WO2017038289A1 - 車両制御装置および車両制御システム - Google Patents

車両制御装置および車両制御システム Download PDF

Info

Publication number
WO2017038289A1
WO2017038289A1 PCT/JP2016/071472 JP2016071472W WO2017038289A1 WO 2017038289 A1 WO2017038289 A1 WO 2017038289A1 JP 2016071472 W JP2016071472 W JP 2016071472W WO 2017038289 A1 WO2017038289 A1 WO 2017038289A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
vehicle
automatic driving
control
relative
Prior art date
Application number
PCT/JP2016/071472
Other languages
English (en)
French (fr)
Inventor
敏史 大塚
櫻井 康平
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to EP16841321.9A priority Critical patent/EP3345800B1/en
Priority to US15/739,380 priority patent/US11235760B2/en
Priority to CN201680032671.3A priority patent/CN108025751B/zh
Priority to EP20163633.9A priority patent/EP3689700B1/en
Publication of WO2017038289A1 publication Critical patent/WO2017038289A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/88Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • B60W30/146Speed limiting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/0225Failure correction strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/029Adapting to failures or work around with other constraints, e.g. circumvention by avoiding use of failed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • B60W50/045Monitoring control system parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • B60W60/0018Planning or execution of driving tasks specially adapted for safety by employing degraded modes, e.g. reducing speed, in response to suboptimal conditions
    • B60W60/00186Planning or execution of driving tasks specially adapted for safety by employing degraded modes, e.g. reducing speed, in response to suboptimal conditions related to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/005Handover processes
    • B60W60/0053Handover processes from vehicle to occupant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/005Handover processes
    • B60W60/0059Estimation of the risk associated with autonomous or manual driving, e.g. situation too complex, sensor failure or driver incapacity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/022Collision avoidance systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/30Environment conditions or position therewithin
    • B60T2210/32Vehicle surroundings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/402Back-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/0205Diagnosing or detecting failures; Failure detection models
    • B60W2050/021Means for detecting failure or malfunction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/029Adapting to failures or work around with other constraints, e.g. circumvention by avoiding use of failed parts
    • B60W2050/0297Control Giving priority to different actuators or systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9323Alternative operation using light waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9324Alternative operation using ultrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes

Definitions

  • the present invention relates to a vehicle control device and a vehicle control system.
  • Patent Document 1 JP-A-8-34326
  • This publication aims to “evaluate the degree of operational urgency and perform appropriate automatic brake control.”
  • This device uses a physical collision risk based on vehicle speed, relative speed, distance between vehicles, etc. Then, the degree of urgency of operation is calculated from the time required to switch from the accelerator to the brake, the time required to depress the brake to a predetermined strength, the operation speed of the steering, etc. (S3).
  • the automatic brake is activated (S8). Since the judgment according to the situation is added, it is possible to judge the dangerous state with higher accuracy and to perform the effective control of the automatic brake effectively.
  • the driving support device uses a camera or a radar in front of the host vehicle. While detecting the position of an object such as a pedestrian or another vehicle, the course of the host vehicle is predicted based on the yaw rate or the steering angle and the vehicle speed, and the host vehicle and the target are based on the position of the object and the predicted path. The risk of collision with an object is determined, and when the risk of collision is high, driving assistance for avoiding collision is performed, and the driving assistance device measures the curvature of the planned road and the change in the curvature is small.
  • an object of the present invention is to provide a system that can satisfactorily complement the reliability of the automatic driving system by the automatic control system while effectively utilizing the automatic driving system.
  • a system It is an example of a system. It is an example of a vehicle control system configuration. It is a structural example of a controller. It is an example of the software module structure of a controller. It is a structural example of a vehicle control system. It is an example of arrangement
  • external recognition It is an example of the coordinate system of an external world recognition map. It is an example which has arrange
  • Example of an embodiment suitable for the present invention will be described.
  • an Example mainly describes the vehicle control system and vehicle control apparatus in a vehicle system and is suitable for implementation in a vehicle system, application to other than a vehicle system is not prevented.
  • FIG. 2 is an outline of a vehicle system having a vehicle control system and a vehicle control apparatus according to this embodiment.
  • 1 is a vehicle system having a vehicle control system inside, such as an automobile
  • 2 is an in-vehicle network (CAN: Controller Area Network, CANFD: CAN with Flexible Data-rate, Ethernet (registered trademark), etc.) and a controller (ECU: Electronic Control).
  • a vehicle control system 3 configured by a unit, etc., and wireless communication with the outside of the vehicle system 1 (for example, mobile phone communication, wireless LAN, WAN, C2X (Car to X: vehicle-to-vehicle or vehicle-to-infrastructure communication)), etc.
  • CAN Controller Area Network
  • CANFD Controller Area Network
  • Ethernet registered trademark
  • ECU Electronic Control
  • a vehicle control system 3 configured by a unit, etc., and wireless communication with the outside of the vehicle system 1 (for example, mobile phone communication, wireless LAN, WAN, C2X (Car to X: vehicle-to
  • OBD diagnostic terminal
  • Ethernet registered trademark
  • external recording medium for example, USB memory, SD card, etc.
  • It is. 4 is a vehicle control system configured by a network using a protocol that is different from or the same as 2, for example
  • 5 is a mechanical and electrical device (for example, an engine, transmission, etc.) that controls vehicle motion according to the control of the vehicle control system 2.
  • a driving device such as an actuator for driving a wheel, a brake, a steering device, etc.
  • a camera that obtains information inputted from the outside world and outputs information for generating outside world recognition information described later
  • LIDAR an external sensor such as an ultrasonic sensor
  • a dynamic system sensor that recognizes the state of the vehicle system 1 (movement state, position information, acceleration, wheel speed, etc.).
  • 7 is connected to the network system by wire or wireless, receives data sent from the network system, and displays or outputs necessary information such as message information (for example, video, sound), liquid crystal display, warning light, speaker, etc.
  • the output device 8 is an input device such as a steering, a pedal, a button, a lever, a touch panel, etc., for generating an input signal for the user to input an operation intention or instruction to the vehicle control system 2.
  • Reference numeral 9 denotes a notification device such as a lamp, LED, or speaker for the vehicle system 1 to notify the outside world of the state of the vehicle.
  • the vehicle control system 2 is connected to the other vehicle control system 4, the communication device 3, the drive device 5, the recognition device 6, the output device 7, the input device 8, and the notification device 9, and each transmits and receives information.
  • FIG. 3 shows an H / W (Hardware) configuration example of the vehicle control system 2.
  • Reference numeral 301 denotes a network link for connecting network devices on the in-vehicle network, for example, a network link such as a CAN bus, and 302 denotes a network link 301 and a network link other than the driving device 5 and the recognition device 6 and 301 (including dedicated lines).
  • ECU Electronic Control Unit: Electronic Control Unit
  • 303 that controls and acquires information from the drive device 5 and the recognition device 6 and transmits / receives data to / from the network, 303 connects a plurality of network links 301, A gateway (hereinafter referred to as GW) that transmits and receives data is shown.
  • GW Gateway
  • Examples of the network topology include a star type in which a plurality of ECUs are directly connected to the GW, an ECU other than a bus type in which a plurality of ECUs 302 are connected to two buses (network link 301) shown in FIG.
  • the GW 303 and the ECU 302 include an ECU having a GW function or a GW having an ECU function.
  • the ECU 302 Based on the data received from the network, the ECU 302 outputs control signals to the drive device 5, acquires information from the recognition device 6, outputs control signals and information to the network, changes the internal state, etc. I do.
  • FIG. 4 is an example of an internal configuration of the ECU 302 or the GW 303 which is a network device according to the present embodiment.
  • Reference numeral 401 denotes a processor such as a CPU that has a storage element such as a cache and a register and executes control.
  • Reference numeral 402 denotes transmission / reception of data to / from the network link 301 or the driving device 5 and / or the recognition device 6 connected by a network or a dedicated line.
  • I / O Input / Output
  • 403 is a timer for managing time and time using a clock (not shown)
  • 404 is a ROM (Read Only Memory) for storing programs and nonvolatile data
  • 405 is A RAM (Random Access Memory) for storing volatile data
  • 406 indicates an internal bus used for communication inside the ECU.
  • FIG. 5 shows the configuration of software modules that operate on the processor 401.
  • a communication management unit 502 manages the operation and state of the I / O 402 and instructs the I / O 402 via the internal bus 406.
  • a time management unit 503 manages the timer 403 and acquires and controls information related to time.
  • 501 is a control unit that analyzes data acquired from the I / O 402 and controls the entire software module
  • 504 is a data table that holds information such as an outside world recognition map described later
  • 505 is a buffer that temporarily holds data. Represents.
  • FIG. 5 shows the concept of operation on the processor 401, and information necessary at the time of operation is appropriately acquired from the ROM 404 and RAM 405, or written to the ROM 404 and RAM 405 as appropriate.
  • Each function of the vehicle control system described later is executed by the control unit 501.
  • FIG. 601 An example of the functional configuration of the vehicle control system is shown in FIG.
  • Reference numeral 601 denotes the entire vehicle control system.
  • 602 is an integrated recognition unit that integrates external recognition information output from the plurality of recognition devices 6 and the communication device 3 to create an external recognition map to be described later.
  • 603 is an external recognition map generated by the integrated recognition unit 602 and user input.
  • An automatic operation control unit 604 that generates and outputs automatic operation control information (such as a trajectory), an output instruction to the output management unit 605, and a notification instruction to the notification management unit 606 according to a user input input from the unit 604.
  • the output management unit 606 is connected to the notification device 9 according to the outputs of the automatic operation control unit 603, the abnormality detection unit 609, and the relative information control unit 608.
  • a notification management unit that performs an intelligent instruction 607 is a relative information recognition unit that creates relative information described later based on information output from the recognition device 6 and information input from the integrated recognition unit 602, and 608 is a relative information recognition unit
  • a relative information control unit 609 generates motion control information from the relative information generated in 607 and information output from the recognition device 6, and 609 is output from the relative information generated in the relative information recognition unit 607 and the automatic operation control 603.
  • An abnormality detection unit that detects an abnormality from the automatic driving control information and the output result of the integrated recognition unit 602, and 610 outputs an output to the motion control unit 611 from the automatic driving control unit 603 based on the abnormality detection result of the abnormality detection unit 609.
  • a switching unit 611 for switching to input or input from the relative information control unit 608, trajectory information or motion control information from the switching unit 610, from the recognition device 6 It shows a motion control unit, for controlling to a plurality of driving devices 5 state of the vehicle system 1, and in accordance with the response, from the drive device 5 Tokusuru.
  • the motion control information indicates, for example, target values of motion control parameters such as acceleration and yaw rate, control command values for each driving device 5, and continuous values in time series thereof.
  • the vehicle control system may include some or all of the communication device 3, the drive device 5, the recognition device 6, the output device 7, the input device 8, and the notification device 9.
  • the vehicle control device refers to a device having a part or all of the functions in the vehicle control system.
  • the vehicle control system 601 is composed of a plurality of functions, and there are a plurality of patterns in the function arrangement on the H / W shown in FIG. An example of the arrangement is shown in FIG.
  • the arrangement of the functions is not limited to this, and each function may be arranged in an ECU different from the description. For example, by arranging the functions of the integrated recognition unit 602, the automatic operation control unit 603, the relative information recognition unit 607, and the relative information control unit 608 in different ECUs or microcomputers, common cause failure due to H / W failure It is possible to protect each function from risks and achieve high reliability.
  • the type of the recognition device 6 is as described in the configuration of the vehicle control system, and external recognition information to be described later is acquired based on the operation principle corresponding to the type of each recognition device.
  • the outside world is measured using a sensor included in the recognition device 6, and a specific algorithm (for example, an image recognition algorithm for the obtained image) is applied to the measurement value to obtain outside world recognition information.
  • the measurable range is determined in advance (for example, if it is a camera, the shooting direction and vertical and horizontal angles, the far-field recognition limit based on the number of pixels, if it is a radar, the radio wave emission angle and the reception angle) ), Distance), or adjustment (calibration) is performed with respect to changes according to the environment, and a measurable range is measured and determined.
  • the measurable range is determined in advance (for example, if it is a camera, the shooting direction and vertical and horizontal angles, the far-field recognition limit based on the number of pixels, if it is a radar, the radio wave emission angle and the reception angle) ), Distance), or adjustment (calibration) is performed with respect to changes according to the environment, and a measurable range is measured and determined.
  • Figure 8 shows an example of external recognition.
  • the four-direction recognition device 6 of the vehicle system 1 acquires external world information. Based on the external environment recognition information output from the recognition device 6, the integrated recognition unit 602 can confirm what kind of object exists in the vicinity.
  • External recognition information can be acquired from the communication device 3 as well.
  • Acquired information from the communication device 3 is obtained by acquiring, together with position information, external environment recognition information of an object that is not observable by the recognition device 6, for example, an object existing behind a shielding object such as a shadow, and confirms the existence position of the object. Is possible.
  • the external environment recognition information acquired by the communication device 3 includes surrounding map information (terrain, road, lane information) and road traffic conditions (traffic density, under construction, etc.).
  • the external world recognition information is information representing an object observed by the recognition device 6 or an object received by the communication device 3.
  • Examples of external world recognition information include object types (stationary objects (walls, white lines, signals, separation bands, trees, etc.), dynamic objects (pedestrians, cars, two-wheeled vehicles, bicycles, etc.), whether or not they can travel (intrusion into the area) Or other attribute information), object relative position information (direction / distance), object and self absolute position information (coordinates, etc.), object speed, direction (movement direction, face direction), acceleration, existence probability (certain) And the like, the map information, the road traffic situation, the time when the outside world recognition information is measured, the ID of the recognition device that performed the measurement, and the like.
  • the integrated recognition unit 602 creates integrated recognition information (eg, external recognition map) that integrates external recognition information output from a plurality of recognition devices.
  • integrated recognition information eg, external recognition map
  • FIG. 9B shows an example in which object information is arranged for each region with respect to an orthogonal coordinate system (grid) (FIG. 9A).
  • the object information is, for example, contents obtained by removing position information from the example of the external environment recognition information, and is arranged in each grid.
  • FIG. 1001 denotes an entire external world recognition map displayed as a list. In this way, by holding the external world recognition map in a list type, it is possible to reduce the amount of data compared to the grid type.
  • the outside world recognition map can be created not only by using the currently recognized outside world recognition information but also by making predictions (behavior prediction) from past outside world recognition information. For example, after a certain period of time, if the object is a stationary object, it is highly likely that it is in the same position (the same position on the road surface, not the position relative to the vehicle). The position after a certain time can be predicted from the acceleration or the like. By using the external environment recognition information predicted in this way, it is possible to perform prediction for information on a position that cannot be recognized at present.
  • the behavior recognition can be performed by the integrated recognition unit 602 based on the external world recognition map.
  • the recognition device 6 adds future prediction information to the external world recognition information and transmits it to the integrated recognition unit 602. You may be notified. In that case, each recognition device 6 performs prediction, and it becomes possible to reduce the amount of calculation related to behavior prediction of the integrated recognition unit 602.
  • the automatic driving control unit 603 may perform necessary object behavior prediction from the current external world recognition map. By doing so, it is possible to reduce the communication load from the integrated recognition unit 602 to the automatic operation control unit 603, and it is also possible to perform behavior prediction of only objects necessary for trajectory generation and determination.
  • Tracks are safety constraints that allow the vehicle system to travel safely (eg, less likely to collide with other obstacles), motion constraints that the vehicle system can achieve, such as acceleration / deceleration, yaw rate, etc. Generate to satisfy.
  • the track is represented, for example, by a set of coordinates of the vehicle position at regular time intervals.
  • a set of motion control values target acceleration / yaw rate
  • a vector value direction / speed of the host vehicle at a certain time interval
  • a time interval for traveling a certain distance etc.
  • a trajectory generation example in which the host vehicle moves to the right lane in the external world recognition map in the example of FIG. 9B will be described with reference to FIG.
  • the traveling vehicle exists in the right lane
  • the speed of the own vehicle is faster and the lane can be changed.
  • the host vehicle generates a track (1101 in FIG. 11) that satisfies the motion constraint and moves to the right lane. Satisfying the movement constraint means that the vehicle system does not exceed the upper limit value or the lower limit value such as acceleration / deceleration, yaw rate, etc. that can be realized.
  • the generated trajectory 1101 it is calculated whether or not a collision occurs due to a predicted trajectory of another dynamic object (for example, a position after a certain time at the current speed and an assumed acceleration) and the trajectory of the host vehicle. If it is calculated that no collision occurs, the vehicle is controlled based on the track of the host vehicle. When it is calculated that a collision will occur, after waiting for a certain period of time, recalculation or another trajectory that satisfies the motion constraint is generated, and the safety constraint is similarly calculated.
  • a predicted trajectory of another dynamic object for example, a position after a certain time at the current speed and an assumed acceleration
  • the method of calculating the safety constraint is not only the method of setting the area assumed from the current speed and the assumed acceleration / deceleration of the dynamic object as the entry prohibited area (entry prohibited area method), but also the type, speed, There is a method of calculating the risk potential of each area from the direction of travel and calculating the risk potential.
  • this method a trajectory that generates the trajectory that has the lowest potential in the generated potential map and that does not enter the potential area above a certain value and that satisfies the motion constraints of the host vehicle is defined as the generated trajectory. To do.
  • Dynamic object behavior prediction is required for areas where entry is prohibited.
  • behavior prediction there is a method in which a certain area centered on a point moved at the current speed / acceleration and direction is set as an entry prohibited area. In this way, by making the certain area as the entry prohibition area, the calculation by complicated prediction becomes unnecessary.
  • the automatic operation control unit 603 tracks the motion control unit 611 via the switching unit 610.
  • the information is transmitted, and the motion control unit 611 controls the driving device 5 based on the track information and controls the vehicle system.
