WO2017038172A1 - 入力装置 - Google Patents

入力装置 Download PDF

Info

Publication number
WO2017038172A1
WO2017038172A1 PCT/JP2016/065667 JP2016065667W WO2017038172A1 WO 2017038172 A1 WO2017038172 A1 WO 2017038172A1 JP 2016065667 W JP2016065667 W JP 2016065667W WO 2017038172 A1 WO2017038172 A1 WO 2017038172A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
electrode
island
bridge
input device
Prior art date
Application number
PCT/JP2016/065667
Other languages
English (en)
French (fr)
Inventor
敏行 茂木
浅野 功
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to KR1020187000177A priority Critical patent/KR102067913B1/ko
Priority to CN201680037505.2A priority patent/CN107710124B/zh
Priority to DE112016003934.4T priority patent/DE112016003934T5/de
Priority to JP2017537585A priority patent/JP6417049B2/ja
Publication of WO2017038172A1 publication Critical patent/WO2017038172A1/ja
Priority to US15/814,218 priority patent/US10474301B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the present invention relates to an input device, and more particularly to an input device provided with a plurality of detection electrodes for detecting a position on a substrate.
  • a translucent input device is disposed in front of a color liquid crystal display panel.
  • This input device is called a touch panel.
  • a capacitance is formed between the electrodes, and the coordinates of the approach position of the finger are determined from the change in movement of the charge when the finger of the person approaches.
  • a capacitive sensor is used to detect this change in charge transfer.
  • Patent Document 1 describes a configuration in which a bridge wiring is provided at the intersection of a plurality of wirings crossing each other.
  • the bridge wiring is formed at the intersection of the plurality of wirings via the insulating layer, and the insulation between the plurality of wirings crossing each other is secured.
  • Patent Document 2 describes a force imaging touch pad provided with a force measurement system as part of a touch pad input device.
  • the force imaging touch pad includes first and second sets of conductive traces separated by a spring membrane. When a force is applied to the force imaging touch pad, the spring membrane deforms, causing the two sets of traces to move closer. This causes the mutual capacitance to change and this change is used to generate an image that shows the amount or strength of the applied force.
  • a movable space is provided to change the distance between two members according to the pressure, and such a movable space While it is difficult to reduce the thickness as much as possible, problems such as a decrease in waterproofness and dust resistance occur.
  • An object of the present invention is to provide a thin input device capable of detecting both position and weight and capable of improving waterproofness and dust resistance.
  • the input device of the present invention is provided on a base material and is provided between a position detection unit having a plurality of detection electrodes and a plurality of detection electrodes in a position detection unit. And a wire for detecting a load whose resistance value changes.
  • the weight detection wiring whose electric resistance value changes with pressure is provided between the plurality of detection electrodes of the position detection unit, the movable space for pressure detection is not provided. The weight can be detected by the change of the electrical resistance value according to the pressure applied to the weight detection wiring.
  • the weight detection wiring may be provided to extend in a predetermined direction in the position detection unit. Since the electrical resistance value of the load detection wiring changes due to pressure, the accuracy of the load detection improves as the length of the position detection unit extends in a predetermined direction and the length becomes longer.
  • a plurality of weight detection wirings may be provided at predetermined intervals. Thereby, weighted detection can be performed in a wide range of the area of the position detection unit.
  • the plurality of detection electrodes have a first electrode and a second electrode extending in a direction intersecting each other, and the first electrode is provided at the intersection position of the first electrode and the second electrode.
  • the weight detection wiring may be provided to cross the bridge wiring.
  • the material of the weight detection wiring may be the same as the material of the bridge wiring. This simplifies the manufacturing process of the weight detection wiring.
  • the input device of the present invention may further include an island-shaped insulating portion provided between the weight detection wiring and the bridge wiring.
  • the weight detection wiring has the first wiring portion and the second wiring portion, and when viewed from above the base material, a part of the bridge wiring at the position of the bridge wiring, and an island shape A portion of the insulating layer may overlap with a portion of the second wiring portion, and a portion of the first wiring portion may overlap with a portion of the second wiring portion at a position other than the bridge wiring.
  • concentrated pressurization is performed at the overhang of the bridge wiring or at the overlapping portion of the first wiring portion and the second wiring portion, and even if it is a minute load, the weight detection wiring The change in the electrical resistance value of can be increased.
  • the input device of the present invention at least a part of the weight detection wiring may be provided in the same layer as the plurality of detection electrodes on the base material. As a result, even when the weight detection wiring is provided in the position detection unit, the input device can be formed without increasing the number of layers in the layer structure.
  • the present invention it is not necessary to provide a movable space for weight detection in an input device capable of detecting both position and weight, and it is possible to improve the thinness and waterproofness and dust resistance.
  • (A) And (b) is a top view which illustrates the electrostatic capacitance type sensor concerning a 1st embodiment.
  • (A) And (b) is sectional drawing of a part of electrostatic capacitance type sensor. It is a top view which illustrates an electrostatic capacitance type sensor concerning a 2nd embodiment.
  • (A) And (b) is sectional drawing of a part of electrostatic capacitance type sensor.
  • (A) And (b) is a figure which illustrates the electrostatic capacitance type sensor which concerns on 3rd Embodiment.
  • (A) And (b) is a figure which illustrates the electrostatic capacitance type sensor which concerns on 4th Embodiment.
  • FIGS. 1A and 1B are plan views illustrating the capacitance type sensor according to the first embodiment.
  • FIG. 1A shows an overall view of the capacitance type sensor 1
  • FIG. 1B shows an enlarged view of a portion A of FIG.
  • the capacitive sensor 1 is an example of an input device.
  • the capacitance type sensor 1 includes the first electrode 11 and the second electrode 12 provided in the position detection unit S of the base material 10.
  • the first electrode 11 and the second electrode 12 are detection electrodes for detecting the position where the finger is in contact (approaching) in the position detection unit S.
  • the first electrode 11 extends in the X direction along the surface of the substrate 10, and the second electrode 12 extends in the Y direction perpendicular to the X direction along the surface of the substrate 10.
  • the first electrode 11 and the second electrode 12 are mutually insulated.
  • the plurality of first electrodes 11 are disposed at a predetermined pitch in the Y direction
  • the plurality of second electrodes 12 are disposed at a predetermined pitch in the X direction.
  • the first electrode 11 has a plurality of first island-shaped electrode portions 111.
  • the plurality of first island-shaped electrode portions 111 have a shape close to a rhombus and are arranged side by side in the X direction.
  • the second electrode 12 has a plurality of second island-shaped electrode portions 121.
  • the plurality of second island-shaped electrode portions 121 also have a shape close to a rhombus and are arranged in the Y direction.
  • Each of the plurality of first electrodes 11 is connected to a lead wire 11 a drawn to the outside of the position detection unit S. Further, also to each of the plurality of second electrodes 12, a lead wire 12 a drawn to the outside of the position detection unit S is connected.
  • a detection circuit (not shown). For example, when a finger is brought close to the position detection unit S in a state where a predetermined potential is applied to the first electrode 11 and the second electrode 12, electrostatic force is generated between each of the first electrode 11 and the second electrode 12 and the finger. A capacity change occurs.
  • the X, Y coordinates in the position detection unit S to which the finger approaches are determined.
  • the first electrode 11 and the second electrode 12 are connected to each other at a connection position of two adjacent first island-shaped electrode portions 111 and to each other two adjacent second island-shaped electrode portions 121. Intersect with the connected position of The bridge wiring portion 20 is provided at the intersection portion via the island-like insulating portion 30, and the first electrode 11 and the second electrode 12 are not in contact at the intersection portion.
  • the bridge wiring portion 20 is provided so as to straddle between two adjacent second island-shaped electrode portions 121.
  • the bridge wiring portion 20 is provided between the second island-shaped electrode portions 121 arranged in the Y direction.
  • the plurality of second island-shaped electrode portions 121 become conductive.
  • the island-shaped insulating portion 30 is provided between the bridge wiring portion 20 and the first electrode 11 and serves to insulate the first electrode 11 from the second electrode 12 at the intersection.
  • a weight detection wiring 13 is provided between the plurality of first island-shaped electrode portions 111 and the plurality of second island-shaped electrode portions 121 in the position detection unit S.
  • the load detection wiring 13 is a wiring whose electric resistance value changes with pressure.
  • the load detection wiring 13 is provided in a zigzag manner along the rhombus between the first island-shaped electrode portion 111 and the second island-shaped electrode portion 121, and is extended in the X direction, for example, as a whole.
  • FIGS. 2A and 2B are cross-sectional views of part of a capacitive sensor.
  • FIG. 2 (a) shows the Y1-Y1 cross section of FIG. 1 (b)
  • FIG. 2 (b) shows the X1-X1 cross section of FIG. 1 (b).
  • the first insular electrode portion 111 of the first electrode 11 and the second insular electrode portion 121 of the second electrode 12 are disposed on the surface 10 a of the base material 10. Further, a weight detection wiring 13 is provided between the first electrode 11 and the second electrode 12 on the surface 10 a of the base material 10. The load detection wiring 13 is provided on the surface 10 a of the base material 10, that is, in the same layer as the first island-shaped electrode portion 111 of the first electrode 11 and the second island-shaped electrode portion 121 of the second electrode 12. Thus, even when the weight detection wiring 13 is provided, the increase in the number of layers is suppressed.
  • the bridge wiring portion 20 is provided between the adjacent second island-shaped electrode portions 121 via the island-shaped insulating portion 30.
  • the interlayer elastic member 40 is provided on the first electrode 11, the second electrode 12, and the bridge wiring portion 20, and the protective member 50 is provided thereon.
  • OCA Optical Clear Adhesive
  • the interlayer elastic member 40 has an elastic force that transmits an appropriate pressure to the load detection wiring 13 when a pressing force is applied from above the protective member 50.
  • the electric resistance value of the weight detection wiring 13 is detected by a detection circuit (not shown). That is, when a predetermined pressure is applied while the finger is in contact with the protective member 50, the pressure is transmitted to the load detection wiring 13, and the electric resistance value of the load detection wiring 13 changes according to the received pressure. .
  • the pressure applied to the weight detection wiring 13 can be obtained by detecting the change in the electrical resistance value with a detection circuit (not shown).
  • the X and Y coordinates in the position detection unit S where the finger approaches are determined by the capacitance change between each of the first electrode 11 and the second electrode 12 and the finger. Furthermore, the pressure when the position detection unit S is pressed by the finger can be detected by the change in the electrical resistance value of the load detection wiring 13. Therefore, the position (X, Y coordinates) when the finger is in contact with the pressing force can be obtained in association with each other.
  • the electric resistance value changes due to pressure, so that a load is generated by a change in the electric resistance value according to the pressure applied to the load detection wiring 13 without providing a movable space for pressure detection. Can be detected.
  • a plurality of weight detection wirings 13 may be provided at predetermined intervals in the Y direction. Thereby, weighted detection can be performed in a wide range of the area of the position detection unit S.
  • a plurality of weight detection wires 13 are provided at predetermined intervals in a predetermined direction (for example, the X direction)
  • the balance of changes in the electrical resistance value of each weight detection wire 13 makes it possible to obtain the most in any position in the Y direction. It can be determined by calculation whether high pressure is applied. For example, when a change in electrical resistance occurs in two adjacent weight detection wires 13, the peak position of the pressure between the two weight detection wires 13 is distributed proportionally to the change amount of the two electrical resistance values. You can ask for
  • the weight detection wiring 13 is provided at a position intersecting the bridge wiring portion 20. As a result, when pressure is applied from above the protective member 50 with a finger, concentrated pressing is performed on the weight detection wiring 13 by the protrusion of the bridge wiring portion 20, and even if it is a minute load, the weight detection wiring The change of the electrical resistance value of 13 can be enlarged.
  • the first island-shaped electrode portion 111 of the first electrode 11 and the second island of the second electrode 12 are formed on the surface 10 a of the substrate 10.
  • An electrode portion 121 and a weight detection wiring 13 are formed.
  • the substrate 10 for example, glass, acrylic resin, or resin sheet is used.
  • the first electrode 11, the second electrode 12, and the load detection wiring 13 are formed by photolithography, etching, and screen printing.
  • an ITO (Indium Tin Oxide) layer is formed on the substrate 10 by sputtering, and a resist is formed thereon. After the resist is exposed and developed and patterned, the ITO layer is etched. Thereafter, the resist is peeled off. As a result, the first electrode 11, the second electrode 12, and the weight detection wiring 13 made of the ITO layer patterned on the substrate 10 are formed.
  • ITO Indium Tin Oxide
  • the island-shaped insulating portion 30 is formed at the intersection between the first electrode 11 and the second electrode 12.
  • the island-shaped insulating portion 30 is formed by screen printing, a dry film resist, or a liquid resist.
  • screen printing for example, an insulating material (optical material) having high transparency is applied by screen printing and subjected to annealing.
  • a dry film resist for example, after attaching a light transmitting dry film resist, exposure and development are performed.
  • a liquid resist for example, after applying a light transmitting liquid resist, exposure and development are performed.
  • the bridge wiring portion 20 is formed so as to straddle the island-shaped insulating portion 30.
  • the bridge wiring portion 20 is formed by photolithography and etching or screen printing.
  • photolithography and etching for example, a laminate of an ITO layer, a metal layer and an ITO layer is formed by sputtering, and a resist is formed thereon. After exposing and developing the resist and patterning, the laminate is etched. Thereafter, the resist is peeled off.
  • a bridge wiring portion 20 is formed which straddles the island-shaped insulating portion 30 and which is electrically connected to the two second island-shaped electrode portions 121 whose both ends are adjacent to each other.
  • the bridge wiring portion 20 is formed by screen printing, for example, a conductive film including silver nanowires is screen printed on the island-shaped insulating portion 30. Then, the conductive film of silver nanowires is annealed and roll pressed. Here, flash lamp annealing may be performed. Thus, the bridge wiring portion 20 is formed on the island-shaped insulating portion 30.
  • the interlayer elastic member 40 made of OCA is attached to the entire surface, and the protective member 50 is attached on the interlayer elastic member 40. Thereby, the capacitance type sensor 1 is completed.
  • the weight detection wiring 13 is formed in the same step and the same material as the first electrode 11 and the second electrode 12, but the weight detection wiring 13 is different from the first electrode 11 and the second electrode 12. It may be formed by a process or may be formed of another material. At this time, the material of the weight detection wiring 13 may be the same as the material of the bridge wiring portion 20. Thereby, the manufacturing process of the weight detection wiring 13 is simplified.
  • FIG. 3 is a plan view illustrating the capacitance type sensor according to the second embodiment.
  • FIG. 3 shows an enlarged view of a portion corresponding to the portion A of FIG.
  • the capacitive sensor 1 ⁇ / b> B according to the present embodiment, at the intersection of the first electrode 11 and the second electrode 12, the connecting portion 112 of the first electrode 11 and the weight detection wiring 13 are formed on the island-shaped insulating portion 30. Is provided.
  • a connecting portion 112 is provided between two adjacent first island-shaped electrode portions 111 of the first electrode 11.
  • the connection part 112 is provided so as to connect the facing corners of two adjacent first island-shaped electrode parts 111.
  • a bridge portion 122 is provided between two adjacent second island-shaped electrode portions 121 of the second electrode 12.
  • the bridge portion 122 is formed on the base material 10 and provided to connect the lower surfaces of the facing corner portions of two adjacent second island-shaped electrode portions 121.
  • connection portion 112 is provided to intersect the bridge portion 122 via the island-shaped insulating portion 30.
  • weight detection wiring 13 is provided to intersect the bridge portion 122 via the island-shaped insulating portion 30.
  • FIGS. 4A and 4B are cross-sectional views of part of the capacitive sensor.
  • FIG. 4A shows the Y2-Y2 cross section of FIG. 3 and
  • FIG. 4B shows the X2-X2 cross section of FIG.
  • the first insular electrode portion 111 of the first electrode 11 and the second insular electrode portion 121 of the second electrode 12 are disposed on the surface 10 a of the base material 10.
  • the connecting portion 112 of the first electrode 11 and the bridge portion 122 of the second electrode 12 intersect with each other via the island-shaped insulating portion 30, and Insulated.
  • the island-shaped insulating portion 30 is provided so as to cover the bridge portion 122 of the second electrode 12, and the connecting portion 112 of the first electrode 11 and the weight detection wiring 13 are provided to straddle the island-shaped insulating portion 30.
  • the end (corner) of the second island-like electrode portion 121 is mounted on the end of the bridge portion 122 exposed from the island-like insulating portion 30 and connected.
  • the load detection wiring 13 is provided on the island-shaped insulating portion 30 protruding with respect to the surface 10a of the base material 10. At this time, the pressure applied to the load detection wiring 13 is intensively applied by the protrusion of the island-shaped insulating portion 30, and the change in the electrical resistance value of the load detection wiring 13 can be increased even with a minute load. .
  • FIG. 5A and FIG. 5B are views exemplifying a capacitance type sensor according to a third embodiment.
  • FIG. 5 (a) shows an enlarged view of a portion corresponding to part A of FIG. 1 (a), and FIG. 5 (b) shows a cross-sectional view taken along line AA of FIG. 5 (a).
  • Ru in the capacitive sensor 1C according to the present embodiment, the weight detection wiring 13 is divided at the position of the island-shaped insulating portion 30.
  • the weight detection wiring 13 has a first wiring portion 131 and a second wiring portion 132.
  • the second wiring portion 132 is provided below the island-shaped insulating portion 30.
  • the second wiring portion 132 is provided between the divided first wiring portions 131. Both ends of the second wiring portion 132 overlap with respective end portions of the divided first wiring portion 131.
  • the bridge wiring portion 20 is provided to straddle the second wiring portion 132 via the island-shaped insulating portion 30.
  • the bridge wiring portion 20 when viewed from above the base material 10, at the position of the bridge wiring portion 20, a portion of the bridge wiring portion 20, a portion of the island-like insulating portion 30, and a portion of the second wiring portion 132 overlap. It has a part. In addition, at positions other than the bridge wiring portion 20, there is a portion where a part of the first wiring portion 131 and a part of the second wiring portion 132 overlap.
  • the bridge wiring portion 20 is provided at the position of the recess of the island-shaped insulating portion 30 (the position where the first wiring portion 131 and the second wiring portion 132 do not overlap). As a result, the thickness of the stack at the overlapping position of the bridge wiring portion 20 can be reduced.
  • concentrated pressure is applied to the weight detection wiring 13 at the protrusion of the bridge wiring portion 20 or at the overlapping portion of the first wiring portion 131 and the second wiring portion 132. That is, at the position of the bridge wiring portion 20, the pressing force applied from above the protective member 50 is concentrated for detecting a load due to overlapping of a portion of the bridge wiring portion 20 and a portion of the second wiring portion 132. Applied to the wiring 13. Further, in portions other than the bridge wiring portion 20 on the island-shaped insulating portion 30, concentration is caused by overlapping with a portion of the island-shaped insulating portion 30, a portion of the second wiring portion 132 and a portion of the first wiring portion 131. Is applied to the weight detection wiring 13. This makes it possible to increase the change in the electrical resistance value of the weight detection wiring 13 even with a minute weight.
  • FIGS. 6A and 6B are diagrams illustrating a capacitance type sensor according to a fourth embodiment.
  • FIG. 6 (a) shows an enlarged view of a portion corresponding to part A of FIG. 1 (a), and FIG. 6 (b) shows a cross-sectional view taken along line BB of FIG. 6 (a). Ru.
  • the weight detection wiring 13 is divided.
  • the weight detection wiring 13 has a first wiring portion 131 and a second wiring portion 132.
  • the bridge portion 122 of the second electrode 12 and the connecting portion 112 of the first electrode 11 are provided to intersect via the island-shaped insulating portion 30.
  • the island-shaped insulating portion 30 is provided so as to cover the bridge portion 122 of the second electrode 12 provided on the surface 10 a of the base material 10.
  • the second island-shaped electrode portion 121 is connected to the end of the bridge portion 122 exposed from the island-shaped insulating portion 30.
  • the connecting portion 112 of the first electrode 11 is provided so as to straddle the island-shaped insulating portion 30.
  • the first wiring portion 131 of the weight detection wiring 13 is provided to run on the end portion of the island-shaped insulating portion 30 from the surface 10 a of the base material 10.
  • the second wiring portion 132 of the weight detection wiring 13 is provided on the island-shaped insulating portion 30, and the end portion of the second wiring portion 132 is provided on the island-shaped insulating portion 30. It is provided overlapping with the end.
  • concentrated pressure is applied to the weight detection wiring 13 at the protruding portion of the island-shaped insulating portion 30 or at the overlapping portion of the first wiring portion 131 and the second wiring portion 132. That is, at the position of the island-shaped insulating portion 30, the pressing force applied from above the protective member 50 is intensively weighted due to the overlapping of a portion of the island-shaped insulating portion 30 and a portion of the second wiring portion 132.
  • the voltage is applied to the detection wiring 13. This makes it possible to increase the change in the electrical resistance value of the weight detection wiring 13 even with a minute weight.
  • Capacitance-type sensor 10 Base material 10a ... Surface 11 ... 1st electrode 11a ... Lead-out wiring 12 ... 2nd electrode 12a ... Wiring for a weight detection 20 ... Wiring 20 for a bridge ... Bridge wiring part 30 ... Island-like insulating part 40 ... Interlayer elastic member 50 ... Protective member 111 ... First island-like electrode part 112 ... Coupling part 121 ... Second island-like electrode part 122 ... Bridge part 131 ... First wiring part 132 ... Second wiring part S: Position detection unit

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

位置および加重の両方を検出可能な入力装置において薄型で防水性や防塵性を向上させることができる入力装置として、基材の上に設けられ、複数の検出電極を有する位置検出部と、位置検出部における複数の検出電極の間に設けられ、圧力によって電気抵抗値が変化する加重検出用配線と、を備える入力装置が提供され、かかる入力装置は、複数の検出電極は、互いに交差する方向に延びる第1電極と第2電極とを有し、第1電極は、第1電極と第2電極との交差位置に設けられたブリッジ配線部を有し、加重検出用配線は、ブリッジ配線部と交差するよう設けられていてもよい。

Description

入力装置
 本発明は、入力装置に関し、特に基材の上に位置を検出するための複数の検出電極が設けられた入力装置に関する。
 各種情報処理装置では、カラー液晶表示パネルの前方に透光性の入力装置が配置されている。この入力装置はタッチパネルと称される。タッチパネルでは電極間に静電容量が形成され、人の指が接近したときの電荷の移動の変化から指の接近位置の座標を判定している。この電荷の移動の変化を検出するには、静電容量式センサが用いられる。
 特許文献1には、互いに交差する複数の配線の交差部分にブリッジ配線を設ける構成が記載されている。この構成では、複数の配線の交差部分に絶縁層を介してブリッジ配線を形成し、互いに交差する複数の配線間の絶縁性を確保している。
 特許文献2には、タッチ・パッド入力デバイスの一部として力測定システムが設けられた力イメージング・タッチ・パッドが記載されている。この力イメージング・タッチ・パッドは、ばね膜によって分離された導電トレースの第1組と第2組を含む。この力イメージング・タッチ・パッドに力が加えられると、ばね膜が変形し、トレースの2つの組をより近くに移動させる。これにより、相互キャパシタンスが変化して、この変化が、加えられた力の量または強度を示すイメージを生成するのに使用される。
特開2011-191847号公報 特開2007-272898号公報
 しかしながら、タッチセンサのような入力装置において接触圧力を検出する手段を備えた構成では、圧力に応じて2つの部材の間隔を変化させるための可動空間が設けられており、このような可動空間によってその厚みの分の薄型化が困難となるとともに、防水性や防塵性の低下を招くという問題が生じる。
 本発明は、位置および加重の両方を検出可能な入力装置において薄型で防水性や防塵性を向上させることができる入力装置を提供することを目的とする。
 上記課題を解決するため、本発明の入力装置は、基材の上に設けられ、複数の検出電極を有する位置検出部と、位置検出部における複数の検出電極の間に設けられ、圧力によって電気抵抗値が変化する加重検出用配線と、を備えたことを特徴とする。このような構成によれば、圧力によって電気抵抗値が変化する加重検出用配線が、位置検出部の複数の検出電極の間に設けられているため、圧力検出のための可動空間を設けることなく、加重検出用配線へ加わる圧力に応じた電気抵抗値の変化によって加重を検出することができるようになる。
 本発明の入力装置において、加重検出用配線は、位置検出部において所定方向に延出するよう設けられていてもよい。加重検出用配線は、圧力によって電気抵抗値が変化するため、位置検出部の所定方向に延出して長さが長くなるほど加重検出の精度が向上する。
 本発明の入力装置において、加重検出用配線は、所定の間隔で複数設けられていてもよい。これにより、位置検出部の領域の広い範囲において加重検出を行うことができる。
 本発明の入力装置において、複数の検出電極は、互いに交差する方向に延びる第1電極と第2電極とを有し、第1電極は、第1電極と第2電極との交差位置に設けられたブリッジ配線部を有し、加重検出用配線は、ブリッジ配線と交差するよう設けられていてもよい。これにより、加重検出用配線のブリッジ配線との交差位置において、ブリッジ配線の出っ張りによる集中的な加圧が行われ、微小な加重であっても加重検出用配線の電気抵抗値の変化を大きくすることができる。
 本発明の入力装置において、加重検出用配線の材料は、ブリッジ配線の材料と同じであってもよい。これにより、加重検出用配線の製造工程が簡素化される。
 本発明の入力装置において、加重検出用配線とブリッジ配線との間に設けられた島状絶縁部をさらに備えていてもよい。これにより、加重検出用配線のブリッジ配線との交差位置において、ブリッジ配線の出っ張りおよび島状絶縁部による集中的な加圧が行われ、微小な加重であっても加重検出用配線の電気抵抗値の変化を大きくすることができる。
 本発明の入力装置において、加重検出用配線は、第1配線部と、第2配線部とを有し、基材の上からみた場合、ブリッジ配線の位置においてブリッジ配線の一部と、島状絶縁層の一部と、第2配線部の一部とが重なり、ブリッジ配線以外の位置において第1配線部の一部と第2配線部の一部とが重なるようになっていてもよい。これにより、加重検出用配線には、ブリッジ配線の出っ張りや、第1配線部と第2配線部との重なり部分において集中的な加圧が行われ、微小な加重であっても加重検出用配線の電気抵抗値の変化を大きくすることができる。
 本発明の入力装置において、加重検出用配線の少なくとも一部は、基材の上において複数の検出電極と同層に設けられていてもよい。これにより、位置検出部に加重検出用配線を設けても層構造の層数を増加させることなく入力装置を形成することができる。
 本発明によれば、位置および加重の両方を検出可能な入力装置において加重検出のための可動空間を設ける必要がなく、薄型で防水性や防塵性を向上させることが可能になる。
(a)および(b)は、第1実施形態に係る静電容量式センサを例示する平面図である。 (a)および(b)は、静電容量式センサの一部の断面図である。 第2実施形態に係る静電容量式センサを例示する平面図である。 (a)および(b)は、静電容量式センサの一部の断面図である。 (a)および(b)は、第3実施形態に係る静電容量式センサを例示する図である。 (a)および(b)は、第4実施形態に係る静電容量式センサを例示する図である。
 以下、本発明の実施形態を図面に基づいて説明する。なお、以下の説明では、同一の部材には同一の符号を付し、一度説明した部材については適宜その説明を省略する。
(第1実施形態)
 図1(a)および(b)は、第1実施形態に係る静電容量式センサを例示する平面図である。図1(a)には静電容量式センサ1の全体図が表され、図1(b)には図1(a)のA部の拡大図が表される。本実施形態において、静電容量式センサ1は、入力装置の一例である。
 図1(a)に表したように、本実施形態に係る静電容量式センサ1は、基材10の位置検出部Sに設けられた第1電極11および第2電極12を備える。第1電極11および第2電極12は位置検出部S内において指が接触(接近)した位置を検出する検出電極である。
 第1電極11は基材10の表面に沿ったX方向に延在し、第2電極12は基材10の表面に沿いX方向と直交するY方向に延在する。第1電極11および第2電極12は互い絶縁される。本実施形態では、Y方向に所定のピッチで複数の第1電極11が配置され、X方向に所定のピッチで複数の第2電極12が配置される。
 第1電極11は複数の第1島状電極部111を有する。本実施形態では、複数の第1島状電極部111は菱形に近い形状を有し、X方向に並んで配置される。また、第2電極12は複数の第2島状電極部121を有する。複数の第2島状電極部121も菱形に近い形状を有し、Y方向に並んで配置される。
 複数の第1電極11のそれぞれには位置検出部Sの外側へ引き出される引き出し配線11aが接続される。また、複数の第2電極12のそれぞれにも位置検出部Sの外側へ引き出される引き出し配線12aが接続される。静電容量式センサ1では、各引き出し配線11aおよび12aを流れる電流の変化を図示しない検出回路で検出する。例えば、第1電極11および第2電極12に所定の電位を与えた状態で、位置検出部Sに指を近づけると、第1電極11および第2電極12のそれぞれと指との間に静電容量変化が生じる。この静電容量変化によって生じる電位低下を検出することで、指が接近した位置検出部S内でのX,Y座標を判定する。
 図1(b)に表したように、第1電極11と第2電極12とは、隣り合う2つの第1島状電極部111の連結位置と、隣り合う2つの第2島状電極部121の連結位置とで交差している。この交差部分に島状絶縁部30を介してブリッジ配線部20が設けられ、交差部分において第1電極11と第2電極12とが接触しないようになっている。
 本実施形態において、ブリッジ配線部20は、隣り合う2つの第2島状電極部121の間を跨ぐように設けられる。ブリッジ配線部20はY方向に並ぶ各第2島状電極部121の間に設けられる。これにより複数の第2島状電極部121が導通状態になる。島状絶縁部30は、ブリッジ配線部20と第1電極11との間に設けられ、交差部分において第1電極11と第2電極12とを絶縁する役目を果たす。
 位置検出部Sにおける複数の第1島状電極部111および複数の第2島状電極部121の間には、加重検出用配線13が設けられる。加重検出用配線13は、圧力によって電気抵抗値が変化する配線である。加重検出用配線13は、菱形の第1島状電極部111および第2島状電極部121の間に沿ってジグザグに設けられるとともに、全体として例えばX方向に延出するよう設けられる。
 図2(a)および(b)は、静電容量式センサの一部の断面図である。図2(a)には図1(b)のY1-Y1断面が表され、図2(b)には図1(b)のX1-X1断面が表される。
 基材10の面10aの上には第1電極11の第1島状電極部111および第2電極12の第2島状電極部121が配置される。また、基材10の面10aの上における第1電極11と第2電極12との間には、加重検出用配線13が設けられる。加重検出用配線13は、基材10の面10aの上、すなわち、第1電極11の第1島状電極部111および第2電極12の第2島状電極部121と同層に設けられる。これにより、加重検出用配線13を設ける場合でも層数の増加が抑制される。
 隣り合う第2島状電極部121の間には、島状絶縁部30を介してブリッジ配線部20が設けられる。第1電極11、第2電極12およびブリッジ配線部20の上には層間弾性部材40が設けられ、その上に保護部材50が設けられる。層間弾性部材40には、例えば光学透明粘着層であるOCA(Optical Clear Adhesive)が用いられる。層間弾性部材40は、保護部材50の上から押圧力が加えられた際に加重検出用配線13へ適度な圧力を伝える弾性力を備える。
 このような静電容量式センサ1において、加重検出用配線13の電気抵抗値は、図示しない検出回路によって検出される。すなわち、保護部材50の上に指を接触させた状態で所定の圧力を加えると、その圧力が加重検出用配線13に伝わり、受ける圧力に応じて加重検出用配線13の電気抵抗値が変化する。この電気抵抗値の変化を図示しない検出回路で検出することにより、加重検出用配線13に加わる圧力を得ることができる。
 本実施形態では、第1電極11および第2電極12のそれぞれと指との間の容量変化によって指が接近した位置検出部S内でのX,Y座標を判定する。さらに、その指によって位置検出部Sを押圧した際の圧力を加重検出用配線13の電気抵抗値の変化によって検出することができる。したがって、指を接触させた際の位置(X,Y座標)と、押圧力とを対応付けして得ることができる。
 このような加重検出用配線13では、圧力によって電気抵抗値が変化するため、圧力検出のための可動空間を設けることなく、加重検出用配線13へ加わる圧力に応じた電気抵抗値の変化によって加重を検出することができる。
 ここで、加重検出用配線13は、例えばY方向に所定の間隔で複数設けられていてもよい。これにより、位置検出部Sの領域の広い範囲において加重検出を行うことができる。複数の加重検出用配線13が所定方向(例えば、X方向)に所定の間隔で設けられている場合、各加重検出用配線13の電気抵抗値の変化のバランスによって、Y方向におけるどの位置に最も高い圧力が加わったのかを演算によって求めることができる。例えば、隣り合う2つの加重検出用配線13にそれぞれ電気抵抗値の変化が生じた場合、2つの電気抵抗値の変化量を比例配分して2つの加重検出用配線13の間の圧力のピーク位置を求めることができる。
 また、本実施形態において加重検出用配線13は、ブリッジ配線部20と交差する位置に設けられる。これにより、保護部材50の上から指によって圧力が加わった際、ブリッジ配線部20の出っ張りによって加重検出用配線13に集中的な加圧が行われ、微小な加重であっても加重検出用配線13の電気抵抗値の変化を大きくすることができる。
(静電容量式センサの製造方法)
 本実施形態に係る静電容量式センサ1を製造するには、先ず、基材10の面10aの上に第1電極11の第1島状電極部111と、第2電極12の第2島状電極部121と、加重検出用配線13とを形成する。
 基材10には、例えばガラスやアクリル樹脂、樹脂シートが用いられる。第1電極11、第2電極12および加重検出用配線13は、フォトリソグラフィおよびエッチングやスクリーン印刷によって形成される。例えば、フォトリソグラフィおよびエッチングで形成する場合、例えばITO(Indium Tin Oxide)層をスパッタによって基材10上に形成し、その上にレジストを形成する。レジストを露光および現像してパターニングした後、ITO層をエッチングする。その後、レジストを剥離する。これにより、基材10上にパターニングされたITO層からなる第1電極11、第2電極12および加重検出用配線13が形成される。
 次に、第1電極11と第2電極12との交差位置に島状絶縁部30を形成する。島状絶縁部30は、スクリーン印刷、ドライフィルムレジストや液状レジストによって形成される。スクリーン印刷で形成する場合、例えば高い透光性を有する絶縁材料(光学材料)をスクリーン印刷によって塗布し、アニールを施す。ドライフィルムレジストで形成する場合、例えば透光性を有するドライフィルムレジストを貼り付けた後、露光および現像を行う。液状レジストで形成する場合、例えば透光性を有する液状レジストを塗布した後、露光および現像を行う。
 次に、島状絶縁部30の上を跨ぐようにブリッジ配線部20を形成する。ブリッジ配線部20は、フォトリソグラフィおよびエッチングやスクリーン印刷によって形成される。ブリッジ配線部20をフォトリソグラフィおよびエッチングで形成する場合、例えばITO層、金属層およびITO層の積層体をスパッタによって形成し、その上にレジストを形成する。レジストを露光および現像してパターニングした後、積層体をエッチングする。その後、レジストを剥離する。これにより、島状絶縁部30の上を跨ぎ、両端が隣り合う2つの第2島状電極部121と導通するブリッジ配線部20が形成される。
 ブリッジ配線部20をスクリーン印刷によって形成する場合、例えば銀ナノワイヤを含む導電膜を島状絶縁部30の上にスクリーン印刷する。次いで、銀ナノワイヤの導電膜をアニールおよびロールプレスする。ここではフラッシュランプアニールを行ってもよい。これにより、島状絶縁部30の上にブリッジ配線部20が形成される。
 次に、全面にOCAによる層間弾性部材40を貼り付け、この層間弾性部材40の上に保護部材50を貼り付ける。これにより、静電容量式センサ1が完成する。
 なお、上記の例では、加重検出用配線13を第1電極11および第2電極12と同じ工程、同じ材料で形成したが、加重検出用配線13を第1電極11および第2電極12と別工程で形成しても、別材料で形成してもよい。この際、加重検出用配線13の材料を、ブリッジ配線部20の材料と同じにしてもよい。これにより、加重検出用配線13の製造工程が簡素化される。
(第2実施形態)
 図3は、第2実施形態に係る静電容量式センサを例示する平面図である。図3には、図1(a)のA部に相当する部分の拡大図が表される。
 本実施形態に係る静電容量式センサ1Bは、第1電極11と第2電極12との交差部分において、島状絶縁部30の上に第1電極11の連結部112および加重検出用配線13が設けられる。
 第1電極11の隣り合う2つの第1島状電極部111の間には連結部112が設けられる。連結部112は、隣り合う2つの第1島状電極部111の向かい合う隅部を繋ぐように設けられる。また、第2電極12の隣り合う2つの第2島状電極部121の間にはブリッジ部122が設けられる。ブリッジ部122は、基材10上に形成され、隣り合う2つの第2島状電極部121の向かい合う隅部の下面を繋ぐように設けられる。
 第1電極11と第2電極12との交差部分において、連結部112は島状絶縁部30を介してブリッジ部122と交差するように設けられる。また、第1電極11と第2電極12との交差部分において、加重検出用配線13は島状絶縁部30を介してブリッジ部122と交差するように設けられる。
 図4(a)および(b)は、静電容量式センサの一部の断面図である。図4(a)には図3のY2-Y2断面が表され、図4(b)には図3のX2-X2断面が表される。
 基材10の面10aの上には第1電極11の第1島状電極部111および第2電極12の第2島状電極部121が配置される。第1電極11と第2電極12との交差部分においては、島状絶縁部30を介して第1電極11の連結部112と第2電極12のブリッジ部122とが互いに交差するとともに、互いに電気的に絶縁される。
 島状絶縁部30は第2電極12のブリッジ部122の上を覆うように設けられ、この島状絶縁部30の上を跨ぐように第1電極11の連結部112および加重検出用配線13が設けられる。また、第2島状電極部121の端部(隅部)は、島状絶縁部30から露出したブリッジ部122の端部に乗り上げて接続されている。島状絶縁部30の位置においては、基材10の面10aに対して突出する島状絶縁部30の上に加重検出用配線13が設けられるため、保護部材50の上から指によって圧力が加わった際、島状絶縁部30の出っ張りによって加重検出用配線13に集中的な加圧が行われ、微小な加重であっても加重検出用配線13の電気抵抗値の変化を大きくすることができる。
(第3実施形態)
 図5(a)および(b)は、第3実施形態に係る静電容量式センサを例示する図である。図5(a)には、図1(a)のA部に相当する部分の拡大図が表され、図5(b)には、図5(a)のA-A線断面図が表される。
 本実施形態に係る静電容量式センサ1Cでは、島状絶縁部30の位置において、加重検出用配線13が分割されている。加重検出用配線13は、第1配線部131と第2配線部132とを有する。
 第2配線部132は島状絶縁部30の下に設けられる。第2配線部132は分割された第1配線部131の間に設けられる。第2配線部132の両端部は、分割された第1配線部131のそれぞれの端部と重なる。また、ブリッジ配線部20は、島状絶縁部30を介して第2配線部132の上を跨ぐように設けられる。
 すなわち、基材10の上からみた場合、ブリッジ配線部20の位置においては、ブリッジ配線部20の一部と、島状絶縁部30の一部と、第2配線部132の一部とが重なる部分を有する。また、ブリッジ配線部20以外の位置においては、第1配線部131の一部と第2配線部132の一部とが重なる部分を有する。ここで、ブリッジ配線部20は、島状絶縁部30の窪みの位置(第1配線部131と第2配線部132とが重ならない位置)に設けられる。これにより、ブリッジ配線部20の重なる位置での積層の厚さを低減できる。
 このような構成によれば、加重検出用配線13には、ブリッジ配線部20の出っ張りや、第1配線部131と第2配線部132との重なり部分において集中的な加圧が行われる。つまり、ブリッジ配線部20の位置においては、保護部材50の上から印加される押圧力が、ブリッジ配線部20の一部と第2配線部132の一部との重なりによって集中的に加重検出用配線13に印加される。また、島状絶縁部30上のブリッジ配線部20以外の部分においては、島状絶縁部30の一部、第2配線部132の一部および第1配線部131の一部との重なりによって集中的に加重検出用配線13に印加される。これによって、微小な加重であっても加重検出用配線13の電気抵抗値の変化を大きくすることができる。
(第4実施形態)
 図6(a)および(b)は、第4実施形態に係る静電容量式センサを例示する図である。図6(a)には、図1(a)のA部に相当する部分の拡大図が表され、図6(b)には、図6(a)のB-B線断面図が表される。
 本実施形態に係る静電容量式センサ1Dでは、加重検出用配線13が分割されている。加重検出用配線13は、第1配線部131と第2配線部132とを有する。
 第1電極11と第2電極12との交差部分において、第2電極12のブリッジ部122と、第1電極11の連結部112とが島状絶縁部30を介して交差するよう設けられる。島状絶縁部30は、基材10の面10aに設けられた第2電極12のブリッジ部122の上を覆うように設けられる。第2島状電極部121は、島状絶縁部30から露出したブリッジ部122の端部に乗り上げて接続されている。この島状絶縁部30の上を跨ぐように、第1電極11の連結部112が設けられる。加重検出用配線13の第1配線部131は、基材10の面10aから島状絶縁部30の端部に乗り上げるよう設けられる。加重検出用配線13の第2配線部132は島状絶縁部30の上に設けられるとともに、第2配線部132の端部が、島状絶縁部30上に設けられた第1配線部131の端部と重なって設けられている。
 すなわち、基材10の上からみた場合、島状絶縁部30の位置においては、第2配線部132の一部と、島状絶縁部30の一部と、ブリッジ部122の一部とが重なる部分を有する。また、島状絶縁部30以外の位置においては、第1配線部131の一部と第2配線部132の一部とが重なる部分を有する。
 このような構成によれば、加重検出用配線13には、島状絶縁部30の出っ張りや、第1配線部131と第2配線部132との重なり部分において集中的な加圧が行われる。つまり、島状絶縁部30の位置においては、保護部材50の上から印加される押圧力が、島状絶縁部30の一部と第2配線部132の一部との重なりによって集中的に加重検出用配線13に印加される。これによって、微小な加重であっても加重検出用配線13の電気抵抗値の変化を大きくすることができる。
 以上説明したように、本実施形態によれば、位置および加重の両方を検出可能な静電容量式センサ1、1B、1Cおよび1Dにおいて、加重検出のための可動空間を設ける必要がなく、薄型で防水性や防塵性を向上させることが可能になる。
 なお、上記に本実施形態を説明したが、本発明はこれらの例に限定されるものではない。例えば、前述の各実施形態に対して、当業者が適宜、構成要素の追加、削除、設計変更を行ったものや、各実施形態の特徴を適宜組み合わせたものも、本発明の要旨を備えている限り、本発明の範囲に包含される。
1、1B、1C、1D…静電容量式センサ
10…基材
10a…面
11…第1電極
11a…引き出し配線
12…第2電極
12a…引き出し配線
13…加重検出用配線
20…ブリッジ配線部
30…島状絶縁部
40…層間弾性部材
50…保護部材
111…第1島状電極部
112…連結部
121…第2島状電極部
122…ブリッジ部
131…第1配線部
132…第2配線部
S…位置検出部

