結合するヘテロ原子および水素原子と共有結合しないヘテロ原子の両方のヘテロ原子を有するものであり、例えばヒドロキシ基とエーテル基の両方を有しているアルコキシアルコール(エチレングリコールのモノエーテル化合物の場合はセロソルブと呼ばれることもある。)、具体的にはメトキシプロパノール、エトキシプロパノール、プロポキシプロパノール、ブトキシプロパノール、メトキシエタノール、エトキシエタノール、プロポキシプロパノール、ブトキシエタノール、ソルフィット、ジプロピレングリコールモノメチルエーテル、エチルジグリコールまたはブチルジグリコール等が挙げられる。
 非塩基性揮発性溶媒(C-1)は、好ましくはメトキシプロパノール、エトキシプロパノール、プロポキシプロパノール、エトキシエタノール、プロポキシプロパノール、ブトキシエタノールまたはジプロピレングリコールモノメチルエーテルであり、より好ましくはメトキシプロパノール、プロポキシプロパノール、ブトキシエタノールである。
 非塩基性揮発性溶媒(C-2)は、分子内に水素原子に共有結合しているヘテロ原子を有するものであり、非塩基性揮発性溶媒(C-3)は分子内に水素原子が共有結合していないヘテロ原子を有するものであり、その2種類の溶媒の混合物が、本発明では成分(C)として用いられる。この場合のヘテロ原子も、やはり、酸素原子(O)または硫黄原子(S)である。非塩基性揮発性溶媒(C-2)および(C-3)における揮発性も、上述の酢酸n-ブチルの蒸発速度を100とした場合の相対値で表すことができ、塩基性揮発性溶媒(C-1)と同様、上記相対蒸発速度が0.1以上、好ましくは0.2以上、より好ましくは0.3以上である必要がある。
 本発明で用いられる非塩基性揮発性溶媒(C-2)は、酸素の場合、上記揮発性を満足するアルコールであり、具体的にはアルキルアルコール(例えば、メタノール、エタノール、プロパノール、n-ブタノール、iso-ブタノール、t-ブタノール、ペンタノール、2-エチルヘキサノール)、環状アルコール(例えば、シクロヘキサノール)等が挙げられる。硫黄の場合、n-プロパンチオール、iso-プロパンチオール、n-ブタンチオール、iso-ブタンチオール、t-ブタンチオール、ヘキサンチオール、ベンジルメルカプタン等が挙げられる。
 非塩基性揮発性溶媒(C-3)は、酸素の場合、上記揮発性を満足するエーテルであり、具体的にはジアルキルエーテル(例えば、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテルまたはジブチルエーテル)、ジオールのジアルキルエーテル(例えば、ジメチルグリコール、ジメチルジグリコール、メチルエチルジグリコール、ジエチルジグリコールまたはジブチルジグリコール)、環状エーテル(例えば、テトラヒドロフランまたはジオキサン)、エーテル基とエステル基を分子内に有する化合物(例えば、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテートまたはエチル3-エトキシプロピオネート)等が挙げられる。硫黄の場合、ジアルキルスルフィド(例えば、ジメチルスルフィド、ジエチルスルフィド、ジプロピルスルフィドまたはジプロピルジスルフィド)、環状スルフィド(例えば、チオフェン、テトラヒドロチオフェン)等が使用できる。
 成分(C)の2種類目は、上記のように、非塩基性揮発性溶媒(C-2)と(C-3)の混合物であり、非塩基性揮発性溶媒(C-2)としてはエタノール、iso-プロパノール、n-ブタノール、iso-ブタノール、t-ブタノール、2-エチルヘキサノールが特に好ましく、揮発性の非塩基性低分子量溶媒(C-3)としてはジオキサン、テトラヒドロフラン、ジメチルグリコール、ジメチルジグリコールが特に好ましい。
 成分(A)~(C)の配合量
 上記被膜形成性高分子(A)と被膜形成性高分子(B)との配合量は、成分(A):成分(B)の重量比で、1:100~100;1、好ましくは1:50~50:1、より好ましくは1:30~30:1である。成分(A)が100:1より多いときは、成分(A)と概ね同程度の耐溶剤性しか得られないという欠点を有し、1:100より少ないときは、成分(B)と概ね同程度の耐溶剤性しか得られないという欠点を有する。
 成分(A)および(B)の比は、官能基のモル比でも表すことができ、水素供与性官能基:水素受容性官能基のモル比は通常1:100~100;1、好ましくは1:50~50:1、より好ましくは1:30~30:1である。水素供与性官能基のモル量が100:1より多いときは、成分(A)と概ね同程度の耐溶剤性しか得られないという欠点を有し、1:100より少ないときは、成分(B)と概ね同程度の耐溶剤性しか得られないという欠点を有する。
