WO2017038176A1 - 発光体および照明装置 - Google Patents

発光体および照明装置 Download PDF

Info

Publication number
WO2017038176A1
WO2017038176A1 PCT/JP2016/066031 JP2016066031W WO2017038176A1 WO 2017038176 A1 WO2017038176 A1 WO 2017038176A1 JP 2016066031 W JP2016066031 W JP 2016066031W WO 2017038176 A1 WO2017038176 A1 WO 2017038176A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
fluorescence
phosphor
phosphor layer
Prior art date
Application number
PCT/JP2016/066031
Other languages
English (en)
French (fr)
Inventor
一規 安念
佳伸 川口
宜幸 高平
高橋 幸司
要介 前村
智洋 坂上
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2017537588A priority Critical patent/JP6688306B2/ja
Priority to US15/757,344 priority patent/US10330267B2/en
Publication of WO2017038176A1 publication Critical patent/WO2017038176A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/65Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction specially adapted for changing the characteristics or the distribution of the light, e.g. by adjustment of parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/68Details of reflectors forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24-F21S41/28
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/29Attachment thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/70Prevention of harmful light leakage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V11/00Screens not covered by groups F21V1/00, F21V3/00, F21V7/00 or F21V9/00
    • F21V11/08Screens not covered by groups F21V1/00, F21V3/00, F21V7/00 or F21V9/00 using diaphragms containing one or more apertures
    • F21V11/10Screens not covered by groups F21V1/00, F21V3/00, F21V7/00 or F21V9/00 using diaphragms containing one or more apertures of iris type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/12Combinations of only three kinds of elements
    • F21V13/14Combinations of only three kinds of elements the elements being filters or photoluminescent elements, reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/47Passive cooling, e.g. using fins, thermal conductive elements or openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0008Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted at the end of the fibre