  • the motion control unit 611 controls the drive device 5 so as to realize the automatic driving control information or the motion control information output from the switching unit 610.
  • the control based on the automatic driving control information indicates the system state (current speed, acceleration, yaw rate, etc.) of the vehicle system 1 acquired from the recognition device 6 so as to be able to follow the trajectory. Reflecting, the target speed and yaw rate of the vehicle system 1 are calculated. In order to realize these target speed and yaw rate, the necessary drive device 5 is controlled. As a result, vehicle control capable of following the target track is realized.
  • the engine torque output is increased to achieve the target speed
  • the brake is controlled to perform the deceleration
  • the steering is performed to realize the target yaw rate. Steering or braking / acceleration control for each wheel so that the wheel speed is uneven.
  • the motion control information is a control value of the drive device 5
  • the drive device 5 is controlled using the control value. In this way, target motion control is realized.
  • Relative information is information that can be acquired from the recognition device 6 among the outside world recognition information, and is a relative position and relative speed between the surrounding object and the host vehicle, a relative acceleration, and a value that can be calculated from these values. Any combination of information.
  • FIG. 12 (a) shows an example in which a vehicle is present ahead, the distance is la as a relative position, the angle is 0a with the vehicle horizontal right direction being 0 degrees, and the relative speed is dva.
  • the relative speed indicates the speed at which the subject vehicle approaches or leaves.
  • the direction from the own vehicle to the other vehicle and the traveling direction of both are the same, and therefore, it can be expressed by the difference in speed between the preceding vehicle and the own vehicle.
  • the traveling direction from the host vehicle to the other vehicle is not the same as in FIG. 12B, the respective speeds are projected onto a straight line from the host vehicle to the other vehicle, and the difference is calculated. By doing so, it is possible to obtain the relative speed dvb.
  • the relative speed is positive, the vehicle is moving away from the vehicle, and when the relative speed is negative, the vehicle is approaching the vehicle.
  • relative acceleration is a change in relative speed over time, and can be calculated from the observed change in speed.
  • the relative position can be expressed in a coordinate system with the vehicle as the origin in addition to the relative distance and angle.
  • the vehicle can be represented as (rxa, rxy) with the vehicle in the figure as the origin, the front-rear direction of the vehicle as y-coordinate and forward as positive, the left-right direction as x-coordinate and right as positive.
  • the recognition device 6 When the recognition device 6 can recognize, the corresponding object type (vehicle, pedestrian, etc.), the width (dxa in the figure), and the depth (dya in the figure) of the corresponding object are also included as relative information.
  • FIG. 13 shows an example of a relative information table for managing relative information.
  • a coordinate system expression is used as the relative position. In this way, relative information is created and managed.
  • the relative information control unit 608 creates motion control information based on the relative information output from the relative information recognition unit 607 and the state of the host vehicle acquired from the recognition device 6.
  • deceleration control is performed on the host vehicle.
  • the relative information control unit 608 determines the relative information and the state of the host vehicle acquired from the recognition device 6, and outputs motion control information for deceleration to the switching unit 610.
  • motion control information for controlling acceleration of the host vehicle is output in the same manner. In this way, acceleration / deceleration control is performed so that the relative position with respect to the preceding vehicle does not exceed a certain amount or less than a certain amount.
  • control is performed so that the relative position exceeds a certain amount and does not fall below a certain amount.
  • the risk value calculation formula for the above determination is as follows, assuming that the risk value is R, the relative distance is dl, the relative speed is dv, and the relative acceleration is da.
  • A, B, and C are constants.
  • Acceleration / deceleration control is performed so that the risk value does not exceed a certain amount in the calculation using the risk value, as in the case of the determination based on the relative position.
  • control is performed so that the relative position is away from the closer. For example, deceleration is controlled when the front vehicle is closer, and acceleration is controlled when the rear vehicle is closer.
  • the front-rear direction is recognized from the relative position, and steering is performed in a direction in which no object exists, for example, control for avoiding a collision in the front-rear direction is performed.
  • the target yaw rate for that purpose is also included in the motion control information, and the relative information control unit 608 outputs to the switching unit 610.
  • a large number of the relative position and risk value may be used in the determination of a certain amount. For example, a warning may be given to the user when a certain amount ⁇ is exceeded, weak acceleration / deceleration may be performed when a certain amount ⁇ is exceeded, and strong acceleration / deceleration may be performed when a certain amount ⁇ is exceeded. Thereby, stepwise warning and vehicle control for the user are possible according to the situation when the abnormality occurs.
  • Abnormality detection indicates a state different from a state that is normally assumed due to a hardware failure, software failure, unexpected input, or the like.
  • Each part of the vehicle control system 2 communicates via a communication path such as a network or a dedicated line, and communication cannot be performed for communication abnormality (communication processing is an error response, signal line potential is abnormal), The communication signal value is abnormal.
  • communication abnormalities can be detected by detecting abnormalities in electrical circuits (potential detection, etc.), periodic survival confirmation (heartbeat), and error detection of error detection codes such as CRC. .
  • failure of the arithmetic unit can be detected by checking the result of the same calculation (comparison of the calculation result), and failure of the memory can be detected by detecting an error when accessing the RAM or ROM. It is.
  • the anomaly detection unit 609 detects these anomalies by itself, or detects an anomaly by receiving notification from each unit that an anomaly has been detected.
  • the automatic driving control unit 603 gives the automatic driving control information as information that an abnormality has occurred in any part of the recognition device 6, the communication device 3, the integrated recognition unit 602, and the communication between them.
  • the abnormality detection unit 609 receives the information and detects the occurrence of the abnormality. A switching process to be described later is performed based on the result of detecting the abnormality.
  • the abnormality detection unit 609 notifies the output management unit 605 and / or the notification management unit 606 that an abnormality has been detected. Accordingly, the output management unit 605 and / or the notification management unit 606 performs output to the user in the vehicle state described below and / or notification to the outside of the vehicle.
  • the switching unit 610 receives an abnormality detection result from the abnormality detection unit 609 (S101).
  • the abnormality detection result is normal (no in S102)
  • switching is performed so as to output the exercise control information created based on the automatic driving control information output from the automatic driving control unit 603 (S103).
  • the abnormality detection result is abnormal (Yes in S102)
  • switching is performed to output the exercise control information output from the relative information control unit 608 (S104). In this way, control switching is performed when an abnormality is detected. This makes it possible to improve the safety by switching to the control using the relative information control unit 608 without using the output of the automatic operation control unit 603 in which an abnormality has occurred.
  • the abnormality detection unit 609 detects that an abnormality has occurred in the relative information recognition unit 607, the motion control information output from the relative information control unit 608 is not switched. In this case, the abnormality detection unit 609 instructs the switching unit 610 to output the motion control information created based on the automatic driving control information output from the automatic driving control unit 603, and the following vehicle state
  • the warning action is implemented by the output to the user and the notification outside the vehicle. As a result, even if an abnormality occurs in the control function using the relative information, a warning is given to the user to take over, and the operation is continued by the control of the automatic operation control unit 603 in which no abnormality has occurred. It becomes possible to improve.
  • the vehicle control system 2 outputs the current vehicle state to the user via the output device 7 or to the outside of the vehicle via the notification device 9 or the communication device 3.
  • a warning or the like is given to the user via the output device 7 or a warning by sound.
  • a warning state output by a lamp, a warning sound by a speaker, information on abnormality, etc. are output to the outside of the vehicle via the notification device 9 or the communication device 3.
  • the abnormality detection unit 609 When an abnormality is detected by the abnormality detection unit 609, the user is notified of the occurrence of an abnormality with a warning or a sound, and further the contents of the abnormality (each part where the abnormality has occurred, a communication path) are also output. For example, the display of the device 7 or a warning light is displayed. As a result, the user can recognize the abnormality that has occurred and take over the operation.
  • the occurrence of the abnormality, the range where the abnormality has occurred, the direction of the track, and the like are notified via the notification device 9 or the communication device 3.
  • ⁇ User takeover control> An example of switching the control by the user from the control based on the automatic driving control information or the control based on the relative information will be described with reference to FIG. While the control based on the automatic driving control information or the relative information is being performed (S1801), the user input unit 604 performs the driving operation start operation of the user via the input device 8 (for example, stepping on the pedal, operating the steering, automatic driving end) If the button is pressed (Yes in S1802), the switching unit 610 is notified. The switching unit 610 receives the notification of the user's driving operation start operation, stops the control based on the automatic driving control information and the relative information, and switches to the user's driving operation (S1803). In this way, switching from automatic driving control and control based on relative information to driving operation of the user is carried out, and even if there is an error in automatic driving control information and / or relative information, control is taken over by the user and safety is improved. maintain.
  • the abnormality detection unit 609 determines an abnormality when the positions of the future vehicle and other objects estimated from the automatic driving control information and the relative information come into contact with or approach each other.
  • FIG. 14 shows an example of determination of relative information and automatic driving control information in the abnormality detection unit 609.
  • the automatic driving control information (trajectory) of the own vehicle is described using circles and dotted lines, and the relative position information is described using the example of FIG.
  • the future position is also predicted for relative information. Specifically, analogy is made from the relative position, relative speed, and relative acceleration of the relative information.
  • the calculation formula is expressed as follows, assuming a one-dimensional position as an example, a position after t seconds is y (t), a current position is y (0), a relative velocity is vy, and a relative acceleration is ay. It is possible. Here, for example, the term of acceleration can be omitted in order to reduce the amount of calculation.
  • the same calculation is performed and the future relative position is predicted based on relative information.
  • the prediction result is compared with the trajectory information, and an abnormality is detected when the relative position in the future based on the trajectory information and the relative information comes into contact or the relative distance falls below a predetermined value after a predetermined time.
  • an example of a track is used for the automatic driving control information.
  • it can be similarly determined by similarly estimating the position of the host vehicle after a predetermined time.
  • an abnormality is detected by comparing the relative information and the output result of the integrated recognition unit 602. For example, the relative information and the output result of the integrated recognition unit 602 when the other object is not included in the output result of the integrated recognition unit 602 even though it is determined that the other object exists based on the relative information.
  • An abnormality can be detected by comparing the two.
  • the detection method compares the output results in addition to the presence / absence of the object, and detects an abnormality when the position, speed, and existence probability of other objects exceed the designed error range. Accordingly, it is possible to detect a failure that has occurred in the integrated recognition unit 602, the recognition device 6, and the relative information recognition unit 607.
  • the present embodiment it is possible to detect an abnormality in the automatic operation control information using the relative information by the above determination.
  • an abnormality in the future track information can be detected before the travel control using the track information is performed, and the control of the actuator can be transferred to a more reliable automatic control system at an early stage. Therefore, highly reliable traveling control can be realized while preventing the actuator from being actually controlled based on abnormal trajectory information.
  • FIG. 15 illustrates an example in which automatic driving control information for erroneously braking is output from the automatic driving control unit 603 in a situation where another vehicle is present behind the host vehicle.
  • the abnormality detection unit 609 receives the automatic operation control information from the automatic operation control unit 603, and receives relative information in the situation from the relative information recognition unit 607. Thereafter, the abnormality detection unit 609 determines an abnormality in the automatic driving control information based on the abnormality detection described in the second embodiment, and instructs the switching unit 610 to switch to the control based on the relative information. As a result, it is possible to switch to control based on relative information before performing erroneous braking based on abnormal automatic driving control information.
  • the abnormality detection unit 609 is described as a process in parallel with the communication between the automatic operation control unit 603 and the switching unit 610, but the abnormality detection unit 609 is connected between the automatic operation control unit 603 and the switching unit 610.
  • the abnormality detection unit 609 may be configured to output only the automatic driving control information in which no abnormality is detected to the switching unit 610. By doing in this way, control by automatic operation control information in which abnormality was detected can be suppressed certainly.
  • ID is given to the automatic driving control information
  • the switching unit 610 receives a notification from the abnormality detecting unit 609 that the exercise control information having the corresponding ID is normal or not abnormal.
  • the control based on the automatic driving control information in which an abnormality is detected can be reliably suppressed.
  • an automatic driving control information holding unit 612 that holds automatic driving control information and outputs it as necessary is added.
  • the structural example of the vehicle control system 2 in a present Example is shown in FIG.
  • the automatic driving control unit 603 calculates the automatic driving control information, and when the abnormality occurs, the automatic driving control information (for example, traveling along the lane, traveling along the lane, and traveling slowly (Hereinafter referred to as “holding control information”), such as simple deceleration, retreating to the road shoulder and stopping. Then, the holding control information calculated by the automatic driving control unit 603 is transmitted to the automatic driving control information holding unit 612.
  • the automatic driving control information holding unit 612 holds holding control information transmitted from the automatic driving control unit 603 and switches to holding control information held when an abnormality occurs.
  • the holding control information calculated by the automatic driving control unit 603 is transmitted to the automatic driving control information holding unit 612, the holding control information is also transmitted to the abnormality detecting unit 609. Detect the presence or absence of abnormalities.
  • the switching unit 610 switches control information from the automatic driving control unit 603, the relative information control unit 608, and the automatic driving control information holding unit 612 and outputs the control information to the motion control unit 611.
  • the abnormality detection unit 609 receives the automatic operation control information, the holding control information, and the relative information, determines the abnormality, and whether the result has detected an abnormality with only the relative information, or has detected an abnormality in the holding control information, The switching unit 610 is notified whether an abnormality has been detected in the automatic driving control information.
  • the information detected by the method described in the abnormality detection of the first embodiment is included in the respective information, or the abnormality detection method described in the second embodiment, the automatic operation control information and About the abnormality detection of holding control information which compares relative information and detects abnormality, abnormality detection is performed by the same method as automatic driving control information.
  • the switching unit 610 When the switching unit 610 receives a notification that an abnormality has been detected using only relative information (Yes in S1701), the switching unit 610 performs control based on the relative information (S1702). When a notification is received that an abnormality has been detected in the holding control information (Yes in S1703), control based on relative information is performed (S1702). When a notification is received that an abnormality has been detected in the automatic operation control information (Yes in S1704), control based on the holding control information is performed (S1705). When no abnormality is notified (no in S1704), control based on automatic driving control information is performed (S1706).
  • the abnormality of the automatic driving control information is detected from the relative information and the automatic driving control information, and the control is switched to the control based on the relative information, or the user It is possible to perform an operation corresponding to the abnormality at an early stage by a warning to the outside or the outside.
  • the holding control information even if an abnormality occurs in the automatic operation control information, the holding control that can maintain the safety that has been held for a certain time and no abnormality is detected is maintained. It becomes possible to maintain the function with information, and when an abnormality is detected with relative information thereafter, it is possible to safely switch to control with relative information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Abstract