 成分(C)は、基本的に溶剤と水素供与性官能基のキャップ剤の両方の働きを有しているが、成分(A)と成分(B)が溶解する量であれば特に限定的ではないが、通常は成分(A)~(C)の合計量の10~99重量%、好ましくは20~95重量%、より好ましくは25~90重量%である。成分(C)が、99重量%より多くてもよいが、揮散に時間がかかり無駄になる。逆に、10重量%より少ないと、溶解性および水素供与性官能基のキャップ化機能が十分でなくなり、水素供与性官能基と水素受容性官能基の不必要な反応が生じて、固化や粘度上昇が生じる。
成分(D)
 本発明の低温硬化性被覆組成物は、上記被膜形成性高分子(A)および(B)の代わりに、両方の機能を持つ水素原子に共有結合しているヘテロ原子を有する水素供与性官能基と水素原子が共有結合していないヘテロ原子を有する水素受容性官能基との両方を有し、水素受容性官能基が環構造を有しても有さなくてもよく、環構造を有する場合はヘテロ原子が窒素原子、酸素原子および/または硫黄原子であり、環構造を有さない場合はヘテロ原子が窒素原子のみまたは窒素原子と酸素原子の両方からなる、被膜形成性高分子(D)を含んでもよい。また、被膜形成性高分子(D)は、被膜形成性高分子(A)または(B)のいずれか一方若しくは両方と共存してもよい。
 被膜形成性高分子(D)における水素原子に共有結合しているヘテロ原子を有する水素供与性官能基は前述の成分(A)と同じものを用いることができ、水素原子が共有結合していないヘテロ原子を有する水素受容性官能基は前述の成分(B)と同じものを用いることができる。但し、水素受容性官能基は、環構造を有しても有さなくてもよく、環構造を有する場合はヘテロ原子が窒素原子、酸素原子および/または硫黄原子であり、環構造を有さない場合はヘテロ原子が窒素原子のみまたは窒素原子と酸素原子の両方からなる官能基である。
 従って、上記の水素供与性官能基を有する不飽和モノマーと、水素受容性官能基と有する不飽和モノマーと、必要に応じて他の共重合性モノマーとを共重合することにより得てもよい。また、水素供与性官能基を有する(共)重合体と水素供与性官能基を有する(共)重合体の高分子反応、水素供与性官能基を有する(共)重合体セグメントと水素供与性官能基を有する(共)重合体セグメントの逐次ラジカル重合等によって製造することができる。いずれの場合においても、水素受容性官能基と水素供与性官能基とが反応を起こさないような条件または反応を起こさないような処理をして、反応を行わせることができる。もちろん、被膜形成性高分子(D)の製造方法は、これらに限定されない。
 被膜形成性高分子(D)の分子量は、通常、数平均分子量で1,000~3,000,000であり、好ましくは2,000~2,000,000、より好ましくは3,000~1,500,000である。数平均分子量が1,000より小さいと、耐溶剤性の向上が十分に得られなくなり、3,000,000より大きいと、粘度が極めて大きくなって塗料の作製や塗装が困難になるという欠点を有する。
 被膜形成性高分子(D)中の水素供与性官能基:水素受容性官能基のモル比は通常1:100~100:1、好ましくは1:50~50:1、より好ましくは1:30~30:1である。水素供与性官能基のモル量が100:1より多いときは、水素受容性官能基を用いなかった場合と概ね同程度の耐溶剤性しか得られず、1:100より少ないときは、水素供与性官能基を用いなかった場合と概ね同程度の耐溶剤性しか得られないという欠点を有する。
 前述のように、成分(D)の被膜形成性高分子はさらに、成分(A)や成分(B)と組み合わせて使用することもできる。成分(D)と、成分(A)および成分(B)と組み合わせて使用する場合の水素供与性官能基:水素受容性官能基のモル比は通常1:100~100;1、好ましくは1:50~50:1、より好ましくは1:30~30:1である。水素供与性官能基のモル量が100:1より多いときは、水素受容性官能基を有する被膜形成成分を用いなかった場合と概ね同程度の耐溶剤性しか得られないという欠点を有し、1:100より少ないときは、水素供与性官能基を有する被膜形成成分を用いなかった場合と概ね同程度の耐溶剤性しか得られないという欠点を有する。
 成分(D)を用いる場合でも、成分(C)は、基本的に溶剤と水素供与性官能基のキャップ剤の両方の働きを有する。成分(C)の量は、成分(D)が溶解する量であれば特に限定的ではないが、通常成分(C)は成分(D)と成分(C)の合計量の10~99重量%、好ましくは20~95重量%、より好ましくは25~90重量%である。成分(C)が、99重量%より多くてもよいが、揮散に時間がかかり無駄になる。逆に、10重量%より少ないと、溶解性および水素供与性官能基のキャップ化機能が十分でなくなり、水素供与性官能基と水素受容性官能基の不必要な反応が生じて、固化や粘度上昇が生じる。成分(D)と成分(A)若しくは成分(B)とを組合せる場合も、組成物全体の量の10~99重量、好ましくは20~95重量%、より好ましくは25~90重量%である。
