WO2024032338A1 - 一种波长转换装置及其制备方法、发光装置 - Google Patents

一种波长转换装置及其制备方法、发光装置 Download PDF

Info

Publication number
WO2024032338A1
WO2024032338A1 PCT/CN2023/108137 CN2023108137W WO2024032338A1 WO 2024032338 A1 WO2024032338 A1 WO 2024032338A1 CN 2023108137 W CN2023108137 W CN 2023108137W WO 2024032338 A1 WO2024032338 A1 WO 2024032338A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
light
reflective
conversion component
shielding cover
Prior art date
Application number
PCT/CN2023/108137
Other languages
English (en)
French (fr)
Inventor
李乾
简帅
王艳刚
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202222076902.6U external-priority patent/CN218601671U/zh
Priority claimed from CN202210946746.6A external-priority patent/CN117570399A/zh
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2024032338A1 publication Critical patent/WO2024032338A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source

Definitions

  • the present application relates to the field of light source technology, in particular to a wavelength conversion device and its preparation method, and a light-emitting device.
  • a laser light source is used as the excitation light to remotely excite the wavelength conversion material in the wavelength conversion device, thereby obtaining light with a specific color (or wavelength).
  • This technology has gradually been widely used in projection displays, special lighting and other fields.
  • Existing fixed wavelength conversion devices often use fluorescent ceramics as wavelength conversion components, which cannot effectively limit the spread of light spots, resulting in a large amount of light excited at large angles and a low light extraction rate. Therefore, it is necessary to develop a wavelength conversion device that has the possibility to withstand continuous irradiation from a higher power light source.
  • the purpose of this application is to provide a wavelength conversion device and a light-emitting device that can withstand the possibility of continuous irradiation by a higher power light source.
  • the first technical solution provided by this application is: providing a wavelength conversion device and a substrate;
  • a wavelength conversion component wherein the wavelength conversion component is disposed on the substrate;
  • a reflective fence the reflective fence is arranged on the substrate and is arranged around the wavelength conversion component
  • a light-shielding cover plate is provided on the reflective fence, and the light-shielding cover plate is provided with a hollow structure, and the hollow structure corresponds to the wavelength conversion component.
  • the size of the hollow structure differs from the size of the wavelength conversion component by ⁇ 10%.
  • the projection of the hollow structure in the vertical direction is one of circles, rectangles, and polygons
  • the projection of the wavelength conversion component in the vertical direction is one of circles, rectangles, and polygons.
  • the projection of the hollow structure in the vertical direction is the same as the projection of the wavelength conversion component in the vertical direction.
  • the size of the light-shielding cover is greater than or equal to the size of the reflective fence.
  • the projection of the light-shielding cover in the vertical direction coincides with the projection of the reflective fence in the vertical direction.
  • the height of the wavelength conversion component is lower than the height of the reflective fence, or greater than or equal to the height of the reflective fence and does not exceed the top of the light-shielding cover.
  • the material of the wavelength conversion component is at least one fluorescent ceramic selected from Al 2 O 3 /YAG, Al 2 O 3 /LuAG, YAG or LuAG.
  • the wavelength conversion component includes:
  • a luminescent layer includes fluorescent ceramics
  • a light reflective layer, the light reflective layer is arranged on the side of the light-emitting layer away from the laser incidence;
  • a protective layer is provided on the side of the light reflective layer away from the light emitting layer.
  • the material of the reflective fence includes carrier and diffuse reflection particles.
  • the light-shielding cover plate is a reflective layer or a light-absorbing layer.
  • the second technical solution provided by this application is to provide a preparation method of a wavelength conversion device, and the preparation method includes:
  • the light-shielding cover plate is provided with a hollow structure, and the hollow structure corresponds to the wavelength conversion component.
  • the steps of preparing a wavelength conversion component and arranging the wavelength conversion component on the substrate include:
  • the wavelength conversion component is disposed on the substrate.
  • the steps of preparing reflective fence slurry and arranging the reflective fence slurry around the wavelength conversion component to form a reflective fence include:
  • the reflective fence slurry is prepared by mixing diffuse reflection particles with a carrier
  • the reflective fence is produced after the reflective fence slurry is leveled.
  • the material of the light-shielding cover is alumina ceramic with a content of more than 99%.
  • the steps of preparing the light-shielding cover and placing the light-shielding cover on the top of the reflective fence include:
  • the third technical solution provided by this application is to provide a light-emitting device.
  • the light-emitting device includes an excitation light source and the wavelength conversion device described in any one of the above.
  • the laser spot formed by the laser light source consistent with the size of the wavelength conversion component.
  • the beneficial effects of this application are: in the wavelength conversion device of this application, the hollow structure of the light-shielding cover is provided corresponding to the wavelength conversion component, so that the incident excitation light passes through the hollow structure and is irradiated on the wavelength conversion component, and the remaining excitation light is covered by the light-shielding cover
  • the reflection or absorption of the plate prevents the reflective fence material from being damaged by direct exposure to high-power excitation light, thereby realizing the possibility that the wavelength conversion device can withstand continuous irradiation from higher-power light sources.
  • Figure 1 is a schematic top structural view of an embodiment of the wavelength conversion device provided by the present application.
  • Figure 2 is a schematic cross-sectional structural diagram along the A-A direction shown in Figure 1 of the first embodiment of the wavelength conversion device provided by this application;
  • Figure 3 is a schematic cross-sectional structural diagram along the AA direction shown in Figure 1 of the second embodiment of the wavelength conversion device provided by the present application;
  • Figure 4 is a schematic cross-sectional structural diagram along the A-A direction shown in Figure 1 of the third embodiment of the wavelength conversion device provided by this application;
  • Figure 5 is a schematic cross-sectional structural diagram along the A-A direction shown in Figure 1 of the fourth embodiment of the wavelength conversion device provided by this application;
  • Figure 6 is a schematic flow chart of an embodiment of a method for preparing a wavelength conversion device provided by the present application
  • Figure 7 is a schematic structural diagram of a light-emitting device provided by this application.
  • FIG. 1 is a top structural schematic diagram of an embodiment of the wavelength conversion device provided by this application;
  • Figure 2 is a first embodiment of the wavelength conversion device provided by this application.
  • the embodiment is shown in Figure 1, a schematic cross-sectional structural diagram along the A-A direction.
  • the wavelength conversion device 100 provided by this application includes a substrate 101, a wavelength conversion component 102, a reflective fence 103 and a light-shielding cover 104.
  • the wavelength conversion component 102 is arranged on the substrate 101; the reflective fence 103 is arranged on the substrate 101 and is arranged around the wavelength conversion component 102; the light-shielding cover 104 is arranged on the reflective fence 103, and the light-shielding cover 104 is provided with a hollow structure, the hollow structure corresponds to the wavelength conversion component 102 .
  • the wavelength conversion device 100 proposed in this application sets the hollow structure of the light-shielding cover 104 corresponding to the wavelength conversion component 102, so that the incident excitation light passes through the hollow structure and is irradiated on the wavelength conversion component 102, and the remaining incident excitation light is covered by the light-shielding cover.
  • the plate reflects or absorbs the incident excitation light to prevent the reflective fence 103 from being directly irradiated by the high-power excitation light and thereby being damaged, thereby realizing the possibility that the wavelength conversion device 100 can withstand continuous irradiation by a higher power light source.
  • the hollow structure corresponds to the wavelength conversion component 102, including but not limited to the correspondence in relative size and shape between the two and the correspondence in the relative arrangement positions of the two.