Definitions

  • the present invention relates to a light emitter that emits fluorescence upon receiving excitation light, and a lighting device including the light emitter.
  • Patent Document 1 discloses an illumination device that improves the spot property of illumination light emitted from a phosphor layer.
  • the spot property of the illumination light is improved by refracting the light propagating in the phosphor layer through the hollow body.
  • Patent Documents 2 and 3 disclose illumination devices that improve color unevenness of illumination light.
  • Patent Document 2 proposes an illuminating device in which a scattering layer that scatters light is disposed on the light exit surface side of a phosphor layer. In this illuminating device, the color unevenness of the illumination light is improved by scattering the excitation light and fluorescence contained in the irradiation light by the scattering layer.
  • Patent Document 3 proposes an illumination device including a phosphor layer provided with a plurality of holes penetrating in the thickness direction.
  • this illumination device the propagation of part of the light is blocked by the holes provided in the phosphor layer, thereby preventing yellow rings from occurring on the outer periphery of the phosphor layer and improving the color unevenness of the illumination light. ing.
  • Patent Document 1 can improve the spot property of the illumination light, but has a problem that the color unevenness of the irradiation light cannot be improved.
  • Patent Documents 2 and 3 although the color unevenness of the irradiation light can be improved, there is a problem that the spot property of the illumination light cannot be improved.
  • the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a light emitter and an illumination device that can simultaneously improve the spot property and color unevenness of illumination light.
  • a light emitter includes a light irradiation surface on which excitation light is irradiated and a light emission surface located on a side opposite to the light irradiation surface.
  • a phosphor layer that emits light and fluorescence obtained by wavelength-converting a part of the excitation light from the light exit surface, a light shielding layer that shields the excitation light and fluorescence emitted from the light exit surface, and the light exit surface
  • a scattering layer that scatters the excitation light and the fluorescence that are provided on the side and are not shielded by the light shielding layer.
  • Embodiment 1 An embodiment of the present invention will be described below with reference to FIGS.
  • an illumination device spotlight, vehicle headlamp, etc.
  • the light emitter according to the present invention
  • FIG. 1 is a cross-sectional view showing the configuration of the illumination device 1 according to this embodiment.
  • the illuminating device 1 emits, as illumination light, light obtained by mixing laser light emitted from the laser element 2 and fluorescence obtained by wavelength-converting a part of the laser light.
  • the illumination device 1 includes a laser element (excitation light source) 2, an optical fiber 3, a ferrule 4, a ferrule fixing unit 5, a light emitter 6, a metal base 7, a light projecting lens 8, and a lens fixing unit 9. I have.
  • the laser element 2 is an excitation light source that emits laser light (excitation light).
  • the illumination device 1 includes a plurality of laser elements 2.
  • the laser light emitted from the laser element 2 is spatially and temporally aligned in phase, and the wavelength is a single wavelength. Therefore, by using laser light as the excitation light, the phosphor included in the light emitter 6 can be efficiently excited, and high-luminance illumination light can be obtained.
  • the wavelength of the emitted laser light and the light output are appropriately set according to the type of phosphor contained in the light emitter 6.
  • laser light having a wavelength range of 420 nm or more and 490 nm or less can be selected as excitation light.
  • the laser light emitted from each of the plurality of laser elements 2 is incident on the incident end 3a of the optical fiber 3, and is emitted from the emission end 3b located on the opposite side of the incident end 3a. Is irradiated. A part of the laser light applied to the light emitter 6 is converted into fluorescence by the phosphor included in the light emitter 6.
  • the aspherical lens 21 is preferably made of a material having high transmittance of laser light emitted from the laser element 2 and excellent heat resistance.
  • the number of laser elements 2 to be used can be appropriately selected according to the required output. Therefore, only one laser element 2 may be used. However, when there is a need to obtain high-power laser light, it is preferable to use a plurality of laser elements 2 as in this embodiment.
  • a light emitting diode may be provided as an excitation light source instead of the laser element 2.
  • the excitation light source is not particularly limited as long as it emits excitation light that can excite the phosphor included in the light emitter 6.
  • the optical fiber 3 is a light guide member that guides the laser light emitted from the laser element 2.
  • the optical fiber 3 is a bundle fiber in which a plurality of optical fibers are bundled.
  • the optical fiber 3 includes an incident end 3a that makes a laser beam incident and an emission end 3b that emits the laser beam incident from the incident end 3a.
  • the incident end 3 a side of the optical fiber 3 is connected to the laser element 2.
  • the output end 3 b side of the optical fiber 3 is held by the ferrule 4 and connected to the metal base 7 via the ferrule fixing portion 5.
  • the ferrule 4 is a holding member that holds the emission end 3 b side of the optical fiber 3.
  • the ferrule 4 is attached to the peripheral surface of the optical fiber 3 on the emission end 3b side.
  • the ferrule 4 is formed with a plurality of holes into which the emission end 3b can be inserted, for example.
  • the ferrule 4 can be omitted. However, even when one optical fiber 3 is used, it is preferable to provide the ferrule 4 in order to fix the emission end 3b at an appropriate position.
  • the ferrule fixing part 5 is a fixing member that fixes the ferrule 4 to the metal base 7.
  • fixed part 5 is a cylindrical member which has light-shielding property.
  • the ferrule fixing part 5 is penetrated from one end side of the excitation light passage hole 71 formed in the thickness direction of the metal base 7 and is fixed to the metal base 7.
  • the ferrule fixing part 5 is formed by metalizing the ferrule 4 at an angle at which the laser beam emitted from the emission end part 3b of the optical fiber 3 is appropriately applied to the light emitter 6 disposed on the other end side of the excitation light passage hole 71. Fix to base 7.
  • the ferrule fixing part 5 is preferably a member that does not absorb light, and is made of, for example, aluminum.
  • the light emitter 6 is a laminated structure that emits illumination light including fluorescence obtained by converting the wavelength of the laser light and a part of the laser light by irradiation of the laser light.
  • the light emitter 6 includes a phosphor layer 61, a light absorption layer 62, and a scattering layer 63.
  • the light emitter 6 is disposed with the phosphor layer 61 in contact with the surface 7 b of the metal base 7 so as to cover the excitation light passage hole 71.
  • the light emitter 6 emits illumination light including laser light and fluorescence toward the light projecting lens 8. Details of the light emitter 6 will be described later.
  • the metal base 7 is a support member that supports the light emitter 6.
  • the metal base 7 is made of metal (for example, aluminum, copper or iron). Therefore, the metal base 7 has high thermal conductivity, and can efficiently dissipate heat generated in the phosphor layer 61.
  • An excitation light passage hole 71 is formed in the metal base 7 so as to penetrate the central portion of the metal base 7 in the thickness direction (left and right direction in FIG. 1). One end of the excitation light passage hole 71 is opened at the back surface 7 a of the metal base 7. The other end of the excitation light passage hole 71 is opened at the surface 7 b of the metal base 7.
  • the exit end 3b of the optical fiber 3 is disposed at the opening on the one end of the excitation light passage hole 71 (the back surface 7a of the metal base 7).
  • the light emitter 6 is disposed at the opening on the other end (surface 7b of the metal base 7) side of the excitation light passage hole 71 so as to cover the opening. Therefore, the laser light emitted from the emission end 3 b of the optical fiber 3 passes through the excitation light passage hole 71 of the metal base 7 and is irradiated on the phosphor layer 61 of the light emitter 6.
  • the metal base 7 radiates the heat generated in the phosphor layer 61 through the radiation fins 72 and the like.
  • a plurality of the heat radiation fins 72 are provided on the back surface 7a of the metal base 7, and function as a heat radiation mechanism that radiates the heat of the metal base 7 into the air.
  • the heat dissipating fins 72 increase the heat dissipating efficiency by increasing the contact area with the atmosphere. As with the metal base 7, it is preferable to use a material having high thermal conductivity for the radiation fin 72.
  • the light projecting lens 8 is an optical member that projects illumination light including laser light and fluorescence emitted (emitted) from the light emitter 6.
  • the light projecting lens 8 projects the illumination light in a predetermined angle range by refracting the illumination light including the laser light and the fluorescence emitted from the light emitter 6.
  • the light projecting lens 8 is made of, for example, acrylic resin, polycarbonate, silicone, borosilicate glass, BK7, or quartz.
  • the light projecting lens 8 is supported by a lens fixing portion 9 at a position facing the light emitter 6.
  • the number of the light projection lenses 8 may be one or plural.
  • the shape of the projection lens 8 may be either an aspheric lens or a spherical lens. The number and shape of the projection lenses 8 to be used are appropriately selected as necessary.
  • the lens fixing unit 9 is a fixing member that fixes the light projecting lens 8 to the metal base 7.
  • the lens fixing portion 9 is made of a cylindrical member having a light shielding property.
  • the lens fixing portion 9 holds the peripheral surface of the metal base 7 and the peripheral surface of the light projecting lens 8 on its inner surface.
  • the lens fixing portion 9 is preferably made of a material with high heat dissipation, and in particular, a material made of aluminum and subjected to an alumite treatment on the surface can be suitably used.
  • FIG. 2 is a cross-sectional view showing the configuration of the light emitter 6 shown in FIG.
  • the light emitter 6 includes a phosphor layer 61, a light absorption layer 62, and a scattering layer 63.
  • the light-emitting body 6 has a configuration in which the light absorption layer 62 and the scattering layer 63 are patterned on the light emission surface 61 b of the phosphor layer 61.
  • the phosphor layer 61 is a layer that generates fluorescence L2 (see FIG. 4) by irradiation with the laser light L1 emitted from the emission end 3b of the optical fiber 3.
  • the phosphor layer 61 includes a phosphor that generates fluorescence L2 by irradiation with the laser light L1.
  • the phosphor layer 61 has a light irradiation surface 61a that is a lower surface facing the emission end 3b of the optical fiber 3, and a light emission surface 61b that is a surface opposite to the light irradiation surface 61a.
  • the phosphor layer 61 is irradiated with the laser light L1 on the light irradiation surface 61a, generates fluorescence L2 obtained by wavelength-converting a part of the laser light L1, and emits the laser light L1 and the fluorescence L2 from the light emission surface 61b. .
  • the phosphor layer 61 is a transmissive wavelength conversion member in which the light irradiation surface 61a irradiated with the laser light L1 and the light emitting surface 61b that emits the laser light L1 and the fluorescence L2 face each other.
  • the phosphor layer 61 is preferably made of a garnet-based small gap phosphor plate.
  • the small gap phosphor plate means a phosphor plate in which the width of a gap (hereinafter referred to as gap width) existing in the phosphor plate is 1/10 or less of the wavelength of visible light. More specifically, the small gap phosphor plate means a phosphor plate having a gap width of 0 nm or more and 40 nm or less. That is, if the gap width is expressed as a symbol t, 0 nm ⁇ t ⁇ 40 nm.
  • the “small gap phosphor plate” may be referred to as a “small gap phosphor member”.
  • the above-mentioned “void” means a gap between crystals in the phosphor plate (in other words, a grain boundary).
  • the air gap is a cavity in which only air exists.
  • some foreign matter for example, alumina which is a raw material of the phosphor plate may enter inside the gap.
  • FIG. 3 is a schematic view for explaining the gap width in the small gap phosphor plate.
  • FIG. 3 shows distances d1 to d4 as distances between adjacent crystals. For example, if the distance d1 is the maximum of the distances d1 to d4, the distance d1 is the gap width.
  • the small gap phosphor plate is excellent in thermal conductivity because the gap width is 0 nm ⁇ t ⁇ 40 nm. For this reason, even when the high-density laser beam L1 is irradiated, the temperature of the phosphor layer 61 is unlikely to increase, and the light emission efficiency is unlikely to decrease. Therefore, by using a small gap phosphor plate as the phosphor layer 61, it is possible to realize the luminous body 6 with high luminance and high efficiency.
  • a phosphor raw material powder is obtained by a liquid phase method or a solid phase method using a submicron sized oxide powder as a raw material.
  • the phosphor raw material powder is a YAG: Ce phosphor
  • the oxide is yttrium oxide, aluminum oxide, cerium oxide, or the like.
  • the phosphor raw material powder is molded with a mold or the like and vacuum sintered.
  • a small gap phosphor plate having a gap width larger than 0 nm and 40 nm or less that is, 0 nm ⁇ t ⁇ 40 nm
  • this small gap phosphor plate has a narrow gap width, it has a high thermal conductivity. For this reason, the temperature of the small gap phosphor plate hardly rises even when irradiated with high-density excitation light. Therefore, by using a small gap phosphor plate made of a polycrystalline phosphor as the phosphor layer 61, it is possible to suppress a decrease in the luminous efficiency of the phosphor layer 61.
  • the body 6 can be realized.
  • an example of a method for producing the small-gap phosphor plate is a liquid phase method such as a CZ (Czochralski) method. Specifically, first, oxide powder is made into a mixed powder by dry mixing or the like, and the mixed powder is put in a crucible and heated to obtain a melt. Next, a phosphor seed crystal (for example, YAG single crystal in the case of YAG) is prepared, the seed crystal is brought into contact with the melt, and then pulled up while rotating. At this time, the pulling temperature is about 2000 ° C. Thereby, for example, a ⁇ 111> -direction single crystal ingot can be grown. Thereafter, the ingot is cut into a desired size. At this time, depending on how to cut out, a single crystal ingot in the ⁇ 001> or ⁇ 110> direction can be obtained.
  • CZ Czochralski
  • the single crystal ingot is obtained from the melt at a temperature equal to or higher than the melting point of the phosphor, and thus has high crystallinity. That is, there are fewer defects in the small gap phosphor plate. Therefore, the temperature characteristics of the small gap phosphor plate can be improved, and a decrease in light emission efficiency due to an increase in temperature can be suppressed.
  • the phosphor layer 61 a material other than the small gap phosphor plate such as a phosphor single crystal plate and a phosphor polycrystalline plate may be used.
  • a material in which a phosphor is dispersed inside a sealing material can be used.
  • the sealing material of the phosphor layer 61 is, for example, a resin material such as a glass material (inorganic glass or organic-inorganic hybrid glass) or a silicone resin. Low melting glass may be used as the glass material.
  • the sealing material is preferably highly transparent, and when the laser beam L1 has a high output, a material having high heat resistance is preferable.
  • the type of phosphor contained in the phosphor layer 61 is appropriately selected according to the wavelength of the laser beam L1 to be irradiated.
  • a YAG: Ce (yellow), GAGG: Ce (yellow), LuAG: Ce (green) based phosphor single crystal plate or phosphor polycrystalline plate can be suitably used.
  • the illumination light L3 (see FIG. 4) is required to be white with a predetermined range of chromaticity.
  • a combination of the laser light L1 and the phosphor is appropriately selected.
  • the white illumination light L3 can be suitably obtained by irradiating the phosphor layer 61, which is a YAG-based phosphor single crystal plate or phosphor polycrystalline plate, with the blue laser light L1.
  • the light absorption layer 62 is a layer that absorbs the laser light L1 and the fluorescence L2 emitted from the light emission surface 61b.
  • the light absorption layer 62 is, for example, a black ceramic plate, a film in which particles such as black alumina are deposited, or a film in which particles such as black alumina are sealed in a resin such as silicone or acrylic.
  • the light absorption layer 62 is provided so as to cover the periphery of the light emitting surface 61 b of the phosphor layer 61.