 本発明における低温硬化性被覆組成物は、上記成分(A)~(D)に加えて、例えばヘプタン、トルエン、キシレン等の、成分(C)以外の溶剤を含んでもよい。
 低温硬化性被覆組成物のその他の成分
 本発明における低温硬化性被覆組成物は、上記成分(A)~(D)に加えて、必要に応じた他の成分を含んでもよい。他の成分として、例えば、顔料、意匠材料(砂、硅砂、カラーサンド、ビーズ、カラーチップ、鉱物チップ、ガラスチップ、木質チップおよびカラービーズなど)、造膜助剤、表面調整剤、防腐剤、防かび剤、消泡剤、光安定剤、紫外線吸収剤、酸化防止剤、pH調整剤などが挙げられる。
 顔料としては、特に限定されず、例えば、アゾキレート系顔料、不溶性アゾ系顔料、縮合アゾ系顔料、モノアゾ系顔料、ジスアゾ系顔料、ジケトピロロピロール系顔料、ベンズイミダゾロン系顔料、フタロシアニン系顔料、インジゴ系顔料、チオインジゴ系顔料、ペリノン系顔料、ペリレン系顔料、ジオキサン系顔料、キナクリドン系顔料、イソインドリノン系顔料、ナフトール系顔料、ピラゾロン系顔料、アントラキノン系顔料、アンソラピリミジン系顔料、金属錯体顔料などの有機系着色顔料;黄鉛、黄色酸化鉄、酸化クロム、モリブデートオレンジ、ベンガラ、チタンイエロー、亜鉛華、カーボンブラック、二酸化チタン、コバルトグリーン、フタロシアニングリーン、群青、コバルトブルー、フタロシアニンブルー、コバルトバイオレットなどの無機系着色顔料;マイカ顔料(二酸化チタン被覆マイカ、着色マイカ、金属メッキマイカ)、グラファイト顔料、アルミナフレーク顔料、金属チタンフレーク、ステンレスフレーク、板状酸化鉄、フタロシアニンフレーク、金属メッキガラスフレーク、その他の着色、有色偏平顔料;酸化チタン、炭酸カルシウム、硫酸バリウム、炭酸バリウム、珪酸マグネシウム、クレー、タルク、シリカ、焼成カオリンの体質顔料などを挙げることができる。
 本発明の低温硬化性被覆組成物が顔料を含む場合は、塗料組成物の固形分に対する顔料質量濃度(PWC)が5~70質量%の範囲内であることが好ましい。上記PWCが5質量%未満であると、下地隠蔽性が劣り、上記PWCが70質量%を超えると、耐侯性が低下するおそれがある。顔料質量濃度(PWC)は20~45質量%であることがより好ましい。
 本発明の低温硬化性被覆組成物の調製法としては特に限定されず、上述した各成分を、攪拌機などにより攪拌することによって調製することができる。低温硬化性被覆組成物中に顔料または意匠材料が含まれる場合は、分散性のよいものは攪拌機により混合することができ、他の方法として、顔料分散樹脂にサンドグラインドミルなどを用いて予め分散させたものを加えることもできる。
 塗装方法等
 本発明の低温硬化性被覆組成物は、金属表面等の被塗装物表面上に塗装した後、所定温度に加熱することによって、耐溶剤性の高い被膜とすることができる。このような低温硬化性被覆組成物の塗装は、浸漬、ハケ塗り、スプレー、ロールコーターなど通常の方法によって行うことができる。また塗装後の加熱の条件は、非塩基性揮発性溶媒(C)が揮発し、水素結合が形成される加熱条件であればよく、通常は、50~100℃で数十分間ないし15℃で数日程度である。もちろん、これらの塗装条件に限定されない。
 本発明を実施例により更に詳細に説明する。実施例中特に断らない限り、部及び%は重量部及び重量%を示す。
 水素供与性官能基を有する被膜形成性高分子A-Iの合成
 攪拌機、温度調整器、冷却管を備えた2リットルの反応容器にメトキシプロパノール500部を仕込み、これにアクリル酸150部、スチレン180部、n-ブチルアクリレート80部、n-ブチルメタアクリレート180部からなるモノマー溶液およびメトキシプロパノール60部とt-アミルパーオキシオクトエート12部からなる開始剤溶液を115℃で3時間滴下し、1時間さらに攪拌を継続した。次いで、メトキシプロパノール10部とt-アミルパーオキシオクトエート2部からなる開始剤溶液を115℃で30分間滴下し、30分間さらに撹拌を継続することにより、ガードナー気泡粘度X、固形分酸価200mgKOH/gおよび固形分50重量%のアクリルワニスを得た。このアクリル樹脂の数平均分子量を、GPC装置として「HLC8220GPC」(商品名、東ソー(株)製)、カラムとして「Shodex KF-606M」、「Shodex KF-603」(いずれも昭和電工(株)製、商品名)の2本を用いて、移動相:テトラヒドロフラン、測定温度:40℃、流速:0.6cc/分、検出器:RIの条件で測定した結果、数平均分子量が14,000であった。
 水素供与性官能基を有する被膜形成性高分子A-IIの合成
