WO2017033594A1 - 排水からのマンガンの除去方法 - Google Patents

排水からのマンガンの除去方法 Download PDF

Info

Publication number
WO2017033594A1
WO2017033594A1 PCT/JP2016/070397 JP2016070397W WO2017033594A1 WO 2017033594 A1 WO2017033594 A1 WO 2017033594A1 JP 2016070397 W JP2016070397 W JP 2016070397W WO 2017033594 A1 WO2017033594 A1 WO 2017033594A1
Authority
WO
WIPO (PCT)
Prior art keywords
manganese
wastewater
drainage channel
concentration
drainage
Prior art date
Application number
PCT/JP2016/070397
Other languages
English (en)
French (fr)
Inventor
賢二 竹田
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to EP16838941.9A priority Critical patent/EP3342757A4/en
Priority to AU2016311670A priority patent/AU2016311670B2/en
Publication of WO2017033594A1 publication Critical patent/WO2017033594A1/ja
Priority to PH12018500405A priority patent/PH12018500405B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/18Extraction of metal compounds from ores or concentrates by wet processes with the aid of microorganisms or enzymes, e.g. bacteria or algae
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for removing manganese from wastewater discharged from a hydrometallurgical process or the like using manganese-containing ore such as nickel oxide ore as a raw material.
  • a hydrometallurgical process such as an HPAL process, in which an acid such as sulfuric acid is added to nickel oxide ore as a raw material, and nickel in the ore is leached into an acid solution under high pressure and pressure, has been conventionally performed at a high temperature. Compared with the dry smelting process using a furnace, there is an advantage that valuable materials such as nickel and cobalt of low quality can be efficiently recovered in the ore.
  • the solution that becomes wastewater after recovering nickel or cobalt using a hydrometallurgical process such as the HPAL process, etc. includes iron, aluminum, manganese, magnesium, calcium, etc. that can be separated efficiently as slag in the dry smelting process.
  • impurities coexist at a high concentration.
  • the components to be removed contained in the wastewater generally include aluminum and manganese in addition to iron present as floating particles.
  • aluminum is neutralized at a relatively low pH to be removed as a hydroxide.
  • Iron can be effectively settled and removed by allowing the suspended particles to settle with a thickener or the like, and then sending it to a tailing dam to pass through.
  • manganese exists in the wastewater in a dissolved state, the pH is adjusted to an alkaline region of 9 or more, or after adjusting the pH, an oxidizing agent such as oxygen, sodium hypochlorite, or ozone is added. It is solidified and removed in the form of manganese dioxide.
  • manganese is not preferable because, even if it is present in a small amount of several mg / l in the wastewater, the wastewater is colored. Therefore, in practice, it is necessary to remove to a concentration of less than 1 mg / l, preferably less than 0.5 mg / l.
  • alkali such as slaked lime is added as a neutralizing agent, the pH in the waste water is increased to 9 to 9.2 or more, and manganese is precipitated and removed as manganese hydroxide.
  • Patent Document 1 As a method for separating manganese remaining when nickel is recovered from nickel oxide ore, for example, a method shown in Patent Document 1 is known. In this method, nickel, cobalt, zinc, and manganese, which are valuable metals, are recovered from oxide ores containing metals such as nickel, cobalt, zinc, manganese, magnesium, iron, aluminum, and chromium.
  • step (d) Separate the atmospheric exudate into the medium (D) in which nickel, cobalt and zinc in the atmospheric pressure leachate are added and precipitated as hydroxides or carbonates and recovered, and nickel, cobalt and zinc are separated in [5] step (d).
  • a valuable metal from an oxide ore comprising the step (e) of adding a neutralizing agent and an oxidizing agent to the pressure leachate, and precipitating and recovering manganese in the atmospheric pressure leachate as an oxide and hydroxide or an oxide and carbonate. It is a method to collect.
  • Patent Document 1 has an advantage that the pH to be adjusted may be a relatively low value of less than 9.
  • this method requires an oxidizing agent in addition to the neutralizing agent, and there is a problem of increasing capital investment and chemical cost.
  • the present invention has been proposed in view of the above-described circumstances, and the use of chemicals such as neutralizing agents from wastewater containing manganese discharged through a hydrometallurgical process, particularly an HPAL process with a large amount of wastewater.
  • An object is to provide a method for efficiently removing manganese while suppressing the amount.
  • the present inventor has intensively studied to solve the above-described problems. As a result, the pH of the wastewater containing manganese is adjusted to a predetermined range, and the wastewater after the pH adjustment is efficiently passed through a drainage channel having a predetermined length in which manganese-oxidizing bacteria are present. As a result, the present invention has been completed.
  • a first invention of the present invention is a manganese removal method for removing manganese from wastewater containing manganese, wherein the pH of the wastewater is adjusted to a range of 8.0 to 9.2, This is a method for removing manganese, in which the obtained pH-adjusted liquid is supplied to a drainage channel having a length of 3 km or more where manganese-oxidizing bacteria are present and allowed to flow for a residence time of 1 hour or more.
  • the manganese concentration in the liquid after pH adjustment is increased by 1 mg / l every month after the start of operation.
  • the pH value to be adjusted is lowered, and the adjusted pH value is maintained when the manganese concentration in the solution after pH adjustment reaches 10 mg / l.
  • the waste water is discharged in a hydrometallurgical process in which acid is added to nickel oxide ore and leached under pressure to recover nickel. This is a method for removing manganese, which is wastewater.
  • manganese can be efficiently separated and removed from wastewater containing manganese discharged through a hydrometallurgical process such as an HPAL process while suppressing the amount of a chemical such as a neutralizing agent. it can.
  • the present embodiment a specific embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • this invention is not limited to the following embodiment, A various change is possible in the range which does not change the summary of this invention.
  • the method for removing manganese according to the present embodiment is a method for removing manganese from wastewater containing manganese.
  • wastewater containing manganese include wastewater discharged through various metal smelting processes.
  • HPAL process hydrometallurgical process
  • an acid such as sulfuric acid
  • the leachate obtained by leaching nickel oxide ore with an acid such as sulfuric acid is solid-liquid separated from the slurry consisting of the leach residue while adding the neutralizer, and then the neutralizer is added. As a result, impurities are separated. Further, after the neutralization treatment, a sulfidizing agent is added to the leachate (nickel recovery mother liquor) to perform sulfidation treatment, and nickel is recovered as sulfide.
  • impurity components that are not to be recovered such as manganese, aluminum, and magnesium, are present and transferred to the wastewater treatment step to be separated as precipitates to become wastewater.
  • this waste water contains manganese that could not be removed by waste water treatment. In the HPAL process, since these various steps are performed, the amount of wastewater handled is enormous.
  • this manganese removal method includes a step of adjusting the pH of the waste water discharged from the HPAL process to a range of 8.0 or more and 9.2 or less (pH adjustment step), and the obtained liquid after pH adjustment. Is supplied to a drainage channel in which manganese-oxidizing bacteria are present, and is passed through a predetermined residence time (drainage channel passing step).
  • the pH adjustment step the pH of the wastewater before being supplied to the drainage channel is adjusted prior to the removal of manganese in the drainage in the drainage channel.
  • the manganese that can be separated only by adjusting the pH of the wastewater is separated and removed by adjusting the pH of the wastewater containing manganese to be treated.
  • this pH adjustment step it is not neutralized to a range exceeding pH 9.2 at which manganese can be completely separated practically, but a small amount of manganese remaining in the wastewater is pH 8.0 to 9.2. Adjust control in between. If it is such a pH range, it can control easily by adding a small amount of neutralizing agents, and can also remove manganese moderately.
  • the pH of the waste water is adjusted to exceed 9.2
  • manganese can be completely separated and removed, but a large amount of neutralizing agent is required as in the conventional case, and efficient manganese removal treatment cannot be performed.
  • the pH of the wastewater is adjusted to be less than 8.0, the necessary amount of the neutralizing agent is reduced, but when the drainage after pH adjustment is separated by manganese-oxidizing bacteria in the drainage channel, the manganese Manganese in the wastewater may increase to a concentration that exceeds the removal ability by oxidizing bacteria, and manganese in the wastewater may not be removed sufficiently.
  • the pH adjustment can be performed by adding, for example, a neutralizing agent. Specifically, slaked lime or limestone can be used as the neutralizing agent.
  • a neutralizing agent Specifically, slaked lime or limestone can be used as the neutralizing agent.
  • the pH adjustment range is 8.0 or more and 9.2 or less, the amount of the neutralizing agent used can be effectively reduced as compared with the conventional method, and an efficient treatment is performed. be able to.
  • Drainage passage process In the drainage channel passing step, the pH-adjusted wastewater is supplied to a drainage channel (discharge pipe) where manganese-oxidizing bacteria are present, and the interior of the drainage channel is passed over a predetermined residence time.
  • the concentration of manganese in the drainage after pH adjustment is several mg / l. Remains at a rate of about.
  • the manganese having a concentration of several mg / l that cannot be separated and removed by such pH adjustment is removed using manganese-oxidizing bacteria propagated in the drainage channel. Specifically, the drainage is passed through a drainage channel having a predetermined length over a predetermined residence time.
  • the drainage residence time is set to 1 hour or more.
  • the length of the drainage channel (drainage route) shall be 3 km or more.
  • the manganese-oxidizing bacteria and the wastewater containing manganese can be sufficiently brought into contact with each other by allowing the wastewater to flow for 1 hour or more in the drainage channel at a distance of 3 km or more.
  • the drainage channel does not have to be a straight line structure, and may be a structure such as being folded back many times in the middle.
  • the drainage channel can have a suitable structure such as a culvert or an open structure, for example, depending on conditions favorable for the habitat of manganese-oxidizing bacteria.
  • manganese-oxidizing bacteria is a general term for microorganisms having the ability to oxidize manganese.
  • the manganese-oxidizing bacterium is not particularly limited, and examples thereof include Hyphomicrobium genus, Magnetospirillum genus, Geobacter genus, Bacillus genus, and Pseudomonas genus.
  • the abundance (concentration) of manganese-oxidizing bacteria in the drainage channel is not particularly limited as long as it is a concentration that can effectively separate and remove manganese in the wastewater. However, for example, a high concentration of about 100 mg / L to 1000 mg / L. The concentration is preferred.
  • the drainage channel it is preferable to contain essential nutrients and the like for manganese-oxidizing bacteria so that manganese-oxidizing bacteria can efficiently grow in the drainage channel, but it was discharged after nickel recovery through the HPAL process.
  • the wastewater such as poor liquid contains various salts. By passing such wastewater through the drainage channel, the drainage channel becomes an environment where manganese-oxidizing bacteria can grow well. Yes.
  • the pH setting value of the drainage is set to 9 at the beginning of liquid passing when manganese-oxidizing bacteria are not sufficiently grown or when the manganese load in the drainage is increased. .2
  • the manganese concentration in the wastewater supplied to the drainage channel is increased by approximately 1 mg / l per month, and a manganese load is gradually applied to the manganese-oxidizing bacteria present in the drainage channel. It is preferable to keep going.
  • the manganese concentration in the wastewater at the entrance of the drainage channel is adjusted by lowering the pH of the wastewater to about 8.0, and the manganese concentration is increased up to 10 mg / l, which remains in the wastewater. Can be made.
  • a biofilm of manganese-oxidizing bacteria that performs manganese oxidation in the drainage channel will gradually be produced.
  • the wastewater is caused to flow by a manganese-oxidizing bacterium that has proliferated by flowing a distance of 3 km or more over a residence time of 1 hour or more.
  • Manganese in the wastewater can be separated and removed to reduce to a practically sufficient concentration.
  • the adjustment speed of the manganese concentration is too fast, that is, the pH is rapidly lowered, the manganese concentration is increased before the biofilm on the piping surface to oxidize and remove manganese is sufficiently grown, As a result, a sufficient removal effect cannot be exhibited. For this reason, it is preferable to raise the manganese concentration at a rate of 1 mg / l or less per month.
  • Example 1 In the drainage treatment of hydrometallurgy after nickel was recovered from nickel oxide ore using a known HPAL process, a drainage channel composed of an iron pipe having an inner diameter of 0.26 m and a length of 10 km was prepared. There were several places in the drainage channel where the flowing liquid could be sampled.
  • the inner wall of the pipe was collected from each sampling port provided in several places, and it was confirmed that manganese oxidizing bacteria were present in the drainage channel.
  • manganese-oxidizing bacteria bacteria of the genus Hyphomicrobium, the genus Magnetospirillum, the genus Geobacter, the genus Bacillus, and the genus Pseudomonas were confirmed.
  • the known base sequence means a bacterial base sequence registered in a database at the time of DNA analysis.
  • the pH of the waste water was adjusted to the range of 9.0 to 9.2 by adding slaked lime as a neutralizing agent in advance to the waste water flowing into the drainage channel.
  • the pH-adjusted effluent was then passed through a thickener and settling basin to remove a significant portion of iron, aluminum, and manganese.
  • the manganese concentration after this treatment was 0.16 mg / l. That is, wastewater containing such a concentration of manganese cannot be discharged as it is.
  • this drainage was supplied to the drainage channel having an inner diameter of 0.26 m and a length of 10 km and containing manganese-oxidizing bacteria on the inner wall, and passed through the drainage channel.
  • the residence time of the liquid in the drainage channel was controlled to pass through 3.3 hours, that is, the pipe 3 km in one hour.
  • the manganese concentration in the drainage at a position of 5 km from the entrance was 0.01 mg / It was below the detection limit of l.
  • FIG. 1 is a graph showing the measurement results of manganese concentration in wastewater sampled at each point with respect to the distance of the drainage channel from the entrance to which wastewater is supplied.
  • a length of 3 km is required in order to reduce drainage containing manganese at a concentration of 0.16 mg / l through the drainage channel, for example, to a concentration of 0.04 mg / l. It turns out that there should be a drainage channel.
  • manganese can be effectively separated and removed by letting wastewater containing manganese flow through a drainage channel containing manganese-oxidizing bacteria.
  • a drainage channel containing manganese-oxidizing bacteria By adding a small amount of neutralizing agent and slightly adjusting the pH of the drainage before passing through the drainage channel, some manganese can be removed, and then passing through the drainage channel, Manganese can be reliably removed at a low cost.
  • Example 2 Using the same drainage channel used in Example 1, the amount of neutralizing agent added was adjusted so that the pH of the wastewater to be supplied gradually decreased from pH 9.0 to 9.2 in Example 1 to pH 8.0. Adjustment was made while gradually decreasing, and the manganese concentration of the wastewater supplied to the drainage channel was gradually increased. As a result, the manganese concentration in the wastewater increased at a rate of 1 mg / l per month.
  • the manganese concentration in the wastewater when the pH was adjusted to 8.0 increased to a maximum of 10 mg / l. Even when this wastewater was passed through the drainage channel, the manganese concentration at the 3 km point from the entrance The concentration was reduced to less than 0.5 mg / l, and manganese could be removed stably.
  • Example 2 Even if drainage containing manganese having a concentration of 10 mg / l at the maximum is passed, there is no practical problem with the manganese by the method using manganese oxidizing bacteria in the drainage channel. It was found that it can be removed to the level. In addition, it was confirmed that the necessary amount of neutralizing agent can be greatly reduced because sufficient treatment can be achieved even when the pH is adjusted to such a low level.
  • the manganese concentration in the wastewater sampled at 3 km from the entrance of the drainage channel showed a gradual increase from the initial 0.2 mg / l, indicating that the enhancement of manganese removal capacity in the drainage channel could not catch up. .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biotechnology (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Biochemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Removal Of Specific Substances (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

マンガンを含有する排水から、中和剤等の薬剤の使用量を抑えながら、効率的にマンガンを除去する方法を提供する。 本発明に係るマンガンの除去方法は、ニッケル酸化鉱石に酸を添加し加圧浸出してニッケルを回収する湿式製錬プロセスにおいて排出される排水からのマンガンの除去方法であって、排水のpHを8.0以上9.2以下の範囲に調整し、得られたpH調整後の液を、マンガン酸化細菌が存在する長さ3km以上の排水路に供給して、1時間以上の滞留時間をかけて通液させる。

Description

排水からのマンガンの除去方法
 本発明は、ニッケル酸化鉱石等のマンガンを含有する鉱石を原料とする湿式製錬プロセス等から排出される排水からのマンガンの除去方法に関する。
 原料であるニッケル酸化鉱石に硫酸等の酸を添加し、高温加圧下で鉱石中のニッケルを酸溶液中に浸出して回収するHPALプロセス等の湿式製錬プロセスは、従来から行われてきた高温の炉を用いる乾式製錬プロセスに比べると、鉱石中に低品位なニッケルやコバルト等の有価物を効率よく回収できるというメリットがある。
 しかしながら、HPALプロセス等による湿式製錬プロセスを用いてニッケルやコバルトを回収した後の排水となる溶液には、乾式製錬プロセスではスラグとして効率よく分離できる鉄、アルミニウム、マンガン、マグネシウム、カルシウム等の不純物が高濃度に共存するという短所もある。
 これらの不純物は、工業的にはコストをかけて回収するほどのメリットはないが、そのまま海域に放流するには環境面で問題となる。また、水資源の有効利用のためには、排水をHPALの処理工程に繰り返して使うことも行われており、繰り返し利用に伴って次第に不純物の濃度も増加し、鉄やカルシウムが析出して配管閉塞の原因となったりするといった問題点もある。このため、排水の一部を抜き出して排水処理工程に送り、排水に中和剤を添加してpHを調整して不純物を水酸化物や酸化物の形態で沈降させて分離し、処理後の濾液を放流する等の方法がとられることが多い。
 ここで、排水に含まれる除去対象の成分としては、一般に、浮遊粒子として存在する鉄のほかに、アルミニウム、マンガンがある。
 この中で、アルミニウムは、比較的低いpHで中和されて水酸化物となって除去される。鉄は、浮遊粒子をシックナー等で静置させて沈降処理し、その後にテーリングダムに送って通過することで有効に沈降除去することができる。
 しかしながら、マンガンは、排水中に溶解状態で存在するため、pHを9以上のアルカリ領域に調整するか、あるいはpHを調整した後に酸素や次亜塩素酸ソーダ、オゾン等の酸化剤を加えることで、二酸化マンガンの形で固形化させて除去することが行われる。特にマンガンは、排水中に数mg/l程度の微量で存在する場合であっても、その排水を着色するなど好ましくない。そのため、実用上は、1mg/l未満、好ましくは0.5mg/l未満の濃度まで除去することが必要となる。
 一方で、工業的なニッケル酸化鉱石のHPALプロセスでは、原料に含まれる低品位のニッケルを回収するために、取り扱う液量が多大となり、その結果として発生する排水の量も多大な量となる。また、HPALプロセスでは、ニッケルを効率的に、かつ不純物と分離して回収するために、硫化剤を添加する等、還元雰囲気で処理されることが多い。このため、還元性雰囲気で存在するマンガンを酸化除去するためには、次亜塩素酸ソーダやオゾン等の酸化剤が大量に必要となり、コストや手間の点でも好ましくない。
 そのため、消石灰等のアルカリを中和剤として添加し、排水中のpHを9乃至9.2以上にまで増加させ、マンガンを水酸化マンガンとして沈降除去することが行われる。
 ところが、排水のpHを上げるために中和剤を添加していくと、その排水中に含まれるマグネシウムがマンガンよりも先に水酸化物になり、マンガン水酸化物の形成に添加したアルカリが優先的に消費される。そのため、存在するマンガン当量以上の中和剤添加が必要となり、より一層にコストが増加する原因となる問題があった。
 ニッケル酸化鉱石からニッケルを回収した際に残るマンガンを分離する方法として、例えば特許文献1に示す方法が知られている。この方法は、ニッケル、コバルト、亜鉛、マンガン、マグネシウム、鉄、アルミニウム、クロム等の金属を含有する酸化鉱石から、有価金属であるニッケル、コバルト、亜鉛、マンガンを回収するにあたり、[1]あらかじめスラリー化した酸化鉱石を、工程(b)で得られた加圧浸出液により硫酸酸性下で常圧浸出し、常圧浸出液と常圧浸出残留物を得る工程(a)と、[2]工程(a)で得られた常圧浸出残留物を、加圧浸出液を形成するに十分な高温、高圧の下で硫酸と反応させて加圧浸出液を得る工程(b)と、[3]工程(a)で得られた常圧浸出液に中和剤を加え、常圧浸出液中の鉄及びアルミニウムを沈殿物として、常圧浸出液から分離する工程(c)と、[4]工程(c)で鉄及びアルミニウムを分離した常圧浸出液に、中和剤を加えて常圧浸出液中のニッケル、コバルト、亜鉛を水酸化物あるいは炭酸塩として沈殿せしめ、回収する工程(d)と、[5]工程(d)でニッケル、コバルト、亜鉛を分離した常圧浸出液に中和剤と酸化剤を加えて、常圧浸出液中のマンガンを酸化物と水酸化物あるいは酸化物と炭酸塩として沈殿させ、回収する工程(e)とからなる酸化鉱石から有価金属を回収する方法である。
 この特許文献1に開示の方法では、調整するpHは9未満の比較的低い値で済むという利点がある。しかしながら、この方法では、中和剤の他に酸化剤も必要となり、設備投資や薬剤コストがかさむ問題がある。
 上述したように、特にHPALプロセスでは、取り扱う排水量が膨大なため、調整するpH値の違いがわずかであっても使用する中和剤や酸化剤のコストに大きく影響してしまう。このため、効率よくマンガンを分離して除去する方法が求められていた。
特開2000-234130号公報
 本発明は、上述した実情に鑑みて提案されたものであり、湿式製錬プロセス、特に排水量の多いHPALプロセス等を経て排出される、マンガンを含有する排水から、中和剤等の薬剤の使用量を抑えながら、効率的にマンガンを除去する方法を提供することを目的とする。
 本発明者は、上述した課題を解決するために鋭意検討を重ねた。その結果、マンガンを含有する排水のpHを所定の範囲に調整し、pH調整後の排水を、マンガン酸化細菌が存在する所定の長さの排水路内に通液させることで、効率的にマンガンを除去できることを見出し、本発明を完成するに至った。
 (1)本発明の第1の発明は、マンガンを含有する排水から該マンガンを除去するマンガンの除去方法であって、前記排水のpHを8.0以上9.2以下の範囲に調整し、得られたpH調整後の液を、マンガン酸化細菌が存在する長さ3km以上の排水路に供給して、1時間以上の滞留時間をかけて通液させる、マンガンの除去方法である。
 (2)本発明の第2の発明は、第1の発明において、前記排水のpHを調整するに際しては、pH調整後の液中のマンガン濃度が操業開始後1ヶ月毎に1mg/lずつ増加するように調整するpH値を低下させていき、pH調整後の液中のマンガン濃度が10mg/lに達した時点に調整したpH値を維持させる、マンガンの除去方法である。
 (3)本発明の第3の発明は、第1又は第2の発明において、前記排水は、ニッケル酸化鉱石に酸を添加し加圧浸出してニッケルを回収する湿式製錬プロセスにおいて排出される排水である、マンガンの除去方法である。
 本発明によれば、HPALプロセス等の湿式製錬プロセスを経て排出された、マンガンを含有する排水から、中和剤等の薬剤の使用量を抑えながら、効率的にマンガンを分離除去することができる。
排水が供給される入り口からの排水路の距離に対して、各地点でサンプリングした排水中のマンガン濃度の測定結果を示すグラフ図である。
 以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。
 本実施の形態に係るマンガンの除去方法は、マンガンを含有する排水からそのマンガンを除去する方法である。マンガンを含有する排水としては、例えば、各種の金属製錬プロセスを経て排出される排水が挙げられる。
 具体的に、その排水としては、例えば、ニッケル酸化鉱石に硫酸等の酸を添加し加圧浸出してニッケルを回収する湿式製錬プロセス(以下、「HPALプロセス」という)における、ニッケルを分離回収した後に排出される排水が挙げられる。
 ここで、HPALプロセスにおいては、ニッケル酸化鉱石を硫酸等の酸で浸出して得られた浸出液が、中和剤を添加しつつ浸出残渣からなるスラリーと固液分離され、次いで中和剤が添加されて不純物が分離される。さらに、その中和処理後に浸出液(ニッケル回収母液)に硫化剤が添加されて硫化処理が施され、硫化物としてニッケルが回収される。硫化処理後の硫化後液には、マンガンやアルミニウム、マグネシウム等の回収対象外の不純物成分が存在しており、排水処理工程に移送されて沈澱物として分離されて、排水となる。しかしながら、この排水には、排水処理で除去できなかったマンガンが残留している。なお、HPALプロセスにおいて、このような各種の工程を経るものであるため、取り扱う排水量も膨大となる。
 具体的に、このマンガンの除去方法は、HPALプロセスから排出される排水のpHを8.0以上9.2以下の範囲に調整する工程(pH調整工程)と、得られたpH調整後の液を、マンガン酸化細菌が存在する排水路に供給して、所定の滞留時間をかけて通液させる工程(排水路通液工程)とを有することを特徴としている。
 このマンガンの除去方法は、HPALプロセスの排水等のマンガンが存在する排水からマンガンを効率的に且つ効果的に分離するために、先ず、従来よりも排水のpHを低めに調整してそのpH値で分離できるマンガンを大まかに分離した後で、次に、マンガン酸化細菌を利用することでマンガンを実用上完全に除去するものである。
 [pH調整工程]
 pH調整工程では、排水路内での排水中のマンガンの除去に先立ち、排水路への供給前の排水のpHを調整する。本実施の形態に係るマンガンの除去方法では、上述したように、処理対象であるマンガンを含有する排水に対してpH調整を行うことにより、排水のpH調整のみによって分離できるマンガンを分離除去する。
 具体的に、このpH調整工程では、マンガンを実用上完全に分離できるpH9.2を超える範囲まで中和するのではなく、あえて少量のマンガンが排水中に残るpH8.0以上9.2以下の間に調整制御する。このようなpH範囲であれば、少量の中和剤を添加することによって容易に制御することができ、適度にマンガンを除去することもできる。
 排水のpHが9.2を超えるように調整すると、マンガンを完全に分離除去できる一方で、従来のように多量の中和剤が必要となり、効率的なマンガン除去処理を行うことができなくなる。一方で、排水のpHが8.0未満となるように調整すると、中和剤の必要量は減少するものの、pH調整後の排水を排水路内でマンガン酸化細菌により分離する際に、そのマンガン酸化細菌による除去能を超えた濃度まで排水中のマンガンが増加する可能性があり、排水中のマンガンを十分に除去できない可能性がある。
 pH調整においては、例えば中和剤を添加して行うことができる。具体的に、中和剤としては、消石灰や石灰石等を用いることができる。本実施の形態においては、pHの調整範囲を8.0以上9.2以下としていることにより、従来よりも中和剤の使用量を効果的に低減させることができ、効率的な処理を行うことができる。
 [排水路通液工程]
 排水路通液工程では、pH調整後の排水を、マンガン酸化細菌が存在する排水路(放流配管)に供給して、その排水路内を所定の滞留時間をかけて通液させる。
 上述したように、pH調整工程では、比較的少量の中和剤を用いてpH調整しながら大まかにマンガンを分離除去したのみであるため、pH調整後の排水にはマンガンが濃度数mg/l程度の割合で残留している。排水路通液工程では、このようなpH調整によっては分離除去できずに残留した濃度数mg/l程度のマンガンを、排水路内に繁殖させたマンガン酸化細菌を利用して除去する。具体的には、その排水を、所定の長さの排水路内に、所定の滞留時間をかけて通過させる。
 排水路にて排水を通過させるに際しては、排水と、排水路の表面、すなわちマンガン酸化細菌が存在する排水路内表面との接触面積を確保することが重要であり、その観点から、排水路内での排水の滞留時間を1時間以上とする。
 また、排水路の路長(排水経路)としては、3km以上の距離とする。このように、3km以上の距離の排水路内を滞留時間として1時間以上かけて排水を流すことにより、マンガン酸化細菌と、マンガンを含有する排水とを十分に接触させることができる。
 なお、排水路は一直線となる構造とする必要はなく、例えば途中で何度も折り返す等の構造であってもよい。また、排水路は、マンガン酸化細菌の生息に好ましい条件によって、例えば暗渠や開口構造等の適宜妥当な構造とすることができる。また、マンガン酸化細菌が繁殖し易い路壁との排水の接触機会が増えるように、排水が流れる途中に適宜障害物等を設けるようにしてもよい。
 ここで、マンガン酸化細菌とは、マンガンを酸化する能力を有する微生物の総称である。具体的に、そのマンガン酸化細菌としては、特に限定されるものではなく、例えば、Hyphomicrobium属、Magnetospirillum属、Geobacter属、Bacillus属、Pseudomonas属等を挙げることができる。また、マンガン酸化細菌の排水路内での存在割合(濃度)についても、排水中のマンガンを効果的に分離除去できる濃度であれば特に限定されないが、例えば100mg/L~1000mg/L程度の高濃度であることが好ましい。
 なお、排水路内には、マンガン酸化細菌が効率的に増殖し得るように、マンガン酸化細菌にとっての必須栄養塩類等を含ませておくことが好ましいが、HPALプロセスを経てニッケル回収後に排出された貧液等の排水には、種々の塩類が含まれており、そのような排水を排水路内に通液させることで、その排水路内はマンガン酸化細菌が良好に増殖し得る環境になっている。
 また、本実施の形態に係るマンガンの除去方法において、マンガン酸化細菌が十分に増殖していない通液初期や排水中のマンガン負荷を増加させるようなときなどには、排水のpH設定値を9.2から少しずつ低下させることによって、排水路に供給する排水中のマンガン濃度を概ね1ヶ月に1mg/lずつ増加させ、排水路内に存在するマンガン酸化細菌に対して徐々にマンガン負荷をかけていくようにすることが好ましい。
 このようにすることで、排水路内のマンガン酸化細菌を効率的に増殖させて、排水路の内壁表面にマンガン酸化を行うマンガン酸化細菌の膜、いわゆる生物膜を生成させることができる。そして、生物膜が生成した後は、マンガンを含む排水がその配管を通過することで有効にマンガンを酸化除去することができるため、より一層効率的に、マンガン酸化細菌によって排水中のマンガンを酸化させることができる。
 具体的に、排水路の入り口での排水中のマンガン濃度としては、その排水のpHを8.0程度まで低下させて調整して、マンガンが排水中に残留する10mg/lまでを限度に増加させることができる。つまり、排水路に通液させる排水中のマンガン濃度をこのような濃度まで徐々に上昇させることで、排水路内でマンガン酸化を行うマンガン酸化細菌の生物膜が徐々に生成していくようになる。そのため、濃度10mg/lまで上昇したマンガンを含む排水を排水路に導入した場合でも、その排水を、3km以上の距離を1時間以上の滞留時間をかけて流すことで、増殖したマンガン酸化細菌によって排水中のマンガンを分離除去して、実用上十分な濃度にまで低減させることができる。
 なお、マンガン濃度の調整速度が速すぎると、つまり、pHを急速に低下させてしまう、マンガンを酸化して除去する配管表面の生物膜が十分に成長する前にマンガン濃度が上昇してしまい、その結果として十分な除去効果が発揮されなくなってしまう。このため、マンガン濃度の上昇度合としては、1ヶ月に1mg/lの割合の速度以下で上昇させることが好ましい。
 以下、本発明の実施例を示してより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
 [実施例1]
 ニッケル酸化鉱石を公知のHPALプロセスを用いてニッケルを回収した後の湿式製錬の排水処理において、内径が0.26m、長さが10kmの鉄製の管からなる排水路を用意した。その排水路には、流れる液をサンプリングできる場所を数か所設けた。
 数か所に設けた各サンプリング口から配管内壁を採取し、排水路内にはマンガン酸化細菌が存在していることが確認された。
 具体的には、配管内壁の試験サンプルを用いてDNA解析を行ったところ、検出された既知の塩基配列の数3,776のうち、マンガン酸化細菌である可能性が高いバクテリアの塩基配列の数は975であり、その他のバクテリアの塩基配列の数は2,801であり、識別できたDNAのうちの少なくとも1/4はマンガン酸化細菌であり、配管内壁にマンガン酸化細菌が存在していることが確認された。マンガン酸化細菌としては、Hyphomicrobium属、Magnetospirillum属、Geobacter属、Bacillus属、Pseudomonas属のバクテリアの存在が確認された。なお、既知の塩基配列とは、DNA解析に際してデータベースに登録されていたバクテリアの塩基配列をいう。
 先ず、排水路に流す排水に対して、あらかじめ中和剤として消石灰を添加することによって排水のpHを9.0~9.2の範囲に調整した。次いで、pH調整後の排水をシックナーと沈殿池に通して、鉄、アルミニウム、及びマンガンのかなりの部分を除去した。この処理後のマンガン濃度は0.16mg/lであった。つまり、このような濃度のマンガンを含む排水を、そのまま放流することはできない。
 次に、この排水を、上述した内径0.26m、長さ10kmであって、内壁にマンガン酸化細菌が存在する排水路に供給して、その排水路内を通過させた。このとき、この排水路に流す排水の送液量を調整することで、排水路内の液の滞留時間を3.3時間、つまり配管3kmを1時間で通過するように制御した。
 排水路内を通液させ、その排水路の入り口から所定の距離で排水をサンプリングしてマンガン濃度を測定した結果、入り口から5kmの距離となる位置での排水中のマンガン濃度は0.01mg/lの検出下限以下となった。
 図1は、排水が供給される入り口からの排水路の距離に対して、各地点でサンプリングした排水中のマンガン濃度の測定結果を示すグラフ図である。図1のグラフ図から分かるように、濃度0.16mg/lでマンガンを含有する排水を排水路に通液させて、例えば濃度0.04mg/lにまで低減させるために、3kmの長さの排水路があればよいことが分かる。
 以上のことから、マンガン酸化細菌が存在する排水路に、マンガンを含有する排水を通液させることで、マンガンを効果的に分離除去できることが分かる。また、その排水路への通液に先立ち、少量の中和剤を添加して排水のpHをわずかに調整することで、ある程度のマンガンを除去でき、その後、排水路に通液させることで、安価なコストで確実にマンガンを分離除去することができる。
 [実施例2]
 実施例1で用いた同一の排水路を用い、供給する排水のpHを、実施例1でのpH9.0~9.2から徐々にpH8.0まで低下するように中和剤の添加量を次第に減少させながら調整し、排水路に供給される排水のマンガン濃度を徐々に増加させた。その結果、排水のマンガン濃度は1ヶ月に1mg/lのペースで上昇していった。
 この場合でも、排水路の入り口から3km地点でサンプリングした排水のマンガン濃度の上昇は見られず、排水路内で効果的にマンガンが除去されていることが確認できた。
 なお、pHを8.0に調整したときの排水中のマンガン濃度は、最大で10mg/lまで上昇したが、この排水を排水路内に通液させた場合でも、入り口から3km地点でのマンガン濃度は0.5mg/l未満に低減されており、安定的にマンガンを除去できた。
 つまり、この実施例2の結果から、最大で濃度10mg/lのマンガンを含有する排水を通液しても、排水路内でのマンガン酸化細菌を利用した方法により、そのマンガンを実用上問題ないレベルまで除去できることが分かった。また、それだけ低いpHに調整しても十分処理できることから、必要な中和剤量を大幅に低減できることが確かめられた。
 [比較例1]
 実施例2で用いた同一の排水路に供給する排水に対して、添加する中和剤を減らしてpHを9.0~9.2から徐々にpH7.0まで低下させ、排水路に供給するマンガン濃度を1ヶ月に1.5mg/l以上となるペースで上昇させた。
 しかしながら、排水路の入り口から3km地点でサンプリングした排水のマンガン濃度は、当初の0.2mg/lから徐々に上昇傾向を示し、排水路内でのマンガン除去能力の増強が追い付かないことが分かった。

Claims (3)

  1.  マンガンを含有する排水から該マンガンを除去するマンガンの除去方法であって、
     前記排水のpHを8.0以上9.2以下の範囲に調整し、
     得られたpH調整後の液を、マンガン酸化細菌が存在する長さ3km以上の排水路に供給して、1時間以上の滞留時間をかけて通液させる
     ことを特徴とするマンガンの除去方法。
  2.  前記排水のpHを調整するに際しては、
     pH調整後の液中のマンガン濃度が操業開始後1ヶ月毎に1mg/lずつ増加するように調整するpH値を低下させていき、pH調整後の液中のマンガン濃度が10mg/lに達した時点に調整したpH値を維持させる
     ことを特徴とする請求項1に記載のマンガンの除去方法。
  3.  前記排水は、ニッケル酸化鉱石に酸を添加し加圧浸出してニッケルを回収する湿式製錬プロセスにおいて排出される排水である
     請求項1又は2に記載のマンガンの除去方法。
PCT/JP2016/070397 2015-08-27 2016-07-11 排水からのマンガンの除去方法 WO2017033594A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16838941.9A EP3342757A4 (en) 2015-08-27 2016-07-11 METHOD FOR REMOVING WASTEWATER MANGANESE
AU2016311670A AU2016311670B2 (en) 2015-08-27 2016-07-11 Method for removing manganese from wastewater
PH12018500405A PH12018500405B1 (en) 2015-08-27 2018-02-23 Method for removing manganese from wastewater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-167975 2015-08-27
JP2015167975A JP6123856B2 (ja) 2015-08-27 2015-08-27 排水からのマンガンの除去方法

Publications (1)

Publication Number Publication Date
WO2017033594A1 true WO2017033594A1 (ja) 2017-03-02

Family

ID=58101229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070397 WO2017033594A1 (ja) 2015-08-27 2016-07-11 排水からのマンガンの除去方法

Country Status (5)

Country Link
EP (1) EP3342757A4 (ja)
JP (1) JP6123856B2 (ja)
AU (1) AU2016311670B2 (ja)
PH (1) PH12018500405B1 (ja)
WO (1) WO2017033594A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7176686B2 (ja) * 2018-10-19 2022-11-22 国立大学法人九州大学 マンガンの除去方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154498A (ja) * 1991-12-09 1993-06-22 Meiji Milk Prod Co Ltd 排水処理方法及び装置
JPH09117795A (ja) * 1995-10-27 1997-05-06 Mitsubishi Plastics Ind Ltd 水質浄化処理方法及びその装置
JP2000245444A (ja) * 1998-12-28 2000-09-12 Agency Of Ind Science & Technol 新規微生物の培養方法及びこれを用いた水処理方法
JP2004033807A (ja) * 2002-06-28 2004-02-05 Fuji Photo Film Co Ltd 廃水処理装置及び廃水処理方法
JP2011031164A (ja) * 2009-07-31 2011-02-17 Kurita Water Ind Ltd 生物難分解性有機物含有水の処理方法及び装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2122021A1 (en) * 1991-10-25 1993-04-29 Lindsay Sly Method and apparatus for removing manganese from water
JP3385997B2 (ja) * 1999-02-12 2003-03-10 大平洋金属株式会社 酸化鉱石から有価金属を回収する方法
CN101260376B (zh) * 2008-01-07 2010-11-03 哈尔滨工业大学 一种生物除锰除铁功能菌
CN102965322B (zh) * 2012-12-17 2014-04-30 中国科学院生态环境研究中心 一种锰氧化复合菌系及其应用
CN103409325B (zh) * 2013-07-08 2015-12-23 中节能六合天融环保科技有限公司 一种利用微生物从电解锰矿废水中回收锰离子的方法
US20150101981A1 (en) * 2013-10-10 2015-04-16 Colin LENNOX Assemblies and methods for treating wastewater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154498A (ja) * 1991-12-09 1993-06-22 Meiji Milk Prod Co Ltd 排水処理方法及び装置
JPH09117795A (ja) * 1995-10-27 1997-05-06 Mitsubishi Plastics Ind Ltd 水質浄化処理方法及びその装置
JP2000245444A (ja) * 1998-12-28 2000-09-12 Agency Of Ind Science & Technol 新規微生物の培養方法及びこれを用いた水処理方法
JP2004033807A (ja) * 2002-06-28 2004-02-05 Fuji Photo Film Co Ltd 廃水処理装置及び廃水処理方法
JP2011031164A (ja) * 2009-07-31 2011-02-17 Kurita Water Ind Ltd 生物難分解性有機物含有水の処理方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3342757A4 *

Also Published As

Publication number Publication date
PH12018500405A1 (en) 2018-08-29
EP3342757A1 (en) 2018-07-04
JP2017042727A (ja) 2017-03-02
PH12018500405B1 (en) 2018-08-29
JP6123856B2 (ja) 2017-05-10
EP3342757A4 (en) 2019-03-20
AU2016311670A1 (en) 2018-04-12
AU2016311670B2 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
AU2005201775B2 (en) Hydrometallurgical process of nickel oxide ore
JP5359392B2 (ja) 排水からのマンガンの除去方法
WO2014199771A1 (ja) 排水処理方法
US5534234A (en) Recovery of manganese from leach solutions
JP6123856B2 (ja) 排水からのマンガンの除去方法
JP6202083B2 (ja) 硫化剤の除去方法
CN101466855A (zh) 硫化镍沉淀方法
JP5617877B2 (ja) ニッケル酸化鉱製錬における排水処理方法
WO2020080035A1 (ja) マンガンの除去方法
JP2020076129A (ja) 石膏スケールの析出を抑制したニッケル酸化鉱石の湿式製錬方法
AU2017362828B2 (en) Method for removing manganese
EA007859B1 (ru) Способ удаления таллия из цинксодержащего раствора
JP5861694B2 (ja) マンガンの溶出抑制方法
JP2020029589A (ja) ニッケル酸化鉱石の湿式製錬法における臭気低減方法
JP6956971B2 (ja) 排水からのマンガンの除去方法
WO2018092694A1 (ja) マンガンの除去方法
WO2018096962A1 (ja) 排水からのマンガンの除去方法
JP6048567B2 (ja) マンガンの溶出抑制方法
JP2010001524A (ja) 製鉄ダストの低亜鉛化方法
JP6277940B2 (ja) カドミウム含有排水の処理方法
JP6269960B2 (ja) カドミウム含有排水の処理方法
JP2019181349A (ja) 硫化剤の除去方法及びニッケル酸化鉱石の湿式製錬方法
JP2019049020A (ja) ニッケル酸化鉱石の湿式製錬方法
OA18661A (en) Improved effluent treatment process for sulphate removal.
JP2004129510A (ja) 金属含有排水の処理に用いる活性汚泥からの微生物の回収方法、および微生物の同定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838941

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12018500405

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016838941

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016311670

Country of ref document: AU

Date of ref document: 20160711

Kind code of ref document: A