自動運転システムを有効活用しつつも、自動運転システムの信頼性を異なる制御システムによって良好に補完できるシステムを提供すること。 自動運転制御情報に基づいて生成される第一の制御信号と自車と周辺物体との相対情報に基づいて生成される第二の制御信号との何れか一方を駆動装置に出力し、前記自動運転制御情報に異常が検出された場合には、前記第一の制御信号に代えて、前記第二の制御信号を前記駆動装置に出力する。

Description

車両制御装置および車両制御システム
 本発明は、車両制御装置および車両制御システムに関する。
 本技術分野の背景技術として、特開平8-34326号公報(特許文献1)がある。この公報には、「操作緊急度を評価し適切な自動ブレーキの制御を行う。」ことを目的とし、解決手段として、「本装置では、車速、相対速度、車間距離等から物理的な衝突危険度を算出する(S2)。そして、アクセルからブレーキへの踏み替え時間や、ブレーキの所定の強さまでの踏み込みに要する時間や、ステアリングの操作スピード等から操作緊急度を演算する(S3)。そして、衝突危険度が所定以上であり、操作緊急度が所定以上であった場合に自動ブレーキを作動させる(S8)。従って、単なる衝突危険度の判断による自動ブレーキの作動に比べ、運転者の運転状況に応じた判断が加わるためより精度の良い危険状態の判定を行うことができ、効果的な自動ブレーキの作動制御を行うことができる。」と記載されている。
 また別の背景技術として、特開2014-191597号公報(特許文献2)がある。この公報には、「運転支援の誤作動を防ぎつつ、運転支援をより適切なタイミングで開始させる。」ことを課題とし、解決手段として、「運転支援装置は、カメラやレーダにより自車両前方の歩行者や他の車両等の対象物の位置を検出すると共に、ヨーレート或いは舵角と車速とに基づき自車両の進路を予測する。そして、対象物の位置と予測進路とに基づき自車両と対象物との衝突危険性を判定し、衝突危険性が高い場合には衝突回避のための運転支援を行う。また、運転支援装置は、走行予定道路の曲率を測定し、該曲率の変化が小さく、正確な進路予測が可能な場合には、衝突危険性の判定感度を高くして運転支援が開始され易くし(S120)、該曲率の変化が大きく、正確な進路予測が困難な場合には、衝突危険性の判定感度を低くして運転支援が開始され難くする(S115)。」と記載されている。
特開平8-34326号公報 特開2014-191597号公報
 特許文献2に関連し、近年、外界認識情報や自己位置情報を基に、自車両の将来の位置を表わす軌道(自動運転制御情報)を生成し、この軌道に基づいて車両を制御する自動運転システムが提案されている。また、特許文献1に関し外界認識情報を基に、周囲の物体との相対的な情報を算出し、ユーザをアシストする自動制御システムがある。
 自動運転システムは、実現できる車両挙動の幅は大きい(自由度が高い)が、種々の情報に基づいて軌道を生成するものであるため、自動制御システムに比べると信頼性を向上させるのが困難となりがちである。他方、自動制御システムは、実現できる車両挙動の幅は小さい(自由度は低い)が、情報量が少ない分、信頼性を高めやすい。しかしながら、これらのシステムは、単独で用いる発明については種々検討されているが、相互に補完するシステムについては検討の余地が残されている。
 そこで、本発明は、自動運転システムを有効活用しつつも、自動運転システムの信頼性を自動制御システムによって良好に補完できるシステムを提供することを目的とする。
 上記課題を解決するために、本発明の一実施の態様は、例えば特許請求の範囲に記載されている技術的思想を用いればよい。
 本発明によれば、自動運転システムを有効活用しつつも、自動運転システムの信頼性を自動制御システムによって良好に補完することが可能となる。
車両制御システムにおける異常検出時の切り替え処理を表すフローチャートである。 システムの例である。 車両制御システム構成の例である。 コントローラの構成例である。 コントローラのソフトウェアモジュール構成の例である。 車両制御システムの構成例である。 車両制御システム機能の配置例である。 外界認識の例である。 外界認識マップの座標系の例である。 外界認識マップにオブジェクトを配置した例である。 外界認識マップのリスト型の例である。 外界認識マップ情報を基にした軌道生成の例である。 相対位置情報の例である。 相対位置情報(リスト型)の例である。 自動運転制御情報と相対情報による判定の例である 本発明の第3の実施例にかかる自動運転制御情報と相対情報の例である。 本発明の第4の実施例にかかる車両制御システム構成の例である。 本発明の第4の実施例にかかる異常検出時の切り替え処理を表すフローチャートである。 ユーザによる切り替え処理を表すフローチャートである。
 以下、本発明に好適な実施形態の例(実施例)を説明する。なお、実施例は、主には車両システムにおける車両制御システム、および車両制御装置について説明しており、車両システムにおける実施に好適であるが、車両システム以外への適用を妨げるものではない。
 <車両制御システムの構成>
 図2は本実施例の車両制御システムおよび車両制御装置を有する車両システムの概要である。1は自動車など内部に車両制御システムを有する車両システム、2は例えば車載ネットワーク(CAN:Controller Area Network、CANFD:CAN with Flexible Data-rate、Ethernet(登録商標)、等)とコントローラ(ECU:Electronic Control Unit等)により構成される車両制御システム、3は、車両システム1の外部と無線通信(例えば携帯電話の通信、無線LAN、WAN、C2X(Car to X:車両対車両または車両対インフラ通信)等のプロトコルを使用した通信、またはGPS:Global Positioning Systemを用いた通信)を行い、外界(インフラ、他車、地図)の情報または自車に関する情報を取得・送信などの無線通信を実施、または診断端子(OBD)やEthernet(登録商標)端子、外部記録媒体(例えばUSBメモリ、SDカード、等)端子などを有し、車両制御システム2と通信を実施する通信装置である。4は、例えば2と異なる、または、同一のプロトコルを用いたネットワークにより構成される車両制御システム、5は、車両制御システム2の制御に従い、車両運動を制御する機械および電気装置(例えばエンジン、トランスミッション、ホイール、ブレーキ、操舵装置等)の駆動を行うアクチュエータ等の駆動装置、6は、外界から入力される情報を取得し、後述する外界認識情報を生成するための情報を出力する、カメラ、レーダ、LIDAR、超音波センサなどの外界センサ、および、車両システム1の状態(運動状態、位置情報、加速度、車輪速度等)を認識する力学系センサにより構成される認識装置である。7は、ネットワークシステムに有線または無線で接続され、ネットワークシステムから送出されるデータを受信し、メッセージ情報(例えば映像、音)など必要な情報を表示または出力する、液晶ディスプレイ、警告灯、スピーカなどの出力装置、8は、ユーザが車両制御システム2に対して、操作の意図や指示を入力する入力信号を生成するための、例えばステアリング、ペダル、ボタン、レバー、タッチパネル、等の入力装置である。そして、9は、車両システム1が外界に対して、車両の状態等を通知するための、ランプ、LED、スピーカ等の通知装置、を示している。
 車両制御システム2は、その他の車両制御システム4、通信装置3、駆動装置5、認識装置6、出力装置7、入力装置8、通知装置9と接続され、それぞれ情報の送受信を行う。
 図3は、車両制御システム2のH/W(Hardware)構成例を示している。301は車載ネットワーク上のネットワーク装置を接続するネットワークリンクであり、例えばCANバスなどのネットワークリンク、302はネットワークリンク301および駆動装置5や認識装置6や301以外のネットワークリンク(専用線含む)に接続され、駆動装置5や認識装置6の制御および情報取得、ネットワークとのデータ送受信を行うECU(Electronic Control Unit:電子制御ユニット)、303は複数のネットワークリンク301を接続し、それぞれのネットワークリンク301とデータの送受信を行うゲートウェイ(以下GW)、を示している。
 ネットワークトポロジの例は、図3に示す2つのバス(ネットワークリンク301)に複数のECU302が接続されているバス型の例以外にも、複数のECUが直接GWに接続されるスター型や、ECUが一連のリンクにリング状に接続されているリンク型、それぞれの型が混在し複数のネットワークにより構成される混在型、等がある。GW303とECU302については、それぞれGW機能を有するECU、または、ECUの機能を有するGWと、がある。
 ECU302はネットワークから受信したデータをもとに、駆動装置5への制御信号の出力、認識装置6からの情報の取得、ネットワークへの制御信号および情報の出力、内部状態の変更、などの制御処理を行う。
 図4は、本実施例にかかるネットワーク装置であるECU302またはGW303の内部構成の一例である。401はキャッシュやレジスタなどの記憶素子を持ち、制御を実行するCPUなどのプロセッサ、402はネットワークリンク301またはネットワークや専用線で接続された駆動装置5または/および認識装置6に対してデータの送受信を行うI/O(Input/Output)、403は図示しないクロックなどを使用し、時間および時刻の管理を行うタイマ、404はプログラムおよび不揮発性のデータを保存するROM(Read Only Memory)、405は揮発性のデータを保存するRAM(Random Access Memory)、406はECU内部での通信に用いられる内部バス、を示している。
 次に、プロセッサ401で動作するソフトウェアモジュールの構成について図5に示す。502は、I/O402の動作および状態を管理し、内部バス406を介しI/O402に指示を行う通信管理部、503は、タイマ403を管理し、時間に関する情報取得や制御を行う時間管理部、501はI/O402から取得したデータの解析や、ソフトウェアモジュール全体の制御を行う制御部、504は後述する外界認識マップなどの情報を保持するデータテーブル、505は一時的にデータを保持するバッファ、を表している。
 これら図5の構成についてはプロセッサ401上の動作概念を示したものであり、動作時に必要な情報はROM404およびRAM405から適宜取得、またはROM404およびRAM405に適宜書き込み、を行い動作する。後述する車両制御システムの各機能は、制御部501にて実行される。
 <車両制御システムの機能構成例>
 車両制御システムの機能構成例について図6に示す。601は車両制御システム全体を示している。602は複数の認識装置6および通信装置3から出力される外界認識情報を統合し、後述する外界認識マップを作成する統合認識部、603は統合認識部602により生成された外界認識マップおよびユーザ入力部604から入力されたユーザ入力により、自動運転制御情報(軌道等)の生成および出力、出力管理部605への出力指示、および通知管理部606への通知指示を行う自動運転制御部、604は入力装置8からの入力に従い、ユーザの指示情報を生成するユーザ入力部、605は自動運転制御部603および異常検出部609および相対情報制御部608の出力に応じ出力装置7への出力指示を行う出力管理部、606は自動運転制御部603および異常検出部609および相対情報制御部608の出力に応じ通知装置9への通知指示を行う通知管理部、607は認識装置6から出力される情報および統合認識部602から入力される情報を基に、後述する相対情報を作成する相対情報認識部、608は相対情報認識部607で作成される相対情報および認識装置6から出力される情報から運動制御情報を作成する相対情報制御部、609は相対情報認識部607で作成される相対情報と自動運転制御603から出力される自動運転制御情報、および統合認識部602の出力結果から異常を検出する異常検出部、610は異常検出部609の異常検出結果を基に、運動制御部611に対する出力を自動運転制御部603からの入力または相対情報制御部608からの入力に切替える切替部、611は切替部610からの軌道情報または運動制御情報、認識装置6から取得する車両システム1の状態、および駆動装置5からの応答、に従い複数の駆動装置5に対して制御を行う運動制御部、を示している。
 運動制御情報とは、例えば加速度やヨーレート等の運動制御パラメータの目標値や、各駆動装置5への制御指令値、およびそれらの時系列での連続値を示す。
 車両制御システムには、通信装置3、駆動装置5、認識装置6、出力装置7、入力装置8、通知装置9の一部またはすべてが含まれる場合もある。また車両制御装置は、前記車両制御システムにおける一部またはすべての機能を有する装置を指す。
 車両制御システム601は複数の機能から構成されており、図3に示すH/Wへの機能配置は複数のパターンが存在する。配置の一例について図7に示す。機能の配置はこれに限らず、それぞれの機能は記載と別のECUに配置されていても良い。例えば統合認識部602、および自動運転制御部603と、相対情報認識部607および相対情報制御部608とを別のECU、またはマイコンに機能を配置することにより、H/W故障による共通原因故障のリスクからそれぞれの機能を守り、高信頼化を実現することが可能となる。
 <外界認識方法>
 認識装置6の種類は前記車両制御システムの構成で述べた通りであり、それぞれの認識装置の種類に応じた動作原理により、後述する外界認識情報を取得する。例えば、認識装置6が有するセンサを用いて外界の測定を行い、測定値に対して特定のアルゴリズム(例えば、取得した画像に対する画像認識アルゴリズム)を適用し、外界認識情報を取得する。