 モノマー溶液としてアクリル酸75部、スチレン175部、n-ブチルアクリレート40部、n-ブチルメタクリレート300部を用いた以外は被膜形成高分子A-Iと同様にして、ガードナー気泡粘度U、固形分酸価100mgKOH/gのアクリルワニスを得た。数平均分子量は、14,000であった。
 水素供与性官能基を有する被膜形成性高分子A-IIIの合成
モノマー溶液としてアクリル酸15部、スチレン180部、n-ブチルアクリレート10部、n-ブチルメタクリレート390部を用いた以外は被膜形成高分子A-Iと同様にして、ガードナー気泡粘度S、固形分酸価20mgKOH/gのアクリルワニスを得た。数平均分子量は、14,000であった。
 水素供与性官能基を有する被膜形成性高分子A-IV
 積水化学工業株式会社から市販のエスレックBL-1(ブチラール樹脂)を使用する。エスレックBL-1は計算分子量が約19,000、ブチラール化度が約63のブチラール樹脂である。
 水素供与性官能基を有する被膜形成性高分子A-V
 サンノプコ株式会社から市販のSNシックナーN-1(ポリカルボン酸)を使用する。SNシックナーN-1はpHが約1.8、粘度が約15,000mPa・s、樹脂固形分が約25%のポリカルボン酸樹脂水溶液である。
 水素供与性官能基を有する被膜形成性高分子A-VIの合成
 合成に用いる有機溶媒をメトキシプロパノールからメチルイソブチルケトンに変更した以外は、被膜形成高分子A-Iと同様にして、ガードナー気泡粘度X、数平均分子量15,000のアクリルワニスを得た。
 水素受容性官能基を有する被膜形成性高分子B-I
 BASFジャパン株式会社から市販のソカラン(Sokalan)K30Pを使用する。ソカランK30Pは、分子量45,000のポリビニルピロリドンである。
 水素受容性官能基を有する被膜形成性高分子B-II
 BASFジャパン株式会社から市販のソカラン(Sokalan)VA64Pを使用する。ソカランVA64Pは、ビニルピロリドンと酢酸ビニルの60/40共重合体である。
 水素受容性官能基を有する被膜形成性高分子B-IIIの合成
 モノマー溶液として2-ビニルピリジン220部、スチレン180部、n-ブチルアクリレート150部、n-ブチルメタクリレート20部を用いた以外は被膜形成高分子A-Iと同様にして重合溶液を得たのち、60℃で加熱しながらエバポレーターで減圧乾燥して得た高分子固形分をメトキシプロパノールで希釈することにより、固形分25%、固形分ピリジン価200mgKOH/gのビニルピリジン共重合ワニスを得た。カラムとして「Shodex KF-806M」(昭和電工(株)製、商品名)を用い、移動相として10mMのLiBrを添加したジメチルホルムアミド(DMF)を用いてGPC装置で測定した数平均分子量は、8,000であった。
 水素受容性官能基を有する被膜形成性高分子B-IV
 株式会社日本触媒から市販のエポクロスWS-500を使用する。エポクロスWS-500は、数平均分子量20,000のオキサゾリン基含有ポリマーである。
 水素供与性官能基および受容性官能基を有する被膜形成性高分子D-Iの合成
モノマー溶液としてN-ビニルピロリドン235部、アクリル酸105部、n-ブチルアクリレート75部、n-ブチルメタクリレート175部を用いた以外は被膜形成高分子A-Iと同様にして、ガードナー気泡粘度Z2、固形分酸価135mgKOH/gのアクリルワニスを得た。カラムとして「Shodex KF-806M」(昭和電工(株)製、商品名)を用い、移動相として10mMのLiBrを添加したDMFを用いてGPC装置で測定した数平均分子量は、16,000であった。
 水素供与性官能基および受容性官能基を有する被膜形成性高分子D-IIの合成
モノマー溶液としてN-ビニルピロリドン235部、2-ヒドロキシエチルメタクリレート190部、n-ブチルアクリレート75部、n-ブチルメタクリレート90部を用いた以外は被膜形成高分子A-Iと同様にして、ガードナー気泡粘度Z1、固形分水酸基価140mgKOH/gのアクリルワニスを得た。カラムとして「Shodex KF-806M」(昭和電工(株)製、商品名)を用い、移動相として10mMのLiBrを添加したDMFを用いてGPC装置で測定した数平均分子量は、23,000であった。
非環状エーテル基を有する被膜形成性高分子X-I(比較例用)
 三洋化成工業株式会社から市販のニューポールLB-1715を使用する。ニューポールLBー1715は、数平均分子量2,390のポリオキシプロピレンアルキルエーテルである。
非環状エステル基を有する被膜形成性高分子X-IIの合成(比較例用)
 モノマー溶液としてスチレン190部、n-ブチルアクリレート10部、n-ブチルメタクリレート390部を用いた以外は被膜形成高分子A-Iと同様にして、ガードナー気泡粘度R、固形分酸価0mgKOH/gのアクリルワニスを得た。数平均分子量は、14,000であった。
 実施例1