  • the size of the hollow structure of the light-shielding cover 104 is the same as the size of the wavelength conversion component 102.
  • the size difference is within 10%, that is, the size of the hollow structure of the light-shielding cover 104 can be within 10% larger than the size of the wavelength conversion component 102, or the size of the hollow structure of the light-shielding cover 104 can be smaller than the size of the wavelength conversion component 102. Within 10%.
  • the size of the hollow structure of the light-shielding cover 104 can be larger than the size of the wavelength conversion component 102, considering that the light-shielding cover 104 needs to protect the reflective fence 103, the hollow structure cannot be larger than the size of the reflective fence 103.
  • the size of the hollow structure needs to be larger than the size of the wavelength conversion component 102 in the direction perpendicular to the incident direction, so that the top of the wavelength conversion component 102 penetrates the hollow structure.
  • each component can be considered as the length and/or width of the rectangle when its shape in the top or bottom view direction is a rectangle; when its shape in the top or bottom view direction is a circle. , can be considered as the diameter of a circle; when its shape is a polygon or other irregular shape, it can be considered as the diameter of its smallest circumscribed circle.
  • the projection of the hollow structure in the vertical direction may be circular, rectangular or polygonal.
  • the size of the wavelength conversion component 102 in the vertical direction may be a circular shape, a rectangular shape, or a polygonal shape, which is not particularly limited in the embodiments of the present application. It should be noted that the above-mentioned vertical direction should be understood as the direction perpendicular to the substrate 101, or the direction of the incident light when the incident light is perpendicular to the substrate 101 or the wavelength conversion component 102.
  • the hollow structure and the wavelength conversion component 102 are arranged to have the same shape and have the same size, so that the projection of the hollow structure in the vertical direction coincides with the projection of the wavelength conversion component 102 in the vertical direction.
  • the hollow structure and the wavelength conversion component 102 are arranged in a rectangular shape, so that the light-shielding cover 104 can achieve a better light-shielding effect and have low manufacturing difficulty.
  • this application does not limit the shapes of the light-shielding cover 104 and the reflective fence 103.
  • the vertical projections of the light-shielding cover 104 and the reflective fence 103 may be circular, rectangular, or polygonal.
  • the light-shielding cover 104 is set to have the same shape as the reflective fence 103 so that the projection of the light-shielding cover 104 in the direction of laser incidence can fully cover the projection of the entire reflective fence 103 .
  • the size of the light-shielding cover 104 can be greater than or equal to the size of the reflective fence 103, and is set so that the projection of the light-shielding cover 104 in the laser incident direction can cover part or the entire projection surface of the reflective fence 103, achieving The light-shielding cover 104 can not only limit the incident excitation light to only illuminate Reaching the surface of the wavelength conversion component 102 can also protect the material of the reflective fence 103 and prevent the high-power-density excitation light from damaging the reflective fence 103, causing the reflective fence 103 to release particles that may damage the surface of the optical device.
  • the size of the light-shielding cover 104 is set to be equal to the size of the reflective fence 103, and the light-shielding cover 104 has the same shape as the reflective fence 103, so that the light-shielding cover 104 is in the vertical direction.
  • the projection coincides with the projection of the reflective fence 103 in the vertical direction, so that the light-shielding cover 104 can achieve a better light-shielding effect and has low manufacturing difficulty.
  • the light-shielding cover 104 provided by the present application can be a light-absorbing layer 105, wherein the light-absorbing layer 105 can be a carbon film light-absorbing layer or other light-absorbing structure, or the light-shielding cover 104 provided by the present application can be a reflective layer ( (not shown), where the reflective layer may be a metal reflective layer or a dielectric reflective layer.
  • the metal reflective layer includes an aluminum oxide layer, a metal silver layer, etc., that is, the reflective layer only needs to be able to achieve light reflection and withstand strong laser irradiation, which is not particularly limited in the embodiments of the present application.
  • Figure 4 is a schematic cross-sectional structural diagram of the third embodiment of the wavelength conversion device provided by this application as shown in Figure 1 along the A-A direction;
  • Figure 5 is a schematic cross-sectional structural diagram provided by this application.
  • the fourth embodiment of the wavelength conversion device is a schematic cross-sectional structural diagram along the A-A direction as shown in FIG. 1 .
  • the height of the wavelength converting component 102 is equal to the height of the reflective fence 103; referring to Figure 4, in some other embodiments of the present application, the height of the wavelength converting component 102 may be less than The height of the reflective fence 103, or referring to Figure 5, in other embodiments of the present application, the height of the wavelength conversion component 102 is greater than the height of the reflective fence 103 and flush with the top of the light shielding cover 104, while in other embodiments of the present application In some embodiments, the height of the wavelength conversion component 102 is greater than or equal to the height of the reflective fence 103 but does not exceed the top of the light-shielding cover 104 (not shown in the figure).
  • the height of the wavelength conversion component 102 is equal to or greater than the height of the reflective fence 103 but does not exceed the top of the light-shielding cover 104.
  • Such an arrangement can prevent the incident laser from irradiating the reflective fence 103, thereby preventing the material of the reflective fence 103 from being irradiated.
  • the high-power excitation light is damaged due to direct exposure, thereby realizing the possibility that the wavelength conversion device 100 can withstand continuous irradiation by a higher power light source, which is conducive to the wide application of the wavelength conversion device 100 .
  • the substrate 101 may be a metal substrate or a ceramic substrate.
  • pure copper metal is made into a sheet with a size of 10x10x3mm, and the surface of the sheet is plated with gold, thus obtaining the substrate 101.
  • Reasonable Solution pure copper metal and metallic gold have strong thermal stability and high thermal conductivity. Therefore, configuring the substrate 101 to be made of pure copper metal and plating it with gold can effectively dissipate the heat generated by the wavelength conversion component 102 and avoid the accumulation of heat generated by the wavelength conversion component 102 .
  • the wavelength conversion component 102 includes a luminescent layer.
  • the luminescent layer may be a fluorescent ceramic if high thermal conductivity is met.
  • Common fluorescent ceramics can be pure-phase fluorescent ceramics, such as YAG ceramics or LuAG ceramics, whose porcelain-forming phase and luminescent phase are the same phase and can be sintered into ceramics with higher transparency; they can also be complex-phase fluorescent ceramics, such as Al 2 O 3 /YAG ceramics or Al 2 O 3 /LuAG ceramics, etc., the embodiments of the present application are not limited to this.
  • the light-emitting layer may also use other fluorescent materials such as fluorescent silica gel or fluorescent glass.
  • the fluorescent ceramics can be set as square or rectangular pieces with side lengths of 0.3mm-1mm.
  • the side lengths of fluorescent ceramics are 0.3mm, 0.5mm, 0.8mm, 1mm.
  • the size of the wavelength conversion component 102 can be adjusted according to the size of the excitation light spot.
  • the size of the wavelength conversion component 102 and the size of the excitation light spot can be set. Consistent, the light spot diffusion can be effectively suppressed, and the light extraction performance of the wavelength conversion device 100 is greatly improved.
  • the size of the wavelength conversion component 102 is generally consistent with the size of the light emitting layer or the size of the fluorescent ceramic.
  • the wavelength conversion component 102 also includes a light reflective layer (not shown) and a protective layer (not shown) disposed on the side of the light-emitting layer close to the substrate.
  • the light reflective layer is a silver-plated metal layer.
  • other metal reflective layers may also be used; a protective layer is provided on the light reflective layer to protect the light reflective layer, and the protective layer is at least one of a nickel-plated metal layer, a titanium metal layer, or a gold metal layer.
  • the metallic silver layer has high reflectivity. Therefore, plating a metal silver layer on the side of the wavelength conversion component 102 close to the substrate can reflect the light emitted from the wavelength conversion component 102 and prevent it from being absorbed by the underlying material and converted into heat, thereby affecting the wavelength conversion. The temperature of component 102. At the same time, because the metal silver layer has good thermal conductivity, it can effectively transfer the heat generated by the wavelength conversion component 102 to the substrate 101 .
  • a nickel metal layer, a titanium metal layer, or a gold metal layer as a protective layer for the light reflection layer can not only effectively increase the mechanical strength of the wavelength conversion component 102, but also prevent the wavelength conversion component 102 from falling off or falling off internally. Create a gap.
  • the above-mentioned gold metal layer may be a pure metal or an alloy of the metal, which is not limited in the embodiments of the present application.
  • the material of reflective fence 103 includes carriers and diffuse reflective particles.
  • the carrier includes organic carrier, inorganic carrier and ceramic carrier.
  • the organic carrier can be silica gel or low melting point glass, etc.
  • the diffuse reflection particles include at least one of titanium oxide, zinc oxide, yttrium oxide, zirconium oxide, aluminum oxide, barium sulfate and aluminum silicate. Examples of the present application This is not particularly limited.
  • Figure 6 is a schematic flow chart of an embodiment of a method for preparing a wavelength conversion device provided by this application.
  • This application also proposes a method for preparing a wavelength conversion device, which includes the following steps:
  • Step S11 Provide a substrate.
  • the substrate may be a metal substrate or a ceramic substrate.
  • pure copper metal is made into a sheet with a size of 10x10x3mm, and the surface of the sheet is plated with gold to obtain a substrate.
  • other suitable substrates available on the market can also be used.
  • pure copper metal and metallic gold have strong thermal stability and high thermal conductivity. Therefore, setting the substrate to pure copper metal and plating it with gold can effectively dissipate the heat generated by the wavelength conversion component and avoid the accumulation of heat generated by the wavelength conversion component.
  • Step S12 Prepare a wavelength conversion component and arrange the wavelength conversion component on the substrate.
  • the wavelength conversion component may include at least one fluorescent ceramic among Al 2 O 3 /YAG, Al 2 O 3 /LuAG, YAG or LuAG.
  • at least one fluorescent ceramic among Al 2 O 3 /YAG, Al 2 O 3 /LuAG, YAG or LuAG.
  • the fluorescent ceramic used in the wavelength conversion component can be thinned to a thickness of 60 ⁇ m-150 ⁇ m.
  • the thickness of the fluorescent ceramic can be 60 ⁇ m, 80 ⁇ m, 100 ⁇ m, or 150 ⁇ m.
  • the thickness of the fluorescent ceramic can be ground thin to 80 ⁇ m-100 ⁇ m.
  • the above step S12 further includes: polishing the fluorescent ceramic, and after polishing, coating a reflective layer on the side of the fluorescent ceramic close to the substrate; plating a protective layer on the basis of the reflective layer to obtain a coated fluorescent ceramic; The wavelength conversion component is obtained by slitting the ceramic; the wavelength conversion component is fixed on the substrate.
  • disposing the protective layer on the light reflective layer can protect the reflective layer from wear when it is bonded to the substrate.
  • the coated fluorescent ceramics can be cut into square or rectangular pieces with a side length of 0.3mm-1mm.
  • the side lengths of the fluorescent ceramics are 0.3mm, 0.5mm, 0.8mm, and 1mm.
  • welding or bonding can be used to fix the wavelength conversion component.
  • Fixed in the middle of the base plate for example, gold-tin solder can be used to fix the wavelength conversion component in the middle of the substrate; nano-silver paste can also be brushed on the middle of the substrate, and the side of the coated fluorescent ceramic with a protective layer is in contact with the nano-silver paste.
  • the wavelength conversion component is bonded to the middle position of the substrate, where the above-mentioned sintering temperature can be 200°C, 210°C, 220°C, 230°C, 240°C or 250°C °C.
  • the above-mentioned fluorescent ceramics or wavelength conversion components can be directly purchased from commercially available fluorescent ceramics or wavelength conversion components.
  • Step S13 Prepare reflective fence slurry, and arrange the reflective fence slurry around the wavelength conversion component to form a reflective fence.
  • the reflective fence can be made of a mixture of carriers and diffuse reflection particles. See the above for details. To avoid repetition, they will not be described again here.
  • the above step S13 further includes: mixing the diffuse reflection particles and the carrier to prepare a reflective fence slurry; and coating the reflective fence slurry around the wavelength conversion component.
  • a glue dispensing machine can be used to apply the reflective fence slurry around the wavelength conversion component.
  • the height of the wavelength conversion component is lower than the height of the reflective fence, or is greater than or equal to the height of the reflective fence and does not exceed the top of the light-shielding cover.
  • Step S14 Prepare a light-shielding cover plate, and place the light-shielding cover plate on the top of the reflective fence, where the light-shielding cover plate is provided with a hollow structure, and the hollow structure corresponds to the wavelength conversion component.
  • the light-shielding cover plate may be an alumina ceramic with a content of more than 99%.
  • the alumina ceramic is ground thin to a thickness ranging from 100 ⁇ m to 200 ⁇ m.
  • the thickness of the alumina ceramic can be 100 ⁇ m, 120 ⁇ m, 150 ⁇ m, 180 ⁇ m or 200 ⁇ m.
  • the thinned alumina ceramic is cut into square or rectangular pieces with a side length ranging from 3 mm to 5 mm to obtain a light-shielding cover plate, where the side length of the alumina ceramic can be 3 mm, 4 mm or 5 mm.
  • the size of the above-mentioned light-shielding cover depends on the size of the reflective fence material after dispensing, and the size of the hollow structure of the light-shielding cover depends on the size of the wavelength conversion component.
  • the light-shielding cover 104 can be bonded to the silicone of the reflective fence 103 by baking at a temperature of 200-300°C. Connected together. In this way, the wavelength conversion component 102, the substrate 101, the reflective fence 103 and the light-shielding cover 104 form an entire wavelength conversion device.
  • the light-shielding cover is made of a material such as a carbon film light-absorbing layer or a metal silver layer
  • step S14 may be to prepare raw materials for forming the light-shielding cover. The material is plated or coated to form a light-shielding cover on the reflective fence.
  • the hollow structure of the light-shielding cover is provided corresponding to the wavelength conversion component, so that the incident excitation light is irradiated on the wavelength conversion component, thereby preventing the reflective fence material from being damaged by direct exposure to high-power excitation light.
  • the reflective fence is provided Limiting the lateral diffusion of light inside the wavelength conversion component greatly improves the light extraction performance of the wavelength conversion device.
  • FIG. 7 is a schematic structural diagram of the light-emitting device provided by the present application.
  • the light-emitting device 200 includes the wavelength conversion device 100 provided by the embodiment shown in FIGS. 1 to 6 and an excitation light source, wherein the excitation light spot formed by the excitation light source is consistent with the size of the wavelength conversion component.
  • the excitation light source may include laser diodes and/or LEDs.
  • the light-emitting device 200 includes all the technical features of the wavelength conversion device 100 provided by the embodiment shown in FIGS. 1 to 6 , and can implement the wavelength conversion device 100 provided by the embodiment shown in FIGS. 1 to 6 .
  • the light-emitting device may specifically be a lighting device or a projection device, etc.
  • the lighting device may include car lights, stage lights, searchlights, street lights, flashlights, etc.
  • the size of the excitation spot should be kept the same as the size of the wavelength conversion component as much as possible, but in actual applications, there may be deviations.
  • Consistency should be understood to mean that the size of the excitation spot can be equal to, or slightly larger than, or slightly smaller than the size of the wavelength conversion component. For example, the size difference is within the range of ⁇ 20%, or ⁇ 10%, and further can differ by ⁇ 5%.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a detachable connection, or Integrated connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection can be a fixed connection or a detachable connection, or Integrated connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.

Abstract

一种波长转换装置(100)、发光装置,该波长转换装置(100)包括基板(101);波长转换部件(102),其中波长转换部件(102)设置于基板(101)上;反射围栏(103),反射围栏(103)设置于基板(101)上,且围绕波长转换部件(102)的四周设置;遮光盖板(104),遮光盖板(104)设置于反射围栏(103)上,且遮光盖板(104)设有中空结构,中空结构对应于波长转换部件(102)。波长转换装置(100),通过设置遮光盖板(104)的中空结构对应于波长转换部件(102),使得经该波长转换装置(100)入射的激光照射在波长转换部件(102)上,避免反射围栏(103)材料被大功率激光直射进而损坏,实现了波长转换装置(100)能够承受住更高功率光源连续照射的可能性。

Description

一种波长转换装置及其制备方法、发光装置 技术领域
本申请涉及光源技术领域,特别是一种波长转换装置及其制备方法、发光装置。
背景技术
目前,采用激光光源作为激发光,远程激发波长转换装置中的波长转换材料,从而获得具有特定色彩(或波长)的光,这种技术已经逐渐被广泛应用于投影显示、特种照明等领域。现有的固定式波长转换装置往往采用荧光陶瓷作为波长转换部件,无法有效的限制光斑的扩散,导致大角度被激发光的数量较多,光的提取率较低。因此,有必要开发一种波长转换装置,该波长转换装置具有能够承受更高功率光源连续照射的可能性。
发明内容
有鉴于此,本申请的目的是提供一种波长转换装置、发光装置,能够承受住更高功率光源连续照射的可能性。
为解决上述问题,本申请提供的第一个技术方案为:提供一种波长转换装置,基板;
波长转换部件,其中所述波长转换部件设置于所述基板上;
反射围栏,所述反射围栏设置于所述基板上,且围绕所述波长转换部件的四周设置;
遮光盖板,所述遮光盖板设置于所述反射围栏上,且所述遮光盖板设有中空结构,所述中空结构对应于所述波长转换部件。
其中,所述中空结构的尺寸与所述波长转换部件的尺寸大小相差±10%。
其中,所述中空结构在竖直方向上的投影为圆形、矩形、多边形的一种,所述波长转换部件在竖直方向上的投影为圆形、矩形、多边形的一种。
其中,所述中空结构在竖直方向上的投影与所述波长转换部件在竖直方向 上的投影重合。
其中,所述遮光盖板的尺寸大于或等于所述反射围栏的尺寸。
其中,所述遮光盖板在竖直方向上的投影与所述反射围栏在竖直方向上的投影重合。
其中,所述波长转换部件的高度低于所述反射围栏的高度,或大于或等于所述反射围栏的高度并不超过所述遮光盖板的顶部。
其中,所述波长转换部件的材料为Al2O3/YAG、Al2O3/LuAG、YAG或LuAG中的至少一种荧光陶瓷。
其中,所述波长转换部件包括:
发光层,所述发光层包括荧光陶瓷;
光反射层,所述光反射层设置在发光层远离激光入射的一侧;
保护层,所述保护层设置在光反射层远离所述发光层的一侧。
其中,所述反射围栏的材料包括载体和漫反射粒子。
其中,所述遮光盖板为反射层或吸光层。
为解决上述技术问题,本申请提供的第二个技术方案为:提供一种波长转换装置的制备方法,所述制备方法包括:
提供基板;
制备波长转换部件,并将所述波长转换部件设置于所述基板上;
制备反射围栏浆料,并将所述反射围栏浆料设置在所述波长转换部件的四周形成反射围栏;
准备遮光盖板,并将所述遮光盖板设置在所述反射围栏顶部上,
其中,所述遮光盖板设有中空结构,所述中空结构对应于所述波长转换部件。
其中,所述制备波长转换部件,并将所述波长转换部件设置于所述基板上的步骤包括:
将荧光陶瓷进行抛光,抛光后在所述荧光陶瓷靠近所述基板的一侧镀反射层;
在所述反射层的基础上再镀保护层,制得镀膜后的荧光陶瓷;
将所述镀膜后的荧光陶瓷分切制得所述波长转换部件;
将所述波长转换部件设置于所述基板上。
其中,所述制备反射围栏浆料,并将所述反射围栏浆料设置在所述波长转换部件的四周形成反射围栏的步骤包括:
将漫反射粒子与载体混合制得所述反射围栏浆料;
将所述反射围栏浆料涂覆在所述波长转换部件的四周;
其中,所述反射围栏浆料流平后制得所述反射围栏。
其中,所述遮光盖板的材料为含量达到99%以上的氧化铝陶瓷,所述准备遮光盖板,并将所述遮光盖板设置在所述反射围栏的顶部上的步骤包括:
将所述氧化铝陶瓷磨薄得到磨薄后的氧化铝陶瓷;
将所述磨薄后的氧化铝陶瓷切割,以得到所述遮光盖板;
在所述反射围栏的顶部覆盖所述遮光盖板,并将所述反射围栏与所述遮光盖板连接。
为解决上述技术问题,本申请提供的第三个技术方案为:提供一种发光装置,所述发光装置包括激发光源和上述任一项所述的波长转换装置,所述激光光源形成的激光光斑与所述波长转换部件的尺寸一致。
本申请的有益效果是:本申请的波长转换装置,通过设置遮光盖板的中空结构对应于波长转换部件,使得入射的激发光穿过中空结构照射在波长转换部件上,其余激发光被遮光盖板反射或吸收,避免反射围栏材料被大功率激发光直射进而损坏,实现了波长转换装置能够承受住更高功率光源连续照射的可能性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的波长转换装置一实施例的俯视结构示意图;
图2是本申请提供的波长转换装置第一实施例如图1所示沿A-A方向的剖面结构示意图;
图3是本申请提供的波长转换装置第二实施例如图1所示沿A-A方向的剖面结构示意图;
图4是本申请提供的波长转换装置第三实施例如图1所示沿A-A方向的剖面结构示意图;
图5是本申请提供的波长转换装置第四实施例如图1所示沿A-A方向的剖面结构示意图;
图6是本申请提供的波长转换装置制备方法一实施例的流程示意图;
图7是本申请提供的发光装置的结构示意图。
具体实施方式
下面结合附图和实施例,对本申请作进一步的详细描述。特别指出的是,以下实施例仅用于说明本申请,但不对本申请的范围进行限定。同样的,以下实施例仅为本申请的部分实施例而非全部实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其他实施例相结合。
本申请首先提出一种波长转换装置100,如图1和图2所示,图1是本申请提供的波长转换装置一实施例的俯视结构示意图;图2是本申请提供的波长转换装置第一实施例如图1所示沿A-A方向的剖面结构示意图。本申请提供的波长转换装置100包括基板101、波长转换部件102、反射围栏103和遮光盖板104。其中,波长转换部件102设置于基板101上;反射围栏103设置于基板101上,且围绕波长转换部件102的四周设置;遮光盖板104设置于反射围栏上103,且遮光盖板104设有中空结构,该中空结构对应于波长转换部件102。
本申请提出的波长转换装置100,通过设置遮光盖板104的中空结构对应于波长转换部件102,使得入射的激发光穿过中空结构照射在波长转换部件102上,其余入射的激发光被遮光盖板反射或吸收,避免入射的激发光照射到反射围栏103上,避免反射围栏材料被大功率激发光直射进而损坏,实现了波长转换装置100能够承受住更高功率光源连续照射的可能性。另外,由于激发光需要穿过中空结构入射至波长转换部件102,中空结构对应于波长转换部件102,包括不限于两者的相对尺寸形状上的对应以及两者的相对设置位置上的对应。
在一些实施例中,遮光盖板104中空结构的尺寸与波长转换部件102的尺 寸大小相差10%以内,也即,遮光盖板104中空结构的尺寸可以为大于波长转换部件102的尺寸10%以内,或者,遮光盖板104中空结构的尺寸可以为小于波长转换部件102的尺寸10%以内。遮光盖板104的中空结构的尺寸虽然可大于波长转换部件102的尺寸,但考虑到遮光盖板104需要对反射围栏103起到保护作用,中空结构不能大于反射围栏103的尺寸。同时考虑到当波长转换部件102的高度大于反射围栏103的高度但不超过遮光盖板104的顶部时,则波长转换部件102远离基板的101的一端需贯穿的中空结构,因此,当波长转换部件102的高度大于反射围栏103的高度但不超过遮光盖板104的顶部时,在垂直于入射方向上,中空结构的尺寸需大于波长转换部件102的尺寸,以使得波长转换部件102顶部贯穿中空结构。另外,在本申请中,对于各个部件的尺寸,在其俯视或者仰视方向上的形状为矩形时,可认为是矩形的长和/或宽;在其俯视或者仰视方向上的形状为圆形时,可认为是圆形的直径;在其形状为多边形或其他不规则形状时,可认为是其最小外接圆的直径。
在一些实施例中,中空结构在竖直方向上的投影可以为圆形,也可以为矩形或多边形。进一步的,波长转换部件102的尺寸在竖直方向上的投影可以为圆形,也可以为矩形或多边形,本申请实施例对此不加以特别限定。需要说明的是,上述竖直方向应当理解为垂直于基板101的方向,或入射光为垂直于基板101或波长转换部件102入射时即为入射光的方向。
可选地,设置中空结构与波长转换部件102均采用相同的形状以及具有相同的尺寸,进而使得中空结构在竖直方向上的投影与波长转换部件102在竖直方向上的投影重合。例如设置中空结构与波长转换部件102为矩形,如此使得遮光盖板104能够实现更好的遮光效果,同时制造难度低。
进一步的,本申请对于遮光盖板104和反射围栏103的形状也不加以限定,例如遮光盖板104以及反射围栏103在竖直方向上的投影可以为圆形,也可以为矩形或多边形。可选地,设置遮光盖板104与反射围栏103的形状相同,以使得遮光盖板104在激光入射的方向上的投影能够全面覆盖整个反射围栏103的投影。
在一些实施例中,遮光盖板104的尺寸可以大于或等于反射围栏103的尺寸,如此设置,使得遮光盖板104在激光入射方向上的投影能够覆盖部分或整个反射围栏103的投影面,实现了遮光盖板104不但可以限定入射激发光只照 射到波长转换部件102的表面,还可以保护反射围栏103的材料,防止大功率密度的激发光损坏反射围栏103,使得反射围栏103释放出可能会损伤光学器件表面的颗粒。
可选地,在本申请的一些实施例中,设置遮光盖板104的尺寸等于反射围栏103的尺寸,遮光盖板104与反射围栏103的形状相同,以使得遮光盖板104在竖直方向上的投影与反射围栏103在竖直方向上的投影重合,如此使得遮光盖板104能够实现更好的遮光效果,同时制造难度低。
请继续参阅图3,图3是本申请提供的波长转换装置第二实施例如图1所示沿A-A方向的剖面结构示意图。如图3所示,本申请提供的遮光盖板104可以为吸光层105,其中吸光层105可以为碳膜吸光层或其他吸光结构,或者,本申请提供的遮光盖板104可以为反射层(图未示),其中,反射层可以为金属反射层、介质反射层。进一步的,金属反射层包括氧化铝层、金属银层等,即,反射层能够实现反光作用并抗住强激光照射即可,本申请实施例对此不加以特别限定。
在一些实施例中,如图2、图4和图5所示,图4是本申请提供的波长转换装置第三实施例如图1所示沿A-A方向的剖面结构示意图;图5是本申请提供的波长转换装置第四实施例如图1所示沿A-A方向的剖面结构示意图。参考图2、图3,在本申请的一些实施例中,波长转换部件102的高度等于反射围栏103的高度;参考图4,本申请的一些其他实施例中,波长转换部件102的高度可以小于反射围栏103的高度,或者参考图5,在本申请的另一些实施例中,波长转换部件102的高度大于反射围栏103的高度并与遮光盖板104的顶部齐平,而在本申请的其他一些实施例中,波长转换部件102的高度大于或等于反射围栏103的高度但不超过遮光盖板104的顶部(图中未示出)。
优选的,设置波长转换部件102的高度等于或大于反射围栏103的高度但不超过遮光盖板104的顶部,如此设置,能够避免入射的激光照射到反射围栏103上,进而避免反射围栏103材料被大功率激发光直射进而损坏,实现了波长转换装置100能够承受住更高功率光源连续照射的可能性,有利于波长转换装置100的广泛应用。
基板101可以为金属基板或陶瓷基板。在一实施例中,将纯铜金属制成尺寸为10x10x3mm的片材,并在该片材的表面镀金,如此得到基板101。可以理 解的,纯铜金属以及金属金具有较强的热稳定性以及较高的导热率。因此,设置基板101为纯铜金属,同时在其上镀金,能够有效的散发波长转换部件102产生的热量,避免波长转换部件102产生的热量积累。
波长转换部件102包括发光层,在一些实施例中,在满足高导热率的情况下,发光层可以是荧光陶瓷。常见的荧光陶瓷可为纯相荧光陶瓷,如YAG陶瓷或者LuAG陶瓷,其成瓷相和发光相为同一相并且可以烧结成透明度较高的陶瓷;也可以为复相荧光陶瓷,如Al2O3/YAG陶瓷或者Al2O3/LuAG陶瓷等,本申请实施例对此不加以限定。当然,在其他实施例中,发光层也可以使用荧光硅胶或荧光玻璃等其他荧光材料。
进一步的,考虑到荧光陶瓷具有光斑扩散性能差的特点,可将荧光陶瓷设置为边长为0.3mm-1mm的正方形或长方形片,例如荧光陶瓷的边长为0.3mm、0.5mm、0.8mm、1mm。为了使得激发光只照射到波长转换部件102上,为抑制光斑扩散,波长转换部件102的尺寸可根据激发光光斑的大小调整,优选的,可设置波长转换部件102的尺寸与激发光光斑的尺寸一致,可有效抑制光斑扩散,极大提高了波长转换装置100的光提取性能。另外,波长转换部件102的尺寸一般与发光层的尺寸或荧光陶瓷的尺寸一致。
在一些实施例中,波长转换部件102还包括设置在发光层靠近基板一侧的光反射层(图未示)和保护层(图未示),光反射层为镀银金属层,在其他实施例中还可以是其他金属反射层;保护层设置在光反射层上,用于保护该光反射层,保护层为镀镍金属层、钛金属层或金金属层中的至少一种。
可以理解的,由于金属银层具有较高的反射率。因此,将金属银层镀覆于波长转换部件102的靠近基板一侧,可将从波长转换部件102出射的光进行反射,避免被下层材料所吸收而转换成热的形式存在,进而影响波长转换部件102的温度。同时由于金属银层具有良好的热导率,可有效将波长转换部件102产生的热量向基板101进行传递。
进一步的,设置镍金属层、钛金属层或金金属层的至少一种作为光反射层的保护层,不但可以有效的增加波长转换部件102的机械强度,还可以防止波长转换部件102内部脱落或产生空隙。
需要说明的是,上述金金属层可以为纯金属,也可以为该金属的合金,本申请实施例对此不加以限定。
在一些实施例中,反射围栏103的材料包括载体和漫反射粒子。其中,载体包括有机载体、无机载体、陶瓷载体。进一步的,有机载体可以为硅胶或低熔点的玻璃等;漫反射粒子包括氧化钛、氧化锌、氧化钇、氧化锆、氧化铝、硫酸钡及硅酸铝中的至少一种,本申请实施例对此不加以特别限定。
请参阅图6,图6是本申请提供的波长转换装置制备方法一实施例的流程示意图,本申请还提出了一种波长转换装置制备方法,包括如下步骤:
步骤S11:提供基板。
在本申请实施例中,基板可以为金属基板或陶瓷基板。具体的,在一实施例中,将纯铜金属制成尺寸为10x10x3mm的片材,并在该片材的表面镀金,如此得到基板。当然,也可以使用市售的其他的合适的基板。
可以理解的,纯铜金属以及金属金具有较强的热稳定性以及较高的导热率。因此,设置基板为纯铜金属,同时在其上镀金,能够有效的散发波长转换部件产生的热量,避免波长转换部件产生的热量积累。
步骤S12:制备波长转换部件,并将波长转换部件设置于基板上。
在本申请实施例中,波长转换部件可以包括Al2O3/YAG、Al2O3/LuAG、YAG或LuAG中的至少一种荧光陶瓷,具体参见上述,为避免重复,此处不加以赘述。
在一些实施例中,在制备好荧光陶瓷后,可将波长转换部件所用的荧光陶瓷磨薄至60μm-150μm的厚度,例如荧光陶瓷的厚度可以为60μm、80μm、100μm、150μm。优选的,考虑到波长转换部件的发光效率以及导热率,可将荧光陶瓷的厚度磨薄至80μm-100μm。
上述步骤S12进一步包括:将荧光陶瓷进行抛光,抛光后在荧光陶瓷靠近基板的一侧镀反射层;在反射层的基础上再镀保护层,制得镀膜后的荧光陶瓷;将镀膜后的荧光陶瓷分切制得波长转换部件;将波长转换部件固定于基板上。
反射层、保护层的材料具体参见上述,为避免重复,此处不加以赘述。
可以理解的,设置保护层于光反射层上,能够保护反射层与基板粘接时收到磨损。
进一步的,可将镀膜后的荧光陶瓷分切为边长为0.3mm-1mm的正方形或长方形片,例如荧光陶瓷的边长为0.3mm、0.5mm、0.8mm、1mm。进一步的,为了使波长转换部件固定于基板上,可使用焊接或粘接的方式将波长转换部件 固定于基板的中间位置。例如,可使用金锡焊片,将波长转换部件固定在基板的中间位置;也可以在基板的中间位置刷涂纳米银浆,将镀膜后的荧光陶瓷设置有保护层的一面与纳米银浆接触并粘接,于200℃-250℃的温度范围烧结,使得波长转换部件粘接于基板的中间位置,其中,上述烧结温度可以为200℃、210℃、220℃、230℃、240℃或者250℃。当然,上述的荧光陶瓷或波长转换部件可直接购买市售的荧光陶瓷或波长转换部件。
步骤S13:制备反射围栏浆料,并将反射围栏浆料设置在波长转换部件的四周形成反射围栏。
在本申请实施例中,反射围栏可由载体和漫反射粒子混合制成。具体参见上述,为避免重复,这里不加以赘述。上述步骤S13进一步包括:将漫反射粒子与载体混合制得反射围栏浆料;将反射围栏浆料涂覆在波长转换部件的四周。
进一步的,为了使反射围栏固定于波长转换部件的四周,可使用点胶机将反射围栏浆料点涂在波长转换部件的四周。在本申请的一些实施例中,波长转换部件高度低于反射围栏高度,或大于或等于反射围栏高度并不超过遮光盖板的顶部。
步骤S14:准备遮光盖板,并将遮光盖板设置在反射围栏的顶部上,其中,遮光盖板设有中空结构,中空结构对应于波长转换部件。
在本申请一实施例中,遮光盖板可以为含量达到99%以上的氧化铝陶瓷。具体的,将该氧化铝陶瓷磨薄至厚度范围为100μm-200μm,例如氧化铝陶瓷的厚度可以为100μm、120μm、150μm、180μm或者200μm。
进一步的,将磨薄后的氧化铝陶瓷切割至边长范围为3mm~5mm的正方形片或矩形片,以得到遮光盖板,其中,氧化铝陶瓷的边长可以为3mm、4mm或者5mm。
需要说明的是,上述遮光盖板的尺寸具体取决于反射围栏材料点胶后的尺寸,且遮光盖板中空结构的尺寸取决于波长转换部件的尺寸。
为了使遮光盖板固定在反射围栏以及波长转换部件上,例如反射围栏103的载体为硅胶时,遮光盖板104可以通过温度为200-300℃的烘烤的方式,与反射围栏103的硅胶粘接在一起。如此,波长转换部件102、基板101、反射围栏103以及遮光盖板104组成了一个波长转换装置的整体。在遮光盖板为碳膜吸光层或金属银层等材料时,步骤S14可为准备形成遮光盖板的原材料,将原材 料通过镀覆或涂覆等方式在反射围栏上形成遮光盖板。
本申请的波长转换装置,通过设置遮光盖板的中空结构对应于波长转换部件,使得入射的激发光照射在波长转换部件上,避免反射围栏材料被大功率激发光直射进而损坏,同时设置反射围栏限制波长转换部件内部光的横向扩散,极大提高了波长转换装置的光提取性能。
本申请实施例还提供一种发光装置200,如图7所示,图7是本申请提供的发光装置的结构示意图。发光装置200包括如图1至图6所示实施例提供的波长转换装置100以及激发光源,其中激发光源形成的激发光斑与波长转换部件的尺寸一致。其中,激发光源可以包括激光二极管和/或LED。需要说明的是,发光装置200包括如图1至图6所示实施例提供的波长转换装置100全部技术特征,且可实现如图1至图6所示实施例提供的波长转换装置100可实现的全部技术效果,为避免重复,在此不再赘述。发光装置具体可为照明装置或投影装置等,照明装置可包括车灯、舞台灯、探照灯、路灯、手电筒等。另外,虽然出于抑制光斑的横向扩散,提高波长转换装置的光提取性能的考虑,激发光斑的尺寸应尽量与波长转换部件的尺寸保持相同,但在实际应用时,可具有偏差,上述的尺寸一致应理解为激发光斑的尺寸可等于、或略大于、或略小于波长转换部件的尺寸,如尺寸相差为±20%范围内,或±10%,进一步可相差±5%。
需要说明的是,本申请实施例中介绍的多种可选的实施方式,彼此可以相互结合实现,也可以单独实现,对此本申请实施例不作限定。
在本申请的描述中,需要理解的是,术语“上”“下”“左”“右”等指示方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述而不是指示或暗示所指的装置或元件必须具有特定的方位、以及特定的方位构造和操作因此,不能理解为对本申请的限制此外,“第一”“第二”仅由于描述目的,且不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。因此,限定有“第一”“第二”的特征可以明示或者隐含地包括一个或者多个该特征。本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中需要说明的是,除非另有明确的规定和限定,术语“安装“相连”“连接”等应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介问接连接,可以是两个元件内部的连通。对于本领域的普通技术人员 而言,可以具体情况理解上述术语在本申请中的具体含义。
上述实施例是参考附图来描述的其他不同的形式和实施例也是可行而不偏离本申请的原理,因此本申请不应被建构成为在此所提出实施例的限制。更确切地说,这些实施例被提供以使得本申请会是完善又完整,且会将本申请范围传达给本领域技术人员。在附图中,组件尺寸及相对尺寸也许基于清晰起见而被夸大。在此所使用的术语只是基于描述特定实施例目的,并无意成为限制用术语“包含”及/或“包括”在使用于本说明书时,表示所述特征、整数、构件及/或组件的存在但不排除一或更多其它特征整数、构件、组件及/或其族群的存在或增加。除非另有所示,陈述时,数值范围包含该范围的上下限及其间的任何子范围。
以上所述仅为本申请的部分实施例,并非因此限制本申请的保护范围,凡是利用本申请说明书及附图内容所作的等效装置或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (16)

  1. 一种波长转换装置,其特征在于,包括
    基板;
    波长转换部件,其中所述波长转换部件设置于所述基板上;
    反射围栏,所述反射围栏设置于所述基板上,且围绕所述波长转换部件的四周设置;
    遮光盖板,所述遮光盖板设置于所述反射围栏上,且所述遮光盖板设有中空结构,所述中空结构对应于所述波长转换部件。
  2. 根据权利要求1所述的波长转换装置,其特征在于,所述中空结构的尺寸与所述波长转换部件的尺寸大小相差±10%。
  3. 根据权利要求1所述的波长转换装置,其特征在于,所述中空结构在竖直方向上的投影为圆形、多边形的一种,所述波长转换部件在竖直方向上的投影为圆形、多边形的一种。
  4. 根据权利要求3所述的波长转换装置,其特征在于,所述中空结构在竖直方向上的投影与所述波长转换部件在竖直方向上的投影重合。
  5. 根据权利要求1所述的波长转换装置,其特征在于,所述遮光盖板的尺寸大于或等于所述反射围栏的尺寸。
  6. 根据权利要求5所述的波长转换装置,其特征在于,所述遮光盖板在竖直方向上的投影与所述反射围栏在竖直方向上的投影重合。
  7. 根据权利要求1所述的波长转换装置,其特征在于,所述波长转换部件的高度低于所述反射围栏的高度,或大于或等于所述反射围栏的高度并不超过所述遮光盖板的顶部。
  8. 根据权利要求1-7任一项所述的波长转换装置,其特征在于,所述波长转换部件的材料为Al2O3/YAG、Al2O3/LuAG、YAG或LuAG中的至少一种荧光陶瓷。
  9. 根据权利要求1-7任一项所述的波长转换装置,其特征在于,所述波长转换部件包括:
    发光层,所述发光层包括荧光陶瓷;
    光反射层,所述光反射层设置在发光层远离激光入射的一侧;
    保护层,所述保护层设置在光反射层远离所述发光层的一侧。
  10. 根据权利要求1-7任一项所述的波长转换装置,其特征在于,所述反射围栏的材料包括载体和漫反射粒子。
  11. 根据权利要求1-7任一项所述的波长转换装置,其特征在于,所述遮光盖板为反射层或吸光层。
  12. 一种波长转换装置的制备方法,其特征在于,所述制备方法包括:
    提供基板;
    制备波长转换部件,并将所述波长转换部件设置于所述基板上;
    制备反射围栏浆料,并将所述反射围栏浆料设置在所述波长转换部件的四周形成反射围栏;
    准备遮光盖板,并将所述遮光盖板设置在所述反射围栏的顶部上,
    其中,所述遮光盖板设有中空结构,所述中空结构对应于所述波长转换部件。
  13. 根据权利要求12所述的波长转换装置的制备方法,其特征在于,所述制备波长转换部件,并将所述波长转换部件设置于所述基板上的步骤包括:
    将荧光陶瓷进行抛光,抛光后在所述荧光陶瓷靠近所述基板的一侧镀反射层;
    在所述反射层的基础上再镀保护层,制得镀膜后的荧光陶瓷;
    将所述镀膜后的荧光陶瓷分切制得所述波长转换部件;
    将所述波长转换部件设置于所述基板上。
  14. 根据权利要求12所述的波长转换装置的制备方法,其特征在于,所述制备反射围栏浆料,并将所述反射围栏浆料设置在所述波长转换部件的四周形成反射围栏的步骤包括:
    将漫反射粒子与载体混合制得所述反射围栏浆料;
    将所述反射围栏浆料涂覆在所述波长转换部件的四周;
    将所述反射围栏浆料流平制得所述反射围栏。
  15. 根据权利要求12所述的波长转换装置的制备方法,其特征在于,所述遮光盖板的材料为含量达到99%以上的氧化铝陶瓷,所述准备遮光盖板,并将所述遮光盖板设置在所述反射围栏的顶部上的步骤包括:
    将所述氧化铝陶瓷磨薄得到磨薄后的氧化铝陶瓷;
    将所述磨薄后的氧化铝陶瓷切割,以得到所述遮光盖板;
    在所述反射围栏的顶部覆盖所述遮光盖板,并将所述反射围栏与所述遮光盖板连接。
  16. 一种发光装置,其特征在于,所述发光装置包括激发光源和权利要求1-11任一项所述的波长转换装置,所述激发光源形成的激发光斑与所述波长转换部件的尺寸一致。
PCT/CN2023/108137 2022-08-08 2023-07-19 一种波长转换装置及其制备方法、发光装置 WO2024032338A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210946746.6 2022-08-08
CN202222076902.6U CN218601671U (zh) 2022-08-08 2022-08-08 一种波长转换装置及发光装置
CN202222076902.6 2022-08-08
CN202210946746.6A CN117570399A (zh) 2022-08-08 2022-08-08 一种波长转换装置及其制备方法、发光装置

Publications (1)

Publication Number Publication Date
WO2024032338A1 true WO2024032338A1 (zh) 2024-02-15

Family

ID=89850769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108137 WO2024032338A1 (zh) 2022-08-08 2023-07-19 一种波长转换装置及其制备方法、发光装置

Country Status (1)

Country Link
WO (1) WO2024032338A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108779897A (zh) * 2016-03-08 2018-11-09 松下知识产权经营株式会社 光源装置
US20190024854A1 (en) * 2015-09-03 2019-01-24 Sharp Kabushiki Kaisha Light emission body and ilumination device
US20190081452A1 (en) * 2017-09-13 2019-03-14 Nichia Corporation Optical component, light emitting device using the optical component, and method of manufacturing the optical component
CN110017435A (zh) * 2018-01-10 2019-07-16 深圳光峰科技股份有限公司 波长转换装置
US20200348585A1 (en) * 2019-04-30 2020-11-05 Coretronic Corporation Wavelength conversion module, method of forming wavelength conversion module, illumination system and projection apparatus
CN218601671U (zh) * 2022-08-08 2023-03-10 深圳市绎立锐光科技开发有限公司 一种波长转换装置及发光装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190024854A1 (en) * 2015-09-03 2019-01-24 Sharp Kabushiki Kaisha Light emission body and ilumination device
CN108779897A (zh) * 2016-03-08 2018-11-09 松下知识产权经营株式会社 光源装置
US20190081452A1 (en) * 2017-09-13 2019-03-14 Nichia Corporation Optical component, light emitting device using the optical component, and method of manufacturing the optical component
CN110017435A (zh) * 2018-01-10 2019-07-16 深圳光峰科技股份有限公司 波长转换装置
US20200348585A1 (en) * 2019-04-30 2020-11-05 Coretronic Corporation Wavelength conversion module, method of forming wavelength conversion module, illumination system and projection apparatus
CN218601671U (zh) * 2022-08-08 2023-03-10 深圳市绎立锐光科技开发有限公司 一种波长转换装置及发光装置

Similar Documents

Publication Publication Date Title
TWI546499B (zh) 一種波長轉換裝置
JP6460162B2 (ja) 波長変換装置の製造方法
KR101371971B1 (ko) 파장 변환 입자 및 그것을 이용한 파장 변환 부재 및 발광 장치
WO2017068765A1 (ja) 波長変換素子及び発光装置
EP3739257B1 (en) Wavelength conversion apparatus
CN110737085B (zh) 波长转换装置
JP7235944B2 (ja) 発光装置及び発光装置の製造方法
CN108930919B (zh) 一种波长转换装置及其制备方法、光源
JPWO2013065414A1 (ja) 発光装置、照明装置、及び、発光装置の製造方法
WO2008058446A1 (en) Light emitting system
JP2011171504A (ja) 発光装置
CN109681846B (zh) 波长转换装置及其制备方法
WO2024032338A1 (zh) 一种波长转换装置及其制备方法、发光装置
WO2018209925A1 (zh) 波长转换装置及其制备方法
JP5351669B2 (ja) 波長変換部材およびそれを用いた発光装置
CN218601671U (zh) 一种波长转换装置及发光装置
WO2013159664A1 (zh) 一种白光led发光装置及制备方法
CN109282169B (zh) 波长转换装置、包含其的光源及投影装置
CN103836349B (zh) 发光装置
CN117570399A (zh) 一种波长转换装置及其制备方法、发光装置
JP3169827U (ja) 発光装置
TWI389595B (zh) 承載基板結構及其製造方法
WO2019136831A1 (zh) 波长转换装置及其光源
JP5806153B2 (ja) 発光装置
JP2007088100A (ja) 照明器具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851560

Country of ref document: EP

Kind code of ref document: A1