  • the light absorption layer 62 has the laser beam L1 emitted from the light emitting surface 61b of the phosphor layer 61 and the fluorescence on the optical axis of the laser beam L1 irradiated on the light emitting surface 61a of the phosphor layer 61. It has a light passage hole 621 through which L2 passes.
  • the central axis of the light passage hole 621 is substantially coincident with the optical axis of the laser light L1 irradiated on the light irradiation surface 61a of the phosphor layer 61. Thereby, the laser beam L1 irradiated to the light irradiation surface 61a and the fluorescence L2 generated by the phosphor layer 61 can be efficiently incident on the light passage hole 621.
  • the dimension (diameter) of the light passage hole 621 is the same as or larger than the beam diameter of the laser light L1 irradiated on the light irradiation surface 61a of the phosphor layer 61.
  • the dimension of the light passage hole 621 is the same as or larger than the dimension (diameter) of the irradiation spot of the laser light L1 irradiated on the light irradiation surface 61a of the phosphor layer 61.
  • the scattering layer 63 is a layer that scatters the laser light L ⁇ b> 1 and the fluorescence L ⁇ b> 2 that are not shielded by the light absorption layer 62.
  • the scattering layer 63 is a light-transmitting plate having fine irregularities formed on the surface, a layer in which particles such as alumina are deposited, a film in which particles such as alumina are sealed in a resin such as silicone or acrylic, or sCASN: Eu. (Orange) or CASN: Eu (red) phosphor.
  • the light absorption layer 62 is a film in which particles such as alumina are sealed in a resin such as silicone or acrylic, heat generated in the phosphor layer 61 by the irradiation of the laser light L1 is efficiently generated by the light absorption layer 62. It is possible to dissipate heat. Therefore, deterioration of the phosphor layer 61 due to heat can be suppressed.
  • the scattering layer 63 is embedded in the light passage hole 621 of the light absorption layer 62. Therefore, the laser light L 1 and the fluorescence L 2 that pass through the light passage hole 621 are necessarily scattered by the scattering layer 63. Therefore, it is possible to reliably mix the laser light L1 and the fluorescence L2.
  • the scattering layer 63 in the light passage hole 621 of the light absorption layer 62, it becomes possible to reduce the thickness of the entire light emitting body 6. Therefore, the light emitter 6 can be thinned.
  • the light emitter 6 forms the light passage hole 621 by providing the light absorption layer 62 so as to cover the peripheral portion of the light emitting surface 61b of the phosphor layer 61, and the scattering layer 63 has In this configuration, the light passage hole 621 is buried.
  • the scattering layer 63 is provided on the optical axis of the laser light L ⁇ b> 1 that is irradiated onto the light irradiation surface 61 a of the phosphor layer 61, and the light absorption layer 62 includes the scattering layer 63. It is the structure provided so that it might surround.
  • FIG. 4 is a cross-sectional view for explaining the operation of the light emitter 6 shown in FIG.
  • the light emitter 6 irradiates the light irradiation surface 61 a of the phosphor layer 61 with the laser light L ⁇ b> 1, whereby the laser light L ⁇ b> 1 and the fluorescence L ⁇ b> 2 obtained by wavelength-converting a part of the laser light L ⁇ b> 1.
  • the illumination light L3 obtained by mixing the colors is emitted from the scattering layer 63.
  • the laser light L1 and the fluorescence L2 emitted from the light emitting surface 61b of the phosphor layer 61 the laser light L1 and the fluorescence L2 incident on the light passage hole 621 of the light absorption layer 62 are scattered by the scattering layer 63. After that, the light is emitted toward the light projecting lens 8.
  • the laser light L1 and fluorescence L2 emitted from the light emitting surface 61b of the phosphor layer 61 the laser light L1 and fluorescence L2 that are not incident on the light passage hole 621, that is, propagated in the in-layer direction of the phosphor layer 61.
  • the stray light L4 that is the laser light L1 and the fluorescence L2 is absorbed by the light absorption layer 62. Thereby, it can suppress that the stray light L4 radiate
  • the laser light L1 and the fluorescence L2 that have passed through the light passage hole 621 of the light absorption layer 62 are emitted toward the light projecting lens 8, and are used as the illumination light L3. Therefore, by adjusting the dimension (diameter) of the light passage hole 621, the size of the emission region of the illumination light L3 in the light emitter 6 can be changed. For example, by reducing the size of the light passage hole 621, the emission region of the illumination light L3 in the light emitter 6 can be made into a small spot shape. Thereby, the spot property of the illumination light L3 can be improved.
  • the laser light L1 and the fluorescence L2 passing through the light passage hole 621 are necessarily scattered by the scattering layer 63. Therefore, the laser light L1 and the fluorescence L2 can be sufficiently mixed, and color unevenness of the illumination light L3 can be improved.
  • the laser light L1 has a narrower light distribution than light from an LED or the like, when the laser light L1 is used as excitation light, color unevenness of the illumination light L3 is likely to occur.
  • the gap width is 40 nm or less as described above, the scattering (internal scattering) effect on the laser light L1 and the fluorescence L2 is completely reduced. As a result of examination, it was found that it does not occur or is very difficult to occur.
  • the “40 nm or less” refers to the gap width with respect to the wavelength of the laser light L1 (in the case of blue light: 420 nm or more and 490 nm or less) that is excitation light or the wavelength of fluorescence L2 (light having a longer wavelength than the excitation light). The value is about 1/10 or less.
  • the above scattering effect does not occur at all or is hardly generated. Therefore, when a small gap phosphor plate is used as the phosphor layer 61, the spot property of the illumination light L3 is deteriorated and the color unevenness becomes remarkable.
  • the light absorption layer 62 and the scattering layer 63 can favorably improve the spot property deterioration and color unevenness of the illumination light L ⁇ b> 3. Therefore, the light emitter 6 is particularly effective when the laser beam L1 is combined with a small-gap phosphor plate such as a phosphor single crystal plate or a phosphor polycrystalline plate, and the spot property and color unevenness of the illumination light L3. It is possible to realize light emission with high luminance while simultaneously improving the above.
  • the lighting device 1 includes a light emitter 6.
  • the light emitter 6 has a light irradiation surface 61a irradiated with the laser light L1 and a light emission surface 61b located on the opposite side of the light irradiation surface 61a, and wavelength-converts the laser light L1 and a part of the laser light L1.
  • Light having a phosphor layer 61 that emits the fluorescence L2 from the light emission surface 61b and a light passage hole 621 that is provided on the light emission surface 61b side and allows the laser light L1 and fluorescence L2 emitted from the light emission surface 61b to pass therethrough It includes an absorption layer 62 and a scattering layer 63 that is buried so as to close the light passage hole 621 and scatters the laser light L1 and the fluorescence L2.
  • the laser light L 1 and the fluorescence L 2 emitted from the light exit surface 61 b pass through the light passage hole 621, and the outside of the light emitter 6. Is released.
  • the laser light L1 and fluorescence L2 emitted from the light emitting surface 61b the laser light L1 and fluorescence L2 that are not incident on the light passage hole 621, that is, the laser light L1 and fluorescence propagated in the in-layer direction of the phosphor layer 61.
  • the stray light L4 that is L2 is shielded by the light absorption layer 62.
  • the size of the emission region of the illumination light L3 in the light emitter 6 can be changed, and the spot property of the illumination light L3 can be improved.
  • the light passage hole 621 is blocked by the scattering layer 63. Therefore, the laser light L1 and the fluorescence L2 that pass through the light passage hole 621 are necessarily scattered by the scattering layer 63, so that the color unevenness of the illumination light L3 can be improved.
  • the present embodiment it is possible to realize the light emitter 6 and the lighting device 1 including the light emitter 6 that can simultaneously improve the spot property and color unevenness of the illumination light L3.
  • the light projection lens 8 that projects the illumination light L3 emitted from the light emitter 6 is installed in the immediate vicinity of the light emitter 6 as in the illumination device 1, a part of the illumination light L3 is projected by the light projection lens 8. Is reflected to produce a reflection component from the light projecting lens 8 toward the light emitter 6. When such a reflection component is re-reflected by the light emitter 6 and enters the light projection lens 8, the illuminance of the illumination light L3 projected by the light projection lens 8 becomes uneven.
  • the reflection component from the light projecting lens 8 toward the light emitter 6 can be absorbed and collected by the light absorption layer 62. Therefore, in the illuminating device 1, since the light quantity of the reflective component which injects into the light projection lens 8 reduces significantly, the nonuniformity of the illumination intensity of the illumination light L3 projected by the light projection lens 8 can be improved.
  • FIG. 5 is a cross-sectional view showing a configuration of the light emitter 16 according to the present embodiment.
  • the light emitter 16 includes a phosphor layer 61, a reflective layer (light-shielding layer) 162, and a scattering layer 63.
  • the light emitter 16 is different from the light emitter described in the above embodiment in that it includes a reflective layer 162 instead of the light absorption layer 62.
  • the reflective layer 162 is a layer that reflects the laser light L1 and the fluorescence L2 emitted from the light emitting surface 61b.
  • the reflective layer 162 is, for example, a film made of aluminum (Al) or silver (Ag), a white ceramic plate, a film in which particles such as alumina are deposited, and particles such as alumina sealed in a resin such as silicone or acrylic. Such as a membrane.
  • the reflection layer 162 is a light that allows the laser light L1 and the fluorescence L2 emitted from the light emission surface 61b of the phosphor layer 61 to pass on the optical axis of the laser light L1 irradiated on the light irradiation surface 61a of the phosphor layer 61.
  • a passage hole 621 is provided. The light passage hole 621 is blocked by the scattering layer 63.
  • FIG. 6 is a cross-sectional view for explaining the operation of the light emitter 16 shown in FIG.
  • the light emitter 16 among the laser light L ⁇ b> 1 and the fluorescence L ⁇ b> 2 emitted from the light emitting surface 61 b of the phosphor layer 61, the laser light L ⁇ b> 1 and the fluorescence L ⁇ b> 2 incident on the light passage hole 621 of the reflective layer 162. Is scattered by the scattering layer 63 and then emitted toward the light projecting lens 8.
  • the stray light L4 that is the laser light L1 and the fluorescence L2 propagated in the in-layer direction of the phosphor layer 61 is reflected by the reflection layer 162. Reflected. Thereby, it can suppress that the stray light L4 radiate
  • the laser light L1 and the fluorescence L2 that have passed through the light passage hole 621 of the reflective layer 162 are emitted toward the light projecting lens 8, and are used as the illumination light L3.
  • part of the laser light L1 and fluorescence L2 incident on the light passage hole 621 passes through the light passage hole 621 while being reflected by the reflection layer 162. Therefore, the laser light L1 and the fluorescence L2 incident on the light passage hole 621 can be passed through the light passage hole 621 without loss.
  • part of the laser light L ⁇ b> 1 out of the stray light L ⁇ b> 4 whose emission from the light exit surface 61 b of the phosphor layer 61 is suppressed by the reflective layer 162 is converted into fluorescence L ⁇ b> 2 in the phosphor layer 61.
  • the A part of the fluorescence L2 propagates in the phosphor layer 61, passes through the light passage hole 621, and is emitted to the outside.
  • a part of the laser light L1 that has become the stray light L4 can be reused as excitation light. Therefore, the utilization efficiency of the laser beam L1 is improved, and the light emitter 16 with higher brightness can be obtained.
  • the light emitter 16 includes a reflection layer 162 that reflects the laser light L1 and the fluorescence L2 as a light shielding layer.
  • the laser light L ⁇ b> 1 and the stray light L ⁇ b> 4 that is the fluorescence L ⁇ b> 2 propagated in the in-layer direction of the phosphor layer 61 are reflected by the reflection layer 162. Therefore, it is possible to suppress the stray light L4 from being emitted from the light emitting surface 61b.
  • part of the laser light L1 and the fluorescence L2 incident on the light passage hole 621 passes through the light passage hole 621 while being reflected by the reflection layer 162. Therefore, the laser light L1 and the fluorescence L2 incident on the light passage hole 621 can be passed through the light passage hole 621 without loss.
  • the present embodiment it is possible to realize the light emitter 16 that improves the light use efficiency while simultaneously improving the spot property and color unevenness of the illumination light L3.
  • FIG. 7 is a cross-sectional view showing the configuration of the light emitter 26 according to the present embodiment.
  • the light emitter 26 includes a phosphor layer 61, a light absorption layer 62, a scattering layer 63, a dichroic mirror (optical layer) 64, and a first reflection film 65.
  • the dichroic mirror 64 is an optical element that selectively reflects light in a specific wavelength range and transmits light in other wavelength ranges.
  • the dichroic mirror 64 is a laminated structure in which dielectric layers are laminated.
  • the dichroic mirror 64 is provided so as to cover the light irradiation surface 61 a of the phosphor layer 61.
  • the dichroic mirror 64 transmits the laser light L1 emitted from the emission end 3b of the optical fiber 3.
  • the dichroic mirror 64 reflects the fluorescence L2 generated inside the phosphor layer 61 toward the light irradiation surface 61a. Therefore, the dichroic mirror 64 can suppress the fluorescence L2 generated in the phosphor layer 61 from leaking from the light irradiation surface 61a.
  • the first reflective film 65 is a reflective member that reflects the laser light L1 and the fluorescence L2.
  • the first reflective film 65 is made of a film made of aluminum or silver.
  • the first reflective film 65 is provided on the side surface 61c of the phosphor layer 61 that connects the light irradiation surface 61a and the light emitting surface 61b. Therefore, the first reflective film 65 can suppress the leakage of the laser light L1 and the fluorescence L2 from the side surface 61c of the phosphor layer 61.
  • the light emitter 26 is disposed on the light irradiation surface 61a side of the phosphor layer 61, transmits the laser light L1 emitted from the emission end portion 3b of the optical fiber 3, and the inside of the phosphor layer 61.
  • the dichroic mirror 64 that reflects the fluorescence L2 generated in step S1 toward the light irradiation surface 61a is included.
  • the dichroic mirror 64 can suppress the fluorescence L2 generated inside the phosphor layer 61 from leaking from the light irradiation surface 61a. Therefore, the amount of laser light L1 and fluorescence L2 incident on the light passage hole 621 can be increased.
  • the first reflective film 65 can suppress the leakage of the laser light L1 and the fluorescence L2 from the side surface 61c of the phosphor layer 61. Therefore, the amount of laser light L1 and fluorescence L2 incident on the light passage hole 621 can be increased.
  • the present embodiment it is possible to realize the light emitter 26 that improves the light use efficiency while simultaneously improving the spot property and color unevenness of the illumination light L3.
  • FIG. 8 is a cross-sectional view showing a configuration of the light emitter 36 according to the present embodiment.
  • the light emitter 36 includes a phosphor layer 61, a light absorption layer 62, a scattering layer 63, a dichroic mirror 64, and a second reflection film 66.
  • the second reflecting film 66 is a reflecting member that reflects the laser light L1 and the fluorescence L2.
  • the second reflective film 66 is made of a film made of aluminum or silver.
  • the second reflection film 66 is provided in a notch 61d formed along the edge of the light irradiation surface 61a of the phosphor layer 61.
  • the second reflective film 66 covers the notch 61d or the notch 61d and the side surface 64c of the dichroic mirror 64 provided on the light irradiation surface 61a. Therefore, the second reflection film 66 can suppress the leakage of the laser light L1 and the fluorescence L2 from the edge of the light irradiation surface 61a of the phosphor layer 61.
  • the second reflective film 66 can be easily configured, for example, by previously forming a notch 61d in the phosphor layer 61 by etching or cutting and forming the second reflective film 66 in the notch 61d. .
  • a second reflective film 66 that reflects the laser light L1 and the fluorescence L2 is provided in a notch 61d formed along the edge of the light irradiation surface 61a.