 上記被膜形成性高分子(A-I)30重量部をメトキシプロパノール(MP)70重量部に混合して被膜形成性高分子(A-I)ワニスを作成した。次に、被膜形成性高分子(B-I)であるソカランK30P(固形分100%)15重量部とメトキシプロパノール(MP)85重量部とを混合して被膜形成性高分子(B-I)ワニスを作成した。両者を混合して複合ワニスを作成した。
 混合性
 得られた複合ワニスの混合性を表1に示す。表1には、複合ワニスの配合、複合ワニスの非揮発分(NV)濃度(重量%)および被膜形成性高分子(A-I)と被膜形成性高分子(B-I)の重量比も記載した。混合性は以下の基準で評価した。
 評価
 ×…混合するとゲル塊などの沈殿を形成する。
 ○…混合しても沈殿を形成しない。
 水滴スポット白化性
 塗膜中に残存した場合、塗膜の耐水性能を著しく低下させる懸念がある成分を検出するため、下記要領にて得られた塗膜の水滴スポット白化性試験を実施した。
 水滴スポット白化性試験
 前述の複合ワニスを、それぞれ150mm×150mmの大きさのブリキ板の上に、バーコーターで塗装し、60℃で30分乾燥させた。得られた塗膜に脱イオン水を2mlポリスポイドで1液乗せ、5秒間静置したのち、塗膜を摩擦せずにウエスで水滴を吸い取って、塗膜に白化が見られるか評価した。結果を表1に示す。
 評価
 ○…明らかな白化はなかった。
 ×…塗膜が著しく白化した。
 耐溶剤性
 次に、上記手順で得られた塗膜について、メチルイソブチルケトン(MIBK)、メチルエチルケトン(MEK)、メトキシプロパノール(MP)、イソプロパノール(IPA)、エタノール(EtOH)および脱イオン水(DIW)に対する耐溶剤性を以下の方法で試験した。結果を表1に示す。
 また、上記ワニス(A-I)またはワニス(B-1)を、複合ワニスと同様に、ブリキ板の上にバーコーターで塗装し、60℃で30分乾燥させた。この単独ワニスの塗膜についても、上記本発明の複合ワニスと同様に耐溶剤性試験を行った。この単独ワニスは、実施例の複合ワニスの優位性を示すための比較のために行ったものである。結果を表1に示す。
 耐溶剤性試験
 塗膜にそれぞれの薬品を2mlポリスポイドで1液乗せ、ラテックス手袋をつけた指先で20往復こすり、ウエスで拭き取るプロセスを1サイクルとして、塗膜が溶解するまでのサイクル数を評価として記載した。
 評価
 1…1サイクルで塗膜が完全に溶解した。
 2…2サイクルで塗膜が完全に溶解した。
 3…3サイクル目でも塗膜が残存した。
 耐溶剤性試験の結果、複合試料が単独試料の評価よりも優れているかどうかついても以下のように分類した。結果を表1に示す。
 ◎…複合試料の耐溶剤性の評価が、両方の単独試料よりも高い場合。
 ○…複合試料の耐溶剤性の評価が、いずれか一方よりも高い場合。
 -…複合試料の耐溶剤性の評価が、両方の単独試料と同点である場合。
 ×…複合試料の耐溶剤性の評価が、いずれか一方よりも劣っている場合。
 総合判定
 耐溶剤性試験の結果、複合試料が単独試料に対して総合的に優れているかどうかについて以下のように分類した。結果を表1に示す。
 ◎…複合試料の耐溶剤性の評価が、「◎」、「○」または「-」のいずれかであり、「◎」を含む場合。
 ○…複合試料の耐溶剤性の評価が、「○」または「-」のいずれかであり、「○」を含む場合。
 ×…複合試料の耐溶剤性の評価が、いずれか一つでも「×」を含む場合。
 実施例2~16
 表1~6に記載している被膜形成性高分子Aとその溶媒の組合せをAワニス(具体的には、A-Iワニス~A-Vワニス)、被膜形成性高分子Bとその溶媒の組合せをBワニス(具体的には、B-Iワニス~B-IVワニス)として、その両者を混合したものを複合ワニスとし、その複合ワニスの不揮発分含量%(NV%)およびA/Bの重量部比を同様に表に記載した。それぞれのワニスについて実施例1と同様に、混合性、水滴スポット白化性、耐溶剤性試験および総合判定を行った。結果を表1~6の各実施例に記載する。実施例8~13では、被膜形成性高分子AおよびBの水素供与性官能基および水素受容性官能基のモル比も表に記載した。また、実施例14~16では、被膜形成性高分子として、水素供与性官能基と水素受容性官能基との両方を有する被膜形成性高分子D(具体的には、被膜形成性高分子D-IおよびD-II)を用いた場合の例を示すものであり、実施例14は、被膜形成性高分子D-I単独の処方であり、実施例15および16は、被膜形成性高分子D-IまたはD-IIと被膜形成性高分子A-Iとの組合せの例である。表6の耐溶剤性における比較として用いたAワニスとBワニスは、実施例14では実施例8のA-IワニスおよびB-IIワニスであり、実施例15および16も実施例14と同じく実施例8のA-IワニスおよびB-IIワニスである。
 実施例17
 この実施例は、低温(例えば、室温)での硬化性を調べる実施例である。被膜形成性高分子(A-I)30重量部をメトキシプロパノール(MP)70重量部に混合して被膜形成性高分子(A-I)ワニスを作成した。次に、被膜形成性高分子(B-II)であるソカランVA64P(固形分100%)15重量部とメトキシプロパノール(MP)85重量部とを混合して被膜形成性高分子(B-II)ワニスを作成した。両者を混合して複合ワニスを作成した。
 それぞれの被膜形成性高分子AまたはBの単独の15重量%の溶液を塗料として、同様にブリキ板の上にバーコーターで塗装し、室温で5日間乾燥させた。乾燥期間中は空調機を用いず、最高室温は15℃であった。この単独ワニスの塗膜についても、上記本発明の複合ワニスと同様に耐溶剤性試験を行った。この単独ワニスは、実施例の複合ワニスの優位性を示すための参考のために行ったものである。結果を表7に示す。
 実施例18~22
 実施例18および19は、使用する成分Cの溶媒を変更した例であり、実施例20および21は、使用する成分Cの溶媒を変更すると同時にその他の溶媒(トルエンまたはトルエンとメチルエチルケトン(MEK))を添加した例である。実施例21は、被膜形成性高分子AとしてA-VIを用いた。実施例22は、実施例18のワニスそれぞれにその他の溶剤としてヘプタンを添加したものである。実施例1と同様に混合性、水滴スポット白化性、耐溶剤性および総合評価を行った。結果を表8および表9に示す。表8および表9では、テトラヒドロフランをTHF、ジメチルジグリコールをDMDG、n-ブタノールをnBuOHと表した。
 比較例1および2
 実施例で用いている被膜形成性高分子A-VI(メチルイソブチルケトン(MIBK)溶液)およびB-IIを、成分Cの溶媒ではない溶媒、具体的にはメチルエチルケトン(MEK)およびアセチルアセトンを用いてそれぞれを混合してA-VIワニスおよびB-IIワニスを作成したのち、両者を1:1の重量比で混合し、混合性を確認した。結果を表10に示す。比較例1および2は、混合性が悪く、被膜を形成する水滴スポット白化性試験、耐溶剤性試験は行わなかった。
 比較例3
 実施例で用いている被膜形成性高分子A-VI(メチルイソブチルケトン溶液)を成分Cの溶媒ではない溶媒、具体的にはN,N-ジメチルエタノールアミン(DMEA)と脱イオン水の混合溶液を用いて混合してA-VIワニスを作成した。次に、実施例で用いている被膜形成高分子B-Iを、成分Cの溶媒ではない溶媒、具体的には脱イオン水を用いて混合してB-Iワニスを作成した。両者を1:1の重量比で混合し、実施例1と同様に、混合性試験および水滴スポット白化性試験を行い、同様の判定を行った。結果を表11に示す。比較例3は水滴スポット白化性が悪く、耐溶剤性試験は行わなかった。
 比較例4および5
 実施例で用いている被膜形成高分子A-Iを、成分Cの溶媒、具体的にはメトキシプロパノールで混合してA-Iワニスを作成した。次に、成分Bの高分子ではない高分子、具体的には被膜形成高分子X-Iおよび被膜形成高分子X-IIを、成分Cの溶媒、具体的にはメトキシプロパノールでそれぞれ混合してX-IワニスおよびX-IIワニスを作成した。A-Iワニスを、X-IワニスおよびX-IIワニスとそれぞれ1:1の重量比で混合し、実施例1と同様に、それぞれのワニスの混合性試験、塗膜の水滴スポット白化性試験および耐溶剤性試験を行い、同様の判定を行った。結果を表12の各比較例に記載する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 上記実施例および比較例から明らかなように、実施例ではすべての例で単独ワニスよりも複合ワニスにおいて耐溶剤性が高くなっており、低温硬化でも高い耐溶剤性の塗膜が形成される。特に、実施例17では、温度を15℃以下の温度で硬化した例を示しているが、やはり高い耐溶剤性被膜が得られている。比較例1および2では、溶剤が本発明の成分Cでは無い溶剤を用いて実験を行っているが、被膜形成性高分子Aおよび被膜形成性高分子Bの混合自体を行うことができなかった。比較例3は、先行技術文献の特開平6-322292号公報に使用されている溶媒、N,N-ジメチルエタノールアミンを用いた例であるが、混合性は良好であるが、水滴を塗膜表面にスポット添加すると、塗膜が白化を生じた。比較例4および5では、被膜形成性高分子Bとして、水素受容性官能基として直鎖の酸素含有高分子(具体的には、非環状エーテルおよび非環状エステル)を用いた例であり、これらの比較例4および5では混合性や水滴スポット白化性は実施例と遜色ないが、耐溶剤性が非常に悪く、使用できないことが解る。
 本発明の低温硬化性被覆組成物は、低温(15~100℃、場合によっては15℃以下)で硬化して高い耐溶剤性の塗膜が形成されるので、塗料や保護被膜の分野で広範囲に利用できる。