 認識装置ごとに、それぞれ測定可能な範囲は事前に決定(例えばカメラであれば、撮影方向と縦・横の角度、画素数による遠方距離の認識限界、レーダであれば電波の放射角度と受信角度、距離)、または、環境に応じた変化に対して調整(キャリブレーション)を行って測定可能な範囲を測定し、決定する。それぞれの認識装置の取得した外界認識情報を組み合わせることにより、車両システム2の周辺状況が確認可能となる。
 外界認識の例を図8に示す。ここでは車両システム1の四方向の認識装置6が外界情報を取得している例を示している。認識装置6から出力される外界認識情報により、統合認識部602は周辺にどのようなオブジェクトが存在しているかを確認することが可能となる。
 通信装置3からも同様に外界認識情報を取得することが可能となる。通信装置3からの取得情報は、前記認識装置6で観測不可能な、例えば物陰など遮蔽物の向こう側に存在するオブジェクトの外界認識情報を位置情報と共に取得し、オブジェクトの存在位置を確認することが可能である。
 また通信装置3が取得する外界認識情報は、周辺の地図情報(地形、道路、車線情報)、および道路交通状況(交通密度、工事中、等)も含む。
 <外界認識情報>
 外界認識情報とは、認識装置6により観測されたオブジェクトまたは通信装置3により受信したオブジェクトを表現する情報となる。外界認識情報の例として、オブジェクト種別(静止オブジェクト(壁、白線、信号、分離帯、木、等)、動的オブジェクト(歩行者、車、二輪車、自転車等)、走行(領域侵入)可能か否か、その他属性情報)、オブジェ
クトの相対位置情報(方向・距離)、オブジェクトおよび自己の絶対位置情報(座標等)、オブジェクトの速度、向き(移動方向、顔の向き)、加速度、存在確率(確からしさ)、地図情報、道路交通状況、外界認識情報を測定した時間、測定を実施した認識装置のID、等が挙げられる。
 <外界認識マップ>
 統合認識部602は、複数の認識装置が出力する外界認識情報を統合した統合認識情報(例:外界認識マップ)を作成する。外界認識マップの例を図9に示す。ここでは直交する座標系(グリッド)(図9(a))に対し、それぞれの領域についてオブジェクト情報を配置した例について図9(b)に示す。オブジェクト情報は、例えば上記外界認識情報の例から位置情報を除いた内容であり、それぞれのグリッドに配置される。
 外界認識マップの別の表現としては、グリッドによる表記の他に、認識しているオブジェクトごとにリスト化するリスト型方式も存在する。リスト型表記の例を図10に示す。1001はリスト表示による外界認識マップ全体を示している。このようにリスト型で外界認識マップを保持することにより、グリッド型に比べてデータ量を削減することが可能となる。
 <行動予測>
 外界認識マップは、現在認識された外界認識情報を用いるのみではなく、過去の外界認識情報から予測(行動予測)して作成することも可能である。例えば一定時間経過後に、静止オブジェクトであれば同じ位置(車両との相対位置では無く、路面上の同位置)に存在している可能性が高く、また動的オブジェクトであれば直前の位置、速度、加速度等から、一定時間後の位置を予測することが可能となる。このように予測した外界認識情報を用いることにより、現在認識不可能な位置の情報についての予測を行うことが可能である。
 行動予測は、統合認識部602が外界認識マップを基に実施することも可能であるが、例えば認識装置6が、外界認識情報に今後の予測情報を付加して送信し、統合認識部602に通知しても良い。その場合には各認識装置6が予測を行うことになり、統合認識部602の行動予測に関連する演算量を低減することが可能となる。また別の方式では、自動運転制御部603が、現在の外界認識マップから、必要なオブジェクトの行動予測を行っても良い。そのようにすることにより、統合認識部602から自動運転制御部603への通信負荷が低減でき、さらに軌道生成および判断に必要なオブジェクトのみの行動予測を行うことも可能となる。
 <自動運転制御情報(軌道)>
 外界認識マップに基づく自動運転制御情報の生成方法について、自動運転制御情報の一例である軌道を用いた例について説明する。軌道は、車両システムが安全に走行可能(例:他の障害物に衝突する可能性が低い)である安全性制約、車両システムが実現可能な加速度・減速度、ヨーレート、などの運動制約、を満たすように生成する。
 軌道とは、例えば一定時間間隔ごとの自車位置の座標の集合により表わされる。また別の例では、一定時間間隔ごとの運動制御値(目標加速度・ヨーレート)の集合、一定時間間隔ごとの自車両のベクトル値(方向・速度)、一定距離を進むための時間間隔、等で表すことが可能である。
 図9(b)の例の外界認識マップにおいて、自車両が右車線に移動する軌道生成例について図11を用いて説明する。ここでは右車線に走行車両が存在しているが、自車両の方が速度が速く、車線変更可能な例を示している。まず自車両は、運動制約を満たし、右車線に移動する軌道(図11の1101)を生成する。運動制約を満たすとは、前記の通り車両システムが実現可能な加速度・減速度、ヨーレート、などの上限値または下限値を超えないことを示す。その後、生成した軌道1101について、他の動的物体の予測軌道(例えば現在速度、および想定される加速度での一定時間後の位置)と、自車両の軌道により衝突が発生しないかを計算する。衝突が発生しないと計算された場合には、前記自車両の軌道を基に車両の制御を行う。衝突が発生すると計算された場合には、一定時間待機後、再計算、または、運動制約を満たす別の軌道を生成し、同様に安全性制約を計算する。
 安全性制約の計算方法は、上記の通り動的オブジェクトの現在速度および想定加減速度から想定されるエリアを進入禁止領域とする方法(進入禁止領域法)の他に、各オブジェクトの種別・速度・進行方向から、各エリアのリスクを計算し、リスクポテンシャルを算出するがある。この方式を用いる場合には、生成されたポテンシャルマップの中で、最もポテンシャルが低く、一定値以上のポテンシャルエリアに進入しない軌道を生成し、かつ自車両の運動制約を満たす軌道を、生成軌道とする。
 進入禁止領域については、動的オブジェクトの行動予測が必要になる。行動予測については、現在の速度・加速度および方向で移動した点を中心とした一定領域を進入禁止領域にする方法がある。このように一定領域を進入禁止領域とすることにより、複雑な予測による演算が不要となる。
 このように、車両が移動する方向、運動制約、安全性制約を基に軌道を作成し、生成された軌道を基に、自動運転制御部603は運動制御部611に切替部610を介して軌道情報を送信し、運動制御部611は前記軌道情報を基に駆動装置5を制御し、車両システムを制御する。
 <自動運転制御情報に基づく制御>
 運動制御部611は、切替部610が出力した自動運転制御情報または運動制御情報を実現するように駆動装置5の制御を行う。
 自動運転制御情報による制御は、例えば自動運転制御情報が軌道である場合、前記軌道に追従可能なように、認識装置6から取得した車両システム1のシステム状態(現在速度、加速度、ヨーレート等)を反映し、車両システム1の目標速度およびヨーレート等を算出する。これら目標速度およびヨーレートを実現するため、それぞれ必要な駆動装置5の制御を行う。これにより目標である軌道に追従可能な車両制御を実現する。
 また、運動制御情報による制御を実現するためには、目標の速度を実現するために、エンジントルクの出力を増加させる、減速を行うためにブレーキを制御する、目標ヨーレートを実現するためにステアを転舵させる、または車輪速が不均等になるように車輪個別に制動・加速の制御を行う。また、運動制御情報が駆動装置5の制御値である場合には前記制御値を用いて駆動装置5の制御を行う。このようにして目標の運動制御を実現する。
 <相対情報認識>
 相対情報とは、前記外界認識情報のうち、特に認識装置6から取得可能な情報であり、周辺オブジェクトと自車両との相対位置および相対速度、相対加速度、およびそれら値から演算可能な値、のいずれかの情報の組み合わせである。
 相対情報の例を図12に示す。ここでは他車両を認識している例を示している。図12(a)では前方に車両が存在しており、相対位置として距離がlaおよび自車水平右方向を0度とした角度がθa、相対速度がdvaの例を示している。
 相対速度は自車と該当オブジェクトが近づく、または離れる速度を示している。例えば図12(a)の例では自車から他車への方向と双方の進行方向が同一のため、前方車両と自車両の速度の差分で表現できる。図12(b)の様に自車から他車への方向と双方の進行方向が同一で無い場合には、それぞれの速度を自車から他車への方向の直線に射影し、差分を計算することにより、相対速度dvbを求めることが可能である。ここでは相対速度が正の場合には自車から遠ざかっており、負の場合には自車に近づいていることを示す。図示していないが、相対加速度については相対速度の時間変化であるため、観測した速度の変化から計算することが可能である。
 相対位置の表現方法は、相対距離と角度の表現の他に、自車を原点とした座標系での表現もある。例としては図の自車を原点とし、自車の前後方向をy座標かつ前方を正、左右方向をx座標かつ右を正とし、(rxa、rxy)という表現も可能である。
 また認識装置6が認識可能な場合には、該当するオブジェクト種別(車両、歩行者等)、および該当オブジェクトの幅(図のdxa)、奥行き(図のdya)も相対情報として含む。
 相対情報を管理する相対情報テーブルの例について図13に示す。ここでは相対位置として座標系の表現を用いている例を示している。このように相対情報を作成し管理を行う。
 <相対情報に基づく制御>
 相対情報に基づく制御例について説明する。相対情報制御部608は、相対情報認識部607が出力する相対情報および認識装置6から取得する自車の状態に基づいて運動制御情報を作成する。
 前方にオブジェクト(車両)が存在している場合の例について説明する。前方に車両が存在し、相対情報における相対位置(距離)が一定値を下回った場合には自車両に対して減速の制御を行う。そのために、相対情報制御部608は前記相対情報および認識装置6から取得する自車の状態を判定し、減速を行うための運動制御情報を切替部610に対して出力する。また逆に相対位置が一定値を上回る場合には、同様にして自車両に対して加速の制御を行うための運動制御情報を出力する。このようにして前方車両に対して相対位置が一定量を上回るまたは一定量を下回ることの無いように、加速・減速の制御を行う。後方にオブジェクトが存在している場合にも同様に、相対位置が一定量を上回る、一定量を下回ることの無いように制御を行う。
 また、相対位置のみでなく、相対速度および相対加速度にも基づき判定を行うことも可能である。例えば前方に車両が存在しており、相対位置が同様でも相対速度および相対加速度により自車に接近する可能性が高い場合には減速の制御を行う。上記判断のためのリスク値の計算式は、リスク値をR、相対距離をdl、相対速度をdv、相対加速度をda、として以下の通りとなる。ここでA,B,Cは定数である。
Figure JPOXMLDOC01-appb-M000001
 リスク値を用いた計算でも相対位置による判定と同様に、リスク値が一定量を上回ることの無いように加速・減速の制御を行う。このように相対速度と相対加速度を用いて判定を行うことにより、同一相対位置でもよりリスクが高い状況(他車両が自車両に接近等)を発生することを抑制し、安全を確保することが可能となる。
 これら判定および加減速の制御により、相対情報に基づいた制御が可能となる。
 また、前後に同時に車両が存在する場合には、相対位置が近い方から離れるように制御を行う。例えば前方車両の方が近接している場合には減速、または後方車両の方が近接している場合には加速の制御を行う。
 また、前後方向のみでなく、左右方向についても、相対位置から認識し、オブジェクトが存在していない方向に操舵を行い、例えば前後方向への衝突を回避する制御を行う。そのための目標ヨーレートについても上記運動制御情報に含み、相対情報制御部608が切替部610に対して出力を行う。
 また、上記相対位置およびリスク値の一定量の判定においては、多数用いても良い。例えば一定量αを超えた場合にはユーザへの警告、一定量βを超えた場合には弱い加減速、一定量γを超えた場合には強い加減速としても良い。これにより、異常が発生した時の状況に応じて、ユーザに対する段階的な警告および車両制御が可能となる。
 <異常検出>
 異常の検出方法について説明する。異常とは、ハードウェア故障やソフトウェアの不具合、想定外の入力等を原因として発生する通常時想定している状態とは異なる状態を示している。車両制御システム2の各部は、ネットワークまたは専用線等の通信経路を介して通信を行っており、通信の異常については、通信が行えない(通信処理がエラー応答、信号線の電位が異常)、通信の信号値が異常、等が発生する。これら通信の異常について、電気回路での異常検知(電位検出等)、定期的な生存確認(ハートビート)、CRC等の誤り検出符号のエラー検出、することにより、通信の異常が検出可能である。
 また、演算装置の故障については、同じ演算を行った結果の検算(演算結果の比較)により異常検出可能であり、メモリの故障については前記RAMやROMにアクセスした場合の誤り検出等により検出可能である。
 また、ソフトウェアの不具合については、前記同じ演算を行った結果の比較以外にも、出力結果の範囲異常により検出することも可能である。
 これら異常を異常検出部609は自ら検出、または各部からの異常を検出した通知を受信することにより異常を検出する。例えば、自動運転制御部603は、認識装置6、通信装置3、統合認識部602、およびそれらの間の通信のいずれかの部分で異常が発生していることを自動運転制御情報に情報として付与して送信し、異常検出部609は前記情報を受信し異常発生を検出する。異常を検出した結果により後述する切り替え処理を実施する。
 また、異常検出部609は、出力管理部605または/および通知管理部606に対して異常を検知したことを通知する。これにより、出力管理部605または/および通知管理部606は後述する車両状態のユーザへの出力または/および車外への通知を実施する。