  • the second reflective film 66 can suppress the leakage of the laser light L1 and the fluorescence L2 from the edge of the light irradiation surface 61a of the phosphor layer 61. Therefore, the amount of laser light L1 and fluorescence L2 incident on the light passage hole 621 can be increased.
  • the present embodiment it is possible to realize the light emitter 36 that improves the light use efficiency while simultaneously improving the spot property and the color unevenness of the illumination light L3.
  • the second reflective film 66 is formed by, for example, forming the notch 61d in the phosphor layer 61 such as a small gap phosphor plate in advance by etching or cutting, and then forming the second reflective film 66. It can be easily configured by forming a film.
  • FIG. 9 is a cross-sectional view showing the configuration of the light emitter 46 according to the present embodiment.
  • the light emitter 46 includes a phosphor layer 61, a light absorption layer (light shielding layer) 262, a scattering layer 63, and a dichroic mirror 64.
  • the edge of the light irradiation surface 61 a of the phosphor layer 61 is supported by the fixing jig 10.
  • the light absorption layer 262 is a layer that absorbs the laser light L1 and the fluorescence L2 emitted from the light emission surface 61b of the phosphor layer 61.
  • the light absorbing layer 262 covers the side surface 61c of the phosphor layer 61 and the side surface 64c of the dichroic mirror 64 that connect the light emitting surface 61a and the light emitting surface 61b in addition to the peripheral portion of the light emitting surface 61b.
  • a part of the light absorption layer 262 is in contact with the fixing jig 10 that supports the light emitter 46.
  • the fixing jig 10 is a support member that supports the light emitter 46.
  • the fixing jig 10 is made of metal (for example, aluminum, copper, or iron). Therefore, the fixing jig 10 has high thermal conductivity, and can efficiently dissipate heat generated by the phosphor layer 61.
  • the light absorption layer 262 covers the side surface 61c of the phosphor layer 61 that connects the light irradiation surface 61a and the light emission surface 61b of the phosphor layer 61.
  • the light absorption layer 262 can suppress the leakage of the laser light L1 and the fluorescence L2 from the side surface 61c of the phosphor layer 61. Therefore, the amount of laser light L1 and fluorescence L2 incident on the light passage hole 621 can be increased.
  • a part of the light absorption layer 262 is in contact with the fixing jig 10 that supports the light emitter 46. Therefore, by transferring the heat generated in the phosphor layer 61 to the fixing jig 10 through the light absorption layer 262, it is possible to efficiently dissipate heat.
  • the present embodiment it is possible to realize the light emitter 46 that improves the light use efficiency while simultaneously improving the spot property and the color unevenness of the illumination light L3.
  • FIG. 10 is a cross-sectional view showing the configuration of the light emitter 56 according to this embodiment.
  • the light emitter 56 includes a phosphor layer 61, a light absorption layer 62, a scattering layer 63, a dichroic mirror 64, and a light transmissive substrate 67.
  • the light transmissive substrate 67 is a transparent substrate that supports the phosphor layer 61.
  • the light transmissive substrate 67 is made of, for example, glass or sapphire.
  • the material of the light transmissive substrate 67 is preferably a material having high thermal conductivity such as sapphire in order to dissipate heat generated in the phosphor layer 61.
  • the laser beam L1 emitted from the emission end portion 3b of the optical fiber 3 is transmitted through the light-transmitting substrate 67 and irradiated onto the light irradiation surface 61a of the phosphor layer 61.
  • the light emitter 56 further includes a light transmissive substrate 67 that is provided on the light irradiation surface 61 a side of the phosphor layer 61 and supports the phosphor layer 61.
  • the thickness of the phosphor layer 61 can be 100 ⁇ m or less.
  • the mechanical strength of the phosphor layer 61 is significantly reduced. Therefore, it is difficult to fix the phosphor layer 61 having a thickness of 100 ⁇ m or less in the lighting device 1. Therefore, by supporting the phosphor layer 61 with the light transmissive substrate 67, it becomes possible to compensate for the decrease in the mechanical strength of the phosphor layer 61. Therefore, the thickness of the phosphor layer 61 should be 100 ⁇ m or less. it can.
  • the propagation of the laser light L1 and the fluorescence L2 in the phosphor layer 61 is suppressed. Therefore, the laser light L1 and the fluorescence L2 are easily emitted from the light emitting surface 61b.
  • the present embodiment it is possible to realize the light emitter 56 that improves the light use efficiency while simultaneously improving the spot property and the color unevenness of the illumination light L3.
  • FIG. 11 is a cross-sectional view showing a configuration of the light emitter 76 according to the present embodiment.
  • the light emitter 76 includes a phosphor layer 61, a light absorption layer 62, and a scattering layer 63.
  • the light emitter 76 is provided with a scattering layer 63 between the phosphor layer 61 and the light absorption layer 62.
  • the laser light L1 and the fluorescence L2 emitted from the light emitting surface 61b of the phosphor layer 61 are incident on the scattering layer 63 and scattered.
  • the laser light L 1 and fluorescence L 2 scattered by the scattering layer 63 the laser light L 1 and fluorescence L 2 incident on the light passage hole 621 of the light absorption layer 62 are emitted toward the light projecting lens 8.
  • the laser light L 1 and the fluorescence L 2 scattered by the scattering layer 63 the laser light L 1 and the fluorescence L 2 that do not enter the light passage hole 621 are absorbed by the light absorption layer 62.
  • the light emitter 76 includes a phosphor layer 61, a light absorption layer 62, and a scattering layer 63, and the scattering layer 63 is provided between the phosphor layer 61 and the light absorption layer 62.
  • the laser light L1 and the fluorescence L2 emitted from the light emitting surface 61b of the phosphor layer 61 are absorbed by the light absorption layer 62 and scattered by the scattering layer 63.
  • the spot property and color unevenness of the illumination light L3 can be improved at the same time.
  • the light emitter 76 that can simultaneously improve the spot property and the color unevenness of the illumination light L3.
  • the scattering layer 63 is formed so as to cover the entire light emitting surface 61b of the phosphor layer 61, so that it is not necessary to etch the scattering layer 63. Therefore, the patterning process at the time of manufacturing the light emitter 76 can be reduced. For example, in the case of a patterning (painting) method using a mask or the like, a mask alignment process for forming the scattering layer 63 is not necessary, and thus the light emitter 76 can be easily manufactured.
  • the present embodiment it is possible to easily produce the light emitter 76 with improved light utilization efficiency while simultaneously improving the spot property and color unevenness of the illumination light L3.
  • the light emitter 76 has a configuration in which the phosphor layer 61, the scattering layer 63, and the light absorption layer 62 are laminated in this order, but the present invention is not limited to this configuration.
  • the light emitter 76 may have a configuration in which the phosphor layer 61, the light absorption layer 62, and the scattering layer 63 are laminated in this order.
  • the light emitter 76 includes the light absorption layer 62 as a light shielding layer, but the present invention is not limited to this configuration.
  • the light emitter 76 may include a reflective layer 162 instead of the light absorption layer 62.
  • FIG. 12 is a cross-sectional view showing a configuration of the light emitter 86 according to the present embodiment.
  • the light emitter 86 includes a phosphor layer 61, a light absorption layer 62, and a scattering layer 163.
  • the scattering layer 163 is a layer that scatters the laser light L ⁇ b> 1 and the fluorescence L ⁇ b> 2 that are not shielded by the light absorption layer 62.
  • the scattering layer 163 includes a first region 163 a embedded in the light passage hole 621 and a second region 163 b that covers the first region 163 a and the light absorption layer 62.
  • the light emitter 86 the laser light L1 and the fluorescence L2 incident on the light passage hole 621 are scattered by the first region 163a of the scattering layer 163 inside the light passage hole 621. Further, the laser light L 1 and the fluorescence L 2 emitted from the light passage hole 621 are further scattered by the second region 163 b of the scattering layer 163. Therefore, the light emitter 86 can sufficiently mix the laser light L1 and the fluorescence L2.
  • the scattering layer 163 includes a first region 163 a embedded in the light passage hole 621 and a second region 163 b that covers the first region 163 a and the light absorption layer 62.
  • the laser light L1 and the fluorescence L2 incident on the light passage hole 621 are scattered by the first region 163a and the second region 163b of the scattering layer 163. Therefore, it is possible to sufficiently mix the laser light L1 and the fluorescence L2 incident on the light passage hole 621.
  • the light emitter 86 that can effectively improve the color unevenness of the illumination light L3.
  • the patterning process at the time of manufacturing the light emitter 86 can be reduced.
  • the mask alignment process for forming the scattering layer 163 is not necessary, and thus the light emitter 86 can be easily manufactured.
  • the present embodiment it is possible to easily produce the light emitter 86 with improved light utilization efficiency while simultaneously improving the spot property and color unevenness of the illumination light L3.
  • the light emitter 86 includes the light absorption layer 62 as a light shielding layer, but the present invention is not limited to this configuration.
  • the light emitter 86 may include a reflective layer 162 instead of the light absorption layer 62.
  • the light emitter has a light irradiation surface on which excitation light is irradiated and a light emission surface located on the opposite side of the light irradiation surface, and the excitation light (laser light L1) and the excitation light
  • a fluorescent layer that emits fluorescence obtained by wavelength-converting a part of light from the light emitting surface
  • a light shielding layer (light absorbing layers 62 and 262, reflecting layer) that shields the excitation light and fluorescence emitted from the light emitting surface. 162) and a scattering layer that is provided on the light emitting surface side and that scatters the excitation light and the fluorescence that are not shielded by the light shielding layer.
  • the excitation light and fluorescence that are not shielded by the light shielding layer are emitted to the outside of the light emitter and used as illumination light. That is, when viewed from the light emitting surface side of the phosphor layer, the region where the light shielding layer is not provided functions as an emitting region for illumination light (excitation light and fluorescence). Therefore, for example, it is possible to improve the spot property of the illumination light by providing the light shielding layer so that the emission region of the illumination light has a small spot shape.
  • excitation light and fluorescence that are not shielded by the light shielding layer are scattered by the scattering layer. Therefore, it becomes possible to sufficiently mix excitation light and fluorescence used as illumination light, and color unevenness of illumination light can be improved.
  • the phosphor layer may be composed of a small gap phosphor plate that generates the fluorescence by irradiation with the excitation light.
  • a phosphor layer made of a small gap phosphor plate such as a phosphor single crystal plate or a phosphor polycrystalline plate is excellent in thermal conductivity and temperature characteristics. Therefore, even when high-density excitation light is irradiated, the temperature of the phosphor layer is unlikely to increase, and the luminous efficiency is unlikely to decrease even when the temperature becomes high. Therefore, a high-luminance luminescent material can be realized by using a phosphor layer made of a small gap phosphor plate.
  • scattering internal scattering
  • the spot property and color unevenness of the illumination light can be simultaneously improved by the light shielding layer and the scattering layer.
  • the phosphor layer may not have a void.
  • a phosphor layer having no void such as a phosphor single crystal plate has particularly excellent thermal conductivity. Therefore, even when high-density excitation light is irradiated, the heat generated in the phosphor layer can be radiated more effectively.
  • the light shielding layer has a light passage hole through which the excitation light and fluorescence emitted from the light exit surface pass, and the light passage hole. May be blocked by the scattering layer.
  • the excitation light and fluorescence incident on the light passage hole are emitted to the outside of the light emitter and used as illumination light.
  • excitation light and fluorescence that do not enter the light passage hole that is, excitation light and fluorescence (stray light) propagated in the in-layer direction of the phosphor layer are shielded by the light shielding layer provided to close the light passage hole. . Therefore, it is possible to suppress stray light from being emitted from the light emitting surface of the phosphor layer.
  • excitation light and fluorescence are necessarily scattered by a scattering layer, excitation light and fluorescence can be mixed reliably.
  • a light emitter capable of simultaneously improving the spot property and color unevenness of illumination light can be suitably realized.
  • the central axis of the light passage hole may be substantially coincident with the optical axis of the excitation light irradiated on the light irradiation surface.
  • the excitation light irradiated on the light irradiation surface and the fluorescence generated by the phosphor layer can be efficiently incident on the light passage hole.
  • the light shielding layer is a light absorption layer that absorbs the excitation light and the fluorescence, or a reflection layer that reflects the excitation light and the fluorescence. May be.
  • the light shielding layer is a light absorption layer
  • excitation light and fluorescence propagated in the in-layer direction of the phosphor layer are absorbed by the light absorption layer.
  • the light shielding layer is a reflection layer
  • the excitation light and fluorescence propagated in the in-layer direction of the phosphor layer are reflected by the reflection layer.
  • the light emitter according to aspect 7 of the present invention further includes an optical layer (dichroic mirror 64) disposed on the light irradiation surface side in the above aspects 1 to 6, wherein the optical layer is emitted from an excitation light source. Excitation light may be transmitted, and the fluorescence generated inside the phosphor layer may be reflected toward the light irradiation surface.
  • an optical layer dichroic mirror 64
  • the optical layer can suppress the leakage of fluorescence from the light irradiation surface.
  • the light shielding layer may cover a side surface of the phosphor layer connecting the light irradiation surface and the light emission surface.
  • the light shielding layer can suppress the excitation light and fluorescence from leaking from the side surface of the phosphor layer.
  • the light emitter according to the ninth aspect of the present invention is the first reflection according to the first to seventh aspects, wherein the excitation light and the fluorescence are reflected on a side surface of the phosphor layer that connects the light irradiation surface and the light emitting surface.
  • a film may be provided.
  • the first reflecting film can suppress the leakage of excitation light and fluorescence from the side surface of the phosphor layer.
  • the phosphor layer has a notch formed along an edge of the light irradiation surface, and the excitation light is formed in the notch.
  • a second reflective film that reflects the fluorescence may be provided.
  • the second reflection film can suppress the excitation light and the fluorescence from leaking from the edge of the light irradiation surface.
  • the light emitter according to aspect 11 of the present invention may further include a light transmissive substrate provided on the light irradiation surface side and supporting the phosphor layer in the above aspects 1 to 10.
  • the thickness of the phosphor layer can be reduced.
  • the propagation of excitation light and fluorescence in the phosphor layer is suppressed, so that the excitation light and fluorescence are easily emitted from the light exit surface.
  • the illuminating device may include the light emitters according to aspects 1 to 11 described above, and an excitation light source that irradiates the light irradiation surface with the excitation light.
  • Illumination device 2 Laser element (excitation light source) 6, 16, 26, 36, 46, 56, 76, 86 Light emitter 61 Phosphor layer 61a Light irradiation surface 61b Light emission surface 61c Side surfaces 62, 262 Light absorption layer (light shielding layer) 63,163 Scattering layer 64 Dichroic mirror (optical layer) 65 First reflective film 66 Second reflective film 162 Reflective layer (light-shielding layer) 163a First region (scattering layer) 163b Second region (scattering layer) L1 Laser light (excitation light) L2 Fluorescence L3 Illumination light L4 Stray light