Claims (20)

  1.  (A)水素原子に共有結合しているヘテロ原子を有する水素供与性官能基を有する被膜形成性高分子、
     (B)水素原子が共有結合していないヘテロ原子を有する水素受容性官能基を有し、水素受容性官能基が環構造を有しても有さなくてもよく、環構造を有する場合はヘテロ原子が窒素原子、酸素原子および/または硫黄原子であり、環構造を有さない場合はヘテロ原子が窒素原子のみまたは窒素原子と酸素原子の両方からなる、被膜形成性高分子、および
     (C)分子内に水素原子と共有結合するヘテロ原子および水素原子と共有結合しないヘテロ原子の両方のヘテロ原子を有する非塩基性揮発性溶媒(C-1);分子内に水素原子に共有結合しているヘテロ原子を有する非塩基性揮発性溶媒(C-2)と分子内に水素原子が共有結合していないヘテロ原子を有する非塩基性揮発性溶媒(C-3)との混合物;およびその組合せから成る群から選択される非塩基性揮発性溶媒、
    を含有する低温硬化性被覆組成物。
  2.  前記水素供与性官能基が、水素原子と共有結合した酸素原子を有する基である請求項1記載の低温硬化性被覆組成物。
  3.  前記水素供与性官能基が、カルボキシ基および/またはヒドロキシ基である請求項2記載の低温硬化性被覆組成物。
  4.  前記水素受容性官能基が、環構造を有し、N-置換ラクタム基、環状イミノエーテル基、環状イミン基、N-置換水添環状イミノエーテル基、環状エーテル基、N-置換環状イミド基およびそれらの組合せからなる群から選択される請求項1~3いずれかに記載の低温硬化性被覆組成物。
  5.  前記水素受容性官能基が、N-置換ラクタム基および/または環状イミン基である請求項4記載の低温硬化性被覆組成物。
  6.  前記水素受容性官能基が、環構造を有さず、N-置換非環状イミド基および/または非環状3級アミド基である請求項1~3いずれかに記載の低温硬化性被覆組成物。
  7.  前記非塩基性揮発性溶媒(C-1)が、エーテル基とヒドロキシ基とを有する低分子量エーテルアルコールである請求項1~6いずれかに記載の低温硬化性被覆組成物。
  8.  前記非塩基性揮発性溶媒(C-2)が低分子量アルコールであり、非塩基性揮発性溶媒(C-3)が低分子量エーテルである請求項1~6いずれかに記載の低温硬化性被覆組成物。
  9.  (D)水素原子に共有結合しているヘテロ原子を有する水素供与性官能基と水素原子が共有結合していないヘテロ原子を有する水素受容性官能基との両方を有し、水素受容性官能基が環構造を有しても有さなくてもよく、環構造を有する場合はヘテロ原子が窒素原子、酸素原子および/または硫黄原子であり、環構造を有さない場合はヘテロ原子が窒素原子のみまたは窒素原子と酸素原子の両方からなる、被膜形成性高分子、および
     (C)分子内に水素原子と共有結合するヘテロ原子および水素原子と共有結合しないヘテロ原子の両方のヘテロ原子を有する非塩基性揮発性溶媒(C-1);分子内に水素原子に共有結合しているヘテロ原子を有する非塩基性揮発性溶媒(C-2)と分子内に水素原子が共有結合していないヘテロ原子を有する非塩基性揮発性溶媒(C-3)との混合物;およびその組合せから成る群から選択される非塩基性揮発性溶媒、
    を含有する低温硬化性被覆組成物。
  10.  更に、(A)水素原子に共有結合しているヘテロ原子を有する水素供与性官能基を有する被膜形成性高分子、または、(B)水素原子が共有結合していないヘテロ原子を有する水素受容性官能基を有し、水素受容性官能基が環構造を有しても有さなくてもよく、環構造を有する場合はヘテロ原子が窒素原子、酸素原子および/または硫黄原子であり、環構造を有さない場合はヘテロ原子が窒素原子のみまたは窒素原子と酸素原子の両方からなる、被膜形成性高分子を含有する請求項9記載の低温硬化性被覆組成物。
  11.  前記水素供与性官能基が、水素原子と共有結合した酸素原子を有する基である請求項9または10記載の低温硬化性被覆組成物。
  12.  前記水素供与性官能基が、カルボキシ基および/またはヒドロキシ基である請求項11記載の低温硬化性被覆組成物。
  13.  前記水素受容性官能基が、環構造を有し、N-置換ラクタム基、環状イミノエーテル基、環状イミン基、N-置換水添環状イミノエーテル基、環状エーテル基、N-置換環状イミド基およびそれらの組合せからなる群から選択される請求項9~12いずれかに記載の低温硬化性被覆組成物。
  14.  前記水素受容性官能基が、N-置換ラクタム基および/または環状イミン基である請求項13記載の低温硬化性被覆組成物。
  15.  前記水素受容性官能基が、環構造を有さず、N-置換非環状イミド基および/または非環状3級アミド基である請求項9~12いずれかに記載の低温硬化性被覆組成物。
  16.  被膜形成性高分子(D)が、カルボキシ基および/またはヒドロキシ基と、N-置換ラクタム基および/または環状イミン基とを、有する高分子である請求項9または10記載の低温硬化性被覆組成物。
  17.  被膜形成性高分子(A)が、カルボキシ基および/またはヒドロキシ基を有する高分子である請求項10記載の低温硬化性組成物。
  18.  被膜形成性高分子(B)が、N-置換ラクタム基および/または環状イミン基を有する高分子である請求項10または11記載の低温硬化性被覆組成物。
  19.  前記非塩基性揮発性溶媒(C-1)が、エーテル基とヒドロキシ基とを有する低分子量エーテルアルコールである、請求項9~18いずれかに記載の低温硬化性被覆組成物。
  20.  前記非塩基性揮発性溶媒(C-2)が低分子量アルコールであり、非塩基性揮発性溶媒(C-3)が低分子量エーテルである、請求項9~18いずれかに記載の低温硬化性被覆組成物。
PCT/JP2016/074177 2015-09-04 2016-08-19 低温硬化性被覆組成物 WO2017038488A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112016004003.2T DE112016004003T5 (de) 2015-09-04 2016-08-19 Niedertemperatur-härtbare Beschichtungszusammensetzung
US15/757,472 US10400139B2 (en) 2015-09-04 2016-08-19 Low-temperature-curable coating composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015174825A JP6564653B2 (ja) 2015-09-04 2015-09-04 低温硬化性被覆組成物
JP2015-174825 2015-09-04

Publications (1)

Publication Number Publication Date
WO2017038488A1 true WO2017038488A1 (ja) 2017-03-09

Family

ID=58187506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074177 WO2017038488A1 (ja) 2015-09-04 2016-08-19 低温硬化性被覆組成物

Country Status (4)

Country Link
US (1) US10400139B2 (ja)
JP (1) JP6564653B2 (ja)
DE (1) DE112016004003T5 (ja)
WO (1) WO2017038488A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05178959A (ja) * 1991-06-20 1993-07-20 Kansai Paint Co Ltd 自己架橋性樹脂
JPH05186720A (ja) * 1992-01-14 1993-07-27 Kansai Paint Co Ltd 低温硬化性水性塗料組成物及び塗膜形成方法
JP2011094102A (ja) * 2009-09-30 2011-05-12 Nippon Paint Co Ltd 水性塗料組成物
WO2012060390A1 (ja) * 2010-11-05 2012-05-10 関西ペイント株式会社 塗料組成物及び塗膜形成方法
WO2013089204A1 (ja) * 2011-12-15 2013-06-20 旭硝子株式会社 撥液性化合物、撥液性重合体、硬化性組成物、塗布用組成物、ならびに硬化膜を有する物品、親液性領域と撥液性領域とのパターンを有する物品およびその製造方法
JP2013133445A (ja) * 2011-12-27 2013-07-08 Nippon Paint Co Ltd 水性塗料組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5762435A (en) 1980-10-02 1982-04-15 Toshiba Corp Input system for kanji (chiness character)
JPS6322292A (ja) 1986-07-15 1988-01-29 セイコーエプソン株式会社 電子部品自動搭載装置
CA2071125C (en) * 1991-06-20 1997-03-18 Yoshiyuki Yukawa Self-crosslinking resin
JPH06322292A (ja) 1993-03-18 1994-11-22 Nippon Paint Co Ltd 親水化処理用ポリマー組成物
EP0620256A3 (en) 1993-03-18 1995-03-29 Nippon Paint Co Ltd Polymer composition for hydrophilic treatment.
JP2002503747A (ja) 1998-02-17 2002-02-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 粉体コーティングを形成する方法
JP2002053799A (ja) 2000-08-10 2002-02-19 Kasco Corp ゴルフボール用塗料およびそれを用いたゴルフボール
JP2005314595A (ja) * 2004-04-30 2005-11-10 Sumitomo Chemical Co Ltd アクリル樹脂組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05178959A (ja) * 1991-06-20 1993-07-20 Kansai Paint Co Ltd 自己架橋性樹脂
JPH05186720A (ja) * 1992-01-14 1993-07-27 Kansai Paint Co Ltd 低温硬化性水性塗料組成物及び塗膜形成方法
JP2011094102A (ja) * 2009-09-30 2011-05-12 Nippon Paint Co Ltd 水性塗料組成物
WO2012060390A1 (ja) * 2010-11-05 2012-05-10 関西ペイント株式会社 塗料組成物及び塗膜形成方法
WO2013089204A1 (ja) * 2011-12-15 2013-06-20 旭硝子株式会社 撥液性化合物、撥液性重合体、硬化性組成物、塗布用組成物、ならびに硬化膜を有する物品、親液性領域と撥液性領域とのパターンを有する物品およびその製造方法
JP2013133445A (ja) * 2011-12-27 2013-07-08 Nippon Paint Co Ltd 水性塗料組成物

Also Published As

Publication number Publication date
US20180258318A1 (en) 2018-09-13
JP6564653B2 (ja) 2019-08-21
DE112016004003T5 (de) 2018-05-17
US10400139B2 (en) 2019-09-03
JP2017048350A (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
EP2809696B1 (en) Polymer, process and composition
TWI508980B (zh) 製備水性乙烯基聚合物分散液的方法
CA2901963A1 (en) Methods and compositions for coating substrates
JP2002528626A (ja) 水性コーティング組成物
AU2013341278B2 (en) Non-aqueous dispersions comprising an acrylic polymer stabilizer and an aliphatic polyester stabilized seed polymer
JP2008546873A (ja) レオロジー制御のためのトリブロックコポリマーを含有する急速乾燥ラッカー
US5587418A (en) Thermosetting coating composition and coated body
JP7462765B2 (ja) 改善されたレベリング特性を有する水性ポリカルボン酸含有コーティング組成物
JP6355532B2 (ja) 複層塗膜の形成方法
US20230075015A1 (en) Latex polymer with improved washability and block resistance
CN107847969B (zh) 制备由底漆和面漆组成的涂层的方法
JP7458378B2 (ja) コーティング用の顔料分散剤
JP2018024828A (ja) 混層制御剤
JP6564653B2 (ja) 低温硬化性被覆組成物
KR20180029071A (ko) 프라이머 및 탑 코트로 이루어진 코팅 물질 조합물
JP4829416B2 (ja) 水性着色ベース熱硬化型塗料とそれを使用した塗膜形成方法
JP2010069372A (ja) Abs基材の塗装方法及び塗装物品
JP3863718B2 (ja) クリヤー塗料組成物、塗膜形成方法および積層塗膜
KR20060047069A (ko) 플라스틱 도장용 저온소부형 도료 조성물
JP2004292577A (ja) プラスチック製基材用水性塗料組成物及び塗膜形成方法
KR101304453B1 (ko) 플라스틱 부품용 비염소 수성 도료 조성물 및 이를 사용한 도막의 형성방법
KR20060047068A (ko) 플라스틱 도장용 저온소부형 도료 조성물
JP2002254027A (ja) 水性塗膜形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841520

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15757472

Country of ref document: US

Ref document number: 112016004003

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841520

Country of ref document: EP

Kind code of ref document: A1