 これにより、本システムで異常を検出し、自動運転制御部603による制御から、相対情報制御部609による制御に切り替えるなど、安全性を向上させることが可能となる。
 <切替処理>
 切替部610で実施する制御の切替処理について図1を用いて説明する。まず切替部610は、異常検出部609から異常検出結果を受信する(S101)。異常検出結果が異常なしの場合(S102のno)、自動運転制御部603から出力された自動運転制御情報を基に作成された運動制御情報を出力する様に切り替えを行う(S103)。異常検出結果が異常ありの場合(S102のyes)、相対情報制御部608から出力された運動制御情報を出力する様に切り替えを行う(S104)。このようにして異常検出時の制御切り替えを実施する。これにより異常が発生している自動運転制御部603の出力を用いず、相対情報制御部608を用いた制御に切り替え、安全性を向上させることが可能となる。
 一方で、相対情報認識部607で異常が発生したことを異常検出部609が検出した場合には、前記相対情報制御部608から出力された運動制御情報には切り替えを行わない。この場合には、異常検出部609は切替部610に対して自動運転制御部603から出力された自動運転制御情報を基に作成された運動制御情報を出力する様に指示し、かつ下記車両状態のユーザへの出力・車外への通知により警告動作を実施する。これにより相対情報を用いた制御機能に異常が発生した場合でも、ユーザに警告を行って引き継ぎを促し、かつ異常が発生していない自動運転制御部603の制御により動作継続を行い、安全性を向上させることが可能となる。
 <車両状態のユーザへの出力・車外への通知>
 図2に示されるように、車両制御システム2は、現在の車両の状態について、出力装置7を介してユーザに、または車両の外部に対して通知装置9または通信装置3を介して出力する。例えば車両システム1のいずれかの部分に異常が発生した場合に、出力装置7を介してユーザに対して警告等の点灯、もしくは音による警告を実施する。または通知装置9または通信装置3を介して車両外部に、ランプによる警告状態の出力や、スピーカによる警告音、異常に関する情報等の出力等を実施する。
 上記異常検出部609で異常を検出した場合には、ユーザに対して異常が発生したことを、警告等や音で通知し、さらに異常の内容(異常が発生した各部、通信経路)についても出力装置7が有するディスプレイや警告灯で表示するなどを行う。これにより発生した異常をユーザが認識し、操作の引き継ぎを行うことが可能となる。
 また車外への通知についても同様に、異常が発生したことと、異常が発生した範囲、または軌道の方向等を通知装置9または通信装置3を介して通知する。このようにすることにより、後続車などが、異常が発生した車両システム1の行動を予測可能となり、衝突などを回避することが可能となる。
 <ユーザ引き継ぎ制御>
 自動運転制御情報に基づく制御、または相対情報に基づく制御から、ユーザによる制御について切り替える例について図18を基に説明する。自動運転制御情報または相対情報による制御を行っている(S1801)間に、ユーザ入力部604は入力装置8を介したユーザの運転操作開始動作(例えばペダルを踏む、ステアを操作する、自動運転終了のボタンを押す、等)を検出した場合(S1802のyes)、切替部610に通知する。切替部610は、ユーザの運転操作開始動作の通知を受け、自動運転制御情報および相対情報に基づく制御を中止し、ユーザの運転操作に切り替える(S1803)。このようにして、自動運転制御および相対情報に基づく制御からユーザの運転操作に切り替えを実施し、自動運転制御情報または/および相対情報に誤りがあった場合にもユーザに制御を引き継ぎ安全性を維持する。
 異常検出の方法として、相対情報と自動運転制御情報を用いる例について説明する。実施例1と異なる点は、異常検出部609の処理である。
 自動運転制御情報の異常検出を相対情報のみを用いて検出する方法として、相対情報の各値が一定値以上もしくは一定値以下、もしくは前記リスク値が一定値以上となったことにより異常と判定する。これは、自動運転制御情報は上記相対情報の各値および前記リスク値が一定値以上もしくは一定値以下にならないように制御を行う前提であるため、前記状況は異常と判断し、相対情報制御を用いた制御に切り替える。これにより自動運転制御情報に異常が発生した場合でも、相対情報を用いた安全な制御に切り替えることが可能となる。
 また別の判定方法として、異常検出部609は、自動運転制御情報と相対情報から推測される将来の自車および他オブジェクトの位置が接触・近接することにより異常を判定する。異常検出部609での相対情報と自動運転制御情報の判定例について図14に示す。ここでは、自車の自動運転制御情報(軌道)を丸および点線、相対位置情報を図12の例を用いて記載している。
 軌道は各時間における自車の将来位置を示しているため、相対情報についても将来の位置を予測する。具体的には相対情報の相対位置、相対速度、相対加速度より類推する。計算式は、一次元の位置を例に示すと、t秒後の位置をy(t)、現在の位置をy(0)、相対速度をvy、相対加速度をayとすると以下の様に表すことが可能である。ここで、例えば加速度の項は演算量を低減させるために省略可能である。
Figure JPOXMLDOC01-appb-M000002
 2次元の場合でも同様に演算を行い推測し、相対情報による未来の相対位置を予測する。この予測結果と軌道情報を比較し、一定時間後に軌道情報と相対情報による未来の相対位置が接触、もしくは相対距離が一定値以下になることにより異常と検出する。
 上記異常を検出後は、相対情報を用いた制御を行う他にも、前記車両状態のユーザへの出力・車外への通知を行うことにより、早期なユーザへの引継開始の促しや、車外に対して異常発生を通知することにより、車外の車両等が余裕をもって回避動作を行うことが可能になる。
 上記では自動運転制御情報が軌道の例を示したが、連続した制御値の場合でも同様に、一定時間後の自車両の位置を同様に推定することにより、同様に判定可能である。
 また別の方法では、相対情報と統合認識部602の出力結果の比較により異常を検出する。例えば、相対情報により他オブジェクトが存在していると判定されたにも関わらず、前記他オブジェクトが統合認識部602の出力結果に含まれていない場合など、相対情報と統合認識部602の出力結果の比較により異常を検出可能である。
 検出の方法は前記オブジェクトの存在有無の他にも、それぞれの出力結果を比較し、他オブジェクトの位置や速度、存在確率が設計した誤差の範囲を超えた場合に異常と検出する。これにより統合認識部602、認識装置6、相対情報認識部607で発生した故障を検出することが可能となる。
 本実施例では上記判定により、相対情報を用いて自動運転制御情報の異常を検出することが可能となる。また、自動運転制御情報が出力された段階で異常を検出することができ、早期に相対情報を用いた制御への切り替え、もしくはユーザ・周囲への警告を実施することが可能となる。これにより、例えば、将来の軌道情報の異常を、その軌道情報が用いられる走行制御が行われる前に検知でき、早期にアクチュエータの制御をより信頼度の高い自動制御システムに受け渡すことができる。そのため、異常な軌道情報に基づいて実際にアクチュエータが制御されるのを未然に防止しつつ、信頼性の高い走行制御を実現することができる。結果として、自動運転システムを有効活用しつつも、自動運転システムの信頼性を自動制御システムによって良好に補完することが可能となる。
 次に、自動運転制御情報の誤りにより誤制動を回避する制御の例について説明する。車両制御システムの構成については実施例2の場合と同様である。
 図15に、自車両が走行している後方に他車両が存在している状況で、誤って制動を行う自動運転制御情報が自動運転制御部603から出力された例を示している。
 ここで異常検出部609は前記自動運転制御情報を自動運転制御部603から受信し、前記状況における相対情報を相対情報認識部607から受信する。その後、異常検出部609は実施例2に記載の異常検出により自動運転制御情報の異常を判定し、切替部610に相対情報に基づく制御に切り替える様に指示を行う。これにより、異常な自動運転制御情報による誤った制動を実施する以前に、相対情報に基づく制御に切り替えることが可能となる。
 ここで図6では、異常検出部609は自動運転制御部603と切替部610の通信と並行した処理として記載しているが、異常検出部609を自動運転制御部603と切替部610との間に配置し、異常検出部609は、異常が検出されていない自動運転制御情報のみを切替部610に出力する構成としても良い。このようにすることにより、異常が検出された自動運転制御情報による制御を確実に抑制可能となる。
 また、図6の構成においても、自動運転制御情報にIDを付与し、切替部610は異常検出部609からの該当IDをもつ運動制御情報が正常である、または異常でないという通知を受信した後に、該当する自動運転制御情報の運動制御情報を出力する様にすることにより、同様に異常が検出された自動運転制御情報による制御を確実に抑制可能となる。
 このように、後方車両が存在する場合に、誤って制動を行い後方車両に衝突する自動運転制御情報が演算された場合にも、相対情報に基づき誤った制動を行わないことが可能となり信頼性の高い走行制御を実現することができる。
 本実施例においては、自動運転制御情報を保持しておき、必要に応じて出力を行う自動運転制御情報保持部612を追加している。本実施例における車両制御システム2の構成例を図16に示す。
 自動運転制御部603において、自動運転制御情報を演算するとともに、異常が発生した場合に最低限安全を確保可能な自動運転制御情報(例えば、車線に沿って走行、車線に沿って走行して緩やかな減速、路肩へ退避して停止等、以下、「保持制御情報」と称す。)も併せて演算する。そして、自動運転制御部603で演算した保持制御情報を自動運転制御情報保持部612に送信する。自動運転制御情報保持部612は、自動運転制御部603から送信された保持制御情報を保持しておき、異常発生時に保持していた保持制御情報に切り替えるためのものである。
 なお、自動運転制御部603で演算した保持制御情報を自動運転制御情報保持部612に送信する際に併せて異常検出部609へも保持制御情報を送信し、異常検出部609で保持制御情報についての異常の有無を検出する。
 切替部610は、自動運転制御部603、相対情報制御部608、自動運転制御情報保持部612からの制御情報を切り替えて運動制御部611に出力する。
 判定方法について図17に示す。まず、異常検出部609が自動運転制御情報、保持制御情報、相対情報を受信し、異常を判定し、その結果が相対情報のみで異常を検出したか、保持制御情報に異常を検出したか、自動運転制御情報に異常を検出したかを切替部610に通知する。異常検出の方法は、実施例1の異常検出に記載の方法で検出された情報が、前記それぞれの情報に含まれている、または実施例2に記載の異常検出方法により、自動運転制御情報と相対情報を比較し異常を検出する、保持制御情報の異常検出については、自動運転制御情報と同様の方法で異常検出を行う。
 切替部610は、相対情報のみで異常を検出したと通知を受けた場合(S1701のyes)、相対情報に基づく制御を行う(S1702)。保持制御情報で異常を検出したと通知を受けた場合(S1703のyes)、相対情報に基づく制御を行う(S1702)。自動運転制御情報で異常を検出したと通知を受けた場合(S1704のyes)、保持制御情報に基づく制御を行う(S1705)。いずれの異常も通知されなかった場合(S1704のno)には、自動運転制御情報による制御を行う(S1706)。
 このようにすることにより、自動運転制御情報で異常が発生した場合にも、一定時間は保持していた安全を維持可能かつ異常が検出されていない保持制御情報で制御を行うことが可能となり、なおかつその後相対情報で異常が検出された場合に、安全に相対情報による制御に切り替えることが可能となる。これにより信頼性の高い走行制御を実現することができる。
 以上説明した実施例によれば、自動運転制御情報に異常が発生した場合に、異常を検出し相対情報に基づく制御に切り替えることにより安全性を確保することが可能となる。
 また別の実施例によれば、自動運転制御情報に基づく制御を実施する以前に、相対情報と自動運転制御情報から自動運転制御情報の異常を検知し、相対情報に基づく制御に切り替える、もしくはユーザや外部に対する警告により、異常に対応した動作を早期に行うことが可能となる。
 また別の実施例によれば、異常を検出した自動運転制御情報に基づく制御の実施を抑制し、相対情報に基づく制御の実施が可能となる。
 さらに別の実施例によれば、保持制御情報を用いることにより、自動運転制御情報で異常が発生した場合にも、一定時間は保持していた安全を維持可能かつ異常が検出されていない保持制御情報で機能を維持することが可能となり、なおかつその後相対情報で異常が検出された場合に、安全に相対情報による制御に切り替えることが可能となる。
1 車両システム
2 車両制御システム
3 通信装置
4 車両制御システム
5 駆動装置
6 認識装置
7 出力装置
8 入力装置
9 通知装置
301 ネットワークリンク
302 ECU
303 GW
401 プロセッサ
402 I/O
403 タイマ
404 ROM
405 RAM
406 内部バス
501 制御部
502 通信管理部
503 時間管理部
504 データテーブル
505 バッファ
601 車両制御システム
602 統合認識部
603 自動運転制御部
604 ユーザ入力部
605 出力管理部
606 通知管理部
607 相対情報認識部
608 相対情報制御部
609 異常検出部
610 切替部
611 運動制御部
612 自動運転制御情報保持部
1001 外界認識マップ
1301 相対情報テーブル

