WO2017033908A1 - 電力変換回路の制御装置 - Google Patents

電力変換回路の制御装置 Download PDF

Info

Publication number
WO2017033908A1
WO2017033908A1 PCT/JP2016/074449 JP2016074449W WO2017033908A1 WO 2017033908 A1 WO2017033908 A1 WO 2017033908A1 JP 2016074449 W JP2016074449 W JP 2016074449W WO 2017033908 A1 WO2017033908 A1 WO 2017033908A1
Authority
WO
WIPO (PCT)
Prior art keywords
power conversion
conversion circuit
control
value
current
Prior art date
Application number
PCT/JP2016/074449
Other languages
English (en)
French (fr)
Inventor
不二雄 黒川
Original Assignee
国立大学法人 長崎大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 長崎大学 filed Critical 国立大学法人 長崎大学
Priority to JP2017536431A priority Critical patent/JP6750143B2/ja
Publication of WO2017033908A1 publication Critical patent/WO2017033908A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • the present invention relates to a control device for a power conversion circuit of a power conversion circuit that shifts to an operation in a current limit mode when a current flowing through a predetermined part during the operation in a normal mode exceeds a limit value.
  • FIG. 1 is a diagram illustrating a conventional control device for a power conversion circuit.
  • the power conversion circuit 9 includes a switch 92 (a transistor in FIG. 1) on the power source 91 side, a reactor 93 connected in series to the switch 92, a connection point between the switch 92 and the reactor 93, and a ground G.
  • a flywheel diode 94 connected in series, a current detection resistor 95 connected in series to the reactor 93, and a capacitor 96 connected to the output terminal of the reactor 94 and the ground G.
  • a load RO is connected to the output terminal of the power conversion circuit 9.
  • Control device 8 a comparator circuit 81, a control mode determination unit 82, and a control signal generation unit 83, comparator circuit 81 obtains the voltage e s generated by the current detecting resistor 95, this Compare with preset voltage V set .
  • the control mode determination unit 82 selects the constant voltage mode when e s ⁇ V set , and selects the current limit mode when e s ⁇ V set .
  • the control signal generation unit 83 sends a drive signal N DRV to the drive circuit DRV, and the drive circuit DRV outputs an on / off signal S Ton to the switch 92.
  • An object of the present invention is to suppress vibration generated in the output current and output voltage when the current flowing through a predetermined part of the power conversion circuit exceeds the limit value and the control shifts from the normal mode to the current limit mode, and It is an object of the present invention to provide a control device for a power conversion circuit in which an output voltage quickly converges to a predetermined value.
  • the control device of the power conversion circuit has the following characteristics. (1) When the current flowing through the predetermined part during operation in the normal mode exceeds the limit value, the control device for the power conversion circuit shifts to the operation in the current limit mode, An overcurrent detector that detects that the current flowing through the predetermined portion exceeds a limit value; A first control unit for generating a control signal in the normal mode; A second control unit for generating a control signal in the current limiting mode; When the overcurrent detection unit does not detect that the current flowing through the predetermined part exceeds the limit value, the control signal generated by the first control unit is selected, and the current flowing through the predetermined part is limited.
  • a control signal selection unit that selects a control signal generated by the second control unit;
  • the first control unit generates a control signal in the normal mode based on a time-dependent dynamic characteristic calculation formula including at least an output voltage of the power conversion circuit
  • the second control unit detects or estimates an impedance of a load connected to the power conversion circuit, and includes the current limit mode based on a time-dependent static characteristic calculation formula including the impedance value and an output current preset value.
  • the “normal mode” is, in other words, a control mode in a steady state or a stable state.
  • the “current limiting mode” is a control mode in which when a current of a predetermined value or more flows through a predetermined part, the current is converged to an output current preset value.
  • the control signal relates to the time length of the on-time, off-time, or on-off time of the power conversion switch that constitutes the power conversion circuit.
  • “Depends on time” is a so-called dynamic characteristic or transient characteristic, and includes at least one time “ ⁇ t”, “d / dt”, “ ⁇ dt”, etc. in a control arithmetic expression (control function). That is.
  • independent of time is a so-called static characteristic or steady-state characteristic, and the time “ ⁇ t”, “d / dt”, “ ⁇ dt”, etc. is added to the control arithmetic expression (control function). It is not included.
  • the predetermined part is an output terminal of the power conversion circuit, an element constituting the power conversion circuit, Control device for power conversion circuit.
  • the elements constituting the power conversion circuit are power conversion switches (transistors, thyristors, etc.) or reactors, capacitors, resistors, transformers, and diodes.
  • the second control unit includes a load impedance detection unit;
  • the load impedance detector is Detecting the impedance of the load based on the output voltage and output current of the power conversion circuit, or Detecting an impedance of the load based on an output voltage of the power conversion circuit and a current that can be regarded as the same as the output current; Control device for power conversion circuit.
  • the second control unit includes a load impedance detection unit;
  • the load impedance detection unit detects the load impedance based on an output voltage value and a switch current value of the power conversion circuit. Control device for power conversion circuit.
  • the impedance value of the load is an absolute value of the impedance; Control device for power conversion circuit.
  • the load impedance is a resistance
  • the value of the load impedance is a resistance value
  • the load impedance is capacitive or inductive
  • the value of the load impedance can be an absolute value of the impedance.
  • the first control unit is based on at least an output voltage of the power conversion circuit
  • the second control unit further uses the input voltage of the power conversion circuit as a parameter. Control device for power conversion circuit.
  • the control signal is an on-time, an off-time, a switching period, or a time control amount according to a combination thereof. Control device for power conversion circuit.
  • Control by the second control unit is performed by the following arithmetic expression: Control device for power conversion circuit.
  • e o [n] Digital value of output voltage i o [n]: Digital value of output current i o_set : Preset value of output current E i [n]: Digital value of input voltage N oc : On after overcurrent detection
  • Time digital value T s Switching period N Ts : Digital value corresponding to the switching period
  • a eo Amplification factor of preamplifier of output voltage detector
  • a io Amplification factor of preamplifier of output current detector
  • a Ei Amplification factor G eo of the preamplifier of the input voltage detection unit: AD gain G io of the output voltage AD gain G Ei of the output current r: AD gain of the input voltage r: Loss of the converter
  • R s io Detection resistance L: react
  • Control by the second control unit is performed by the following arithmetic expression: Control device for power conversion circuit.
  • e o [n] Digital value of output voltage i o [n]: Digital value of output current i o_set : Preset value of output current E i [n]: Digital value of input voltage N oc : On after overcurrent detection Digital value of time N p : Number of turns of transformer primary winding N s : Number of turns of transformer secondary winding T s : Switching period N Ts : Digital value corresponding to switching period A eo : Prefix of output voltage detector Amplifier amplification factor A io : Output current detector preamplifier amplification factor A Ei : Input voltage detector preamplifier gain G eo : Output voltage AD gain G io ⁇ Output current A- D gain G Ei : AD gain of input voltage
  • the first control unit has a first time amount T1 based on PID control, PD control, or PI control until the integration value reaches a predetermined value (threshold value) after the integration of the current by the integration circuit is started.
  • T1 a predetermined value
  • the overcurrent detection unit determines that the current flowing through the power conversion switch exceeds a limit value when the second amount of time falls below a predetermined value. Control device for power conversion circuit.
  • the vibration generated in the output current and the output voltage is suppressed, and the output current and The output voltage can be quickly converged to a predetermined value.
  • FIG. 2 is a waveform diagram showing an output voltage and an output current when current control is performed by the control device of FIG.
  • FIG. 3 is a functional block diagram illustrating the control device and the power conversion circuit according to the first embodiment of the present invention.
  • FIG. 4 is a flowchart showing processing of the control device of FIG.
  • FIG. 5 is an operation explanatory diagram when the control mode shifts from the constant voltage mode to the current limit mode in the control device shown in FIG. 3.
  • FIG. 5A shows a case where the output current preset value io_set exhibits a constant current characteristic.
  • FIG. 5B shows a case where the output current preset value io_set exhibits a drooping characteristic.
  • FIG. 5A shows a case where the output current preset value io_set exhibits a constant current characteristic.
  • FIG. 5B shows a case where the output current preset value io_set exhibits a drooping characteristic.
  • FIG. 5C shows a case where the output current preset value io_set exhibits a fallback characteristic.
  • FIG. 6 is a diagram illustrating an output voltage and an output current of the power conversion circuit, and a drive signal and a control amount generated by the control circuit when current limiting is performed by the control device illustrated in FIG.
  • FIG. 7 is a functional block diagram showing a control device and a power conversion circuit according to the second embodiment of the present invention.
  • FIG. 8 is a functional block diagram showing a control device and a power conversion circuit according to the third embodiment of the present invention.
  • FIG. 9 is a flowchart showing processing of the control device shown in FIG.
  • FIG. 10 is a waveform diagram when the control mode shifts from the normal mode to the current limit mode in the control device shown in FIG. FIG.
  • FIG. 10A is a waveform diagram in the constant voltage mode (normal mode in the present invention).
  • FIG. 10 (B) is a waveform diagram when the current limit mode is entered.
  • FIG. 11 is an explanatory view showing a fourth embodiment of the control apparatus of the present invention.
  • FIG. 3 is an explanatory diagram showing a first embodiment of the control device of the present invention.
  • the power conversion circuit 4 includes a power supply 41 (voltage E i ), a power conversion switch 42 (“Tr”), a reactor (“L”) 43, and a flywheel diode (“D F ”) 44. And a current detection resistor (“R s ”) 45 and a capacitor 46.
  • the power conversion circuit 4 is a step-down DC / DC converter.
  • the power supply 41 (voltage E i ) is a DC power supply, and a power conversion switch 42 (“Tr”) is connected to the power supply 41 in series.
  • a reactor (“L”) 43 is connected in series to the power conversion switch 42, and a flywheel diode (“D F ”) 44 is connected to the connection point between the power conversion switch 42 and the reactor 43 and the ground G.
  • the current detection resistor (“R s ”) 45 is connected to the reactor 43 in series.
  • the capacitor 46 is connected to the output G of the reactor 43 and the ground G.
  • a load resistance (corresponding to a load impedance in the present invention) Ro is connected to the output terminal of the power conversion circuit 4.
  • the control device 1 performs switching control (on-time control, off-time control, or on-time / off-time control) of the power conversion switch 42 of the power conversion circuit 4.
  • the control device 1 includes an overcurrent detection unit 11, a first control unit 12, a second control unit 13, and a control mode selection unit 14.
  • An output voltage detection unit 21, an output current detection unit 22, and an input voltage detection unit 23 are provided in the previous stage of the control device 1.
  • Output voltage detection unit 21 the front consists preamplifier 211 and A-D converter 212, detects the output voltage e o of the power conversion circuit 4.
  • Output current detection unit 22 the front consists preamplifier 221 and A-D converter 222, detects the output current i o of the power conversion circuit 4 as a corresponding voltage e s.
  • the input voltage detection unit 23 includes a preamplifier 231 and an AD converter 232 and detects an input voltage E i of the power conversion circuit 4.
  • the overcurrent detection unit 11 detects whether or not the current flowing through the output terminal of the power conversion circuit 4 (that is, the output current i o ) has exceeded a limit value.
  • the first control unit 12 performs control in a normal mode (constant voltage mode in the present embodiment) based on a function that depends on the passage of time. That is, the first control unit 12 generates a control signal in the normal mode.
  • the second control unit 13 includes a load impedance detection unit 131 and a control amount calculation unit 132, and performs control in the current limit mode. That is, the second control unit 13 generates a control signal in the current limiting mode.
  • the “normal mode” is, in other words, a control mode in a steady state or a stable state.
  • the “current limiting mode” is a control mode in which when a current of a predetermined value or more flows through a predetermined portion, the current is converged to an output current preset value.
  • the control signals generated by the first control unit 12 and the second control unit 13 relate to the time length of the on-time, off-time, or on-off time of the power conversion switch that constitutes the power conversion circuit.
  • the control signal may be a time control amount related to an on time, an off time, a switching cycle, or a combination thereof. Further, “depending on time (elapsed)” is called a so-called dynamic characteristic or transient characteristic, and time “ ⁇ t”, “d / dt”, “ ⁇ dt” is added to the control arithmetic expression (control function).
  • independent of time is a so-called static characteristic or steady-state characteristic, and the time “ ⁇ t”, “d / dt”, “ ⁇ dt”, etc. is added to the control arithmetic expression (control function). It is not included.
  • Load impedance detector 131 based on the detection result of the output voltage detection unit 21 (output voltage e o of the power conversion circuit 4), the detection result of the output current detecting unit 22 (the output current i o of the power conversion circuit 4)
  • the load impedance Ro of the power conversion circuit 4 is detected.
  • the load impedance R o of the load impedance detector 131 is detected, the absolute value of the complex impedance. In this embodiment, since the load is resistive, the load impedance is represented by Ro .
  • the control amount calculation unit 132 performs constant current control based on a function that does not depend on the passage of time, using the value of the load impedance R o and the output current preset value i o_set of the power conversion circuit 4 as parameters.
  • the control mode selection unit 14 determines whether or not the current flowing through the predetermined part (the current detection resistor 45 in FIG. 3) of the power conversion circuit 4 exceeds the limit value i oc by the overcurrent detection unit 11. Alternatively, a signal from the second control unit 13 is selected.
  • control mode selection unit 14 selects the control signal generated by the first control unit 12 when the overcurrent detection unit 11 has not detected that the current flowing through the predetermined portion has exceeded the limit value, When the overcurrent detection unit 11 detects that the current flowing through the part exceeds the limit value, it functions as a control signal selection unit that selects a control signal generated by the second control unit 13.
  • the second control unit 13 operates when the overcurrent detection unit 11 detects that the current flowing through the predetermined portion (current detection resistor 45 in FIG. 3) exceeds the limit value i oc .
  • the drive circuit 3 receives the drive signal (N Drive ) from the control mode selection unit 14 and sends a signal to the power conversion switch 42 of the power conversion circuit 4.
  • FIG. 4 is a flowchart showing processing of the control device 1 of FIG.
  • the process of FIG. 4 may be performed, for example, every io sampling cycle, may be performed a plurality of times in one switching cycle, or may be performed once in a plurality of switching cycles.
  • FIGS. 5A, 5 ⁇ / b> B, and 5 ⁇ / b> C are operation explanatory diagrams when the control mode shifts from the constant voltage mode to the current limit mode in the control device 1 of FIG. 3.
  • the operation of the control device 1 shown in FIG. 3 will be described with reference to FIGS. It is assumed that the control device 1 is operating in the constant voltage mode with the output voltage setting value as eo_1 .
  • FIG. 5A, 5 ⁇ / b> B, and 5 ⁇ / b> C are operation explanatory diagrams when the control mode shifts from the constant voltage mode to the current limit mode in the control device 1 of FIG. 3.
  • the operation of the control device 1 shown in FIG. 3 will be described with
  • the load resistance is R o , and based on a dynamic characteristic calculation formula in which the deviation between the output voltage eo and the first output voltage set value e o — 1 is zero. Be controlled.
  • the control mode selection unit 14 selects a signal from the first control unit 12.
  • the first control unit 12 detects the output voltage e o, determine the control amount T On_PID corresponding to the output voltage preset value e O_1, the driving circuit is sent to the drive circuit as a controlled variable N PID can be processed (S110) .
  • the first control unit 12 includes at least the output voltage e o of the power conversion circuit 4 generates a control signal N PID in the normal mode based on the dynamic characteristic arithmetic expression that depend on time.
  • Output current detector 22 detects the output current i o of the power conversion circuit 4 (S120).
  • the overcurrent detection unit 11 receives the detection value of the output current i o from the output current detection unit 22, and whether or not the output current i o exceeds the limit value i o_oc_A (i o ⁇ i o_oc_A or i o ⁇ i o_oc_A ) Is determined (S130).
  • the process returns to S120, and the output current i o is detected.
  • the control mode selection unit 14 selects the signal from the second control unit 13. Then, the control shifts from the constant voltage mode to the current limit mode.
  • the output voltage detection unit 21 detects the output voltage e o (S140), the load impedance detector 131 calculates the load resistor Ro (R o_oc in FIG 5) (S150).
  • the control amount calculation unit 132 sets the output current preset value io_set (S160).
  • the output current preset value io_set can exhibit characteristics as shown in FIGS. 5 (A), (B), and (C).
  • FIG. 5A shows a case where the output current preset value i o_set exhibits a constant current characteristic
  • FIG. 5B shows a case where the output current preset value i o_set exhibits a drooping characteristic
  • FIG. The case where the output current preset value i o_set shows the foldback characteristic (“F” characteristic) is shown.
  • control amount T on_oc in the current limiting mode Ask for.
  • Control amount T On_oc when the load resistance is R O_oc, a control amount of the output voltage e o is the voltage e O_2 corresponding to the output current preset value i O_set, as a drive circuit can process controlled variable N oc To the drive circuit 3 (Sl70).
  • S180 it is determined whether the control has returned to the constant voltage mode (S180). This determination can be made by the CPU of the control device 12 or the like.
  • the process returns to S110.
  • the constant voltage mode when returning to the current control mode is maintained) (“NO” in S180)
  • the process returns to S140.
  • the control shifts to the current limit mode II.
  • the output current i o is controlled based on a static characteristic calculation formula that becomes the output current preset value i o_set .
  • the output current preset value is i o_set , and the output voltage corresponding to i o_set is e o_2 .
  • the output current preset value is set to be larger than the limit value i o_oc, but may be set to the same value i o_oc_A as the limit value i o_oc .
  • the output current preset value can be set to a value io_set_d that is smaller than the limit value io_oc_A (the output electric voltage at this time is indicated by eo_2_d ).
  • An appropriate method is employed for maintaining the current limit mode II and returning from the current limit mode II to the constant voltage mode I. For example, when the control amount N PID in the first control unit 12 is larger than the control amount N oc in the second control unit 13 (N PID > N oc ), the current control mode II is maintained, but in the first control unit 12 When the control amount N PID becomes equal to or less than the control amount N oc in the second control unit 13 (N PID ⁇ N oc ), the control mode selection unit 14 returns from the current limiting mode II to the constant voltage mode I. You can
  • N oc Digital value of on-time after overcurrent detection T s : Switching period N Ts : Digital value corresponding to switching period R o : Load resistance e o [n]: Digital value of output voltage i o [n]: Digital value of output current E i [n]: Digital value of input voltage A eo : Amplification factor of preamplifier of output voltage detector A io : Amplification factor of preamplifier of output current detector A Ei : Input voltage detection amplification factor G eo parts preamplifier: a-D gain G io of the output voltage: a-D gain G Ei of the output current: a-D gain r of the input voltage: converter loss R s: i o detection of resistance L: reactance
  • the second control unit 13 estimated by calculating the impedance of the load Ro connected to the power conversion circuit 4 (the load resistance R o_oc), the value of the im
  • FIG. 6 shows the output voltage e o , output current i o , drive signal N Drive , and control amount T on of the power conversion circuit 4.
  • N PID number of control quantities
  • T on_PID time controlled variable
  • the output current i o of the power conversion circuit 4 exceeds the limit value i O_oc
  • the control shifts to the current limit mode the output current i o and the output voltage e o do not vibrate, and the output current i o quickly changes to the output current preset value i o_set and the output voltage e o It converges to a predetermined voltage eo_2 .
  • the control device for a power conversion circuit in which the overshoot hardly occurs and the output current quickly converges to a preset value, and thus an excessive current due to load fluctuations constitutes the power conversion circuit. It is possible to prevent a situation in which the constituent member is destroyed by flowing through a switching element such as a transistor, a reactor, a capacitor, a resistor, a transformer, and a diode.
  • FIG. 7 is an explanatory diagram showing a second embodiment of the control device of the present invention.
  • the power conversion circuit 5 includes a power source 51 (voltage E i ), a power conversion switch 52 (“Tr”), a transformer 53, a first diode 54, and second and third diodes 551. 552, a reactor 56, a capacitor 57, and a current detection resistor (“R s ”) 58.
  • the power conversion circuit 4 is an insulated forward DC / DC converter.
  • One end of the power conversion switch 52 and the anode terminal of the first diode 54 are connected to the negative terminal of the power source 51 (voltage E i ).
  • the other end of the power conversion switch 52 (“Tr”) is connected to one end of the primary winding of the transformer 53, and the anode terminal of the first diode 54 is connected to the other end of the primary winding of the transformer 53. Yes.
  • the transformer 53 is provided with an intermediate tap, and the positive terminal of the power source 51 is connected to the intermediate tap.
  • a second diode 551 is connected to one end of the secondary winding of the transformer 53.
  • the second diode 551 is arranged so that the anode faces one end of the transformer 53.
  • a third diode 552 is connected to the other end (ground) of the secondary winding of the transformer 53 and the cathode of the second diode 551.
  • the cathode of the third diode 552 is arranged so as to face the cathode of the second diode 551.
  • a connection point between the second diode 551 and the third diode 552 is connected to the reactor (L) 56, and a capacitor (C) 57 is connected to the output side terminal of the reactor 56 and the ground.
  • a current detection resistor (R s ) 58 is connected between the connection point of the reactor 56 and the capacitor 57 and the output terminal of the power conversion circuit.
  • the vibration generated in the output current and the output voltage can be suppressed and the output current and the output voltage can be quickly converged to a predetermined value.
  • a control device for a power conversion circuit in which the overshoot hardly occurs and the output current quickly converges to a preset value, and thus an excessive current due to load fluctuations constitutes the power conversion circuit. It is possible to prevent a situation in which the constituent member is destroyed by flowing through a switching element such as a transistor, a reactor, a capacitor, a resistor, a transformer, and a diode.
  • FIG. 8 is an explanatory diagram showing a third embodiment of the control device of the present invention.
  • the power conversion circuit 4 is substantially the same as the power conversion circuit 4 shown in FIG. However, in the power conversion circuit 4 illustrated in FIG. 3, the output current is detected by the current detection resistor (“R s ”) 45, but in the power conversion circuit 4 in FIG. 8, the current detection resistor (“R Tr ”) 47 detects the switch current iTr .
  • an output voltage detection unit 21, a switch current detection unit 24, and an input voltage detection unit 23 are provided in the previous stage of the control device 1.
  • the switch current detection unit 24 includes a preamplifier 241, an AD converter 242, and an integration circuit 243.
  • the switch current detection unit 24 detects the current flowing through the switch 47 (switch current i Tr ) as an equivalent voltage e Tr by the preamplifier 241 and the AD converter 242.
  • the integration circuit 243 starts integration in response to the integration start timing signal IST from the first control unit 12 and outputs an integration end signal when the integration value V rc reaches the threshold value V th .
  • the overcurrent detection unit 11 receives an integral value of the switch current iTr and detects an overcurrent.
  • FIG. 9 is a flowchart showing processing of the control device 1 shown in FIG.
  • the process of FIG. 9 may be performed, for example, every iTr sampling cycle, may be performed a plurality of times in one switching cycle, or may be performed once in a plurality of switching cycles.
  • FIG. 10 is a waveform diagram when the control mode shifts from the normal mode to the current limit mode in the control device 1 shown in FIG. 8, and
  • FIG. 10A is a waveform diagram in the constant voltage mode (normal mode).
  • FIG. 10B is a waveform diagram when the current limit mode is entered.
  • the operation of the control device 1 in FIG. 8 will be described with reference to FIGS. 9 and 10. It is assumed that the control device 1 is operating in the constant voltage mode.
  • the control mode selection unit 14 selects a signal from the first control unit 12.
  • the first control unit 12 detects the output voltage Zhuang e o, determine the control amount T On_PID corresponding to the output voltage preset value e O_1, and sends to the drive circuit (S210).
  • the first control unit 12 calculates a first time amount T1 based on PID control, starts integration by the integration circuit 243 at a predetermined timing, and measures an integration value (voltage) V rc .
  • the first time amount T1 is a value obtained by adding an appropriate delay time to the PID control amount generated by the first control unit 12.
  • the first control unit 12 may obtain the first amount of time T1 based on PD control or PI control. The time until the integrated value V rc reaches the threshold value V th after the integration of the current by the integrating circuit 243 is added to the first time amount T1 as the second time amount T cs , thereby performing the first control.
  • the unit 12 calculates the on-time of the power conversion switch (shown as “sw” in FIGS. 10A and 10B).
  • the overcurrent detection unit 11 monitors the second amount of time Tcs (S220). When the second amount of time T cs is longer than the set time T csr (T cs > T csr ), the process returns to S220 (“NO” in S230). As shown in FIG.
  • Output voltage detection unit 21 detects the output voltage e o
  • the switch current detection unit 24 detects the switch current i Tr (S240).
  • the load impedance detection unit 131 calculates the load resistance Ro_oc (S250).
  • the load resistance is R o_oc ⁇ e o / i Tr Can be obtained as That is, the load impedance detector 131 detects the output voltage e o of the power conversion circuit 4, the impedance of the load based on the current i Tr that can be regarded as equal to the output current.
  • the control amount calculation unit 132 sets the output current preset value io_set (S260).
  • the second control unit 23 controls the control amount T on_oc (on / off signal S Ton in the current limit mode). Of the digital value).
  • Control amount T On_oc the load resistance when the R O_oc, a control amount of the output voltage e o is the voltage e O_2 corresponding to the output current preset value i O_set, are sent to the drive circuit 3 (S270).
  • S280 it is determined whether the control has returned to the constant voltage mode (S280). This determination can be made by the CPU of the control device 12 or the like.
  • an appropriate method is employed for maintaining the current limit mode II and returning from the current limit mode II to the constant voltage mode I. For example, when the control amount N PID in the first control unit 12 is larger than the control amount NOC in the second control unit 13 (N PID > N oc ), the current control mode II is maintained, but the control in the first control unit 12 is performed. When the amount N PID becomes equal to or less than the control amount N oc in the second control unit 13 (N PID ⁇ N oc ), the current limit mode II can return to the constant voltage mode I.
  • the control device for a power conversion circuit in which the overshoot hardly occurs and the output current quickly converges to a preset value, and thus an excessive current due to load fluctuations constitutes the power conversion circuit. It is possible to prevent a situation in which the constituent member is destroyed by flowing through a switching element such as a transistor, a reactor, a capacitor, a resistor, a transformer, and a diode.
  • FIG. 11 is an explanatory view showing a fourth embodiment of the control apparatus of the present invention.
  • the power conversion circuit 5 in FIG. 11 is the same as the power conversion circuit 5 shown in FIG.
  • the operation of the control device 1 of the fourth embodiment is substantially the same as the operation of the control device 1 of the third embodiment.
  • the static characteristic calculation formula used for the control in the fourth embodiment is described below.
  • the control device for a power conversion circuit in which the overshoot hardly occurs and the output current quickly converges to a preset value, and thus an excessive current due to load fluctuations constitutes the power conversion circuit. It is possible to prevent a situation in which the constituent member is destroyed by flowing through a switching element such as a transistor, a reactor, a capacitor, a resistor, a transformer, and a diode.
  • a switching element such as a transistor, a reactor, a capacitor, a resistor, a transformer, and a diode.
  • the predetermined position through which the current for detecting whether or not the overcurrent detection unit exceeds the limit value is the output terminal of the power conversion circuit 4 or the switch 42 constituting the power conversion circuit 4.
  • Other positions such as a reactor, a capacitor, a resistor, a transformer, or a diode constituting the circuit may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】制御が通常モードから電流制限モードに移行したときに、出力電流や出力電圧に振動が生じずかつ出力電流や出力電圧が速やかに所定値に収束する電力変換回路の制御装置を提供する。 【解決手段】制御装置1は、出力電流iが制限値を超えたことを検出する過電流検出部11、通常モードでの制御信号を生成する第1制御部12、電流制限モードでの制御信号を生成する第2制御部13、第1制御部12が生成する制御信号と第2制御部13が生成する制御信号を選択する制御信号選択部を備えている。第1制御部は、電力変換回路4の出力電圧を含む、時間に依存する動特性演算式に基づき通常モードでの制御信号を生成し、第2制御部は、負荷抵抗を検出し、抵抗の値と出力電流プリセット値を含む、時間に依存しない静特性演算式に基づき電流制限モードでの制御信号を生成する。

Description

電力変換回路の制御装置
 本発明は、通常モードでの動作中に所定部位を流れる電流が制限値を超えたときに、電流制限モードでの動作に移行する電力変換回路の電力変換回路の制御装置に関する。
 従来、電力変換回路の構成部材を保護するために、スイッチ電流を積分器により監視する制御技術が知られている。
 特許文献1に記載の制御技術では、通常は定電圧モードで電力変換回路を制御するが、スイッチ電流の積分値が所定時間内に所定の値に達したときに保護回路を動作させる。
 特許文献2に記載の制御技術では、電力変換回路の構成部材を保護するために、定電流制御を行うことで、当該構成部材の保護を行う技術が開示されている。
特願平4-279006号公報 特願平7-72292号公報
 上記の従来技術は、何れもアナログ制御装置に適用されるものであるが、デジタル制御装置においても、構成部材を保護するために、スイッチ電流を監視し、過電流を検出したときに制限制御を行うことが想起される。
 図1は電力変換回路の従来の制御装置を示す図である。
 図1において、電力変換回路9は、電源91側のスイッチ(図1では、トランジスタ)92と、スイッチ92に直列接続されたリアクトル93と、スイッチ92とリアクトル93との接続点とグランドGとの聞に接続されたフライホイールダイオード94と、リアクトル93に直列に接続された電流検出用抵抗95と、リアクトル94の出力端子とグランドGとの聞に接続されたキャパシタ96とからなる。電力変換回路9の出力端子には負荷ROが接続されている。
 制御装置8は、比較回路81と、制御モード決定部82と、制御信号生成部83とを備えており、比較回路81は電流検出用抵抗95により生成された電圧eを取得し、これをプリセット電圧Vsetと比較する。
 制御モード決定部82は、e<Vsetのときは定電圧モードを選択し、e≧Vsetのときは、電流制限モードを選択する。制御信号生成部83は、ドライブ回路DRVに駆動信号NDRVを送出し、ドライブ回路DRVはスイッチ92にオン・オフ信号STonを出力する。
 図2に示すように、制御モードが定電圧モードから電流制限モードに移行した場合にフィードバックゲインが大きいとeやiに振動が生じ、フィードパックゲインが小さいとeやiが収束するまでの時聞が長くなる。
 したがって、図1に示した制御装置では、安定性が高い設計を行うことが困難となる。
 本発明の目的は、電力変換回路の所定部位を流れる電流が制限値を超え、制御が通常モードから電流制限モードに移行したときに、出力電流や出力電圧に生じる振動を抑制しかつ出力電流や出力電圧が速やかに所定値に収束する電力変換回路の制御装置を提供することである。
 本発明に係る電力変換回路の制御装置は以下のような特徴を有する。
(1)
 通常モードでの動作中に所定部位を流れる電流が制限値を超えたときに、電流制限モードでの動作に移行する電力変換回路の制御装置であって、
 前記所定部位を流れる電流が制限値を超えたことを検出する過電流検出部と、
 前記通常モードでの制御信号を生成する第1制御部と、
 前記電流制限モードでの制御信号を生成する第2制御部と、
 前記所定部位を流れる電流が前記制限値を超えたことを前記過電流検出部が検出していないときは、前記第1制御部が生成する制御信号を選択し、前記所定部位を流れる電流が制限値を超えたことを前記過電流検出部が検出したときは、前記第2制御部が生成する制御信号を選択する制御信号選択部と、
を備え、
 前記第1制御部は、前記電力変換回路の少なくとも出力電圧を含む、時間に依存する動特性演算式に基づき前記通常モードでの制御信号を生成し、
 前記第2制御部は、前記電力変換回路に接続された負荷のインピーダンスを検出または推定し、前記インピーダンスの値と出力電流プリセット値を含む、時間に依存しない静特性演算式に基づき前記電流制限モードでの制御信号を生成する、
電力変換回路の制御装置。
 ここで、「通常モード」は、換言すると、定常状態または安定状態における制御モードである。
 また、「電流制限モード」は、所定部位に所定値以上の電流が流れたときに、当該電流を出力電流プリセット値に収束させる制御モードである。
 制御信号は、電力変換回路を構成する電力変換用スイッチの、オンタイム、オフタイムまたはオン・オフタイムの時間長に係るものである。
 
 「時間に依存する」とは、いわゆる動特性や過渡特性と言われるもので、制御演算式(制御関数)に時間「×t」、「d/dt」、「∫dt」等を少なくともひとつ含むことである。逆に、「時間に依存しない」とは、いわゆる静特性あるいは定常特性と言われるもので、制御演算式(制御関数)に時間「×t」、「d/dt」、「∫dt」等を含まないことである。
(2)
 (1)に記載の電力変換回路の制御装置において、
 前記所定部位が、前記電力変換回路の出力端子、前記電力変換回路を構成する素子である、
電力変換回路の制御装置。
 電力変換回路を構成する素子は、具体的には、電力変換用スイッチ(トランジスタ・サイリスタ等)またはリアクトル、キャパシ夕、抵抗、トランス、ダイオードである。
(3)
 (1)に記載の電力変換回路の制御装置において、
 前記第2制御部が、負荷インピーダンス検出部を備え、
 前記負荷インピーダンス検出部は、
 前記電力変換回路の出力電圧と出力電流とに基づき前記負荷のインピーダンスを検出し、または、
 前記電力変換回路の出力電圧と、前記出力電流と同一とみなせる電流に基づき前記負荷のインピーダンスを検出する、
電力変換回路の制御装置。
(4)
 前記所定部位が電力変換用スイッチである(2)に記載の電力変換回路の制御装置において、
 さらに、前記電力変換回路の出力電圧値を検出する出力電圧検出部と、前記電力変換回路の電力変換用スイッチの電流値を検出するスイッチ電流検出部を備え、
 前記第2制御部が、負荷インピーダンス検出部を備え、
 前記負荷インピーダンス検出部は、前記電力変換回路の出力電圧値とスイッチ電流値に基づき前記負荷インピーダンスを検出する、
電力変換回路の制御装置。
(5)
 (1)に記載の電力変換回路の制御装置において、
 前記負荷のインピーダンスの値が当該インピーダンスの絶対値である、
電力変換回路の制御装置。
 負荷インピーダンスが抵抗である場合には負荷インピーダンスの値は抵抗値であるが、負荷インピーダンスが容量性または誘導性である場合には、負荷インピーダンスの値はインピーダンスの絶対値とすることができる。
(6)
 (1)に記載の電力変換回路の制御装置において、
 前記第1制御部は、前記電力変換回路の少なくとも出力電圧に基づき、
 前記第2制御部は、さらに前記電力変換回路の入力電圧をパラメータとする、
電力変換回路の制御装置。
(7)
 (1)に記載の電力変換回路の制御装置において、
 前記制御信号が、オン時間、オフ時間、スイッチング周期またはこれらの組み合わせに係る時間制御量である、
電力変換回路の制御装置。
(8)
 前記電力変換回路が降圧型DC/DCコンバータである(6)に記載の電力変換回路の制御装置において、
 前記第2制御部による制御が、次の演算式により行われる、
電力変換回路の制御装置。
Figure JPOXMLDOC01-appb-M000005
[n]:出力電圧のデジタル値
[n]:出力電流のデジタル値
o_set:出力電流のプリセット値
[n]:入力電圧のデジタル値
oc:過電流検出後のオン時間のデジタル値
:スイッチング周期
Ts:スイッチング周期に対応するデジタル値
eo:出力電圧検出部の前置増幅器の増幅率
io:出力電流検出部の前置増幅器の増幅率
Ei:入力電圧検出部の前置増幅器の増幅率
eo:出力電圧のA-Dゲイン
io・出力電流のA-Dゲイン
Ei:入力電圧のA-Dゲイン
r:コンバータの損失
:ioの検出抵抗
L:リアクタンス
(9)
 前記電力変換回路がフォワード型DC/DCコンバータである(6)に記載の電力変換回路の制御装置において、
 前記第2制御部による制御が、次の演算式により行われる、
電力変換回路の制御装置。
Figure JPOXMLDOC01-appb-M000006
[n]:出力電圧のデジタル値
[n]:出力電流のデジタル値
o_set:出力電流のプリセット値
[n]:入力電圧のデジタル値
oc:過電流検出後のオン時間のデジタル値
:トランスの一次巻線の巻数
:トランスの二次巻線の巻数
:スイッチング周期
Ts:スイッチング周期に対応するデジタル値
eo:出力電圧検出部の前置増幅器の増幅率
io:出力電流検出部の前置増幅器の増幅率
Ei:入力電圧検出部の前置増幅器の増幅率
eo:出力電圧のA-Dゲイン
io・出力電流のA-Dゲイン
Ei:入力電圧のA-Dゲイン
r:コンバータの損失
:ioの検出抵抗
L:リアクタンス
(10)
 前記所定部位が電力変換用スイッチである(1)に記載の電力変換回路の制御装置において、
 前記電力変換用スイッチを流れる電流を積分する積分回路を備え、
 前記第1制御部はPID制御、PD制御またはPI制御に基づく第1時間量T1に、前記積分回路による前記電流の積分が開始してから積分値が所定値(しきし値)に達するまでの第2時間量を付加することで電力変換用スイッチのオンタイムを算出し、
 過電流検出部は、前記第2時間量が所定値を下回ったときに、前記電力変換用スイッチを流れる電流が制限値を超えたと判断する、
電力変換回路の制御装置。
(11)
 前記電力変換回路が降圧型DC/DCコンバータである(10)に記載の電力変換回路の制御装置において、
 前記第2制御部による制御が、次の演算式により行われる、
電力変換回路の制御装置。
Figure JPOXMLDOC01-appb-M000007
[n]:出力電圧のデジタル値
[n]:出力電流のデジタル値
o_set:出力電流のプリセット値
:入力電圧のデジタル値
th:積分回路の電圧しきい値
τ:積分回路の時定数
oc:過電流検出後のオン時間のデジタル値
:スイッチング周期
Ts:スイッチング周期に対応するデジタル値
:出力電流検出部の前置増幅器の増幅率
r:コンバータの損失
:ioの検出抵抗
L:リアクタンス
(12)
 前記電力変換回路がフォワード型DC/DCコンバータである(10)に記載の電力変換回路の制御装置において、
 前記第2制御部による制御が、次の演算式により行われる、
電力変換回路の制御装置。
Figure JPOXMLDOC01-appb-M000008
[n]:出力電圧のデジタル値
[n]:出力電流のデジタル値
o_set:出力電流のプリセット値
:入力電圧のデジタル値
th:積分回路の電圧しきい値
τ:積分回路の時定数
oc:過電流検出後のオン時間のデジタル値
:トランスの一次巻線の巻数
:トランスの二次巻線の巻数
:スイッチング周期
Ts:スイッチング周期に対応するデジタル値
:負荷抵抗
:出力電流検出部の前置増幅器の増幅率
r:コンバータの損失
:iの検出抵抗
L:リアクタンス
 本発明によれば、電力変換回路の所定部位を流れる電流が制限値を超え、制御が通常モードから電流制限モードに移行したときに、出力電流や出力電圧に生じる振動を抑制しかつ出力電流や出力電圧が速やかに所定値に収束させることができる。
電力変換回路の従来の制御装置の説明図である。 図2は、図1の制御装置により電流制限を行う場合の出力電圧と出力電流を示す波形図である。 図3は、本発明の第1実施形態の制御装置および電力変換回路を示す機能ブロック図である。 図4は、図3の制御装置の処理を示すフローチャートである。 図5は、図3に示した制御装置において、制御モードが定電圧モードから電流制限モードへの移行する場合の動作説明図である。 図5(A)は、出力電流プリセット値io_setが定電流特性を示す場合を示している。 図5(B)は、出力電流プリセット値io_setがドルーピング特性を示す場合を示している。 図5(C)は、出力電流プリセット値io_setがフォールバック特性を示す場合を示している。 図6は、図3に示した制御装置により電流制限を行う場合の、電力変換回路の出力電圧および出力電流、ならびに制御回路が生成するドライブ信号および制御量を示す図である。 図7は、本発明の第2実施形態の制御装置および電力変換回路を示す機能ブロック図である。 図8は本発明の第3実施形態の制御装置および電力変換回路を示す機能ブロック図である。 図9は、図8に示した制御装置の処理を示すフローチャートである。 図10は、図8に示した制御装置において、制御モードが通常モードから電流制限モードへの移行する場合の波形図である。 図10(A)は定電圧モード(本発明における通常モード)における波形図である。 図10(B)は電流制限モードへの移行したときの波形図である。 図11は本発明の制御装置の第4実施形態を示す説明図である。
《第1実施形態》
 図3は本発明の制御装置の第1実施形態を示す説明図である。
 図3において、電力変換回路4は、電源41(電圧E)と、電力変換用スイッチ42(「Tr」)と、リアクトル(「L」)43と、フライホイールダイオード(「D」)44と、電流検出用抵抗(「R」)45と、キャパシタ46とからなる。この電力変換回路4は、降圧型DC/DCコンバータである。
 電源41(電圧E)は直流電源であり、電源41には電力変換用スイッチ42(「Tr」)が直列接続されている。電力変換用スイッチ42にはリアクトル(「L」)43が直列接続され、電力変換用スイッチ42とリアクトル43との接続点とグランドGとの聞にフライホイールダイオード(「D」)44が接続されている。電流検出用抵抗(「R」)45は、リアクトル43に直列に接続されている。たキャパシタ46は、リアクトル43の出力側の端子とグランドGとの聞に接続されている。電力変換回路4の出力端子には負荷抵抗(本発明における負荷インピーダンスに相当する)Rが接続されている。
 図3において、制御装置1は、電力変換回路4の電力変換用スイッチ42のスイッチング制御(オンタイム制御、オフタイム制御またはオンタイム・オフタイム制御)を行う。
 制御装置1は、過電流検出部11と、第1制御部12と、第2制御部13と、制御モード選択部14とを備えている。
 制御装置1の前段には、出力電圧検出部21と、出力電流検出部22と、入力電圧検出
部23とが備えられている。
 出力電圧検出部21は、前置増幅器211とA-D変換器212とからなり、電力変換回路4の出力電圧eを検出する。
 出力電流検出部22は、前置増幅器221とA-D変換器222とからなり、電力変換回路4の出力電流iを相当電圧eとして検出する。
 入力電圧検出部23は、前置増幅器231とA-D変換器232とからなり電力変換回路4の入力電圧Eを検出する。
 過電流検出部11は、電力変換回路4の出力端子を流れる電流(すなわち出力電流i)が制限値を超えたか否かを検出する。
 第1制御部12は、時間経過に依存する関数に基づく通常モード(本実施形態では定電圧モード)での制御を行う。つまり、第1制御部12は、通常モードでの制御信号を生成する。
 第2制御部13は、負荷インピーダンス検出部131と、制御量計算部132とからなり、電流制限モードでの制御を行う。つまり、第2制御部13は、電流制限モードでの制御信号を生成する。
 ここで、「通常モード」は、換言すると、定常状態または安定状態における制御モードである。「電流制限モード」は、所定部位に所定値以上の電流が流れたときに、当該電流を出力電流プリセット値に収束させる制御モードである。第1制御部12および第2制御部13が生成する制御信号は、電力変換回路を構成する電力変換用スイッチの、オンタイム、オフタイムまたはオン・オフタイムの時間長に係るものである。制御信号は、オン時間、オフ時間、スイッチング周期またはこれらの組み合わせに係る時間制御量であってもよい。
 また、「時間(経過)に依存する」とは、いわゆる動特性や過渡特性と言われるもので、制御演算式(制御関数)に時間「×t」、「d/dt」、「∫dt」等を少なくともひとつ含むことである。逆に、「時間に依存しない」とは、いわゆる静特性あるいは定常特性と言われるもので、制御演算式(制御関数)に時間「×t」、「d/dt」、「∫dt」等を含まないことである。
 負荷インピーダンス検出部131は、出力電圧検出部21の検出結果(電力変換回路4の出力電圧e)と、出力電流検出部22の検出結果(電力変換回路4の出力電流i)とに基づき、電力変換回路4の負荷インピーダンスRを検出する。なお、負荷インピーダンス検出部131が検出する負荷インピーダンスRは、複素インピーダンスの絶対値である。なお、本実施例では、負荷が抵抗性であるので、負荷インピーダンスはRで表されている。
 制御量計算部132は、負荷インピーダンスRの値と、電力変換回路4の出力電流プリセット値io_setとをパラメータとし、時間経過に依存しない関数に基づく定電流制御を行う。
 制御モード選択部14は、過電流検出部11が電力変換回路4の所定部位(図3では電流検出用抵抗45)を流れる電流が制限値iocを超えたか否かにより、第1制御部12または第2制御部13からの信号を選択する。つまり、制御モード選択部14は、所定部位を流れる電流が制限値を超えたことを過電流検出部11が検出していないときは、第1制御部12が生成する制御信号を選択し、所定部位を流れる電流が制限値を超えたことを過電流検出部11が検出したときは、第2制御部13が生成する制御信号を選択する制御信号選択部として機能している。
 すなわち、第2制御部13は、過電流検出部11が所定部位(図3では電流検出用抵抗45)を流れる電流が制限値iocを超えたことを検出したときに動作する。
 ドライブ回路3は制御モード選択部14からのドライブ信号(NDrive)を受け取り、電力変換回路4の電力変換用スイッチ42に信号を送出する。
 図4は、図3の制御装置1の処理を示すフローチャートである。
 図4の処理は、たとえばiのサンプリングサイクルごとに行ってもよいし、1回のスイッチング周期に複数回行ってもよいし、複数回のスイッチング周期に1回行ってもよい。
 図5(A),(B),(C)は、図3の制御装置1において、制御モードが定電圧モードから電流制限モードへの移行する場合の動作説明図である。
 図4および図5により、図3の制御装置1の動作を説明する。
 制御装置1が、出力電圧設定値をeo_1として定電圧モードで動作しているものとする。
 図5に示されるように、定電圧モードIにおいては、負荷抵抗がRであり、出力電圧eと第1出力電圧設定値eo_1との偏差がゼロとなる動特性演算式に基づいて制御される。
 この場合、制御モード選択部14は、第1制御部12からの信号を選択する。第1制御部12は、出力電圧eを検出し、出力電圧プリセット値eo_1に対応する制御量Ton_PIDを求め、ドライブ回路が処理可能な制御量NPIDとしてドライブ回路に送出する(S110)。このように、第1制御部12は、電力変換回路4の少なくとも出力電圧eを含む、時間に依存する動特性演算式に基づき通常モードでの制御信号NPIDを生成する。
 出力電流検出部22は、電力変換回路4の出力電流iを検出している(S120)。過電流検出部11は、出力電流検出部22から、出力電流iの検出値を受け取り、出力電流iが制限値io_oc_Aを超えたか否か(i≧io_oc_Aかi<io_oc_A)を判定する(S130)。
 出力電流iが制限値io_oc_Aを超えないときは(S130の「NO」)処理はS120に戻され、出力電流iの検出が行われる。
 制御装置1は、過電流検出部11が、出力電流ioが制限値io_oc_Aを超えたときは(S130の「YES」)、制御モード選択部14は、第2制御部13からの信号を選択し、制御は定電圧モードから電流制限モードに移行する。
 電流制限モードにおいては、出力電圧検出部21が出力電圧eを検出し(S140)、負荷インピーダンス検出部131は、負荷抵抗Ro(図5のRo_oc)を計算する(S150)。
 なお、負荷抵抗Ro_ocは、
 Ro_oc=e/i
により求めることができる。つまり、負荷インピーダンス検出部131は、電力変換回路4の出力電圧eと出力電流iとに基づき負荷のインピーダンスを検出している。
 制御量計算部132は、出力電流プリセット値io_setを設定する(S160)。
 出力電流プリセット値io_setは、図5(A),(B),(C)に示すような特性を示すことができる。
 図5(A)は出力電流プリセット値io_setが定電流特性を示す場合を示し、図5(B)は出力電流プリセット値io_setがドルーピング特性を示す場合を示し、図5(C)は出力電流プリセット値io_setがフォールドバック特性(「フ」の字特性」)を示す場合を示している。
 そして、負荷抵抗Ro_ocと、出力電流プリセット値io_setと、入力電圧検出部23により検出した入力電圧Eとから、電流制限モードにおける制御量Ton_oc(オン・オフ信号STonのディジタル値)を求める。制御量Ton_ocは、負荷抵抗がRo_ocのときに、出力電圧eが出力電流プリセット値io_setに対応する電圧eo_2になる制御量であり、ドライブ回路が処理可能な制御量Nocとして、ドライブ回路3に送られる(Sl70)。
 ついで、制御が定電圧モードに復帰したかが判断される(S180)。この判断は、制御装置12のCPU等が行うことができる。
 定電圧モードに復帰しているときには(S180の「YES」)処理をS110に戻し、定電圧モードに復帰していないとき(電流制御モードが維持されているとき)は(S180の「NO」)、処理をS140に戻す。
 図5(A)に示されるように、出力電流がio_oc_Aを超えると、制御が電流制限モードIIに移行する。
 電流制限モードIIでは、出力電流iが出力電流プリセット値io_setとなる静特性演算式に基づいて制御される。
 図5(A)において、出力電流プリセット値はio_setであり、io_setでに対応する出力電電圧はeo_2である。なお、図5(A)では、出力電流プリセット値は、制限値io_ocよりも大きく設定してあるが、制限値io_ocと同じ値io_oc_Aに設定することもできる。
 また、図5(C)に示すように出力電流プリセット値を制限値io_oc_Aよりも小さい値io_set_dに設定することもできる(このときの出力電電圧をeo_2_dで示す)。
 電流制限モードIIの維持、電流制限モードIIから定電圧モードIへの復帰には、適宜の手法が採用される。
 たとえば、第1制御部12における制御量NPIDが、第2制御部13における制御量Nocより大きいとき(NPID>Noc)は電流制御モードIIを維持するが、第1制御部12における制御量NPIDが、第2制御部13における制御量Noc以下になったとき(NPID<=Noc)に、制御モード選択部14において、電流制限モードIIから定電圧モードIへ復帰するようにできる。
 第1実施形態における制御に用いられる静特性演算式を以下に記す。
Figure JPOXMLDOC01-appb-M000009
oc:過電流検出後のオン時間のデジタル値
:スイッチング周期
Ts:スイッチング周期に対応するデジタル値
:負荷抵抗
[n]:出力電圧のデジタル値
[n]:出力電流のデジタル値
[n]:入力電圧のデジタル値
eo:出力電圧検出部の前置増幅器の増幅率
io:出力電流検出部の前置増幅器の増幅率
Ei:入力電圧検出部の前置増幅器の増幅率
eo:出力電圧のA-Dゲイン
io:出力電流のA-Dゲイン
Ei:入力電圧のA-Dゲイン
r:コンバータの損失
:iの検出抵抗
L:リアクタンス
 このように、第2制御部13は、電力変換回路4に接続された負荷Roのインピーダンス(負荷抵抗Ro_oc)を計算により推定し、インピーダンスの値と出力電流プリセット値(io_set)を含む、時間に依存しない静特性演算式に基づき電流制限モードでの制御信号を生成する。
 図6に電力変換回路4の出力電圧e、出力電流i、ドライブ信号NDrive、制御量Tonを示す。
 図6からわかるように、本発明では、通常モードでの稼動中に(数値制御量:NPID、時間制御量:Ton_PID)、電力変換回路4の出力電流iが制限値io_ocを超えたとする。
 この場合、制御が電流制限モードに移行したときに、出力電流iや出力電圧eに振動が生じず、かつ速やかに出力電流iが出力電流プリセット値io_setに、出力電圧eが所定電圧eo_2に収束する。
 このように、本実施形態では、電力変換回路の所定部位を流れる電流が制限値を超え、制御が通常モードから電流制限モードに移行したときに、出力電流や出力電圧に生じる振動を抑制しかつ出力電流や出力電圧が速やかに所定値に収束させることができる。つまり、オーバーシュートがほとんど発生せず、かつ出力電流が速やかにプリセット値に収束する電力変換回路の制御装置を実現でき、これにより、負荷の変動に起因して過大電流が電力変換回路を構成するトランジスタ等のスイッチング素子、リアクトル、キャパシ夕、抵抗、トランス、ダイオードを流れ、これにより当該構成部材が破壊される、といった事態が予防できる。
《第2実施形態》
 図7は、本発明の制御装置の第2実施形態を示す説明図である。
 図7において、電力変換回路5は、電源51(電圧E)と、電力変換用スイッチ52(「Tr」)と、トランス53、第1のダイオード54と、第2および第3のダイオード551,552と、リアクトル56と、キャパシタ57と、電流検出用抵抗(「R」)58とからなる。この電力変換回路4は、絶縁型のフォワード型DC/DCコンバータである。
 電源51(電圧E)のマイナス端子には、電力変換用スイッチ52の一端と第1のダイオード54のアノード端子が接続されている。
 電力変換用スイッチ52(「Tr」)の他端は、トランス53の一次巻線の一端に接続され、第1のダイオード54のアノード端子は、トランス53の一次巻線の他端に接続されている。トランス53には中間タップが設けられており、この中間タップには電源51のプラス端子が接続されている。
 トランス53の二次巻線の一端には第2のダイオード551が接続されている。第2のダイオード551は、アノードがトランス53の一端を向くように配置されている。
 トランス53の二次巻線の他端(グランド)と、第2のダイオード551のカソードとの聞には第3のダイオード552が接続されている。第3のダイオード552のカソードは、第2のダイオード551のカソードを向くように配置されている。
 第2のダイオード551と第3のダイオード552との接続点は、リアクトル(L)56に接続され、リアクトル56の出力側端子とグランドどの聞にはキャパシタ(C)57が接続されている。
 また、リアクトル56とキャパシタ57の接続点と電力変換回路の出力端子との間には電流検出用抵抗(R)58が接続されている。
 第2実施形態の制御装置1の動作は、第1実施形態の制御装置1の動作と概ね同じである。
 第2実施形態における制御に用いられる静特性演算式を以下に記す。
Figure JPOXMLDOC01-appb-M000010
[n]:出力電圧のデジタル値
[n]:出力電流のデジタル値
o_set:出力電流のプリセット値
[n]:入力電圧のデジタル値
oc:過電流検出後のオン時間のデジタル値
:トランスの一次巻線の巻数
:トランスの二次巻線の巻数
:スイッチング周期
Ts:スイッチング周期に対応するデジタル値
:負荷抵抗
eo:出力電圧検出部の前置増幅器の増幅率
io:出力電流検出部の前置増幅器の増幅率
Ei:入力電圧検出部の前置増幅器の増幅率
eo:出力電圧のA-Dゲイン
io・出力電流のA-Dゲイン
Ei:入力電圧のA-Dゲイン
r:コンバータの損失
:ioの検出抵抗
L:リアクタンス
 本実施形態では、電力変換回路の所定部位を流れる電流が制限値を超え、制御が通常モードから電流制限モードに移行したときに、出力電流や出力電圧に生じる振動を抑制しかつ出力電流や出力電圧が速やかに所定値に収束させることができる。つまり、オーバーシュートがほとんど発生せず、かつ出力電流が速やかにプリセット値に収束する電力変換回路の制御装置を実現でき、これにより、負荷の変動に起因して過大電流が電力変換回路を構成するトランジスタ等のスイッチング素子、リアクトル、キャパシ夕、抵抗、トランス、ダイオードを流れ、これにより当該構成部材が破壊される、といった事態が予防できる。
《第3実施形態》
 図8は、本発明の制御装置の第3実施形態を示す説明図である。
 図8において、電力変換回路4は、図3に示した電力変換回路4と概ね同じである。
 ただし、図3に示した電力変換回路4では、電流検出用抵抗(「R」)45により出力電流を検出しているが、図8の電力変換回路4では、電流検出用抵抗(「RTr」)47によりスイッチ電流iTrを検出している。
 これに対応して、図8の電力変換回路4では、制御装置1の前段には、出力電圧検出部21と、スイッチ電流検出部24と、入力電圧検出部23とが備えられている。
 スイッチ電流検出部24は、前置増幅器241とA-D変換器242と積分回路243とからなる。
 スイッチ電流検出部24は、スイッチ47を流れる電流(スイッチ電流iTr)を相当電圧eTrとして前置増幅器241とA-D変換器242により検出する。
 積分回路243は、第1制御部12からの積分開始タイミング信号ISTにより積分を開始し、積分値Vrcがしきい値Vthに達したときに積分終了信号を出力する。過電流検出部11は、スイッチ電流iTrの積分値を入力し、過電流を検出している。
 図9は、図8に示した制御装置1の処理を示すフローチャートである。
 図9の処理は、たとえばiTrのサンプリングサイクルごとに行ってもよいし、1回のスイッチング周期に複数回行ってもよいし、複数回のスイッチング周期に1回行ってもよい。
 図10は、図8に示した制御装置1において、制御モードが通常モードから電流制限モードへの移行する場合の波形図であり、図10(A)は定電圧モード(通常モード)における波形図であり、図10(B)は電流制限モードへの移行したときの波形図である。
 図9および図10により、図8の制御装置1の動作を説明する。
 制御装置1が、定電圧モードで動作しているものとする。
 この場合、制御モード選択部14は、第1制御部12からの信号を選択する。第1制御部12は、出力電庄eを検出し、出力電圧プリセット値eo_1に対応する制御量Ton_PIDを求め、ドライブ回路に送出する(S210)。
 図10(A)に示すように、第1制御部12はPID制御に基づく第1時間量T1を計算し、所定タイミングで積分回路243による積分を開始し、積分値(電圧)Vrcを測定する。本実施形態では第1時間量T1は第1制御部12が生成したPID制御量に適宜のディレイ時間を加算した値である。第1制御部12は、PD制御またはPI制御に基づいて第1時間量T1を求めてもよい。
 積分回路243による前記電流の積分が開始してから積分値Vrcがしきい値Vthに達するまでの時間を第2時間量Tcsとして第1時間量T1に付加することで、第1制御部12は電力変換用スイッチのオンタイム(図10(A)、図10(B)では「sw」で示す)を算出している。
 過電流検出部11は、第2時間量Tcsを監視している(S220)。
 第2時間量Tcsが設定時間Tcsrより長いとき(Tcs>Tcsr)は処理をS220に戻す(S230の「NO」)。
 図10(B)に示すように、第2時間量Tcsが設定時間Tcsrより短いときは、電力変換用スイッチ42を流れる電流iTrが制限値iTr_ocを超えたと判断し、処理を電流制限モードに移行する(S230の「YES」)。
 出力電圧検出部21は出力電圧eを検出し、スイッチ電流検出部24はスイッチ電流iTrを検出する(S240)。
 そして、負荷インピーダンス検出部131は、負荷抵抗Ro_ocを計算する(S250)。
 なお、負荷抵抗は、
 Ro_oc≒e/iTr
として求めることができる。つまり、負荷インピーダンス検出部131は、電力変換回路4の出力電圧eと、出力電流と同一とみなせる電流iTrに基づき負荷のインピーダンスを検出する。
 制御量計算部132は、出力電流プリセット値io_setを設定する(S260)。
 第2制御部23は、負荷抵抗Ro_ocと、出力電流プリセット値io_setと、入力電圧検出部23により検出した入力電圧Eiとから、電流制限モードにおける制御量Ton_oc(オン・オフ信号STonのディジタル値)を求める。制御量Ton_ocは、負荷抵抗がRo_ocのときに、出力電圧eが出力電流プリセット値io_setに対応する電圧eo_2になる制御量であり、ドライブ回路3に送られる(S270)。
 ついで、制御が定電圧モードに復帰したかが判断される(S280)。この判断は、制御装置12のCPU等が行うことができる。
 定電圧モードに復帰しているときには(S280の「YES」)処理をS210に戻し、定電圧モードに復帰していないとき(電流制御モードが維持されているとき)は(S280の「NO」)、処理をS240に戻す。
 第3実施形態における制御に用いられる静特性演算式を以下に記す。
Figure JPOXMLDOC01-appb-M000011
:出力電圧のデジタル値
:出力電流のデジタル値
o_set:出力電流のプリセット値
:入力電圧のデジタル値
th:積分回路の電圧しきい値
τ:積分回路の時定数
oc:過電流検出後のオン時間のデジタル値
:スイッチング周期
:負荷抵抗
:出力電流検出部の前置増幅器の増幅率
r:コンバータの損失
:iの検出抵抗
L:リアクタンス
 本実施形態でも、電流制限モードIIの維持、電流制限モードIIから定電圧モードIへの復帰には、適宜の手法が採用される。
 たとえば、第1制御部12における制御量NPIDが、第2制御部13における制御量NOCより大きいとき(NPID>Noc)は電流制御モードIIを維持するが、第1制御部12における制御量NPIDが、第2制御部13における制御量Noc以下になったとき(NPID<=Noc)に、電流制限モードIIから定電圧モードIへ復帰するようにできる。
 本実施形態では、電力変換回路の所定部位を流れる電流が制限値を超え、制御が通常モードから電流制限モードに移行したときに、出力電流や出力電圧に生じる振動を抑制しかつ出力電流や出力電圧が速やかに所定値に収束させることができる。つまり、オーバーシュートがほとんど発生せず、かつ出力電流が速やかにプリセット値に収束する電力変換回路の制御装置を実現でき、これにより、負荷の変動に起因して過大電流が電力変換回路を構成するトランジスタ等のスイッチング素子、リアクトル、キャパシ夕、抵抗、トランス、ダイオードを流れ、これにより当該構成部材が破壊される、といった事態が予防できる。
《第4実施形態》
 図11は本発明の制御装置の第4実施形態を示す説明図である。
 図11の電力変換回路5は、図7に示した電力変換回路5と同じである。
 第4実施形態の制御装置1の動作は、第3実施形態の制御装置1の動作と概ね同じである。
 第4実施形態における制御に用いられる静特性演算式を以下に記す。
Figure JPOXMLDOC01-appb-M000012
:出力電圧のデジタル値
:出力電流のデジタル値
o_set:出力電流のプリセット値
:入力電圧のデジタル値
th:積分回路の電圧しきい値
τ:積分回路の時定数
oc:過電流検出後のオン時間のデジタル値
:スイッチング周期
:負荷抵抗
:出力電流検出部の前置増幅器の増幅率
r:コンバータの損失
:iの検出抵抗
L:リアクタンス
 本実施形態では、電力変換回路の所定部位を流れる電流が制限値を超え、制御が通常モードから電流制限モードに移行したときに、出力電流や出力電圧に生じる振動を抑制しかつ出力電流や出力電圧が速やかに所定値に収束させることができる。つまり、オーバーシュートがほとんど発生せず、かつ出力電流が速やかにプリセット値に収束する電力変換回路の制御装置を実現でき、これにより、負荷の変動に起因して過大電流が電力変換回路を構成するトランジスタ等のスイッチング素子、リアクトル、キャパシ夕、抵抗、トランス、ダイオードを流れ、これにより当該構成部材が破壊される、といった事態が予防できる。
 上述の各実施形態は、単なる例示であり、本発明はこれらに限定されない。たとえば、過電流検出部が制限値を超えるか否かを検出する電流が流れる所定位置としては、電力変換回路4の出力端子、あるいは、電力変換回路4を構成するスイッチ42としているが、電力変換回路を構成するリアクトル、キャパシタ、抵抗、トランス、または、ダイオードなどの他の位置であってもよい。
1 制御装置
3 ドライブ回路
4,5 電力変換回路
11 過電流検出部
12 第1制御部
13 第2制御部
14 制御モード選択部
21 出力電圧検出部
22 出力電流検出部
23 入力電圧検出部
24 スイッチ電流検出部
41,51 電源
42,52 電力変換用スイッチ
43 リアクトル
44 フライホイールダイオード
45 電流検出用抵抗
46 キャパシタ
53 トランス
54 第1のダイオード
551 第2のダイオード
552 第3のダイオード
56 リアクトル
57 キャパシタ
58 スイッチ電流検出用抵抗
131 負荷インピーダンス検出部
132 制御量計算部
211,221,231,241 前置増幅器
212,222,232,242 A-D変換器
243 積分回路

Claims (12)

  1.  通常モードでの動作中に所定部位を流れる電流が制限値を超えたときに、電流制限モードでの動作に移行する電力変換回路の制御装置であって、
     前記所定部位を流れる電流が制限値を超えたことを検出する過電流検出部と、
     前記通常モードでの制御信号を生成する第1制御部と、
     前記電流制限モードでの制御信号を生成する第2制御部と、
     前記所定部位を流れる電流が前記制限値を超えたことを前記過電流検出部が検出していないときは、前記第1制御部が生成する制御信号を選択し、前記所定部位を流れる電流が制限値を超えたことを前記過電流検出部が検出したときは、前記第2制御部が生成する制御信号を選択する制御信号選択部と、
    を備え、
     前記第1制御部は、前記電力変換回路の少なくとも出力電圧を含む、時間に依存する動特性演算式に基づき前記通常モードでの制御信号を生成し、
     前記第2制御部は、前記電力変換回路に接続された負荷のインピーダンスを検出または推定し、前記インピーダンスの値と出力電流プリセット値を含む、時間に依存しない静特性演算式に基づき前記電流制限モードでの制御信号を生成する、
    電力変換回路の制御装置。
  2.  請求項1に記載の電力変換回路の制御装置において、
     前記所定部位が、前記電力変換回路の出力端子、前記電力変換回路を構成するスイッチ、リアクトル、キャパシ夕、抵抗、トランスまたはダイオードである、
    電力変換回路の制御装置。
  3.  請求項1に記載の電力変換回路の制御装置において、
     前記第2制御部が、負荷インピーダンス検出部を備え、
     前記負荷インピーダンス検出部は、
     前記電力変換回路の出力電圧と出力電流とに基づき前記負荷のインピーダンスを検出し、または、
     前記電力変換回路の出力電圧と、前記出力電流と同一とみなせる電流に基づき前記負荷のインピーダンスを検出する、
    電力変換回路の制御装置。
  4.  前記所定部位が電力変換用スイッチである請求項1に記載の電力変換回路の制御装置において、
     さらに、前記電力変換回路の出力電圧値を検出する出力電圧検出部と、前記電力変換回路の電力変換用スイッチの電流値を検出するスイッチ電流検出部を備え、
     前記第2制御部が、負荷インピーダンス検出部を備え、
     前記負荷インピーダンス検出部は、前記電力変換回路の出力電圧値と前記電力変換用スイッチの電流値に基づき前記負荷インピーダンスを検出する、
    電力変換回路の制御装置。
  5.  請求項1に記載の電力変換回路の制御装置において、
     前記負荷のインピーダンスの値が当該インピーダンスの絶対値である、
    電力変換回路の制御装置。
  6.  請求項1に記載の電力変換回路の制御装置において、
     前記時間に依存しない静特性演算式が、前記インピーダンスの値と前記出力電流プリセット値の他、さらに前記電力変換回路の入力電圧を含む、
    電力変換回路の制御装置。
  7.  請求項1に記載の電力変換回路の制御装置において、
     前記制御信号が、オン時間、オフ時間、スイッチング周期またはこれらの組み合わせに係る時間制御量である、
    電力変換回路の制御装置。
  8.  前記電力変換回路が降圧型DC/DCコンバータである請求項6に記載の電力変換回路の制御装置において、
     前記第2制御部による制御が、次の静特性演算式により行われる、
    電力変換回路の制御装置。
    Figure JPOXMLDOC01-appb-M000001
    [n]:出力電圧のデジタル値
    [n]:出力電流のデジタル値
    o_set:出力電流のプリセット値
    [n]:入力電圧のデジタル値
    oc:過電流検出後のオン時間のデジタル値
    :スイッチング周期
    Ts:スイッチング周期に対応するデジタル値
    eo:出力電圧検出部の前置増幅器の増幅率
    io:出力電流検出部の前置増幅器の増幅率
    Ei:入力電圧検出部の前置増幅器の増幅率
    eo:出力電圧のA-Dゲイン
    io・出力電流のA-Dゲイン
    Ei:入力電圧のA-Dゲイン
    r:コンバータの損失
    :ioの検出抵抗
    L:リアクタンス
  9.  前記電力変換回路がフォワード型DC/DCコンバータである請求項6に記載の電力変換回路の制御装置において、
     前記第2制御部による制御が、次の静特性演算式により行われる、
    電力変換回路の制御装置。
    Figure JPOXMLDOC01-appb-M000002
    [n]:出力電圧のデジタル値
    [n]:出力電流のデジタル値
    o_set:出力電流のプリセット値
    [n]:入力電圧のデジタル値
    oc:過電流検出後のオン時間のデジタル値
    :トランスの一次巻線の巻数
    :トランスの二次巻線の巻数
    :スイッチング周期
    Ts:スイッチング周期に対応するデジタル値
    eo:出力電圧検出部の前置増幅器の増幅率
    io:出力電流検出部の前置増幅器の増幅率
    Ei:入力電圧検出部の前置増幅器の増幅率
    eo:出力電圧のA-Dゲイン
    io・出力電流のA-Dゲイン
    Ei:入力電圧のA-Dゲイン
    r:コンバータの損失
    :iの検出抵抗
    L:リアクタンス
  10.  前記所定部位が電力変換用スイッチである請求項1に記載の電力変換回路の制御装置において、
     前記電力変換用スイッチを流れる電流を積分する積分回路を備え、
     前記第1制御部はPID制御、PD制御またはPI制御に基づく第1時間量T1に、前記積分回路による前記電流の積分が開始してから積分値が所定値に達するまでの第2時間量を付加することで電力変換用スイッチのオンタイムを算出し、
     過電流検出部は、前記第2時間量が所定値を下回ったときに、前記電力変換用スイッチを流れる電流が制限値を超えたと判断する、
    電力変換回路の制御装置。
  11.  前記電力変換回路が降圧型DC/DCコンバータである請求項10に記載の電力変換回路の制御装置において、
     前記第2制御部による制御が、次の静特性演算式により行われる、
    電力変換回路の制御装置。
    Figure JPOXMLDOC01-appb-M000003
    [n]:出力電圧のデジタル値
    [n]:出力電流のデジタル値
    o_set:出力電流のプリセット値
    :入力電圧のデジタル値
    th:積分回路の電圧しきい値
    τ:積分回路の時定数
    oc:過電流検出後のオン時間のデジタル値
    :スイッチング周期
    Ts:スイッチング周期に対応するデジタル値
    :出力電流検出部の前置増幅器の増幅率
    r:コンバータの損失
    :iの検出抵抗
    L:リアクタンス
  12.  前記電力変換回路がフォワード型DC/DCコンバータである請求項10に記載の電力変換回路の制御装置において、
     前記第2制御部による制御が、次の静特性演算式により行われる、
    電力変換回路の制御装置。
    Figure JPOXMLDOC01-appb-M000004
    [n]:出力電圧のデジタル値
    [n]:出力電流のデジタル値
    o_set:出力電流のプリセット値
    :入力電圧のデジタル値
    th:積分回路の電圧しきい値
    τ:積分回路の時定数
    oc:過電流検出後のオン時間のデジタル値
    :トランスの一次巻線の巻数
    :トランスの二次巻線の巻数
    :スイッチング周期
    Ts:スイッチング周期に対応するデジタル値
    :負荷抵抗
    :出力電流検出部の前置増幅器の増幅率
    r:コンバータの損失
    :iの検出抵抗
    L:リアクタンス
     
PCT/JP2016/074449 2015-08-25 2016-08-23 電力変換回路の制御装置 WO2017033908A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017536431A JP6750143B2 (ja) 2015-08-25 2016-08-23 電力変換回路の制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-166300 2015-08-25
JP2015166300 2015-08-25

Publications (1)

Publication Number Publication Date
WO2017033908A1 true WO2017033908A1 (ja) 2017-03-02

Family

ID=58100104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074449 WO2017033908A1 (ja) 2015-08-25 2016-08-23 電力変換回路の制御装置

Country Status (2)

Country Link
JP (1) JP6750143B2 (ja)
WO (1) WO2017033908A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116073687A (zh) * 2023-03-01 2023-05-05 山东艾诺智能仪器有限公司 一种带模拟控制环路的宽频带逆变电源

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10232720A (ja) * 1997-02-20 1998-09-02 Fujitsu Denso Ltd 電源回路
WO2011040591A1 (ja) * 2009-09-30 2011-04-07 国立大学法人長崎大学 Dc/dcコンバータの制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10232720A (ja) * 1997-02-20 1998-09-02 Fujitsu Denso Ltd 電源回路
WO2011040591A1 (ja) * 2009-09-30 2011-04-07 国立大学法人長崎大学 Dc/dcコンバータの制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116073687A (zh) * 2023-03-01 2023-05-05 山东艾诺智能仪器有限公司 一种带模拟控制环路的宽频带逆变电源
CN116073687B (zh) * 2023-03-01 2023-06-09 山东艾诺智能仪器有限公司 一种带模拟控制环路的宽频带逆变电源

Also Published As

Publication number Publication date
JPWO2017033908A1 (ja) 2018-06-07
JP6750143B2 (ja) 2020-09-02

Similar Documents

Publication Publication Date Title
KR102110109B1 (ko) 스위칭 레귤레이터 및 전자 기기
JP2009232596A (ja) 充電制御回路および充電制御用半導体集積回路
JP2012060714A (ja) 集積回路
JP6336784B2 (ja) デジタル制御電源回路の制御回路、制御方法およびそれを用いたデジタル制御電源回路、ならびに電子機器および基地局
US9729043B2 (en) Power conversion apparatus and protection method thereof while feedback current signal being abnormal
JP2011103725A (ja) 力率改善型スイッチング電源装置
JP2017005774A (ja) デジタル制御電源回路、その制御回路、制御方法およびそれを用いた電子機器
JP2016046893A (ja) 電源回路とその制御方法
JP5401729B2 (ja) 電力変換装置の制御回路および制御方法
WO2017033908A1 (ja) 電力変換回路の制御装置
JP2016127787A (ja) スイッチング電源装置
JP2010136506A (ja) Dc/dcコンバータ
JP5958739B2 (ja) リレー駆動回路
JP2008011585A (ja) スイッチングレギュレータ
JP2008125319A (ja) 過電流保護装置
WO2017073231A1 (ja) Dcdcコンバータ
JP2006166613A (ja) スイッチング電源装置
JP4096621B2 (ja) スイッチング電源
TW201230641A (en) Method and for generating PWM signals and a pulse width modulation power converter
JP6227598B2 (ja) 後段にdc−dcコンバータを備えるデジタル制御電源
JP6528634B2 (ja) スイッチング電源回路の制御方法及び電源装置
TW201218591A (en) Method for generating a current limit signal in a power converter without sensing an input voltage
KR102497371B1 (ko) 전력 변환 장치
JP6781947B2 (ja) 電源装置
WO2016043262A1 (ja) 電力変換回路の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839255

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017536431

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839255

Country of ref document: EP

Kind code of ref document: A1