Abstract

 照明光のスポット性および色ムラを同時に改善可能な発光体を提供する。本発明の一実施形態に係る発光体(6)は、レーザ光(L1)が照射される光照射面(61a)と、レーザ光(L1)および蛍光(L2)を出射する光出射面(61b)とを有する蛍光体層(61)と、光出射面(61b)から出射されたレーザ光(L1)および蛍光(L2)を遮光する光吸収層(62)と、光吸収層(62)によって遮光されないレーザ光(L1)および蛍光(L2)を散乱させる散乱層(63)とを含んでいる。

Description

発光体および照明装置
 本発明は、励起光を受けて蛍光を発する発光体、および当該発光体を備える照明装置に関する。
 励起光源から出射した励起光により蛍光体層に含まれる蛍光体を励起し、当該蛍光体から蛍光を発生させる照明装置などの開発が進められている。このような照明装置は、特許文献1から3に開示されている。
 特許文献1には、蛍光体層から出射される照明光のスポット性を改善した照明装置が開示されている。この照明装置では、蛍光体層を層内伝搬する光を中空体によって屈折させることにより、照明光のスポット性を改善している。
 特許文献2および3には、照明光の色ムラを改善した照明装置が開示されている。特許文献2には、蛍光体層の光出射面側に、光を散乱する散乱層を配置した照明装置が提案されている。この照明装置では、照射光に含まれる励起光および蛍光を散乱層によって散乱させることにより、照明光の色ムラを改善している。
 また、特許文献3には、厚み方向に貫通した複数の穴が設けられた蛍光体層を備える照明装置が提案されている。この照明装置では、蛍光体層に設けられた穴によって一部の光の伝搬を遮ることにより、蛍光体層の外周部にイエローリングが発生することを防止し、照明光の色ムラを改善している。
日本国公開特許公報「特開2015-1709(2015年1月5日公開)」 日本国公開特許公報「特開2014-154313(2014年8月25日公開)」 日本国公開特許公報「特開2013-171844(2013年9月2日公開)」
 しかしながら、特許文献1の技術では、照明光のスポット性を改善することはできるが、照射光の色ムラを改善することができないという課題がある。一方、特許文献2および3の技術では、照射光の色ムラを改善することはできるが、照明光のスポット性を改善することができないという課題がある。
 そのため、照明光のスポット性および色ムラを同時に改善することができる新たな技術の開発が望まれている。
 本発明は上記従来の課題に鑑みてなされたものであって、その目的は、照明光のスポット性および色ムラを同時に改善することができる発光体および照明装置を提供することにある。
 上記の課題を解決するために、本発明の一態様に係る発光体は、励起光が照射される光照射面および当該光照射面とは反対側に位置する光出射面を有し、前記励起光および当該励起光の一部を波長変換した蛍光を前記光出射面から出射する蛍光体層と、前記光出射面から出射する前記励起光および前記蛍光を遮光する遮光層と、前記光出射面側に設けられ、前記遮光層によって遮光されない前記励起光および前記蛍光を散乱させる散乱層と、を含むことを特徴としている。
 本発明の一態様によれば、照明光のスポット性および色ムラを同時に改善可能な発光体および当該発光体を備えた照明装置を提供することができるという効果を奏する。
本発明の実施形態1に係る照明装置の構成を示す断面図である。 図1に示される発光体の構成を示す断面図である。 図2に示される蛍光体層の一例である小空隙蛍光体板内における空隙幅について説明するための概略図である。 図2に示される発光体の作用を説明するための断面図である。 本発明の実施形態2に係る発光体の構成を示す断面図である。 図5に示される発光体の作用を説明するための断面図である。 本発明の実施形態3に係る発光体の構成を示す断面図である。 本発明の実施形態4に係る発光体の構成を示す断面図である。 本発明の実施形態5に係る発光体の構成を示す断面図である。 本発明の実施形態6に係る発光体の構成を示す断面図である。 本発明の実施形態7に係る発光体の構成を示す断面図である。 本発明の実施形態8に係る発光体の構成を示す断面図である。
 〔実施形態1〕
 本発明の実施の一形態について図1から図4に基づいて説明すれば、以下のとおりである。本実施形態では、本発明に係る発光体を備える照明装置(スポットライト、車両用前照灯など)の一例について説明する。
 [照明装置1の構成]
 図1は、本実施形態に係る照明装置1の構成を示す断面図である。照明装置1は、レーザ素子2から出射されたレーザ光と、該レーザ光の一部を波長変換して得られた蛍光とを混色した光を照明光として出射するものである。
 図1に示すように、照明装置1は、レーザ素子(励起光源)2、光ファイバ3、フェルール4、フェルール固定部5、発光体6、金属ベース7、投光レンズ8およびレンズ固定部9を備えている。
 (レーザ素子2)
 レーザ素子2は、レーザ光(励起光)を出射する励起光源である。本実施形態では、照明装置1は、複数のレーザ素子2を備えている。レーザ素子2から出射されるレーザ光は、空間的および時間的に位相が揃っており、その波長は単一波長である。そのため、励起光としてレーザ光を用いることにより、発光体6に含まれる蛍光体を効率的に励起することが可能になり、高輝度な照明光を得ることができる。
 このレーザ素子2は、発光体6に含まれる蛍光体の種類に応じて、出射するレーザ光の波長および光出力が適宜設定される。例えば420nm以上490nm以下の波長範囲のレーザ光を励起光として選択することが可能である。
 複数のレーザ素子2のそれぞれから出射されたレーザ光は、光ファイバ3の入射端部3aに入射し、入射端部3aとは反対側に位置する出射端部3bから出射して、発光体6に照射される。発光体6に照射されたレーザ光は、その一部が発光体6に含まれる蛍光体によって蛍光に変換される。
 レーザ素子2から出射されたレーザ光を光ファイバ3の入射端部3aに入射させる場合、入射端部3aにレーザ光を適切に入射させるために、非球面レンズ21を用いることが好ましい。非球面レンズ21は、レーザ素子2から出射されるレーザ光の透過率が高く、かつ耐熱性の優れた材料からなることが好ましい。
 なお、使用するレーザ素子2の個数は、必要な出力に応じて適宜選択可能である。したがって、レーザ素子2を1つのみ使用してもよい。ただし、高出力のレーザ光を得る必要性がある場合には、本実施形態のように、複数のレーザ素子2を使用することが好ましい。
 また、励起光源として、レーザ素子2に代えて発光ダイオード(LED;Light Emitting Diode)などを備えていてもよい。励起光源は、発光体6に含まれる蛍光体を励起可能な励起光を出射するものであればよく、その種類は特に限定されない。
 (光ファイバ3)
 光ファイバ3は、レーザ素子2から出射されたレーザ光を導光する導光部材である。本実施形態では、光ファイバ3は、複数の光ファイバを束ねたバンドルファイバである。
 光ファイバ3は、レーザ光を入射させる入射端部3aと、入射端部3aから入射したレーザ光を出射する出射端部3bとを含んでいる。光ファイバ3の入射端部3a側は、レーザ素子2に接続されている。また、光ファイバ3の出射端部3b側は、フェルール4に保持されており、フェルール固定部5を介して金属ベース7に接続されている。
 (フェルール4)
 フェルール4は、光ファイバ3の出射端部3b側を保持する保持部材である。フェルール4は、光ファイバ3の出射端部3b側の周面に取り付けられている。フェルール4は、例えば出射端部3bを挿入可能な複数の孔が形成されたものである。
 なお、1つの光ファイバ3を用いる場合には、フェルール4を省略することも可能である。ただし、1つの光ファイバ3を用いる場合であっても、出射端部3bを適切な位置に固定するために、フェルール4を設けることが好ましい。
 (フェルール固定部5)
 フェルール固定部5は、金属ベース7にフェルール4を固定する固定部材である。フェルール固定部5は、遮光性を有する筒状の部材である。フェルール固定部5は、金属ベース7の厚み方向に形成された励起光通過孔71の一端側から貫入されて、金属ベース7に固定されている。フェルール固定部5は、光ファイバ3の出射端部3bから出射するレーザ光が、励起光通過孔71の他端側に配置された発光体6に適切に照射される角度で、フェルール4を金属ベース7に固定する。
 フェルール固定部5は、光を吸収しない部材であることが好ましく、例えばアルミニウムなどによって構成される。
 (発光体6)
 発光体6は、レーザ光の照射により、レーザ光およびレーザ光の一部を波長変換した蛍光を含む照明光を放出する積層構造体である。発光体6は、蛍光体層61、光吸収層62および散乱層63を含んでいる。発光体6は、励起光通過孔71を覆うように、金属ベース7の表面7bに蛍光体層61を当接させて配置されている。発光体6は、レーザ光および蛍光を含む照明光を、投光レンズ8へ向けて放出する。なお、発光体6の詳細は、後述する。
 (金属ベース7)
 金属ベース7は、発光体6を支持する支持部材である。金属ベース7は、金属(例えば、アルミニウム、銅または鉄など)からなっている。そのため、金属ベース7は、熱伝導性が高く、蛍光体層61で発生した熱を効率的に放熱することができる。
 金属ベース7には、金属ベース7の中心部を厚み方向(図1の紙面左右方向)に貫通した励起光通過孔71が形成されている。励起光通過孔71の一端は、金属ベース7の裏面7aで開口している。また、励起光通過孔71の他端は、金属ベース7の表面7bで開口している。
 励起光通過孔71の一端(金属ベース7の裏面7a)側の開口部には、光ファイバ3の出射端部3bが配置されている。また、励起光通過孔71の他端(金属ベース7の表面7b)側の開口部には、当該開口部を覆うように発光体6が配置されている。そのため、光ファイバ3の出射端部3bから出射するレーザ光は、金属ベース7の励起光通過孔71を通過して、発光体6の蛍光体層61に照射される。
 金属ベース7は、蛍光体層61で発生した熱を、放熱フィン72などを介して放熱する。放熱フィン72は、金属ベース7の裏面7aに複数設けられており、金属ベース7の熱を空気中に放熱させる放熱機構として機能する。
 放熱フィン72は、大気との接触面積を増加させることにより放熱効率を高めている。放熱フィン72には、金属ベース7と同様に、熱伝導率の高い材料を用いることが好ましい。
 (投光レンズ8)
 投光レンズ8は、発光体6から放出(出射)されたレーザ光および蛍光を含む照明光を投光する光学部材である。投光レンズ8は、発光体6から放出されたレーザ光および蛍光を含む照明光を屈折させることにより、所定の角度範囲に照明光を投光する。
 投光レンズ8は、例えば、アクリル樹脂、ポリカーボネイト、シリコーン、ホウケイ酸ガラス、BK7または石英などから構成される。投光レンズ8は、発光体6に対向する位置に、レンズ固定部9によって支持されている。
 なお、投光レンズ8の個数は、1つであってもよく、複数であってもよい。また、投光レンズ8の形状は、非球面レンズまたは球面レンズのどちらであってもよい。使用する投光レンズ8の数および形状は、必要に応じて適宜選択される。
 (レンズ固定部9)
 レンズ固定部9は、投光レンズ8を金属ベース7に固定する固定部材である。レンズ固定部9は、遮光性を有する筒状の部材からなる。レンズ固定部9は、その内面で金属ベース7の周面と投光レンズ8の周面とを保持する。このようなレンズ固定部9を用いることにより、発光体6から放出されたレーザ光および蛍光を含む照明光を外部へ漏出させずに、投光レンズ8に入射させることができる。
 このレンズ固定部9は、放熱性の高い材料からなることが好ましく、特にアルミニウム製で表面にアルマイト処理を施したものを好適に用いることができる。
 [発光体6の詳細]
 図2は、図1に示される発光体6の構成を示す断面図である。図2に示すように、発光体6は、蛍光体層61、光吸収層62および散乱層63を含んでいる。発光体6は、蛍光体層61の光出射面61bに、光吸収層62および散乱層63がパターニングされた構成である。
 (蛍光体層61)
 蛍光体層61は、光ファイバ3の出射端部3bから出射されたレーザ光L1の照射により蛍光L2(図4参照)を発生させる層である。蛍光体層61は、レーザ光L1の照射により蛍光L2を発生させる蛍光体を含んでいる。
 蛍光体層61は、光ファイバ3の出射端部3bと対向する下面である光照射面61a、および光照射面61aとは反対側に位置する表面である光出射面61bを有している。蛍光体層61は、光照射面61aにレーザ光L1が照射され、レーザ光L1の一部を波長変換した蛍光L2を発生させて、レーザ光L1と蛍光L2とを光出射面61bから出射する。すなわち、蛍光体層61は、レーザ光L1が照射される光照射面61aと、レーザ光L1および蛍光L2を出射する光出射面61bとが互いに対向する透過型の波長変換部材である。
 この蛍光体層61は、ガーネット系の小空隙蛍光体板からなることが好ましい。小空隙蛍光体板とは、蛍光体板中に存在する空隙の幅(以下、空隙幅と称する)が、可視光の波長の10分の1以下である蛍光体板を意味する。より具体的には、小空隙蛍光体板とは、空隙幅が0nm以上かつ40nm以下である蛍光体板を意味する。すなわち、空隙幅を記号tとして表せば、0nm≦t≦40nmである。なお、「小空隙蛍光体板」は、「小空隙蛍光部材」と称されてもよい。
 なお、「小空隙蛍光体板」という用語の意味には、空隙が存在している(0nm<t≦40nmである)蛍光体板のみならず、空隙が存在していない(t=0nmである)蛍光体板もが包含されていることに留意されたい。すなわち、本発明の一態様において、「小空隙」という文言には、「空隙が存在していない」という意味が包含されている。
 また、上述の「空隙」とは、蛍光体板内の結晶間の隙間(換言すれば粒界)を意味する。一例として、空隙は、内部に空気のみが存在している空洞である。ただし、空隙の内部には、何らかの異物(例:蛍光体板の原料であるアルミナなど)が入り込んでいてもよい。
 また、上述の「空隙幅」とは、蛍光体板内において隣接する結晶(結晶粒)間の距離の最大値を意味する。図3は、小空隙蛍光体板内における空隙幅について説明するための概略図である。図3には、隣接する結晶間の距離として、距離d1~d4が示されている。例えば、距離d1~d4のうち、距離d1が最大の距離であれば、この距離d1が空隙幅である。
 なお、上述の距離d1~d4を測定するためには、蛍光体板の断面を切り出した後に、光学顕微鏡、SEM(Scanning Electron Microscope,走査型電子顕微鏡)、またはTEM(Transmission Electron Microscope,透過型電子顕微鏡)などの測定機器によって、当該断面の観察像を得ればよい。当該観察像を解析することにより、距離d1~d4を測定することができる。すなわち、空隙幅を測定することが可能となる。
 小空隙蛍光体板は、空隙幅が0nm≦t≦40nmであるため、熱伝導率に優れている。そのため、高密度のレーザ光L1を照射した場合であっても、蛍光体層61の温度が上昇しにくく、発光効率が低下しにくい。したがって、蛍光体層61として小空隙蛍光体板を用いることにより、高輝度かつ高効率な発光体6を実現することができる。
 特に、空隙幅がt=0である小空隙蛍光体板(蛍光体単結晶板)は、結晶性がよい(欠陥が少ない)ため、温度特性がよく、高温になっても発光効率がより低下しにくい。したがって、空隙幅がt=0である小空隙蛍光体板を蛍光体層61として用いることが好ましく、これにより、高輝度かつ高効率な発光体6を好適に実現することができる。
 小空隙蛍光体板を多結晶の蛍光体で構成する場合、まず、サブミクロンサイズの酸化物の粉末を原料として、液相法または固相法により蛍光体原料粉末を得る。例えば、蛍光体原料粉末がYAG:Ce蛍光体である場合、酸化物は酸化イットリウム、酸化アルミニウム、および酸化セリウムなどである。その後、蛍光体原料粉末を金型などで成型し、真空焼結させる。
 上述の方法を用いることで、空隙幅が0nmより大きく、かつ40nm以下(すなわち、0nm<t≦40nm)である小空隙蛍光体板が得られる。この小空隙蛍光体板は、空隙幅が狭いため、熱伝導率が高くなる。そのため、小空隙蛍光体板の温度は、高密度の励起光を照射しても上昇しにくい。したがって、多結晶の蛍光体から構成される小空隙蛍光体板を蛍光体層61として用いることにより、蛍光体層61の発光効率の低下を抑制することができるので、高輝度かつ高効率の発光体6を実現することができる。
 また、小空隙蛍光体板を単結晶の蛍光体で構成する場合、小空隙蛍光体板を製造する方法の例としては、液相法、例えばCZ(Czochralski;チョクラルスキー)法が挙げられる。具体的には、まず、酸化物粉末を乾式混合などにより混合粉末にし、当該混合粉末をるつぼに入れて加熱することで、融液を得る。次に、蛍光体の種結晶(例えばYAGの場合、YAG単結晶)を用意し、当該種結晶を上記融液に接触させた後、回転させながら引き上げる。この時、引き上げ温度は2000℃程度とする。これにより、例えば<111>方向の単結晶インゴットを育成することができる。その後、当該インゴットを所望の大きさに切り出す。この時、切り出し方によっては、<001>または<110>方向などの単結晶インゴットを得ることもできる。
 上述の方法で得られた単結晶インゴットは、空隙がない(すなわち、t=0)ため、多結晶の蛍光体で形成された小空隙蛍光体板と比較して、さらに熱伝導率が高くなる(10W/m・K程度)。そのため、この小空隙蛍光体板の温度は、高密度の励起光を照射した場合に、より上昇しにくくなる。したがって、単結晶の蛍光体から構成される小空隙蛍光体板を蛍光体層61として用いることにより、さらに高輝度および高効率の発光体6を実現することができる。また、上述の方法によれば、単結晶インゴットは、蛍光体の融点以上の温度で融液から得られるため、高い結晶性を有する。すなわち、小空隙蛍光体板における欠陥が少なくなる。そのため、小空隙蛍光体板の温度特性が向上し、温度の上昇による発光効率の低下を抑制することができる。
 ただし、蛍光体層61として、蛍光体単結晶板および蛍光体多結晶板などの小空隙蛍光体板以外のものを用いてもよい。例えば、蛍光体層61として、封止材の内部に蛍光体が分散されているものなどを用いることができる。
 この場合、蛍光体層61の封止材は、例えば、ガラス材(無機ガラス、有機無機ハイブリッドガラス)、シリコーン樹脂などの樹脂材料である。ガラス材として低融点ガラスを用いてもよい。封止材は、透明性の高いものが好ましく、レーザ光L1が高出力の場合には、耐熱性の高いものが好ましい。
 蛍光体層61に含まれる蛍光体の種類は、照射されるレーザ光L1の波長に応じて適宜選択される。例えば、YAG:Ce(黄色)、GAGG:Ce(黄色)、LuAG:Ce(緑)系の蛍光体単結晶板または蛍光体多結晶板などを好適に用いることができる。
 ここで、照明装置1を車両用のヘッドランプ(車両用前照灯)として用いる場合、照明光L3(図4参照)を、所定の範囲の色度を有する白色にすることが求められる。この場合、照明装置1の照明光を白色とするために、レーザ光L1と蛍光体との組み合わせが適宜選択される。
 例えば、YAG系の蛍光体単結晶板または蛍光体多結晶板である蛍光体層61に青色のレーザ光L1を照射することにより、白色の照明光L3を好適に得ることができる。
 (光吸収層62)
 光吸収層62は、光出射面61bから出射されたレーザ光L1および蛍光L2を吸収する層である。光吸収層62は、例えば、黒色のセラミックス板、黒アルミナなどの粒子を堆積した膜、シリコーンやアクリルなどの樹脂中に黒アルミナなどの粒子を封止した膜などである。
 光吸収層62は、蛍光体層61の光出射面61bの周縁部を覆うように設けられている。換言すれば、光吸収層62は、蛍光体層61の光照射面61aに照射されるレーザ光L1の光軸上に、蛍光体層61の光出射面61bから出射されたレーザ光L1および蛍光L2を通過させる光通過孔621を有している。
 光通過孔621の中心軸は、蛍光体層61の光照射面61aに照射されるレーザ光L1の光軸と略一致している。これにより、光照射面61aに照射されたレーザ光L1、および蛍光体層61が発生させた蛍光L2を、光通過孔621へ効率的に入射させることができる。
 また、光通過孔621の寸法(直径)は、蛍光体層61の光照射面61aに照射されるレーザ光L1のビーム径と同一、または当該ビーム径よりも大きくなっている。換言すれば、光通過孔621の寸法は、蛍光体層61の光照射面61aに照射されるレーザ光L1の照射スポットの寸法(直径)と同一、または当該照射スポットの寸法よりも大きくなっている。これにより、光照射面61aに照射されたレーザ光L1、および蛍光体層61が発生させた蛍光L2を、光通過孔621へ効率的に入射させることができる。
 (散乱層63)
 散乱層63は、光吸収層62によって遮光されないレーザ光L1および蛍光L2を散乱させる層である。散乱層63は、表面に微小な凸凹が形成された光透板、アルミナなどの粒子を堆積させた層、シリコーンやアクリルなどの樹脂中にアルミナなどの粒子を封止した膜、またはsCASN:Eu(橙色)やCASN:Eu(赤色)の蛍光体を堆積した膜である。
 特に、光吸収層62がシリコーンやアクリルなどの樹脂中にアルミナなどの粒子を封止した膜である場合、レーザ光L1の照射により蛍光体層61で発生した熱を光吸収層62によって効率的に放熱することが可能となる。そのため、熱による蛍光体層61の劣化を抑制することができる。
 散乱層63は、光吸収層62の光通過孔621に埋設されている。そのため、光通過孔621を通過するレーザ光L1および蛍光L2は必ず散乱層63によって散乱される。したがって、レーザ光L1および蛍光L2を確実に混色することができる。
 また、光吸収層62の光通過孔621に散乱層63を埋設することにより、発光体6全体の厚みを小さくすることが可能となる。したがって、発光体6の薄型化を図ることができる。
 このように、発光体6は、光吸収層62が、蛍光体層61の光出射面61bの周縁部を覆うように設けられることにより光通過孔621を形成しており、散乱層63が、光通過孔621を塞ぐように埋設された構成である。換言すれば、発光体6は、散乱層63が、蛍光体層61の光照射面61aに照射されるレーザ光L1の光軸上に設けられており、光吸収層62が、散乱層63を囲むように周設された構成である。
 図4は、図2に示される発光体6の作用を説明するための断面図である。図4に示すように、発光体6は、蛍光体層61の光照射面61aにレーザ光L1が照射されることにより、レーザ光L1とレーザ光L1の一部を波長変換した蛍光L2とを混色して得られる照明光L3を散乱層63から放出する。
 ここで、蛍光体層61の光出射面61bから出射するレーザ光L1および蛍光L2のうち、光吸収層62の光通過孔621に入射したレーザ光L1および蛍光L2は、散乱層63によって散乱された後、投光レンズ8へ向けて放出される。
 一方、蛍光体層61の光出射面61bから出射するレーザ光L1および蛍光L2のうち、光通過孔621に入射しないレーザ光L1および蛍光L2、すなわち、蛍光体層61の層内方向へ伝搬したレーザ光L1および蛍光L2である迷光L4は、光吸収層62によって吸収される。これにより、光出射面61bから迷光L4が出射することを抑制することができる。
 このように、発光体6では、光吸収層62の光通過孔621を通過したレーザ光L1および蛍光L2が投光レンズ8へ向けて放出され、照明光L3として利用される。そのため、光通過孔621の寸法(直径)を調整することにより、発光体6における照明光L3の出射領域の大きさを変更することが可能となる。例えば、光通過孔621の寸法を小さくすることにより、発光体6における照明光L3の出射領域を小さなスポット形状にすることができる。これにより、照明光L3のスポット性を改善することができる。
 また、発光体6では、光通過孔621が散乱層63によって塞がれているため、光通過孔621を通過するレーザ光L1および蛍光L2は、散乱層63によって必ず散乱される。そのため、レーザ光L1および蛍光L2を十分に混色することが可能となり、照明光L3の色ムラを改善することができる。
 なお、レーザ光L1は、LEDなどの光に比べて配光が狭いため、励起光としてレーザ光L1を用いた場合、照明光L3の色ムラが生じやすい。
 また、蛍光体単結晶板または蛍光体多結晶板などの小空隙蛍光体板において、上述のように空隙幅が40nm以下の場合、レーザ光L1および蛍光L2に対する散乱(内部散乱)効果は、全く発生しないか、または非常に発生しにくいことが、検討の結果、分かった。上記「40nm以下」とは、励起光であるレーザ光L1(青色光の場合:420nm以上490nm以下)の波長または蛍光L2(励起光よりも長波長の光)の波長に対して、空隙幅が10分の1程度かそれ以下となる値である。上記検討の結果は、散乱体に光を照射した場合、散乱体のサイズが当該光の10分の1程度以下になると、ミー散乱が起きないという一般的な見解と合致するものである。
 このように、小空隙蛍光体板においては、上記散乱効果が全く発生しないか、または非常に発生しにくい。そのため、蛍光体層61として小空隙蛍光体板を用いた場合、照明光L3のスポット性の低下および色ムラが顕著になる。
 しかしながら、発光体6では、光吸収層62および散乱層63によって、照明光L3のスポット性の低下および色ムラを好適に改善することができる。したがって、発光体6は、レーザ光L1と、蛍光体単結晶板または蛍光体多結晶板などの小空隙蛍光体板とを組み合わせた場合において特に有効であり、照明光L3のスポット性および色ムラを同時に改善しつつ、高輝度な発光を実現することができる。
 [照明装置1の効果]
 本実施形態に係る照明装置1は、発光体6を備えている。発光体6は、レーザ光L1が照射される光照射面61aおよび光照射面61aとは反対側に位置する光出射面61bを有し、レーザ光L1およびレーザ光L1の一部を波長変換した蛍光L2を光出射面61bから出射する蛍光体層61と、光出射面61b側に設けられ、当該光出射面61bから出射されたレーザ光L1および蛍光L2を通過させる光通過孔621を有する光吸収層62と、光通過孔621を塞ぐように埋設され、レーザ光L1および蛍光L2を散乱させる散乱層63とを含んでいる。
 発光体6では、光出射面61bから出射するレーザ光L1および蛍光L2のうち、光通過孔621に入射したレーザ光L1および蛍光L2は、光通過孔621を通過して、発光体6の外部へ放出される。一方、光出射面61bから出射するレーザ光L1および蛍光L2のうち、光通過孔621に入射しないレーザ光L1および蛍光L2、すなわち、蛍光体層61の層内方向へ伝搬したレーザ光L1および蛍光L2である迷光L4は、光吸収層62によって遮光される。
 そのため、光通過孔621の寸法(直径)を調整することにより、発光体6における照明光L3の出射領域の大きさを変更することが可能となり、照明光L3のスポット性を改善することができる。
 また、発光体6では、光通過孔621が散乱層63によって塞がれている。そのため、光通過孔621を通過するレーザ光L1および蛍光L2は、散乱層63によって必ず散乱されるので、照明光L3の色ムラを改善することができる。
 したがって、本実施形態によれば、照明光L3のスポット性および色ムラを同時に改善可能な発光体6および発光体6を備えた照明装置1を実現することができる。
 なお、照明装置1のように、発光体6から放出された照明光L3を投光する投光レンズ8を、発光体6の直近に設置した場合、投光レンズ8によって照明光L3の一部が反射されることにより、投光レンズ8から発光体6へ向かう反射成分が生じる。このような反射成分が、発光体6で再反射して投光レンズ8に入射した場合、投光レンズ8によって投光される照明光L3の照度が不均一になる。
 発光体6では、投光レンズ8から発光体6へ向かう反射成分を光吸収層62によって吸収収することができる。そのため、照明装置1では、投光レンズ8に入射する反射成分の光量が大幅に低減するので、投光レンズ8によって投光される照明光L3の照度の不均一性を改善することができる。
 〔実施形態2〕
 本発明の他の実施形態について、図5および図6に基づいて説明すれば、以下のとおりである。本実施形態では、本発明に係る発光体の他の構成例について説明する。
 なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 [発光体16の構成]
 図5は、本実施形態に係る発光体16の構成を示す断面図である。図5に示すように、発光体16は、蛍光体層61、反射層(遮光層)162および散乱層63を含んでいる。発光体16は、光吸収層62に代えて反射層162を含んでいる点において、前記実施形態にて説明した発光体とは異なっている。
 (反射層162)
 反射層162は、光出射面61bから出射されたレーザ光L1および蛍光L2を反射する層である。反射層162は、例えば、アルミニウム(Al)または銀(Ag)からなる膜、白色のセラミックス板、アルミナなどの粒子を堆積した膜、シリコーンやアクリルなどの樹脂中にアルミナなどの粒子を封止した膜などである。
 反射層162は、蛍光体層61の光照射面61aに照射されるレーザ光L1の光軸上に、蛍光体層61の光出射面61bから出射されたレーザ光L1および蛍光L2を通過させる光通過孔621を有している。この光通過孔621は、散乱層63によって塞がれている。
 図6は、図5に示される発光体16の作用を説明するための断面図である。図6に示すように、発光体16では、蛍光体層61の光出射面61bから出射するレーザ光L1および蛍光L2のうち、反射層162の光通過孔621に入射したレーザ光L1および蛍光L2は、散乱層63によって散乱された後、投光レンズ8へ向けて放出される。
 一方、蛍光体層61の光出射面61bから出射するレーザ光L1および蛍光L2のうち、蛍光体層61の層内方向へ伝搬したレーザ光L1および蛍光L2である迷光L4は、反射層162によって反射される。これにより、光出射面61bから迷光L4が出射することを抑制することができる。
 このように、発光体16では、反射層162の光通過孔621を通過したレーザ光L1および蛍光L2が投光レンズ8へ向けて放出され、照明光L3として利用される。ここで、光通過孔621に入射したレーザ光L1および蛍光L2の一部は、反射層162によって反射されつつ、光通過孔621を通過する。そのため、光通過孔621に入射したレーザ光L1および蛍光L2をロスすることなく、光通過孔621を通過させることができる。
 また、発光体16では、反射層162によって蛍光体層61の光出射面61bからの出射が抑制された迷光L4のうち、レーザ光L1の一部は、蛍光体層61において蛍光L2に変換される。この蛍光L2のうちの一部は、蛍光体層61を層内伝搬し、光通過孔621を通過して外部に放出される。このように、発光体16では、迷光L4となったレーザ光L1の一部を励起光として再利用することが可能となる。そのため、レーザ光L1の利用効率が向上し、より高輝度な発光体16を得ることができる。
 [発光体16の効果]
 本実施形態に係る発光体16は、レーザ光L1および蛍光L2を反射する反射層162を遮光層として含んでいる。
 発光体16では、蛍光体層61の層内方向へ伝搬したレーザ光L1および蛍光L2である迷光L4は反射層162によって反射される。そのため、光出射面61bから迷光L4が出射することを抑制することができる。
 また、光通過孔621に入射したレーザ光L1および蛍光L2の一部は、反射層162によって反射されつつ、光通過孔621を通過する。そのため、光通過孔621に入射したレーザ光L1および蛍光L2をロスすることなく、光通過孔621を通過させることができる。
 したがって、本実施形態によれば、照明光L3のスポット性および色ムラを同時に改善しつつ、光の利用効率を向上させた発光体16を実現することができる。
 〔実施形態3〕
 本発明の他の実施形態について、図7に基づいて説明すれば、以下のとおりである。本実施形態では、本発明に係る発光体のさらに他の構成例について説明する。
 なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 [発光体26の構成]
 図7は、本実施形態に係る発光体26の構成を示す断面図である。図7に示すように、発光体26は、蛍光体層61、光吸収層62、散乱層63、ダイクロイックミラー(光学層)64および第1反射膜65を含んでいる。
 (ダイクロイックミラー64)
 ダイクロイックミラー64は、特定の波長範囲の光を選択的に反射し、それ以外の波長範囲の光を透過する光学素子である。ダイクロイックミラー64は、誘電体層が積層された積層構造体である。
 ダイクロイックミラー64は、蛍光体層61の光照射面61aを覆うように設けられている。ダイクロイックミラー64は、光ファイバ3の出射端部3bから出射されたレーザ光L1を透過させる。また、ダイクロイックミラー64は、蛍光体層61の内部で発生した蛍光L2を光照射面61aへ向けて反射する。そのため、蛍光体層61の内部で発生した蛍光L2が光照射面61aから漏出することをダイクロイックミラー64によって抑制することが可能となる。
 (第1反射膜65)
 第1反射膜65は、レーザ光L1および蛍光L2を反射する反射部材である。第1反射膜65は、アルミニウムまたは銀からなる膜などで構成される。
 第1反射膜65は、光照射面61aと光出射面61bとを繋ぐ蛍光体層61の側面61cに設けられている。そのため、蛍光体層61の側面61cからレーザ光L1および蛍光L2が漏出することを第1反射膜65によって抑制することが可能となる。
 [発光体26の効果]
 本実施形態に係る発光体26は、蛍光体層61の光照射面61a側に配置され、光ファイバ3の出射端部3bから出射されたレーザ光L1を透過させ、かつ蛍光体層61の内部で発生した蛍光L2を光照射面61aへ向けて反射するダイクロイックミラー64を含んでいる。
 発光体26では、蛍光体層61の内部で発生した蛍光L2が光照射面61aから漏出することをダイクロイックミラー64によって抑制することが可能となる。そのため、光通過孔621に入射するレーザ光L1および蛍光L2の光量を増加させることができる。
 また、発光体26では、蛍光体層61の側面61cからレーザ光L1および蛍光L2が漏出することを第1反射膜65によって抑制することが可能となる。そのため、光通過孔621に入射するレーザ光L1および蛍光L2の光量を増加させることができる。
 したがって、本実施形態によれば、照明光L3のスポット性および色ムラを同時に改善しつつ、光の利用効率を向上させた発光体26を実現することができる。
 〔実施形態4〕
 本発明の他の実施形態について、図8に基づいて説明すれば、以下のとおりである。本実施形態では、本発明に係る発光体のさらに他の構成例について説明する。
 なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 [発光体36の構成]
 図8は、本実施形態に係る発光体36の構成を示す断面図である。図8に示すように、発光体36は、蛍光体層61、光吸収層62、散乱層63、ダイクロイックミラー64および第2反射膜66を含んでいる。
 (第2反射膜66)
 第2反射膜66は、レーザ光L1および蛍光L2を反射する反射部材である。第2反射膜66は、アルミニウムまたは銀からなる膜などで構成される。
 第2反射膜66は、蛍光体層61の光照射面61aの縁端に沿って形成された切欠部61dに設けられている。第2反射膜66は、切欠部61d、または、切欠部61dと光照射面61aに設けられたダイクロイックミラー64の側面64cとを覆っている。そのため、蛍光体層61の光照射面61aの縁端からレーザ光L1および蛍光L2が漏出することを第2反射膜66によって抑制することが可能となる。
 この第2反射膜66は、例えば、蛍光体層61に予め切欠部61dをエッチングや切削などで形成し、切欠部61dに第2反射膜66を成膜することによって容易に構成することができる。
 [発光体36の効果]
 本実施形態に係る発光体36は、光照射面61aの縁端に沿って形成された切欠部61dに、レーザ光L1および蛍光L2を反射する第2反射膜66が設けられている。
 発光体36では、蛍光体層61の光照射面61aの縁端からレーザ光L1および蛍光L2が漏出することを第2反射膜66によって抑制することが可能となる。そのため、光通過孔621に入射するレーザ光L1および蛍光L2の光量を増加させることができる。
 したがって、本実施形態によれば、照明光L3のスポット性および色ムラを同時に改善しつつ、光の利用効率を向上させた発光体36を実現することができる。
 また、上述のとおり、第2反射膜66は、例えば、小空隙蛍光体板などの蛍光体層61に予め切欠部61dをエッチングや切削などで形成しておいてから、第2反射膜66を成膜することによって容易に構成することが可能である。
 したがって、本実施形態によれば、照明光L3のスポット性および色ムラを同時に改善しつつ、光の利用効率を向上させた発光体36を簡便に作製することができる。
 〔実施形態5〕
 本発明の他の実施形態について、図9に基づいて説明すれば、以下のとおりである。本実施形態では、本発明に係る発光体のさらに他の構成例について説明する。
 なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 [発光体46の構成]
 図9は、本実施形態に係る発光体46の構成を示す断面図である。図9に示すように、発光体46は、蛍光体層61、光吸収層(遮光層)262、散乱層63、ダイクロイックミラー64を含んでいる。この発光体46は、蛍光体層の61の光照射面61aの縁端が固定治具10に支持されている。
 (光吸収層262)
 光吸収層262は、蛍光体層61の光出射面61bから出射されたレーザ光L1および蛍光L2を吸収する層である。光吸収層262は、光出射面61bの周縁部のほか、光照射面61aと光出射面61bとを繋ぐ蛍光体層61の側面61cおよびダイクロイックミラー64の側面64cを覆っている。また、光吸収層262の一部は、発光体46を支持する固定治具10に接している。
 (固定治具10)
 固定治具10は、発光体46を支持する支持部材である。固定治具10は、金属(例えば、アルミニウム、銅または鉄など)からなっている。そのため、固定治具10は、熱伝導性が高く、蛍光体層61の発熱を効率的に放熱することができる。
 [発光体46の効果]
 本実施形態に係る発光体46では、光吸収層262が、蛍光体層61の光照射面61aと光出射面61bとを繋ぐ蛍光体層61の側面61cを覆っている。
 発光体46では、蛍光体層61の側面61cからレーザ光L1および蛍光L2が漏出することを光吸収層262によって抑制することができる。そのため、光通過孔621に入射するレーザ光L1および蛍光L2の光量を増加させることができる。
 また、発光体46では、光吸収層262の一部が、発光体46を支持する固定治具10に接している。そのため、光吸収層262を介して、蛍光体層61で発生した熱を固定治具10に伝えることにより、効率的に放熱することができる。
 したがって、本実施形態によれば、照明光L3のスポット性および色ムラを同時に改善しつつ、光の利用効率を向上させた発光体46を実現することができる。
 〔実施形態6〕
 本発明の他の実施形態について、図10に基づいて説明すれば、以下のとおりである。本実施形態では、本発明に係る発光体のさらに他の構成例について説明する。
 なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 [発光体56の構成]
 図10は、本実施形態に係る発光体56の構成を示す断面図である。図10に示すように、発光体56は、蛍光体層61、光吸収層62、散乱層63、ダイクロイックミラー64および光透過性基板67を含んでいる。
 (光透過性基板67)
 光透過性基板67は、蛍光体層61を支持する透明基板である。光透過性基板67は、例えば、ガラス、サファイアなどから構成される。特に、光透過性基板67の材質は、蛍光体層61で発生した熱を放熱するために、サファイアなどの熱伝導率の高い材質が好ましい。
 光ファイバ3の出射端部3bから出射されたレーザ光L1は、光透過性基板67を透過して蛍光体層61の光照射面61aに照射される。
 [発光体56の効果]
 本実施形態に係る発光体56は、蛍光体層61の光照射面61a側に設けられ、蛍光体層61を支持する光透過性基板67をさらに含んでいる。
 発光体56では、光透過性基板67によって蛍光体層61が支持されているため、蛍光体層61の厚みを100μm以下にすることができる。通常、蛍光体層61の厚みが100μm以下である場合、蛍光体層61の機械的強度が大幅に低下する。そのため、照明装置1内に、厚みが100μm以下である蛍光体層61を固定することは困難であった。そこで、光透過性基板67によって蛍光体層61を支持することにより、蛍光体層61の機械的強度の低下を補うことが可能となるため、蛍光体層61の厚みを100μm以下にすることができる。
 このように蛍光体層61の厚みを小さくすることにより、レーザ光L1および蛍光L2の蛍光体層61における層内伝搬が抑制される。そのため、レーザ光L1および蛍光L2が光出射面61bから出射されやすくなる。
 したがって、本実施形態によれば、照明光L3のスポット性および色ムラを同時に改善しつつ、光の利用効率を向上させた発光体56を実現することができる。
 〔実施形態7〕
 本発明の他の実施形態について、図11に基づいて説明すれば、以下のとおりである。本実施形態では、本発明に係る発光体のさらに他の構成例について説明する。
 なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 [発光体76の構成]
 図11は、本実施形態に係る発光体76の構成を示す断面図である。図11に示すように、発光体76は、蛍光体層61、光吸収層62、および散乱層63を含んでいる。具体的には、発光体76は、蛍光体層61と光吸収層62との間に、散乱層63が設けられている。
 発光体76では、蛍光体層61の光出射面61bから出射するレーザ光L1および蛍光L2は、散乱層63に入射して散乱される。そして、散乱層63によって散乱されたレーザ光L1および蛍光L2のうち、光吸収層62の光通過孔621に入射したレーザ光L1および蛍光L2が投光レンズ8へ向けて放出される。一方、散乱層63によって散乱されたレーザ光L1および蛍光L2のうち、光通過孔621に入射しないレーザ光L1および蛍光L2は、光吸収層62によって吸収される。
 [発光体76の効果]
 本実施形態に係る発光体76は、蛍光体層61、光吸収層62および散乱層63を含み、蛍光体層61と光吸収層62との間に、散乱層63が設けられている。
 このような層構造を有する発光体76であっても、蛍光体層61の光出射面61bから出射するレーザ光L1および蛍光L2を、光吸収層62で吸収、散乱層63で散乱することによって、照明光L3のスポット性および色ムラを同時に改善することが可能である。
 したがって、本実施形態によれば、照明光L3のスポット性および色ムラを同時に改善可能な発光体76を実現することができる。
 また、発光体76では、蛍光体層61の光出射面61b全体を覆うように散乱層63が形成されるため、散乱層63をエッチングする必要性がない。そのため、発光体76の製造時におけるパターニング工程を減らすことができる。例えば、マスクなどを用いてパターニング(塗り分け)する方法の場合、散乱層63を形成するためのマスクの位置合わせ工程が必要なくなるので、発光体76を簡便に作製することができる。
 したがって、本実施形態によれば、照明光L3のスポット性および色ムラを同時に改善しつつ、光の利用効率を向上させた発光体76を簡便に作製することができる。
 なお、本実施形態では、発光体76は、蛍光体層61、散乱層63および光吸収層62がこの順で積層された構成であるが、本発明はこの構成に限定されない。発光体76は、蛍光体層61、光吸収層62および散乱層63がこの順で積層された構成であってもよい。
 また、本実施形態では、発光体76は、遮光層として光吸収層62を含んでいるが、本発明はこの構成に限定されない。発光体76は、光吸収層62に代えて、反射層162を含んでいてもよい。
 〔実施形態8〕
 本発明の他の実施形態について、図12に基づいて説明すれば、以下のとおりである。本実施形態では、本発明に係る発光体のさらに他の構成例について説明する。
 なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 [発光体86の構成]
 図12は、本実施形態に係る発光体86の構成を示す断面図である。図12に示すように、発光体86は、蛍光体層61、光吸収層62および散乱層163を含んでいる。
 (散乱層163)
 散乱層163は、光吸収層62によって遮光されないレーザ光L1および蛍光L2を散乱させる層である。散乱層163は、光通過孔621に埋設される第1領域163aと、第1領域163aおよび光吸収層62を覆う第2領域163bとを含んでいる。
 そのため、発光体86では、光通過孔621に入射したレーザ光L1および蛍光L2は、光通過孔621の内部において散乱層163の第1領域163aによって散乱される。また、光通過孔621から出射したレーザ光L1および蛍光L2は、散乱層163の第2領域163bによってさらに散乱される。したがって、発光体86では、レーザ光L1および蛍光L2を十分に混色することが可能となる。
 [発光体86の効果]
 本実施形態に係る発光体86は、散乱層163が、光通過孔621に埋設される第1領域163aと、第1領域163aおよび光吸収層62を覆う第2領域163bとを含んでいる。
 発光体86では、光通過孔621に入射したレーザ光L1および蛍光L2は、散乱層163の第1領域163aおよび第2領域163bによって散乱される。そのため、光通過孔621に入射したレーザ光L1および蛍光L2を十分に混色することが可能となる。
 したがって、本実施形態によれば、照明光L3の色ムラを効果的に改善可能な発光体86を実現することができる。
 また、発光体86では、散乱層163をエッチングする必要性がないため、発光体86の製造時におけるパターニング工程を減らすことができる。例えば、マスクなどを用いてパターニング(塗り分け)する方法の場合、散乱層163を形成するためのマスクの位置合わせ工程が必要なくなるので、発光体86を簡便に作製することができる。
 したがって、本実施形態によれば、照明光L3のスポット性および色ムラを同時に改善しつつ、光の利用効率を向上させた発光体86を簡便に作製することができる。
 なお、本実施形態では、発光体86は、遮光層として光吸収層62を含んでいるが、本発明はこの構成に限定されない。発光体86は、光吸収層62に代えて、反射層162を含んでいてもよい。
 〔まとめ〕
 本発明の態様1に係る発光体は、励起光が照射される光照射面および当該光照射面とは反対側に位置する光出射面を有し、前記励起光(レーザ光L1)および当該励起光の一部を波長変換した蛍光を前記光出射面から出射する蛍光体層と、前記光出射面から出射する前記励起光および前記蛍光を遮光する遮光層(光吸収層62・262,反射層162)と、前記光出射面側に設けられ、前記遮光層によって遮光されない前記励起光および前記蛍光を散乱させる散乱層と、を含むことを特徴としている。
 上記の構成では、光出射面から出射する励起光および蛍光のうち、遮光層に遮光されない励起光および蛍光が発光体の外部へ放出され、照明光として利用される。すなわち、蛍光体層の光出射面側から見た場合、遮光層が設けられていない領域が、照明光(励起光および蛍光)の出射領域として機能する。そのため、例えば、照明光の出射領域が小さなスポット形状となるように遮光層を設けることにより、照明光のスポット性を改善することが可能となる。
 また、上記の構成では、遮光層によって遮光されない励起光および蛍光が散乱層によって散乱される。そのため、照明光として利用される励起光および蛍光を十分に混色することが可能となり、照明光の色ムラを改善することができる。
 したがって、上記の構成によれば、照明光のスポット性および色ムラを同時に改善することが可能な発光体を実現することができる。
 本発明の態様2に係る発光体は、上記態様1において、前記蛍光体層は、前記励起光の照射により前記蛍光を発生させる小空隙蛍光体板からなっていてもよい。
 例えば蛍光体単結晶板または蛍光体多結晶板などの小空隙蛍光体板からなる蛍光体層は、熱伝導率および温度特性に優れている。そのため、高密度の励起光を照射した場合であっても、蛍光体層の温度が上昇しにくく、また、高温になっても発光効率が低下しにくい。したがって、小空隙蛍光体板からなる蛍光体層を用いることにより、高輝度な発光体を実現することができる。一方、小空隙蛍光体板からなる蛍光体層は散乱(内部散乱)が生じにくい。そのため、小空隙蛍光体板からなる蛍光体層を用いた場合、照明光のスポット性の低下および色ムラが顕著になる。
 上記の構成では、小空隙蛍光体板からなる蛍光体層を用いた場合であっても、遮光層および散乱層によって、照明光のスポット性および色ムラを同時に改善することが可能となる。
 したがって、上記の構成によれば、照明光のスポット性および色ムラを同時に改善しつつ、高輝度な発光体を実現することができる。
 本発明の態様3に係る発光体では、上記態様2において、前記蛍光体層には、空隙が存在しなくてもよい。
 例えば蛍光体単結晶板などの空隙が存在しない蛍光体層は、熱伝導率が特に優れている。そのため、高密度の励起光を照射した場合であっても、蛍光体層で発生した熱をより効果的に放熱することができる。
 したがって、上記の構成によれば、より高輝度な発光体を実現することができる。
 本発明の態様4に係る発光体では、上記態様1から3において、前記遮光層は、前記光出射面から出射する前記励起光および前記蛍光を通過させる光通過孔を有し、前記光通過孔は、前記散乱層によって塞がれていてもよい。
 上記の構成では、光出射面から出射する励起光および蛍光のうち、光通過孔に入射する励起光および蛍光は、発光体の外部へ放出され、照明光として利用される。一方、光通過孔に入射しない励起光および蛍光、すなわち、蛍光体層の層内方向へ伝搬した励起光および蛍光(迷光)は、光通過孔を塞ぐように設けられた遮光層によって遮光される。そのため、蛍光体層の光出射面から迷光が出射することを抑制することができる。また、励起光および蛍光は必ず散乱層によって散乱されるため、励起光および蛍光を確実に混色することができる。
 したがって、上記の構成によれば、照明光のスポット性および色ムラを同時に改善すること可能な発光体を好適に実現することができる。
 本発明の態様5に係る発光体は、上記態様4において、前記光通過孔の中心軸と前記光照射面に照射される前記励起光の光軸とが略一致していてもよい。
 上記の構成では、光照射面に照射された励起光、および蛍光体層が発生させた蛍光を、光通過孔へ効率的に入射させることができる。
 したがって、上記の構成によれば、光の利用効率を向上させることができる。
 本発明の態様6に係る発光体では、上記態様1から5において、前記遮光層は、前記励起光および前記蛍光を吸収する光吸収層、または前記励起光および前記蛍光を反射する反射層であってもよい。
 遮光層が光吸収層である場合、蛍光体層の層内方向へ伝搬した励起光および蛍光は、光吸収層によって吸収される。また、遮光層が反射層である場合、蛍光体層の層内方向へ伝搬した励起光および蛍光は、反射層によって反射される。
 したがって、上記の構成によれば、蛍光体層の光出射面から迷光が出射することを抑制することができる。
 本発明の態様7に係る発光体では、上記態様1から6において、前記光照射面側に配置される光学層(ダイクロイックミラー64)をさらに含み、前記光学層は、励起光源から出射された前記励起光を透過させ、かつ前記蛍光体層の内部で発生した前記蛍光を前記光照射面へ向けて反射してもよい。
 上記の構成では、光照射面から蛍光が漏出することを光学層によって抑制することが可能となる。
 したがって、上記の構成によれば、蛍光の利用効率を向上させることができる。
 本発明の態様8に係る発光体では、上記態様1から7において、前記遮光層は、前記光照射面と前記光出射面とを繋ぐ前記蛍光体層の側面を覆っていてもよい。
 上記の構成では、蛍光体層の側面から励起光および蛍光が漏出することを遮光層によって抑制することができる。
 したがって、上記の構成によれば、励起光および蛍光の利用効率を向上させることができる。
 本発明の態様9に係る発光体は、上記態様1から7において、前記光照射面と前記光出射面とを繋ぐ前記蛍光体層の側面に、前記励起光および前記蛍光を反射する第1反射膜が設けられていてもよい。
 上記の構成では、蛍光体層の側面から励起光および蛍光が漏出することを第1反射膜によって抑制することが可能となる。
 したがって、上記の構成によれば、光の利用効率を向上させることができる。
 本発明の態様10に係る発光体は、上記態様1から9において、前記蛍光体層は、前記光照射面の縁端に沿って切欠部が形成されており、前記切欠部に、前記励起光および前記蛍光を反射する第2反射膜が設けられていてもよい。
 上記の構成によれば、光照射面の縁端から励起光および蛍光が漏出することを第2反射膜によって抑制することが可能となる。
 したがって、上記の構成によれば、励起光および蛍光の利用効率を向上させることができる。
 本発明の態様11に係る発光体は、上記態様1から10において、前記光照射面側に設けられ、前記蛍光体層を支持する光透過性基板をさらに含んでいてもよい。
 上記の構成では、光透過性基板によって蛍光体層が支持されているため、蛍光体層の厚みを小さくすることが可能となる。蛍光体層の厚みを小さくすることにより、励起光および蛍光の蛍光体層における層内伝搬が抑制されるため、励起光および蛍光が光出射面から出射されやすくなる。
 したがって、上記の構成によれば、励起光および蛍光の利用効率を向上させることができる。
 本発明の態様12に係る照明装置は、上記態様1から11の発光体と、前記光照射面に前記励起光を照射する励起光源と、を備えていてもよい。
 上記の構成によれば、照明光のスポット性および色ムラを同時に改善することが可能な照装置を実現することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
1 照明装置
2 レーザ素子(励起光源)
6,16,26,36,46,56,76,86 発光体
61 蛍光体層
61a 光照射面
61b 光出射面
61c 側面
62,262 光吸収層(遮光層)
63,163 散乱層
64 ダイクロイックミラー(光学層)
65 第1反射膜
66 第2反射膜
162 反射層(遮光層)
163a 第1領域(散乱層)
163b 第2領域(散乱層)
L1 レーザ光(励起光)
L2 蛍光
L3 照明光
L4 迷光

Claims (12)

  1.  励起光が照射される光照射面および当該光照射面とは反対側に位置する光出射面を有し、前記励起光および当該励起光の一部を波長変換した蛍光を前記光出射面から出射する蛍光体層と、
     前記光出射面から出射する前記励起光および前記蛍光を遮光する遮光層と、
     前記光出射面側に設けられ、前記遮光層によって遮光されない前記励起光および前記蛍光を散乱させる散乱層と、を含むことを特徴とする発光体。
  2.  前記蛍光体層は、前記励起光の照射により前記蛍光を発生させる小空隙蛍光体板からなることを特徴とする請求項1に記載の発光体。
  3.  前記蛍光体層には、空隙が存在しないことを特徴とする請求項2に記載の発光体。
  4.  前記遮光層は、前記光出射面から出射する前記励起光および前記蛍光を通過させる光通過孔を有し、
     前記光通過孔は、前記散乱層によって塞がれていることを特徴とする請求項1から3までのいずれか一項に記載の発光体。
  5.  前記光通過孔の中心軸と前記光照射面に照射される前記励起光の光軸とが略一致していることを特徴とする請求項4に記載の発光体。
  6.  前記遮光層は、前記励起光および前記蛍光を吸収する光吸収層、または前記励起光および前記蛍光を反射する反射層であることを特徴とする請求項1から5までのいずれか一項に記載の発光体。
  7.  前記光照射面側に設けられる光学層をさらに含み、
     前記光学層は、励起光源から出射された前記励起光を透過させ、かつ前記蛍光体層の内部で発生した前記蛍光を前記光照射面へ向けて反射することを特徴とする請求項1から6までのいずれか一項に記載の発光体。
  8.  前記遮光層は、前記光照射面と前記光出射面とを繋ぐ前記蛍光体層の側面を覆うことを特徴とする請求項1から7までのいずれか一項に記載の発光体。
  9.  前記光照射面と前記光出射面とを繋ぐ前記蛍光体層の側面に、前記励起光および前記蛍光を反射する第1反射膜が設けられていることを特徴とする請求項1から7までのいずれか一項に記載の発光体。
  10.  前記蛍光体層は、前記光照射面の縁端に沿って切欠部が形成されており、
     前記切欠部に、前記励起光および前記蛍光を反射する第2反射膜が設けられていることを特徴とする請求項1から9までのいずれか一項に記載の発光体。
  11.  前記光照射面側に設けられ、前記蛍光体層を支持する光透過性基板をさらに含むことを特徴とする請求項1から10までのいずれか一項に記載の発光体。
  12.  請求項1から11までのいずれか一項に記載の発光体と、
     前記光照射面に前記励起光を照射する励起光源と、を備えることを特徴とする照明装置。
PCT/JP2016/066031 2015-09-03 2016-05-31 発光体および照明装置 WO2017038176A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017537588A JP6688306B2 (ja) 2015-09-03 2016-05-31 発光体および照明装置
US15/757,344 US10330267B2 (en) 2015-09-03 2016-05-31 Light emission body and illumination device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015174159 2015-09-03
JP2015-174159 2015-09-03

Publications (1)

Publication Number Publication Date
WO2017038176A1 true WO2017038176A1 (ja) 2017-03-09

Family

ID=58188750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066031 WO2017038176A1 (ja) 2015-09-03 2016-05-31 発光体および照明装置

Country Status (3)

Country Link
US (1) US10330267B2 (ja)
JP (1) JP6688306B2 (ja)
WO (1) WO2017038176A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154807A1 (ja) * 2016-03-08 2017-09-14 パナソニックIpマネジメント株式会社 光源装置
JP2019096618A (ja) * 2019-01-22 2019-06-20 オムロン株式会社 光源装置およびこれを備えた測距センサ
WO2021037225A1 (zh) * 2019-08-30 2021-03-04 深圳市中光工业技术研究院 光源系统及照明装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017207347A1 (en) * 2016-06-03 2017-12-07 Lumileds Holding B.V. Light converting device
DE102018201236A1 (de) * 2018-01-26 2019-08-01 Osram Gmbh Bestrahlungseinheit mit pumpstrahlungsquelle und konversionselement
WO2019203520A1 (ko) * 2018-04-17 2019-10-24 엘지전자 주식회사 형광체 모듈
CN112334703B (zh) * 2018-06-21 2023-12-26 市光工业株式会社 车辆用灯具的光源单元以及车辆用灯具
WO2024032338A1 (zh) * 2022-08-08 2024-02-15 深圳市绎立锐光科技开发有限公司 一种波长转换装置及其制备方法、发光装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142179A1 (ja) * 2010-05-13 2011-11-17 オリンパス株式会社 照明装置
JP2012169049A (ja) * 2011-02-10 2012-09-06 Ushio Inc 光源装置
JP2014060121A (ja) * 2012-09-19 2014-04-03 Sharp Corp 蛍光体基板、表示装置、および照明装置
JP2015002160A (ja) * 2013-06-18 2015-01-05 シャープ株式会社 発光装置
JP2015069884A (ja) * 2013-09-30 2015-04-13 ウシオ電機株式会社 蛍光光源装置
JP2015149307A (ja) * 2015-05-25 2015-08-20 株式会社小糸製作所 発光モジュールおよび車両用灯具

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI614452B (zh) * 2011-10-13 2018-02-11 英特曼帝克司公司 用於固態發光裝置和燈的光致發光波長轉換構件
JP5917183B2 (ja) 2012-02-17 2016-05-11 スタンレー電気株式会社 光源装置および照明装置
JP6103966B2 (ja) 2013-02-07 2017-03-29 オリンパス株式会社 照明装置
JP6136617B2 (ja) 2013-06-18 2017-05-31 日亜化学工業株式会社 光源装置及びプロジェクタ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142179A1 (ja) * 2010-05-13 2011-11-17 オリンパス株式会社 照明装置
JP2012169049A (ja) * 2011-02-10 2012-09-06 Ushio Inc 光源装置
JP2014060121A (ja) * 2012-09-19 2014-04-03 Sharp Corp 蛍光体基板、表示装置、および照明装置
JP2015002160A (ja) * 2013-06-18 2015-01-05 シャープ株式会社 発光装置
JP2015069884A (ja) * 2013-09-30 2015-04-13 ウシオ電機株式会社 蛍光光源装置
JP2015149307A (ja) * 2015-05-25 2015-08-20 株式会社小糸製作所 発光モジュールおよび車両用灯具

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154807A1 (ja) * 2016-03-08 2017-09-14 パナソニックIpマネジメント株式会社 光源装置
JPWO2017154807A1 (ja) * 2016-03-08 2019-01-10 パナソニックIpマネジメント株式会社 光源装置
JP2019096618A (ja) * 2019-01-22 2019-06-20 オムロン株式会社 光源装置およびこれを備えた測距センサ
WO2021037225A1 (zh) * 2019-08-30 2021-03-04 深圳市中光工业技术研究院 光源系统及照明装置

Also Published As

Publication number Publication date
US20190024854A1 (en) 2019-01-24
JP6688306B2 (ja) 2020-04-28
JPWO2017038176A1 (ja) 2018-04-05
US10330267B2 (en) 2019-06-25

Similar Documents

Publication Publication Date Title
JP6688306B2 (ja) 発光体および照明装置
JP6538178B2 (ja) 発光装置
US10190733B2 (en) Light source device and illumination apparatus
US9863595B2 (en) Light-emitting unit with optical plate reflecting excitation light and transmitting fluorescent light, and light-emitting device, illumination device, and vehicle headlight including the unit
JP5269115B2 (ja) 発光素子、発光装置、車両用前照灯、照明装置及び発光素子の製造方法
JP5380498B2 (ja) 光源装置、照明装置、車両用前照灯および車両
JP5598974B2 (ja) 照明装置
US20140085923A1 (en) Light emitting device
JP6469893B2 (ja) 発光装置および照明装置
JP6482993B2 (ja) 照明装置
JP6644081B2 (ja) 発光装置、照明装置、および発光装置が備える発光体の製造方法
WO2017073054A1 (ja) 発光装置
US10578957B2 (en) Fluorescent substrate, light source device, and projection display unit
JP2016092271A (ja) 蛍光体シートおよび照明装置
JP6125666B2 (ja) 発光装置
WO2017043121A1 (ja) 発光装置および照明装置
JP2012243979A (ja) 光源装置
JP2018106814A (ja) 照明装置及び車両用灯具
WO2020189405A1 (ja) 光学素子、車両用前照灯具、光源装置、および投影装置
CN112859499B (zh) 光源装置和投影仪
WO2014112231A1 (ja) 発光装置、導光装置、および発光装置の製造方法
JP2014187077A (ja) 発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841208

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537588

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841208

Country of ref document: EP

Kind code of ref document: A1