Claims (8)

  1.  基材の上に設けられ、複数の検出電極を有する位置検出部と、
     前記位置検出部における前記複数の検出電極の間に設けられ、圧力によって電気抵抗値が変化する加重検出用配線と、
     を備えたことを特徴とする入力装置。
  2.  前記加重検出用配線は、前記位置検出部において所定方向に延出するよう設けられた、請求項1記載の入力装置。
  3.  前記加重検出用配線は、所定の間隔で複数設けられた、請求項2記載の入力装置。
  4.  前記複数の検出電極は、互いに交差する方向に延びる第1電極と第2電極とを有し、
     前記第1電極は、前記第1電極と前記第2電極との交差位置に設けられたブリッジ配線部を有し、
     前記加重検出用配線は、前記ブリッジ配線部と交差するよう設けられた、請求項1~3のいずれか1項に記載の入力装置。
  5.  前記加重検出用配線の材料は、前記ブリッジ配線部の材料と同じである、請求項4記載の入力装置。
  6.  前記加重検出用配線と前記ブリッジ配線部との間に設けられた島状絶縁部をさらに備えた、請求項4または請求項5に記載の入力装置。
  7.  前記加重検出用配線は、第1配線部と、第2配線部とを有し、
     前記基材の上からみた場合、前記ブリッジ配線部の位置において前記ブリッジ配線部の一部と、前記島状絶縁部の一部と、前記第2配線部の一部とが重なり、前記ブリッジ配線部以外の位置において前記第1配線部の一部と前記第2配線部の一部とが重なる、請求項6記載の入力装置。
  8.  加重検出用配線の少なくとも一部は、前記基材の上において前記複数の検出電極と同層に設けられた、請求項1~7のいずれか1項に記載の入力装置。
PCT/JP2016/065667 2015-08-31 2016-05-27 入力装置 WO2017038172A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187000177A KR102067913B1 (ko) 2015-08-31 2016-05-27 입력 장치
CN201680037505.2A CN107710124B (zh) 2015-08-31 2016-05-27 输入装置
DE112016003934.4T DE112016003934T5 (de) 2015-08-31 2016-05-27 Eingabevorrichtung
JP2017537585A JP6417049B2 (ja) 2015-08-31 2016-05-27 入力装置
US15/814,218 US10474301B2 (en) 2015-08-31 2017-11-15 Input device detecting both of position and applied weight

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-170635 2015-08-31
JP2015170635 2015-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/814,218 Continuation US10474301B2 (en) 2015-08-31 2017-11-15 Input device detecting both of position and applied weight

Publications (1)

Publication Number Publication Date
WO2017038172A1 true WO2017038172A1 (ja) 2017-03-09

Family

ID=58187138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065667 WO2017038172A1 (ja) 2015-08-31 2016-05-27 入力装置

Country Status (6)

Country Link
US (1) US10474301B2 (ja)
JP (1) JP6417049B2 (ja)
KR (1) KR102067913B1 (ja)
CN (1) CN107710124B (ja)
DE (1) DE112016003934T5 (ja)
WO (1) WO2017038172A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010062901A1 (en) * 2008-11-26 2010-06-03 Research In Motion Limited Touch-sensitive display method and apparatus
WO2013021835A1 (ja) * 2011-08-11 2013-02-14 株式会社村田製作所 タッチパネル
JP2015041160A (ja) * 2013-08-20 2015-03-02 日本写真印刷株式会社 タッチパネル

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7538760B2 (en) 2006-03-30 2009-05-26 Apple Inc. Force imaging input device and system
US9430078B2 (en) * 2009-08-12 2016-08-30 Google Technology Holdings LLC Printed force sensor within a touch screen
JP2011191847A (ja) 2010-03-12 2011-09-29 Seiko Epson Corp 回路基板の製造方法、タッチパネル、電気光学装置、電子機器
EP2555089A1 (en) * 2010-03-29 2013-02-06 Sharp Kabushiki Kaisha Display device with touch panel functionality
JP5623894B2 (ja) * 2010-12-14 2014-11-12 京セラディスプレイ株式会社 タッチパネル
TW201234247A (en) * 2010-12-28 2012-08-16 Sharp Kk Touch panel, display device provided with same, as well as manufacturing method for touch panel
CN103246385B (zh) * 2012-02-10 2016-05-25 阿尔卑斯电气株式会社 输入装置
US10024085B2 (en) * 2012-07-13 2018-07-17 Trimark Corporation Compression mount paddle handle
KR101452302B1 (ko) * 2013-07-29 2014-10-22 주식회사 하이딥 터치 센서 패널
KR102128394B1 (ko) * 2013-09-11 2020-07-01 삼성디스플레이 주식회사 터치 감지 표시 장치
KR20150114632A (ko) * 2014-04-01 2015-10-13 삼성디스플레이 주식회사 터치 유닛 및 이를 포함하는 터치 표시 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010062901A1 (en) * 2008-11-26 2010-06-03 Research In Motion Limited Touch-sensitive display method and apparatus
WO2013021835A1 (ja) * 2011-08-11 2013-02-14 株式会社村田製作所 タッチパネル
JP2015041160A (ja) * 2013-08-20 2015-03-02 日本写真印刷株式会社 タッチパネル

Also Published As

Publication number Publication date
CN107710124A (zh) 2018-02-16
KR20180015722A (ko) 2018-02-13
KR102067913B1 (ko) 2020-01-17
DE112016003934T5 (de) 2018-05-24
US20180074620A1 (en) 2018-03-15
JPWO2017038172A1 (ja) 2018-06-07
US10474301B2 (en) 2019-11-12
JP6417049B2 (ja) 2018-10-31
CN107710124B (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
JP5685411B2 (ja) タッチパネル
KR102277379B1 (ko) 터치 패널 및 그 제조 방법
US8763237B2 (en) Method of fabricating touch panel
JP5970805B2 (ja) 透明シート付タッチパネルセンサ
JP6630433B2 (ja) 入力装置
JP5588466B2 (ja) タッチパネルの配線構造
KR20140100090A (ko) 플렉서블 터치 스크린 패널
JP6233075B2 (ja) タッチパネルセンサおよびタッチパネルセンサを備える入出力装置
CN108614652B (zh) 触控面板
KR101059382B1 (ko) 정전용량 터치패널 및 그 제조방법
KR102367248B1 (ko) 터치 스크린 패널
WO2016002461A1 (ja) 入力装置およびその製造方法
KR102056288B1 (ko) 저항막 방식 터치 패널 및 터치 패널 장치
JP5707949B2 (ja) タッチパネルセンサおよびタッチパネルセンサの製造方法
KR102281616B1 (ko) 터치 스크린 패널 및 터치 스크린 패널 제조 방법
JP6205995B2 (ja) タッチパネルセンサおよびタッチ位置検出機能付き表示装置
US9323094B2 (en) Touch panel
JP6417049B2 (ja) 入力装置
JP5970342B2 (ja) 静電容量式センサーシートおよびその製造方法
JP2016162305A (ja) タッチパネルおよびその製造方法
JP6534807B2 (ja) タッチセンサ用電極、タッチパネル、及び、表示装置
JP2013156949A (ja) タッチパネル
KR20140128613A (ko) 터치 패널 및 이의 제조 방법
WO2017104810A1 (ja) 入力装置
JP2016133937A (ja) 静電容量式センサの製造方法、静電容量式センサ、感光型導電性シート、タッチパネル及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537585

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187000177

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016003934

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841204

Country of ref document: EP

Kind code of ref document: A1