Claims (13)

  1.  自動運転制御情報に基づいて生成される第一の制御信号と自車と周辺物体との相対情報に基づいて生成される第二の制御信号との何れか一方を駆動装置に出力し、
     前記自動運転制御情報に異常が検出された場合には、前記第一の制御信号に代えて、前記第二の制御信号を前記駆動装置に出力することを特徴とする車両制御装置。
  2.  前記自動運転制御情報の入力となる情報は、前記相対情報の入力となる情報より多いことを特徴とする請求項1に記載の車両制御装置。
  3.  前記自動運転制御情報の入力となる情報は、認識装置と通信装置とから出力される情報であり、
     前記相対情報の入力となる情報は、認識装置から出力される情報であることを特徴とする請求項1に記載の車両制御装置。
  4.  前記自動運転制御情報に異常が検出された場合に、前記相対情報のうち相対位置が所定値以下とならないように走行制御を行う請求項1に記載の車両制御装置。
  5.  前記自動運転制御情報に異常が検出された場合に、前記相対情報に基づくリスク値が所定値以下とならないように走行制御を行う請求項1に記載の車両制御装置。
  6.  前記相対情報から算出されるリスク値が所定値以下となった場合に、前記自動運転制御情報が異常と判断する請求項1乃至5の何れかに記載の車両制御装置。
  7.  前記自動運転制御情報と前記相対情報のうち相対位置情報とを比較し、
     前記自動運転制御情報が前記相対位置情報における周辺物体へのリスク値が所定値以上となる場合に、前記自動運転制御情報が異常と判断する請求項1乃至5の何れかに記載の車両制御装置。
  8.  保持用自動運転制御情報を保持する自動運転制御情報保持部を有し、
     前記自動運転制御情報に異常が検出された場合には、第一の制御信号に代えて、前記保持用自動運転制御情報に基づく第三の制御信号をアクチュエータに出力し、
     前記保持用自動運転制御情報に異常が検知された場合には、第二の制御信号をアクチュエータに出力することを特徴とする請求項1乃至5の何れかに記載の車両制御装置。
  9.  前記自動運転制御情報と前記相対情報のうち相対位置情報とを比較し、
     前記自動運転制御情報が前記相対位置情報における周辺物体へのリスク値が所定値以上となる場合に、前記自動運転制御情報が異常と判断する請求項8に記載の車両制御装置。
  10.  前記自動運転制御情報が異常の場合に、外部へ報知を行う請求項1乃至5の何れかに記載の車両制御装置。
  11.  前記第一の制御信号および前記第二の制御信号を前記駆動装置に出力する切替部と、
     前記自動運転制御情報および前記相対情報とを比較して異常を検出する異常検出部と、を有し、
     前記自動運転制御情報は、前記異常検出部および前記切替部に入力される請求項1に記載の車両制御装置。
  12.  前記自動運転制御情報の異常が検出されない場合にのみ前記自動運転制御情報を前記切替部に出力する請求項11に記載の車両制御装置。
  13.  認識装置および通信装置の出力情報を統合した統合認識情報と前記相対情報とを比較して前記統合認情報の異常を検出する請求項1に記載の車両制御装置。
PCT/JP2016/071472 2015-08-31 2016-07-22 車両制御装置および車両制御システム WO2017038289A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16841321.9A EP3345800B1 (en) 2015-08-31 2016-07-22 Vehicle control device and vehicle control system
US15/739,380 US11235760B2 (en) 2015-08-31 2016-07-22 Vehicle control device and vehicle control system
CN201680032671.3A CN108025751B (zh) 2015-08-31 2016-07-22 车辆控制装置及车辆控制系统
EP20163633.9A EP3689700B1 (en) 2015-08-31 2016-07-22 Vehicle control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015169979A JP6803657B2 (ja) 2015-08-31 2015-08-31 車両制御装置および車両制御システム
JP2015-169979 2015-08-31

Publications (1)

Publication Number Publication Date
WO2017038289A1 true WO2017038289A1 (ja) 2017-03-09

Family

ID=58187233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071472 WO2017038289A1 (ja) 2015-08-31 2016-07-22 車両制御装置および車両制御システム

Country Status (5)

Country Link
US (1) US11235760B2 (ja)
EP (2) EP3345800B1 (ja)
JP (1) JP6803657B2 (ja)
CN (1) CN108025751B (ja)
WO (1) WO2017038289A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018173909A1 (ja) * 2017-03-24 2018-09-27 日立オートモティブシステムズ株式会社 自動運転制御装置
US10860028B2 (en) * 2017-08-14 2020-12-08 Honda Motor Co., Ltd. Vehicle control apparatus, vehicle control method, and program
US20230030503A1 (en) * 2021-07-30 2023-02-02 Hyundai Motor Company Apparatus for controlling stop of vehicle and method thereof

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6504040B2 (ja) * 2015-12-01 2019-04-24 株式会社デンソー 報知処理装置
DE102016005317A1 (de) * 2016-05-02 2017-11-02 Wabco Gmbh Verfahren zum automatisierten elektronischen Steuern eines Bremssystems sowie elektronisch steuerbares Bremssystem in einem Nutzfahrzeug
US11106988B2 (en) * 2016-10-06 2021-08-31 Gopro, Inc. Systems and methods for determining predicted risk for a flight path of an unmanned aerial vehicle
JP6678605B2 (ja) * 2017-01-11 2020-04-08 株式会社東芝 情報処理装置、情報処理方法、および情報処理プログラム
JP6817410B2 (ja) 2017-02-23 2021-01-20 本田技研工業株式会社 車両用制御システムおよび制御方法
CN110325423B (zh) 2017-02-23 2023-05-02 本田技研工业株式会社 车辆用控制系统及控制方法
JP6889241B2 (ja) * 2017-02-23 2021-06-18 本田技研工業株式会社 車両用制御システム
KR102027121B1 (ko) * 2017-03-10 2019-10-01 한국오므론전장 주식회사 차량의 자율 주행 제어 방법
JP2018167626A (ja) * 2017-03-29 2018-11-01 テイ・エス テック株式会社 乗員保護システム
US11465639B2 (en) 2017-03-29 2022-10-11 Ts Tech Co., Ltd. Vehicle control system
WO2018179446A1 (ja) * 2017-03-31 2018-10-04 本田技研工業株式会社 汎用エンジンの制御装置
KR102287316B1 (ko) * 2017-04-14 2021-08-09 현대자동차주식회사 자율주행 제어 장치 및 방법, 그리고 차량 시스템
JP6815925B2 (ja) * 2017-04-24 2021-01-20 日立オートモティブシステムズ株式会社 車両の電子制御装置
JP6838769B2 (ja) * 2017-04-26 2021-03-03 日立Astemo株式会社 周辺環境認識装置、表示制御装置
US11113547B2 (en) * 2017-05-31 2021-09-07 Baidu Usa Llc Planning control in response to a driving obstruction during operation of an autonomous driving vehicle (ADV)
JP6580087B2 (ja) * 2017-06-02 2019-09-25 本田技研工業株式会社 走行軌道決定装置及び自動運転装置
JP6683178B2 (ja) 2017-06-02 2020-04-15 トヨタ自動車株式会社 自動運転システム
JP6524144B2 (ja) 2017-06-02 2019-06-05 本田技研工業株式会社 車両制御システム及び方法、並びに走行支援サーバ
DE112017007616T5 (de) * 2017-06-08 2020-05-07 Mitsubishi Electric Corporation Fahrzeug-Steuerungseinrichtung
JP6521468B2 (ja) * 2017-06-15 2019-05-29 株式会社Subaru 自動操舵制御装置
JP6967417B2 (ja) * 2017-10-03 2021-11-17 株式会社 ミックウェア 経路生成装置、及びプログラム
JP7051201B2 (ja) * 2017-11-28 2022-04-11 ジヤトコ株式会社 自動運転車両
KR102024093B1 (ko) * 2017-12-01 2019-09-23 엘지전자 주식회사 차량의 운행 시스템
WO2019116458A1 (ja) * 2017-12-13 2019-06-20 本田技研工業株式会社 車両並びにその制御システム及び制御方法
JP6981224B2 (ja) 2017-12-18 2021-12-15 トヨタ自動車株式会社 車両制御装置、方法およびプログラム
JP6572329B2 (ja) * 2018-01-24 2019-09-04 本田技研工業株式会社 自動運転車両システム
EP3766753B1 (en) * 2018-03-13 2023-07-12 Hitachi Astemo, Ltd. Abnormality diagnosis system and abnormality diagnosis method
CN110276985B (zh) * 2018-03-16 2020-12-15 华为技术有限公司 自动驾驶安全评估方法、装置和系统
JP7008217B2 (ja) * 2018-03-28 2022-01-25 パナソニックIpマネジメント株式会社 異常報知装置、車両、異常報知方法、及び、プログラム
JP6987714B2 (ja) * 2018-07-27 2022-01-05 日立Astemo株式会社 電子制御装置
JP7076348B2 (ja) * 2018-09-20 2022-05-27 日立Astemo株式会社 電子制御装置
JP7193289B2 (ja) * 2018-09-28 2022-12-20 日立Astemo株式会社 車載電子制御システム
KR102575640B1 (ko) * 2018-10-15 2023-09-07 현대자동차주식회사 자율 주행 제어 장치, 그를 가지는 차량 및 그 제어 방법
DE102018222720B4 (de) 2018-12-21 2022-01-05 Continental Teves Ag & Co. Ohg Überwachung von auf neuronalen Netzwerken basierten Fahrfunktionen
JP7289657B2 (ja) 2019-01-17 2023-06-12 日立Astemo株式会社 駆動装置指令生成部、および、車両制御システム
DE102019201491A1 (de) * 2019-02-06 2020-08-06 Robert Bosch Gmbh Messdatenauswertung für fahrdynamische Systeme mit Absicherung der beabsichtigten Funktion
JP7230596B2 (ja) * 2019-03-08 2023-03-01 マツダ株式会社 自動車用演算システム
JP2020170254A (ja) * 2019-04-01 2020-10-15 清水建設株式会社 現場内安全管理システムおよび現場内安全管理方法
JP6796679B2 (ja) * 2019-04-26 2020-12-09 本田技研工業株式会社 車両制御システム及び方法、並びに走行支援サーバ
JP7316541B2 (ja) * 2019-05-07 2023-07-28 マツダ株式会社 歩行者位置予測方法及び歩行者位置予測装置
JP7316540B2 (ja) * 2019-05-07 2023-07-28 マツダ株式会社 歩行者位置予測方法及び歩行者位置予測装置
JP7200829B2 (ja) * 2019-06-03 2023-01-10 トヨタ自動車株式会社 車両システム
JP7363118B2 (ja) * 2019-06-14 2023-10-18 マツダ株式会社 外部環境認識装置
CN112185144A (zh) * 2019-07-01 2021-01-05 大陆泰密克汽车系统(上海)有限公司 交通预警方法以及系统
EP3779514B1 (en) * 2019-08-15 2023-05-03 Apollo Intelligent Driving Technology (Beijing) Co., Ltd. Autonomous vehicle and system for autonomous vehicle
KR20210044963A (ko) * 2019-10-15 2021-04-26 현대자동차주식회사 자율주행차량의 차선변경 경로 결정 장치 및 그 방법
JP7425615B2 (ja) 2020-02-05 2024-01-31 マツダ株式会社 車両用制御システム
JP7288409B2 (ja) 2020-02-05 2023-06-07 マツダ株式会社 車両用制御装置
JP7330911B2 (ja) 2020-02-05 2023-08-22 マツダ株式会社 車両用制御装置
CN113467438B (zh) 2020-03-31 2023-07-18 华为技术有限公司 路径规划的方法、装置、控制器及移动物体
WO2023176256A1 (ja) * 2022-03-15 2023-09-21 株式会社デンソー 処理方法、運転システム、処理プログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09282599A (ja) * 1996-04-17 1997-10-31 Toyota Motor Corp 車両用走行制御装置
JP2000322689A (ja) * 1999-05-07 2000-11-24 Honda Motor Co Ltd 自動追従走行システム
JP2012035821A (ja) * 2010-08-11 2012-02-23 Toyota Motor Corp 車両制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3246204B2 (ja) 1994-07-25 2002-01-15 トヨタ自動車株式会社 車両の自動制動装置
EP1741079B1 (en) * 2004-04-08 2008-05-21 Mobileye Technologies Limited Collision warning system
CN100545771C (zh) * 2004-07-15 2009-09-30 株式会社日立制作所 车辆控制装置
DE102012111991A1 (de) * 2012-11-20 2014-05-22 Conti Temic Microelectronic Gmbh Verfahren für eine Fahrerassistenzanwendung
JP5878491B2 (ja) 2013-03-27 2016-03-08 株式会社日本自動車部品総合研究所 運転支援装置
JP5783430B2 (ja) * 2013-04-26 2015-09-24 株式会社デンソー 衝突緩和装置
DE102013010004A1 (de) 2013-06-14 2014-12-18 Valeo Schalter Und Sensoren Gmbh Verfahren und Vorrichtung zum Ausführen von kollisionsvermeidenden Maßnahmen
JP6149616B2 (ja) * 2013-08-30 2017-06-21 トヨタ自動車株式会社 運転支援装置
JP2015052548A (ja) * 2013-09-09 2015-03-19 富士重工業株式会社 車外環境認識装置
JP6201561B2 (ja) * 2013-09-20 2017-09-27 株式会社デンソー 走行軌道生成装置、および走行軌道生成プログラム
JP6174463B2 (ja) * 2013-11-14 2017-08-02 株式会社デンソー 車両走行制御装置及びプログラム
CN104290745B (zh) * 2014-10-28 2017-02-01 奇瑞汽车股份有限公司 车辆用半自动驾驶系统的驾驶方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09282599A (ja) * 1996-04-17 1997-10-31 Toyota Motor Corp 車両用走行制御装置
JP2000322689A (ja) * 1999-05-07 2000-11-24 Honda Motor Co Ltd 自動追従走行システム
JP2012035821A (ja) * 2010-08-11 2012-02-23 Toyota Motor Corp 車両制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3345800A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018173909A1 (ja) * 2017-03-24 2018-09-27 日立オートモティブシステムズ株式会社 自動運転制御装置
JP2018158697A (ja) * 2017-03-24 2018-10-11 日立オートモティブシステムズ株式会社 自動運転制御装置
US11541897B2 (en) 2017-03-24 2023-01-03 Hitachi Astemo, Ltd. Autonomous driving control device
US10860028B2 (en) * 2017-08-14 2020-12-08 Honda Motor Co., Ltd. Vehicle control apparatus, vehicle control method, and program
US20230030503A1 (en) * 2021-07-30 2023-02-02 Hyundai Motor Company Apparatus for controlling stop of vehicle and method thereof

Also Published As

Publication number Publication date
CN108025751A (zh) 2018-05-11
JP6803657B2 (ja) 2020-12-23
JP2017047694A (ja) 2017-03-09
EP3689700A1 (en) 2020-08-05
CN108025751B (zh) 2020-11-27
EP3689700B1 (en) 2021-11-17
US11235760B2 (en) 2022-02-01
EP3345800A4 (en) 2019-04-17
EP3345800A1 (en) 2018-07-11
EP3345800B1 (en) 2020-04-15
US20180170374A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
WO2017038289A1 (ja) 車両制御装置および車両制御システム
US10725474B2 (en) Action planning device having a trajectory generation and determination unit that prevents entry into a failure occurrence range
US10890908B2 (en) Vehicle control system and action plan system provided with same
US10121376B2 (en) Vehicle assistance
US10933883B2 (en) Driving control apparatus and method for vehicle
WO2017029847A1 (ja) 情報処理装置、情報処理方法及びプログラム
JP6614354B2 (ja) 走行制御方法及び走行制御装置
US11613254B2 (en) Method to monitor control system of autonomous driving vehicle with multiple levels of warning and fail operations
US20200074851A1 (en) Control device and control method
JP6454799B2 (ja) 行動計画装置
WO2020158342A1 (ja) 車両制御装置および車両制御システム
JP7187521B2 (ja) 車両制御装置および車両制御システム
WO2022080018A1 (ja) 自律走行制御システム
US20230020415A1 (en) Vehicle control system, vehicle integrated control device, electronic control device, network communication device, vehicle control method and computer readable medium
WO2020044891A1 (ja) 車両制御装置及び車両制御システム
US11981255B2 (en) Vehicle control device, vehicle, operation method for vehicle control device, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841321

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15739380

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE