WO2017037879A1 - 作業割付装置 - Google Patents

作業割付装置 Download PDF

Info

Publication number
WO2017037879A1
WO2017037879A1 PCT/JP2015/074891 JP2015074891W WO2017037879A1 WO 2017037879 A1 WO2017037879 A1 WO 2017037879A1 JP 2015074891 W JP2015074891 W JP 2015074891W WO 2017037879 A1 WO2017037879 A1 WO 2017037879A1
Authority
WO
WIPO (PCT)
Prior art keywords
mounting
component
accuracy
required accuracy
work
Prior art date
Application number
PCT/JP2015/074891
Other languages
English (en)
French (fr)
Inventor
勇介 山蔭
秀徳 後藤
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to PCT/JP2015/074891 priority Critical patent/WO2017037879A1/ja
Priority to CN201580082752.XA priority patent/CN107926152B/zh
Priority to US15/755,873 priority patent/US10980161B2/en
Priority to JP2017537127A priority patent/JP6694438B2/ja
Priority to EP15902999.0A priority patent/EP3346814B1/en
Publication of WO2017037879A1 publication Critical patent/WO2017037879A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/085Production planning, e.g. of allocation of products to machines, of mounting sequences at machine or facility level
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45031Manufacturing semiconductor wafers

Definitions

  • the present invention relates to a work assignment device.
  • a component mounting machine in which a sampling unit collects components supplied from a component supply unit, transports the components onto a substrate, and mounts the components on a predetermined mounting position on the substrate.
  • a required accuracy is determined according to a process type, a component type / size, and the like, and a head during movement in the process is determined according to the determined required accuracy.
  • the moving speed and the moving acceleration of the head are controlled according to the determined required accuracy.
  • Patent Document 1 describes that the operation of the head is controlled according to the required accuracy, how to allocate the component mounting operation to each of a plurality of mounting machines constituting the component mounting line. The point was not disclosed.
  • the present invention has been made to solve the above-described problem, and has as its main object to appropriately allocate a component mounting operation to each of a plurality of mounting machines constituting a component mounting line.
  • the work assignment device of the present invention is A work allocating device for allocating component mounting work to each of a plurality of mounting machines constituting a component mounting line, Specification accuracy acquisition means for acquiring specification accuracy at the time of component mounting of each mounting machine; Required accuracy acquisition means for acquiring required accuracy at the time of component mounting set based on at least one of the type of the mounted component and the mounting position of the mounted component on the substrate; Allocating means for allocating a component mounting operation to each of the mounting machines based on the required accuracy and the specification accuracy; It is equipped with.
  • the required accuracy at the time of component mounting set based on at least one of the type of mounted component and the mounting position of the mounted component on the substrate is acquired, and the acquired required accuracy and component mounting of each mounting machine Based on the specification accuracy at the time, the parts mounting work is assigned to each of the mounting machines. That is, a mounting operation with a high required accuracy is assigned to a mounting machine with a high specification accuracy, and a mounting operation with a low required accuracy is assigned to a mounting machine with a low specification accuracy. Therefore, it is possible to appropriately assign the component mounting operation to each of the plurality of mounting machines constituting the component mounting line.
  • the specification accuracy may depend on at least one of the capability of the mounting machine itself and the capability of the head mounted on the mounting machine.
  • Examples of the ability of the mounting machine itself include the mechanical accuracy of the X-axis slider and the Y-axis slider provided in the mounting machine.
  • the ability of the head mounted on the mounting machine for example, when comparing the case of having a rotary tool with a plurality of nozzles on the head and the case of having a tool with a single nozzle, the latter is more Compared with the smaller number of movable parts, the accuracy is generally good.
  • the accuracy is generally good because the backlash is less than when the bearing is not used.
  • the work assignment apparatus of the present invention includes a required accuracy setting unit that automatically sets the required accuracy based on at least one of a type of the mounted component and a mounting position of the mounted component on a substrate, and the required accuracy acquisition unit includes: The required accuracy set by the required accuracy setting means may be acquired. In this way, even if the required accuracy is not set in the data of the component to be mounted, the required accuracy is automatically set based on the type and mounting position of the component. Can be applied.
  • the required accuracy setting means automatically sets the required accuracy based on the mounting position of the mounting component on the substrate.
  • the required accuracy may be automatically set such that the required accuracy increases as the distance between the mounted or mounted component and the mounting position of the mounted component on the substrate decreases. In this way, when the distance between the mounting component and the peripheral component is small, the required accuracy is set high, so that it is difficult to interfere with the peripheral component when mounting the mounting component. .
  • At least one of the plurality of mounting machines has a plurality of work modes with different precisions, and the allocating unit assigns a part mounting work to each of the mounting machines.
  • component mounting work may be assigned in consideration of the tact in each work mode. In this way, it is possible to assign the component mounting operation so that the capability of the mounting machine having a plurality of operation modes is fully exhibited.
  • FIG. 2 is a configuration diagram showing an outline of the configuration of a component mounting line 10.
  • the block diagram which shows the outline of a structure of the mounting machine.
  • the block diagram which shows the electrical connection of the control apparatus 60 and the management computer 80.
  • FIG. The flowchart which shows an example of a work allocation processing routine.
  • a table showing the correspondence between component mounting machines and specification accuracy.
  • a table showing the correspondence between component types and required accuracy. Explanatory drawing of sequence data.
  • FIG. 1 is a configuration diagram illustrating an outline of the configuration of the component mounting line 10
  • FIG. 2 is a configuration diagram illustrating an overview of the configuration of the mounting machine 11.
  • the horizontal direction in FIGS. 1 and 2 is the X-axis direction
  • the front-rear direction is the Y-axis direction
  • the vertical direction is the Z-axis direction.
  • the component mounting line 10 includes a plurality of mounting machines 11A to 11D that perform processing for mounting components on the substrate S, and a management computer 80 that performs production management of the entire system such as management of the mounting machines 11A to 11D. Since the mounting machines 11A to 11D have substantially the same configuration, they are collectively referred to as the mounting machine 11 unless it is particularly necessary to distinguish them.
  • the mounting machine 11 includes a transport unit 18 that transports the substrate S, a sampling unit 21 that collects components, a reel unit 56 that supplies components, and a control device 60 that controls the entire apparatus.
  • the transport unit 18 includes support plates 20 and 20 that are provided at intervals in the front and rear direction of FIG. 2 and extend in the left-right direction, and conveyor belts 22 and 22 that are provided on surfaces of the support plates 20 and 20 that face each other. ing.
  • the conveyor belts 22 and 22 are stretched over the drive wheels and the driven wheels provided on the left and right sides of the support plates 20 and 20 so as to be endless.
  • substrate S is mounted on the upper surface of a pair of conveyor belts 22 and 22, and is conveyed from the left to the right.
  • the substrate S is supported from the back side thereof by a large number of support pins 23 erected.
  • the sampling unit 21 includes a mounting head 24, an X-axis slider 26, a Y-axis slider 30, and the like.
  • the mounting head 24 is attached to the front surface of the X-axis slider 26.
  • the X-axis slider 26 is attached to the front surface of the Y-axis slider 30 that can slide in the front-rear direction so as to be slidable in the left-right direction.
  • the Y-axis slider 30 is slidably attached to a pair of left and right guide rails 32, 32 extending in the front-rear direction.
  • the guide rails 32 and 32 are fixed inside the mounting machine 11.
  • a pair of upper and lower guide rails 28, 28 extending in the left-right direction are provided on the front surface of the Y-axis slider 30, and the X-axis slider 26 is attached to the guide rails 28, 28 so as to be slidable in the left-right direction.
  • the mounting head 24 moves in the left-right direction as the X-axis slider 26 moves in the left-right direction, and moves in the front-rear direction as the Y-axis slider 30 moves in the front-rear direction.
  • Each slider 26 and 30 is driven by a drive motor (not shown).
  • the mounting head 24 is provided with auto tools 42A and 42B having at least one nozzle 40 for adsorbing parts so as to be replaceable.
  • the auto tools 42 are collectively referred to.
  • the auto tool 42A includes twelve nozzles 40.
  • the auto tool 42B includes a single nozzle 40.
  • the nozzle 40 is configured to slide directly in a vertically extending sleeve, whereas in the auto tool 42B, the nozzle 40 is configured to slide while being supported by a bearing. Therefore, the nozzle 40 of the auto tool 42B can move up and down smoothly compared to the auto tool 42A, so that the operation accuracy is high.
  • the auto tool 42A has a mechanism for revolving the nozzle 40 by rotating the cylindrical body and a mechanism for rotating the nozzle 40 itself, whereas the auto tool 42B rotates the cylindrical body.
  • a mechanism for rotating the nozzle 40 is provided. Therefore, also in this respect, the auto tool 42B with few moving parts has less backlash and higher operation accuracy than the auto tool 42A.
  • the nozzle 40 uses pressure to adsorb components at the nozzle tip or release components adsorbed at the nozzle tip.
  • the nozzle 40 is moved up and down in a Z-axis direction (vertical direction) orthogonal to the X-axis and Y-axis directions by a holder lifting device using a Z-axis motor 45 as a drive source.
  • the component holding member that holds and releases the component is described here as the nozzle 40 that sucks and releases the component, but is not particularly limited thereto, and may be, for example, a mechanical chuck.
  • the reel unit 56 includes a plurality of reels 57 around which tapes storing parts are wound, and is detachably attached to the front side of the mounting machine 11.
  • the tape is unwound from the reel 57 and sent out by the feeder unit 58 to a collection position where the tape is collected by the mounting head 24.
  • the parts camera 54 is disposed in front of the support plate 20 on the front side of the transport unit 18. The imaging range of the parts camera 54 is above the parts camera 54. When the nozzle 40 that sucks a part passes above the part camera 54, the parts camera 54 captures the state of the part sucked by the nozzle 40 and outputs the image to the control device 60.
  • the control device 60 is configured as a microprocessor centered on a CPU 61, and includes a ROM 62 that stores processing programs, an HDD 63 that stores various data, a RAM 64 that is used as a work area, an external device and an electrical device. An input / output interface 65 for exchanging signals is provided, and these are connected via a bus 66.
  • the control device 60 is connected to the transport unit 18, the sampling unit 21, the parts camera 54, the reel unit 56, and the like so as to be capable of bidirectional communication.
  • Each slider 26 and 30 is equipped with a position sensor (not shown), and the control device 60 controls the drive motor of each slider 26 and 30 while inputting position information from these position sensors.
  • the management computer 80 includes a microprocessor centered on the CPU 81, a ROM 82 that stores processing programs, an HDD 83 that stores various information, a RAM 84 that is used as a work area, and a control device 60 for each mounting machine 11. And an input / output interface 85 for performing bidirectional communication, and these are connected via a bus 86. Further, the management computer 80 can input signals from an input device 87 typified by a mouse and a keyboard via an input / output interface 85, and is connected to the display 88 so that various images can be output.
  • the management computer 80 assigns a mounting operation of components to be mounted on one board S to each of the mounting machines 11A to 11D will be described.
  • the parts to be mounted on one substrate S are given serial numbers from the first to the last number. The serial number does not indicate the mounting order, but is simply assigned to identify the part.
  • FIG. 1 is a flowchart showing an example of this routine. This routine is stored in the HDD 83 of the management computer 80, and is executed by a start instruction from the operator.
  • the CPU 81 of the management computer 80 first obtains the specification accuracy of each of the mounting machines 11A to 11D (step S110).
  • the specification accuracy is determined by both the accuracy of the mounting machine 11 itself and the accuracy of the auto tool 42 mounted on the mounting head 24 of the mounting machine 11.
  • the mechanical accuracy of the X-axis and Y-axis sliders 26 and 30 of the mounting machines 11A to 11D is high in the mounting machine 11A, medium in the mounting machines 11B and 11C, and low in the mounting machine 11D.
  • the mechanical accuracy is set to be higher as the minimum moving amount (resolution) of the slider is smaller, for example.
  • an auto tool 42B is mounted on the mounting head 24 of the mounting machine 11A, and an auto tool 42A is mounted on the mounting heads 24 of the mounting machines 11B to 11D.
  • the auto tool 42B can mount components with higher accuracy than the auto tool 42A. Therefore, as shown in FIG. 5, the accuracy of the auto tool 42 is set high for the mounting machine 11A and low for the mounting machines 11B to 11D.
  • the specification accuracy of the mounting machines 11A to 11D is determined by both the accuracy of the mounting machine 11 itself and the accuracy of the auto tool 42 mounted on the mounting head 24, and is set, for example, as shown in FIG. .
  • the specification accuracy ranks 1 to 3 mean that the larger the rank value, the higher the accuracy.
  • the specification accuracy of the mounting machines 11A to 11D may be acquired by the CPU 81 by communication from the control device 60 of each mounting machine 11A to 11D, or may be acquired by reading the data stored in advance in the HDD 83 of the management computer 80. May be.
  • the CPU 81 obtains the required accuracy corresponding to the component types of the first to last components (step S120).
  • the correspondence between the component type and the required accuracy is determined as shown in FIG. 6 and stored in advance in the HDD 83 of the management computer 80. That is, the required accuracy is set for each component type.
  • the CPU 81 assigns parts mounting work from No. 1 to the final number (step S130), and ends this routine. Specifically, for each component, the CPU 81 assigns the component mounting operation to the mounting machine 11 having a specification accuracy that satisfies the required accuracy corresponding to the component type.
  • the correspondence between the component type and the required accuracy is as shown in FIG. For example, since the required accuracy of the component of the component type PE is rank 3, the mounting operation is assigned to the mounting machine 11A having the same specification accuracy of rank 3. Since the required accuracy of the component of the component type PD is rank 2, the mounting operation is assigned to any of the mounting machines 11A to 11C having a specification accuracy of rank 2 or higher.
  • the mounting operation is assigned to any of the mounting machines 11A to 11D having a specification accuracy of rank 1 or higher.
  • the allocation is performed so that the number of parts allocated to the mounting machines 11A to 11D is leveled as much as possible.
  • the CPU 81 determines for each mounting machine 11 in what mounting order the allocated parts are optimally mounted, and determines the mounting order.
  • the mounting order may be determined so that the processing time of the sequence is the shortest.
  • An example of a sequence created by the CPU 81 is shown in FIG.
  • the sequence D1 corresponds to the mounting machine 11A
  • the sequence D2 corresponds to the mounting machine 11B
  • the sequence D3 corresponds to the mounting machine 11C
  • the sequence D4 corresponds to the mounting machine 11D.
  • the control device 60 of the mounting machine 11 sucks the component supplied by the reel unit 56 to the nozzle 40 and mounts the component at a predetermined position on the substrate S.
  • the CPU 61 of the control device 60 adsorbs a component to the nozzle 40 of the auto tool 42 according to its own sequence.
  • the first to twelfth components in the mounting order are sequentially adsorbed to the nozzle 40 while the auto tool 42A is intermittently rotated.
  • the first component in the mounting order is attracted to the nozzle 40.
  • the CPU 61 controls the X-axis and Y-axis sliders 26, 30 of the sampling unit 21 to move the mounting head 24 above the parts camera 54, and then images the parts adsorbed by the nozzle 40 to the parts camera 54.
  • the parts adsorbed by all the nozzles 40 are imaged while intermittently rotating the auto tool 42A.
  • an image of a component adsorbed by one nozzle 40 is taken.
  • the CPU 61 grasps the posture of the component by analyzing the captured image.
  • the CPU 61 controls the X-axis and Y-axis sliders 26 and 30 of the sampling unit 21 to move the mounting head 24 onto the substrate S, and mounts the component adsorbed by the nozzle 40 onto the substrate S.
  • twelve nozzles 40 are provided as in the auto tool 42A, the first to twelfth components in the mounting order are sequentially mounted at the mounting positions on the substrate S while the auto tool 42A is intermittently rotated.
  • one nozzle 40 is provided like the auto tool 42B, one component is mounted at the mounting position on the substrate S.
  • the CPU 61 repeatedly executes this operation until the component to be mounted on the substrate S is mounted according to its own sequence, and sends the substrate S to the downstream mounting machine 11 after the operation is completed.
  • the management computer 80 of this embodiment corresponds to a work assignment device of the present invention
  • the CPU 81 of the management computer 80 corresponds to specification accuracy acquisition means, required accuracy acquisition means, and assignment means.
  • the management computer 80 acquires the required accuracy set based on the part type, and based on the acquired required accuracy and the specification accuracy of each of the mounting devices 11A to 11D, Assign parts mounting work to each. That is, a mounting operation with a high required accuracy is assigned to a mounting machine with a high specification accuracy, and a mounting operation with a low required accuracy is assigned to a mounting machine with a low specification accuracy. Therefore, the component mounting operation can be appropriately assigned to each of the plurality of mounting machines 11A to 11D constituting the component mounting line 10.
  • the specification accuracy of the mounting machine 11 is set depending on both the capability of the mounting machine 11 itself and the capability of the auto tool 42 mounted on the mounting head 24 of the mounting machine 11. Therefore, the specification accuracy of the mounting machine 11 is set appropriately.
  • the required accuracy is associated with each component type as shown in FIG. 6, but instead, the required accuracy may be associated with each mounting position of the component on the board. For example, when the mounting position has a small clearance (distance between parts), the required accuracy associated with the mounting position is set high, and when the mounting position has a large clearance, the required accuracy associated with the mounting position is set low.
  • the required accuracy may be associated with both the component type and the mounting position simultaneously (that is, for each combination of the component type and the mounting position).
  • the management computer 80 stores the correspondence relationship between the component type and the required accuracy (table, see FIG. 6) in the HDD 83 or obtains it from the outside. Is not set, the management computer 80 may automatically set the required accuracy corresponding to the component type. For example, the CPU 81 of the management computer 80 reads the size of the component type from the HDD 83 or acquires it from the outside, and determines the clearance at which the component adjacent to a certain component is arranged between two adjacent components. Calculation may be performed based on the component type and the mounting position, and the required accuracy may be set according to the size of the clearance.
  • the required accuracy may be set low, and if the clearance is less than the threshold, the required accuracy may be set high. In this way, even if the required accuracy is not set for the component to be mounted, the required accuracy is automatically set based on the type and mounting position of the component, so the present invention is also applied to such a component. be able to. In addition, when the clearance between the mounting component and the component adjacent thereto is small, the required accuracy is set high, so that it is difficult to interfere with the adjacent component when mounting the mounting component.
  • the mounting machines 11A to 11D have a plurality of work modes with different precisions, and the CPU 81 of the management computer 80 assigns a part mounting work to each of the mounting machines 11A to 11D in each work mode. It may be assigned in consideration of the tact. For example, it is assumed that the mounting machine 11A can select either the high accuracy mode or the low accuracy mode as the work mode. In the high-accuracy mode, the mounting machine 11A controls the mounting head 24 so that the moving speed of the mounting head 24 is low so that the coincidence width between the position control target value and the actual measurement value falls within a narrow range (for example, ⁇ 5 pulses). As a result, it takes a long time to mount the components, but it is possible to mount components with high accuracy.
  • a narrow range for example, ⁇ 5 pulses
  • the moving speed of the mounting head 24 is increased to control the matching range between the position control target value and the actual measurement value within a wide range (for example, ⁇ 20 pulses).
  • a wide range for example, ⁇ 20 pulses.
  • the required precision of the parts type PA to PC is rank 1 (see FIG. 6).
  • the required accuracy of the component type PE is rank 3, that is, high accuracy, so the high accuracy mode is selected, but it takes time, but the accuracy is increased. In this way, it is possible to assign the component mounting operation so that the capability of the mounting machine 11A having a plurality of operation modes is sufficiently exhibited.
  • the management computer 80 is shown as an example of the work assignment device of the present invention.
  • the present invention is not particularly limited to this.
  • a work assignment computer may be provided separately from the management computer 80. .
  • the present invention can be used for a component mounting line in which a plurality of mounting machines for mounting a component supplied from a component supply device at a predetermined position on a substrate are arranged.
  • D1 to D2 sequence 10 parts mounting line, 11, 11A to 11D mounting machine, 18 transport section, 20 support plate, 21 sampling section, 22 conveyor belt, 23 support pins, 24 mounting head, 26 X axis slider, 28 guide rail , 30 Y axis slider, 32 guide rail, 40 nozzle, 42, 42A, 42B auto tool, 45 Z axis motor, 54 parts camera, 56 reel unit, 57 reel, 58 feeder section, 60 control device, 61 CPU, 62 ROM 63 HDD, 64 RAM, 65 input / output interface, 66 bus, 80 management computer, 81 CPU, 82 ROM, 83 HDD, 84 RAM, 85 input / output interface, 86 bus, 87 input device, 88 display

Abstract

管理コンピュータのCPUは、作業割付処理ルーチンを開始すると、まず、各装着機の仕様精度を取得し(ステップS110)、次に、1枚の基板(S)に装着される、1番~最終番までの部品の部品種に対応する要求精度を取得する(ステップS120)。次に、管理コンピュータのCPUは、1番~最終番までの部品の装着作業の割付を行い(ステップS130)、このルーチンを終了する。具体的には、CPUは、部品ごとに、その部品種に対応する要求精度を満足する仕様精度を持つ装着機にその部品の装着作業を割り付ける。

Description

作業割付装置
 本発明は、作業割付装置に関する。
 従来より、採取部が部品供給ユニットから供給される部品を採取し、該部品を基板上へ運び該部品を前記基板上の所定の装着位置へ装着する部品装着機が知られている。例えば特許文献1には、この種の部品装着機において、工程の種別や部品の種別・サイズなどに応じて要求精度を判定し、判定された要求精度に応じて該工程における移動の際のヘッドの位置決め待ち時間、ヘッドの移動速度や移動加速度を制御するものが開示されている。
特開平4-328900号公報
 しかしながら、特許文献1では、要求精度に応じてヘッドの動作を制御する点は記載されているものの、部品実装ラインを構成する複数の装着機の各々に部品の装着作業を如何にして割り付けるかという点は開示されていなかった。
 本発明は、上述した課題を解決するためになされたものであり、部品実装ラインを構成する複数の装着機の各々に部品の装着作業を適切に割り付けることを主目的とする。
 本発明の作業割付装置は、
 部品実装ラインを構成する複数の装着機の各々に部品の装着作業を割り付ける作業割付装置であって、
 各装着機の部品装着時の仕様精度を取得する仕様精度取得手段と、
 装着部品の種類及び装着部品の基板上での装着位置の少なくとも一方に基づいて設定された部品装着時の要求精度を取得する要求精度取得手段と、
 前記要求精度及び前記仕様精度に基づいて前記装着機の各々に部品の装着作業を割り付ける割付手段と、
 を備えたものである。
 この作業割付装置では、装着部品の種類及び装着部品の基板上での装着位置の少なくとも一方に基づいて設定された部品装着時の要求精度を取得し、取得した要求精度及び各装着機の部品装着時の仕様精度に基づいて装着機の各々に部品の装着作業を割り付ける。つまり、仕様精度の高い装着機には、要求精度の高い部品の装着作業が割り付けられ、仕様精度の低い装着機には、要求精度の低い部品の装着作業が割り付けられる。そのため、部品実装ラインを構成する複数の装着機の各々に部品の装着作業を適切に割り付けることができる。
 本発明の作業割付装置において、前記仕様精度は、前記装着機そのものの能力及び前記装着機に搭載されたヘッドの能力の少なくとも一方に依存するようにしてもよい。装着機そのものの能力としては、例えば装着機に備えられたX軸スライダやY軸スライダの機械的精度などが挙げられる。装着機に搭載されたヘッドの能力としては、例えばヘッド上に複数のノズルを備えたロータリー型ツールを有する場合と1本のノズルを備えたツールを有する場合とを比べると後者の方が前者に比べて可動部の数が少ない分、一般的には精度がよい。また、ノズルの上下動をガイドするのにベアリングを用いている場合には用いていない場合に比べてがたつきが少ない分、一般的には精度がよい。
 本発明の作業割付装置は、前記装着部品の種類及び前記装着部品の基板上での装着位置の少なくとも一方に基づいて前記要求精度を自動設定する要求精度設定手段を備え、前記要求精度取得手段は、前記要求精度設定手段によって設定された前記要求精度を取得してもよい。こうすれば、装着しようとする部品のデータに要求精度が設定されていない場合であっても、その部品の種類や装着位置に基づいて要求精度が自動設定されるため、そうした部品にも本発明を適用することができる。
 要求精度設定手段を備えた本発明の作業割付装置において、前記要求精度設定手段は、前記装着部品の基板上での装着位置に基づいて前記要求精度を自動設定するにあたり、前記装着部品の周辺に装着される又は装着された部品と前記装着部品の基板上での装着位置との距離が小さいほど要求精度が高くなるように自動設定してもよい。こうすれば、装着部品とその周辺の部品との部品間距離が小さい場合には、要求精度が高く設定されるため、装着部品を装着する際にその周辺の部品と干渉しにくくすることができる。
 本発明の作業割付装置において、前記複数の装着機の少なくとも1つは、精度の異なる複数の作業モードを有し、前記割付手段は、前記装着機の各々に部品の装着作業を割り付けるにあたり、前記複数の作業モードを有する装着機については各作業モードでのタクトを考慮して部品の装着作業を割り付けてもよい。こうすれば、複数の作業モードを有する装着機の能力が十分発揮されるように部品の装着作業を割り付けることができる。
部品実装ライン10の構成の概略を示す構成図。 装着機11の構成の概略を示す構成図。 制御装置60及び管理コンピュータ80の電気的接続を示すブロック図。 作業割付処理ルーチンの一例を示すフローチャート。 部品装着機と仕様精度との対応関係を示すテーブル。 部品種と要求精度との対応関係を示すテーブル。 シーケンスデータの説明図。
 本発明の好適な実施形態を、図面を参照しながら以下に説明する。図1は、部品実装ライン10の構成の概略を示す構成図であり、図2は、装着機11の構成の概略を示す構成図である。なお、本実施形態は、図1および図2の左右方向がX軸方向であり、前後方向がY軸方向であり、上下方向がZ軸方向である。
 部品実装ライン10は、部品を基板Sに装着する処理を行う複数の装着機11A~11Dと、各装着機11A~11Dの管理などシステム全体の生産管理を行う管理コンピュータ80とを備えている。装着機11A~11Dは、概ね同じ構成であるため、特にこれらを区別する必要がない場合には装着機11と総称する。
 装着機11は、図2に示すように、基板Sを搬送する搬送部18と、部品を採取する採取部21と、部品を供給するリールユニット56と、装置全体を制御する制御装置60を備えている。搬送部18は、図2の前後に間隔を開けて設けられ左右方向に延びる支持板20,20と、両支持板20,20の互いに対向する面に設けられたコンベアベルト22,22とを備えている。コンベアベルト22,22は、支持板20,20の左右に設けられた駆動輪及び従動輪に無端状となるように架け渡されている。基板Sは、一対のコンベアベルト22,22の上面に乗せられて左から右へと搬送される。この基板Sは、多数立設された支持ピン23によってその裏面側から支持される。
 採取部21は、装着ヘッド24、X軸スライダ26、Y軸スライダ30などを備えている。装着ヘッド24は、X軸スライダ26の前面に取り付けられている。X軸スライダ26は、前後方向にスライド可能なY軸スライダ30の前面に、左右方向にスライド可能となるように取り付けられている。Y軸スライダ30は、前後方向に延びる左右一対のガイドレール32,32にスライド可能に取り付けられている。なお、ガイドレール32,32は、装着機11の内部に固定されている。Y軸スライダ30の前面には、左右方向に延びる上下一対のガイドレール28,28が設けられ、このガイドレール28,28にX軸スライダ26が左右方向にスライド可能に取り付けられている。装着ヘッド24は、X軸スライダ26が左右方向に移動するのに伴って左右方向に移動し、Y軸スライダ30が前後方向に移動するのに伴って前後方向に移動する。なお、各スライダ26,30は、それぞれ図示しない駆動モータにより駆動される。
 装着ヘッド24は、部品を吸着するノズル40を1以上有するオートツール42A,42Bを交換可能に備えている。なお、オートツール42A,42Bを区別する必要がない場合にはオートツール42と総称する。オートツール42Aは、12本のノズル40を備えている。オートツール42Bは、1本のノズル40を備えている。オートツール42Aでは、ノズル40は上下に延びるスリーブの中を直に摺動する構造であるのに対し、オートツール42Bでは、ノズル40はベアリングに支持された状態で摺動する構造である。そのため、オートツール42Bのノズル40は、オートツール42Aと比べて、滑らかに上下動することができるため動作精度が高い。また、オートツール42Aは、円筒体が軸回転することでノズル40を公転させる機構とノズル40自身を自転させる機構とを有しているのに対し、オートツール42Bは、円筒体が軸回転することでノズル40を自転させる機構を有している。そのため、この点でも、可動部の少ないオートツール42Bの方が、オートツール42Aと比べてがたつきが少なく動作精度が高い。ノズル40は、圧力を利用して、ノズル先端に部品を吸着したり、ノズル先端に吸着している部品を放したりするものである。このノズル40は、Z軸モータ45を駆動源とするホルダ昇降装置によってX軸およびY軸方向と直交するZ軸方向(上下方向)に昇降される。なお、部品を保持したり保持解除したりする部品保持部材は、ここでは部品を吸着したり吸着解除したりするノズル40として説明するが、特にこれに限定されず、例えばメカニカルチャックとしてもよい。
 リールユニット56は、部品が格納されたテープが巻き付けられているリール57を複数備え、装着機11の前側に着脱可能に取り付けられている。このテープは、リール57から巻きほどかれ、フィーダ部58により、装着ヘッド24により採取される採取位置に送り出される。パーツカメラ54は、搬送部18の前側の支持板20の前方に配置されている。このパーツカメラ54の撮像範囲は、パーツカメラ54の上方である。パーツカメラ54は、部品を吸着したノズル40がパーツカメラ54の上方を通過する際、ノズル40に吸着された部品の状態を撮影し、その画像を制御装置60へ出力する。
 制御装置60は、図3に示すように、CPU61を中心とするマイクロプロセッサとして構成されており、処理プログラムを記憶するROM62、各種データを記憶するHDD63、作業領域として用いられるRAM64、外部装置と電気信号のやり取りを行うための入出力インタフェース65などを備えており、これらはバス66を介して接続されている。この制御装置60は、搬送部18、採取部21、パーツカメラ54及びリールユニット56などと双方向通信可能に接続されている。なお、各スライダ26,30には図示しない位置センサが装備されており、制御装置60はそれらの位置センサからの位置情報を入力しつつ、各スライダ26,30の駆動モータを制御する。
 管理コンピュータ80は、図3に示すように、CPU81を中心とするマイクロプロセッサや、処理プログラムを記憶するROM82、各種情報を記憶するHDD83、作業領域として用いられるRAM84、各装着機11の制御装置60と双方向通信を行うための入出力インタフェース85などを備えており、これらはバス86を介して接続されている。また、管理コンピュータ80は、入出力インタフェース85を介して、マウスやキーボードに代表される入力デバイス87から信号を入力可能であり、ディスプレイ88に種々の画像を出力可能なように接続されている。
 次に、こうして構成された本実施形態の部品実装ライン10の動作について説明する。ここでは、管理コンピュータ80が各装着機11A~11Dに1枚の基板Sに装着される部品の装着作業を割り付ける処理について説明する。1枚の基板Sに装着される部品は、1番~最終番まで通し番号が付されている。通し番号は、装着順を表すものではなく、単に部品を識別するために付されたものである。
 図1に示すように、1枚の基板Sに対して、部品実装ライン10を構成する4台の装着機11A~11Dが順次部品を装着していくことで、その1枚の基板Sに装着されるべき全部品が装着される。つまり1枚の基板Sが部品実装ライン10の左側入口から内部へ導入されたあと右側出口から外部へ排出されるまでの間に基板S上に全部品が装着される。この場合、部品装着用のシーケンスは、装着機11の台数だけつまりここでは4つ設定される。管理コンピュータ80のCPU81は、各装着機11にシーケンスが設定される前の段階で、どの装着機11にどの部品の装着作業を担当させるかを割り付ける作業割付処理ルーチンを実行する。図4は、このルーチンの一例を示すフローチャートである。このルーチンは、管理コンピュータ80のHDD83に記憶され、作業者による開始指示により実行される。
 管理コンピュータ80のCPU81は、作業割付処理ルーチンを開始すると、まず、各装着機11A~11Dの仕様精度を取得する(ステップS110)。仕様精度は、装着機11そのものの精度と装着機11の装着ヘッド24に搭載されたオートツール42の精度の両方によって定められている。例えば、装着機11A~11DのX軸及びY軸スライダ26,30の機械的精度は、図5に示すように、装着機11Aが高く、装着機11B,11Cが中程度、装着機11Dが低いものとする。なお、機械的精度は、例えばスライダの最小移動量(分解能)が小さいほど高く設定される。また、装着機11Aの装着ヘッド24にはオートツール42Bが搭載され、装着機11B~11Dの装着ヘッド24にはオートツール42Aが搭載されているものとする。オートツール42Bは、オートツール42Aと比べて既に述べたように高精度で部品を装着することができる。そのため、オートツール42の精度は、図5に示すように、装着機11Aが高く、装着機11B~11Dは低く設定される。こうした場合、装着機11A~11Dの仕様精度は、装着機11そのものの精度と装着ヘッド24に搭載されたオートツール42の精度との両方で決定され、例えば図5に示すように設定されている。仕様精度のランク1~3は、ランクの値が大きいほど高精度であることを意味する。こうした装着機11A~11Dの仕様精度は、CPU81が各装着機11A~11Dの制御装置60から通信により取得してもよいし、予め管理コンピュータ80のHDD83に記憶されていたものを読み出して取得してもよい。
 次に、CPU81は、1番~最終番までの部品の部品種に対応する要求精度を取得する(ステップS120)。ここでは、部品種と要求精度との対応関係は、図6のように定められ、予め管理コンピュータ80のHDD83に記憶されている。つまり、要求精度は部品種ごとに設定されている。
 次に、CPU81は、1番~最終番までの部品の装着作業の割付を行い(ステップS130)、このルーチンを終了する。具体的には、CPU81は、部品ごとに、その部品種に対応する要求精度を満足する仕様精度を持つ装着機11にその部品の装着作業を割り付ける。部品種と要求精度との対応関係は図6に示すとおりである。例えば、部品種PEの部品は要求精度がランク3であるため、仕様精度が同じくランク3の装着機11Aにその装着作業を割り付ける。部品種PDの部品は要求精度がランク2であるため、仕様精度がランク2以上の装着機11A~Cのいずれかにその装着作業を割り付ける。部品種A~Cの部品は要求精度がランク1であるため、仕様精度がランク1以上の装着機11A~Dのいずれかにその装着作業を割り付ける。なお、割付は、装着機11A~11Dへ割り付けられる部品の数ができるだけ平準化するように行われる。
 次に、CPU81は、各装着機11につき、割り付けられた部品をどのような装着順で装着するのが最適かを判断し、装着順を決定する。例えば,装着順は、シーケンスの処理時間が最も短くなるように決定してもよい。CPU81によって作製されたシーケンスの一例を図7に示す。シーケンスD1は装着機11A、シーケンスD2は装着機11B、シーケンスD3は装着機11C、シーケンスD4は装着機11Dにそれぞれ対応している。
 次に、装着機11の制御装置60が、リールユニット56によって供給される部品をノズル40に吸着して基板Sの所定位置に装着する動作について説明する。まず、制御装置60のCPU61は、自身のシーケンスに従って、オートツール42のノズル40に部品を吸着させる。オートツール42Aのように12本のノズル40を有する場合には、オートツール42Aを間欠回転させながら装着順が1~12番目の部品を順次ノズル40に吸着させる。一方、オートツール42Bのように1本のノズル40を有する場合には、装着順が1番目の部品をノズル40に吸着させる。その後、CPU61は、採取部21のX軸及びY軸スライダ26,30を制御して装着ヘッド24をパーツカメラ54の上方へ移動させた後、パーツカメラ54にノズル40に吸着された部品を撮像させる。オートツール42Aのように12本のノズル40を有する場合には、オートツール42Aを間欠回転させながらすべてのノズル40に吸着された部品を撮像させる。一方、オートツール42Bのように1本のノズル40を有する場合には、1つのノズル40に吸着された部品を撮像させる。CPU61は、この撮像画像を解析することにより部品の姿勢を把握する。次に、CPU61は、採取部21のX軸及びY軸スライダ26,30を制御して装着ヘッド24を基板S上へ移動させ、ノズル40に吸着された部品を基板Sへ装着する。オートツール42Aのように12本のノズル40を有する場合には、オートツール42Aを間欠回転させながら装着順が1~12番目の部品を順次基板S上の装着位置に装着する。一方、オートツール42Bのように1本のノズル40を有する場合には、1つの部品を基板S上の装着位置に装着する。CPU61は、自身のシーケンスに従って基板S上に装着すべき部品を装着するまでこの作業を繰り返し実行し、作用終了後に基板Sを下流側の装着機11へ送り出す。
 ここで、本実施形態の構成要素と本発明の構成要素との対応関係を明らかにする。本実施形態の管理コンピュータ80が本発明の作業割付装置に相当し、管理コンピュータ80のCPU81が仕様精度取得手段、要求精度取得手段及び割付手段に相当する。
 以上詳述した本実施形態の管理コンピュータ80では、部品種に基づいて設定された要求精度を取得し、取得した要求精度及び各装着機11A~11Dの仕様精度に基づいて装着機11A~11Dの各々に部品の装着作業を割り付ける。つまり、仕様精度の高い装着機には、要求精度の高い部品の装着作業が割り付けられ、仕様精度の低い装着機には、要求精度の低い部品の装着作業が割り付けられる。そのため、部品実装ライン10を構成する複数の装着機11A~11Dの各々に部品の装着作業を適切に割り付けることができる。
 また、装着機11の仕様精度は、装着機11のそのものの能力及び装着機11の装着ヘッド24に搭載されたオートツール42の能力の両方に依存して設定されている。そのため、装着機11の仕様精度は適切に設定される。
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 例えば、上述した実施形態では、図6に示すように部品種ごとに要求精度を対応づけたが、これに代えて、部品の基板上への装着位置ごとに要求精度を対応づけてもよい。例えば、クリアランス(部品間距離)が小さい装着位置の場合、その装着位置に対応づけられる要求精度は高く設定され、クリアランスが大きい装着位置の場合、その装着位置に対応づけられる要求精度は低く設定される。あるいは、部品種ごとと装着位置ごとの両方同時に(つまり部品種と装着位置の組合せごとに)要求精度を対応づけてもよい。
 上述した実施形態では、管理コンピュータ80は、部品種と要求精度との対応関係(テーブル、図6参照)をHDD83に記憶しているか、あるいは外部から取得するものとしたが、部品種に要求精度が設定されていない場合には、管理コンピュータ80は、その部品種に対応した要求精度を自動設定するようにしてもよい。例えば、管理コンピュータ80のCPU81は、部品種のサイズをHDD83から読み出して取得するか外部から取得し、ある部品に隣接する部品がどのようなクリアランスで配置されるかを互いに隣接する2つの部品の部品種と装着位置とに基づいて計算し、クリアランスの大きさに応じて要求精度を設定してもよい。例えば、クリアランスが所定の閾値以上であれば要求精度を低く設定し、その閾値未満であれば要求精度を高く設定してもよい。こうすれば、装着しようとする部品に要求精度が設定されていない場合であっても、その部品種や装着位置に基づいて要求精度が自動設定されるため、そうした部品にも本発明を適用することができる。また、装着部品とそれに隣接する部品とのクリアランスが小さい場合には、要求精度が高く設定されるため、装着部品を装着する際に隣接部品と干渉しにくくすることができる。
 上述した実施形態において、装着機11A~11Dは精度の異なる複数の作業モードを有し、管理コンピュータ80のCPU81は、装着機11A~11Dの各々に部品の装着作業を割り付けるにあたり、各作業モードでのタクトを考慮して割り付けてもよい。例えば、装着機11Aは、作業モードとしては、高精度モードと低精度モードとのいずれかを選択できるとする。この装着機11Aは、高精度モードでは、装着ヘッド24の移動速度を低速にして位置制御の目標値と実測値との一致幅を狭い範囲(例えば±5パルス)に収まるように制御する。これにより、部品装着時間は長くかかるが精度の高い部品装着を行うことができる。一方、低精度モードでは、装着ヘッド24の移動速度を高速にして位置制御の目標値と実測値との一致幅を広い範囲(例えば±20パルス)に収まるように制御する。これにより、部品装着の精度は高くないが部品装着時間は短くなるためスループットの向上に資することができる。例えば、装着機11Aに部品種PA~PCの部品の装着作業を割り付けるにあたり、部品種PA~PCの要求精度はランク1(図6参照)つまり低精度のため低精度モードを選択してスループットを向上させる。一方、装着機11Aに部品種PEの部品の装着作業を割り付けるにあたり、部品種PEの要求精度はランク3つまり高精度のため高精度モードを選択して時間はかかるが精度を高くする。こうすれば、複数の作業モードを有する装着機11Aの能力が十分発揮されるように部品の装着作業を割り付けることができる。
 上述した実施形態では、本発明の作業割付装置の一例として管理コンピュータ80を示したが、特にこれに限定されるものではなく、例えば管理コンピュータ80とは別に作業割付用のコンピュータを設けてもよい。
 本発明は、部品供給装置から供給される部品を基板の所定位置に装着する装着機が複数配列された部品実装ラインに利用可能である。
D1~D2 シーケンス、10 部品実装ライン、11,11A~11D 装着機、18 搬送部、20 支持板、21 採取部、22 コンベアベルト、23 支持ピン、24 装着ヘッド、26 X軸スライダ、28 ガイドレール、30 Y軸スライダ、32 ガイドレール、40 ノズル、42,42A,42B オートツール、45 Z軸モータ、54 パーツカメラ、56 リールユニット、57 リール、58 フィーダ部、60 制御装置、61 CPU、62 ROM、63 HDD、64 RAM、65 入出力インタフェース、66 バス、80 管理コンピュータ、81 CPU、82 ROM、83 HDD、84 RAM、85 入出力インタフェース、86 バス、87 入力デバイス、88 ディスプレイ。

Claims (5)

  1.  部品実装ラインを構成する複数の装着機の各々に部品の装着作業を割り付ける作業割付装置であって、
     各装着機の部品装着時の仕様精度を取得する仕様精度取得手段と、
     装着部品の種類及び装着部品の基板上での装着位置の少なくとも一方に基づいて設定された部品装着時の要求精度を取得する要求精度取得手段と、
     前記要求精度及び前記仕様精度に基づいて前記装着機の各々に部品の装着作業を割り付ける割付手段と、
     を備えた作業割付装置。
  2.  前記仕様精度は、前記装着機そのものの能力及び前記装着機に搭載されたヘッドの能力の少なくとも一方に依存する、
     請求項1に記載の作業割付装置。
  3.  請求項1又は2に記載の作業割付装置であって、
     前記装着部品の種類及び前記装着部品の基板上での装着位置の少なくとも一方に基づいて前記要求精度を自動設定する要求精度設定手段
     を備え、
     前記要求精度取得手段は、前記要求精度設定手段によって設定された前記要求精度を取得する、
     作業割付装置。
  4.  前記要求精度設定手段は、前記装着部品の基板上での装着位置に基づいて前記要求精度を自動設定するにあたり、前記装着部品の周辺に装着される又は装着された部品と前記装着部品の基板上での装着位置との距離が小さいほど前記要求精度が高くなるように自動設定する、
     請求項3に記載の作業割付装置。
  5.  前記複数の装着機の少なくとも1つは、精度の異なる複数の作業モードを有し、
     前記割付手段は、前記装着機の各々に部品の装着作業を割り付けるにあたり、前記複数の作業モードを有する装着機については各作業モードでのタクトを考慮して部品の装着作業を割り付ける、
     請求項1~4のいずれか1項に記載の作業割付装置。
PCT/JP2015/074891 2015-09-01 2015-09-01 作業割付装置 WO2017037879A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2015/074891 WO2017037879A1 (ja) 2015-09-01 2015-09-01 作業割付装置
CN201580082752.XA CN107926152B (zh) 2015-09-01 2015-09-01 作业分配装置
US15/755,873 US10980161B2 (en) 2015-09-01 2015-09-01 Work allocation device
JP2017537127A JP6694438B2 (ja) 2015-09-01 2015-09-01 作業割付装置
EP15902999.0A EP3346814B1 (en) 2015-09-01 2015-09-01 Work allocation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/074891 WO2017037879A1 (ja) 2015-09-01 2015-09-01 作業割付装置

Publications (1)

Publication Number Publication Date
WO2017037879A1 true WO2017037879A1 (ja) 2017-03-09

Family

ID=58186814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074891 WO2017037879A1 (ja) 2015-09-01 2015-09-01 作業割付装置

Country Status (5)

Country Link
US (1) US10980161B2 (ja)
EP (1) EP3346814B1 (ja)
JP (1) JP6694438B2 (ja)
CN (1) CN107926152B (ja)
WO (1) WO2017037879A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018160562A (ja) * 2017-03-23 2018-10-11 パナソニックIpマネジメント株式会社 部材準備方法および部材準備装置
JP2018160563A (ja) * 2017-03-23 2018-10-11 パナソニックIpマネジメント株式会社 部材処理方法および部材処理装置
WO2019030876A1 (ja) * 2017-08-09 2019-02-14 株式会社Fuji 部品割付装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4161748B2 (ja) * 2003-03-07 2008-10-08 松下電器産業株式会社 電子部品搭載装置
JP5675487B2 (ja) * 2011-05-11 2015-02-25 ヤマハ発動機株式会社 部品実装システム、部品実装方法、プログラム、記録媒体

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4813444B1 (ja) * 1967-12-02 1973-04-27
JP2502956B2 (ja) 1991-04-30 1996-05-29 ジューキ株式会社 チップマウンタ
WO2001030543A1 (fr) * 1999-10-29 2001-05-03 Matsushita Electric Industrial Co., Ltd. Buse d'aspiration et methode et appareil permettant d'installer des pieces au moyen de celle-ci
US6718630B2 (en) * 2000-09-18 2004-04-13 Matsushita Electric Industrial Co., Ltd. Apparatus and method for mounting components on substrate
JP4147963B2 (ja) * 2003-02-10 2008-09-10 松下電器産業株式会社 電子部品搭載装置および電子部品搭載方法
US7025244B2 (en) * 2003-02-10 2006-04-11 Matsushita Electric Industrial Co., Ltd. Electronic component mounting apparatus and electronic component mounting method
DE112006001315T5 (de) * 2005-06-27 2008-08-28 Matsushita Electric Industrial Co., Ltd., Kadoma Montagebedingungs-Festlegungsverfahren
JP4607820B2 (ja) * 2005-06-27 2011-01-05 パナソニック株式会社 実装条件決定方法
CN102856239B (zh) * 2006-07-31 2018-03-30 温泰克工业有限公司 将预定元件置于目标平台的装置和方法
US8527082B2 (en) * 2007-05-24 2013-09-03 Panasonic Corporation Component mounting method, component mounting apparatus, method for determining mounting conditions, and apparatus and program for determining mounting conditions
JP4813444B2 (ja) * 2007-11-14 2011-11-09 ヤマハ発動機株式会社 部品供給方法、表面実装機、フィーダ及び台車
WO2009104410A2 (en) * 2008-02-21 2009-08-27 Panasonic Corporation Mounting condition determining method
US10099365B2 (en) * 2012-08-02 2018-10-16 Fuji Corporation Work machine provided with articulated robot and electric component mounting machine
CN105474769B (zh) * 2013-08-21 2018-12-21 株式会社富士 供料器元件种类决定方法及供料器元件种类决定装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4161748B2 (ja) * 2003-03-07 2008-10-08 松下電器産業株式会社 電子部品搭載装置
JP5675487B2 (ja) * 2011-05-11 2015-02-25 ヤマハ発動機株式会社 部品実装システム、部品実装方法、プログラム、記録媒体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018160562A (ja) * 2017-03-23 2018-10-11 パナソニックIpマネジメント株式会社 部材準備方法および部材準備装置
JP2018160563A (ja) * 2017-03-23 2018-10-11 パナソニックIpマネジメント株式会社 部材処理方法および部材処理装置
WO2019030876A1 (ja) * 2017-08-09 2019-02-14 株式会社Fuji 部品割付装置

Also Published As

Publication number Publication date
CN107926152B (zh) 2020-04-07
EP3346814B1 (en) 2020-10-21
CN107926152A (zh) 2018-04-17
EP3346814A1 (en) 2018-07-11
EP3346814A4 (en) 2018-08-29
US10980161B2 (en) 2021-04-13
US20180249609A1 (en) 2018-08-30
JP6694438B2 (ja) 2020-05-13
JPWO2017037879A1 (ja) 2018-06-21

Similar Documents

Publication Publication Date Title
WO2017037879A1 (ja) 作業割付装置
KR20110067112A (ko) 전자 부품 실장용 장치 및 전자 부품 실장용 장치에서의 조작 지시 방법
JP6916606B2 (ja) 装着処理の最適化装置
JP6646055B2 (ja) 実装装置
WO2017037865A1 (ja) 要求精度設定装置
WO2020039545A1 (ja) 移動作業管理装置、移動型作業装置、実装システム及び管理方法
JP6472805B2 (ja) 対基板作業装置
JP7096286B2 (ja) 作業処理支援方法
JP6043993B2 (ja) 部品実装装置、情報処理装置、情報処理方法及び基板の製造方法
WO2018138815A1 (ja) 制御装置、実装装置及び制御方法
JP6710225B2 (ja) 作業処理支援方法
JP6915090B2 (ja) 実装装置、情報処理装置、実装方法及び情報処理方法
JP7431927B2 (ja) 部品実装システム
JP2020129695A (ja) 要求精度設定装置及び部品実装ライン
JP6043873B2 (ja) 電子部品の割り当て方法および電子部品実装システム
JP2015115356A (ja) 部品実装機
JP2018190786A (ja) 実装機
JP2017017243A (ja) 部品実装機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902999

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537127

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15755873

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE