WO2017033498A1 - 水中撮影装置、水中撮影装置の制御方法、水中撮影装置の制御プログラム - Google Patents

水中撮影装置、水中撮影装置の制御方法、水中撮影装置の制御プログラム Download PDF

Info

Publication number
WO2017033498A1
WO2017033498A1 PCT/JP2016/063142 JP2016063142W WO2017033498A1 WO 2017033498 A1 WO2017033498 A1 WO 2017033498A1 JP 2016063142 W JP2016063142 W JP 2016063142W WO 2017033498 A1 WO2017033498 A1 WO 2017033498A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminance
unit
histogram
illumination
underwater
Prior art date
Application number
PCT/JP2016/063142
Other languages
English (en)
French (fr)
Inventor
晋吾 木田
Original Assignee
株式会社Jvcケンウッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Jvcケンウッド filed Critical 株式会社Jvcケンウッド
Publication of WO2017033498A1 publication Critical patent/WO2017033498A1/ja
Priority to US15/884,574 priority Critical patent/US10594947B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/08Waterproof bodies or housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/64Computer-aided capture of images, e.g. transfer from script file into camera, check of taken image quality, advice or proposal for image composition or decision on when to take image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/48Means for searching for underwater objects

Definitions

  • the present disclosure relates to an underwater photographing apparatus that photographs an underwater photographing object, a control method for the underwater photographing apparatus, and a control program for the underwater photographing apparatus.
  • An example of an underwater structure is the wall of a dam that stores water.
  • An underwater photographing device may be used to inspect deterioration of a wall surface in water.
  • the underwater photography device is submerged in the water and photographs the wall surface. The inspector confirms the presence or absence of deterioration of the wall surface from the captured image.
  • JP 2012-137706 A Japanese Patent No. 4453777
  • the underwater imaging device includes an illumination device, and images the wall surface while irradiating the wall surface with illumination light.
  • the photographed image may be too dark or too bright depending on the illumination light irradiation condition. In this case, the inspector cannot accurately check the presence / absence of deterioration of the wall surface by the captured image.
  • the present invention provides an underwater photographing apparatus capable of accurately confirming an underwater photographing target, an underwater photographing apparatus control method, and an underwater photographing apparatus control program.
  • the purpose is to do.
  • the imaging unit that captures an underwater shooting target, the illumination unit that illuminates the shooting target, and the minimum luminance signal included in the video signal output from the imaging unit
  • a histogram generation unit that divides luminance to maximum luminance into a plurality of luminance groups and generates histogram data indicating a frequency distribution of each of the plurality of luminance groups, and each of the plurality of luminance groups based on the histogram data
  • a histogram analysis unit that analyzes how the frequency of the image is distributed, and control to adjust the distance between the object to be photographed and the illumination unit according to the analysis result of the histogram data by the histogram analysis unit
  • An underwater photographing device including a distance control unit is provided.
  • the imaging object is imaged by the imaging unit, and from the minimum luminance to the maximum luminance of the luminance signal included in the video signal output from the imaging unit by the histogram generation unit.
  • the distance controller adjusts the distance between the object to be photographed and the illumination unit that illuminates the object to be photographed according to the analysis result of the histogram data.
  • the computer divides the luminance signal from the minimum luminance to the maximum luminance included in the video signal output from the imaging unit that images the underwater shooting target object into a plurality of luminance groups. Generating histogram data indicating the frequency distribution of each of the plurality of luminance groups, and analyzing how the frequencies of the plurality of luminance groups are distributed based on the histogram data;
  • a control program for an underwater photographing apparatus is provided that causes a step of adjusting a distance between the photographing object and an illumination unit that illuminates the photographing object according to an analysis result of the histogram data. Is done.
  • the underwater photographing apparatus According to the underwater photographing apparatus, the underwater photographing apparatus control method, and the underwater photographing apparatus control program of the embodiment, it is possible to obtain a photographing image that can accurately confirm the underwater photographing object.
  • FIG. 1 is a block diagram illustrating an underwater photographing apparatus according to the first embodiment.
  • FIG. 2 is a flowchart for explaining the operation of the underwater photographing apparatus of each embodiment, the control method of the underwater photographing apparatus of each embodiment, and the control program.
  • FIG. 3A is a diagram illustrating an example of an image in which luminance is concentrated on a low luminance portion.
  • FIG. 3B is a diagram showing an image after adjusting the distance between the illumination unit and the object to be photographed from the state of FIG. 3A.
  • FIG. 4A is a diagram showing a luminance histogram of the video shown in FIG. 3A.
  • 4B is a diagram showing a luminance histogram of the video shown in FIG. 3B.
  • FIG. 3A is a diagram showing a luminance histogram of the video shown in FIG. 3A.
  • 4B is a diagram showing a luminance histogram of the video shown in FIG. 3B.
  • FIG. 5 is a diagram showing an example of how to move the illumination unit according to the degree of concentration in step S9 of FIG.
  • FIG. 6A is a diagram illustrating an example of an image in which the luminance is concentrated in the middle luminance portion.
  • FIG. 6B is a diagram illustrating an image after adjusting the distance between the illumination unit and the object to be photographed from the state of FIG. 6A.
  • FIG. 7A is a diagram showing a luminance histogram of the video shown in FIG. 6A.
  • FIG. 7B is a diagram showing a luminance histogram of the video shown in FIG. 6B.
  • FIG. 8A is a diagram illustrating an example of an image in which luminance is concentrated on a high luminance part.
  • FIG. 8B is a diagram illustrating an image in a state where the brightness of the illumination is reduced from the state of FIG. 8A.
  • FIG. 8C is a diagram illustrating an image after adjusting the distance between the illumination unit and the photographing object from the state of FIG. 8B.
  • FIG. 9A is a diagram showing a luminance histogram of the video shown in FIG. 8A.
  • FIG. 9B is a diagram showing a luminance histogram of the video shown in FIG. 8B.
  • FIG. 9C is a diagram showing a luminance histogram of the video shown in FIG. 8C.
  • FIG. 10A is a diagram illustrating an example of an image in which luminance is concentrated in a low luminance part and a high luminance part.
  • FIG. 10A is a diagram illustrating an example of an image in which luminance is concentrated in a low luminance part and a high luminance part.
  • FIG. 10B is a diagram showing an image after adjusting the distance between the illumination unit and the object to be photographed from the state of FIG. 10A.
  • FIG. 11A is a diagram showing a luminance histogram of the video shown in FIG. 10A.
  • FIG. 11B is a diagram showing a luminance histogram of the video shown in FIG. 10B.
  • FIG. 12 is a block diagram illustrating a specific configuration example of an image quality correction unit included in the underwater imaging device of each embodiment.
  • FIG. 13 is a diagram showing frequency characteristics for explaining the operation of the image quality correction unit shown in FIG.
  • FIG. 14 is a waveform diagram for explaining the operation of the image quality correction unit shown in FIG.
  • FIG. 15A is a diagram illustrating an image before image quality correction by the image quality correction unit.
  • FIG. 15B is a diagram conceptually showing the video after the image quality correction by the image quality correction unit.
  • FIG. 16 is a block diagram illustrating an underwater photographing apparatus according to the second embodiment.
  • FIG. 17 is a block diagram illustrating an underwater photographing apparatus according to the third embodiment.
  • the dam 100 stores water. Most of the wall surface 101 of the dam 100 is underwater.
  • the wall surface 101 of the dam 100 is an example of an underwater structure.
  • the main body 10 of the underwater photographing apparatus is submerged in the water.
  • the underwater imaging device (main body unit 10) images the wall surface 101, and the inspector confirms whether the wall surface 101 has deteriorated based on the captured image of the wall surface 101.
  • the main body 10 is suspended from, for example, a wire from above the water surface, and is configured so that the main body 10 can be moved closer to or away from the wall surface 101.
  • the main body unit 10 includes an imaging unit 1 for imaging the wall surface 101, a video signal processing unit 2 that processes a video signal output from the imaging unit 1, and an illumination unit 3 that illuminates the wall surface 101.
  • the wall surface 101 is a photographing object.
  • the imaging unit 1 includes a CCD or a CMOS.
  • the illumination part 3 can be comprised with arbitrary light sources.
  • the video signal processing unit 2 corrects the image quality by correcting the video signal based on the luminance signal included in the video signal, the histogram generation unit 21 that generates the histogram data, the histogram analysis unit 22 that analyzes the histogram data. And an image quality correction unit 23.
  • the video signal processing unit 2 may be configured by a hardware circuit, or may be entirely or partially configured by software (computer program).
  • the control unit 51 includes an illumination control unit 511 for controlling illumination by the illumination unit 3 and a distance control unit 512 for controlling the distance between the main body unit 10 and the wall surface 101.
  • the control unit 51 can be composed of a personal computer, a microcomputer, a microprocessor, or the like.
  • the drive part 52 can be comprised with arbitrary drive mechanisms.
  • the display unit 53 can be configured by an arbitrary display such as a liquid crystal panel.
  • the control unit 51 is supplied with data indicating the analysis result of the histogram data by the histogram analysis unit 22.
  • the driving unit 52 drives the main body unit 10 suspended by the wire so as to move in the horizontal direction.
  • the drive unit 52 drives the main body unit 10 to move in the vertical direction in addition to the horizontal direction.
  • the display unit 53 displays the video signal output from the video signal processing unit 2. The inspector looks at the video displayed on the display unit 53 and confirms whether or not the wall surface 101 has deteriorated.
  • the imaging unit 1 captures an imaging object (here, the wall surface 101) in step S1.
  • the histogram generation unit 21 generates histogram data (luminance histogram) based on the luminance signal included in the video signal.
  • the histogram generation unit 21 divides all the gradations of the luminance signal into a plurality of luminance groups (gradation groups), counts the number of pixels included in each luminance group, and generates histogram data.
  • the video signal has, for example, 256 gradations, and the histogram generation unit 21 divides all gradations of the luminance signal into, for example, 16 luminance groups.
  • FIG. 4A shows an example of histogram data.
  • the gradation groups 0 to 4 located on the low luminance side are positioned at the low luminance part Rlow, the gradation groups 11 to 15 located on the high luminance side are located between the high luminance part Rhigh and the low luminance part Rlow and the high luminance part Rhigh.
  • the gradation groups 5 to 10 to be used are defined as a medium luminance portion Rmid.
  • the method of dividing the low luminance portion Rlow, the medium luminance portion Rmid, and the high luminance portion Rhigh is an example, and is not limited to that shown in FIG. 4A.
  • step S3 the histogram analysis unit 22 analyzes how the luminance signal is distributed in each of the low luminance portion Rlow, the medium luminance portion Rmid, and the high luminance portion Rhigh.
  • the histogram analysis unit 22 calculates the total Hist_sum of the histogram based on the formula (1).
  • Hist [i] is the frequency of each of the gradation groups 0 to 15.
  • the histogram analysis unit 22 calculates the low luminance concentration level Low_rate based on the equation (2), calculates the medium luminance concentration level Mid_rate based on the equation (3), and calculates the high luminance concentration level High_rate based on the equation (4). Is calculated.
  • High_rate (Hist [11] + Hist [12] + Hist [13] + Hist [14] + Hist [15]) ⁇ 100 / Hist_sum... (4)
  • the equations (2) to (4) for calculating the low luminance concentration level Low_rate, the medium luminance concentration level Mid_rate, and the high luminance concentration level High_rate are examples, and are not limited to the equations (2) to (4).
  • the histogram analysis unit 22 may obtain the degree of concentration of the frequencies of the low luminance part Rlow, the medium luminance part Rmid, and the high luminance part Rhigh by an arbitrary calculation formula.
  • the histogram analyzing unit 22 determines whether or not the luminance is concentrated on the low luminance portion Rlow in step S4.
  • the histogram analysis unit 22 determines that the luminance is concentrated in the low luminance portion Rlow when analyzing that the luminance is concentrated and distributed in the low luminance portion Rlow at a predetermined concentration or more. As an example, when the low luminance concentration level Low_rate is 60% or more, it is determined that the luminance is concentrated in the low luminance portion Rlow.
  • FIG. 3A is an example of an image in which the luminance is concentrated on the low luminance portion Rlow.
  • FIG. 3A and the subsequent drawings it is assumed that a crack 102 and a depression 103 are reflected on the wall surface 101 in the image.
  • the illumination by the illumination unit 3 may not reach the wall surface 101 sufficiently, resulting in a dark image.
  • the luminance histogram is in a state where the luminance is concentrated on the low luminance portion Rlow, as shown in FIG. 4A.
  • step S4 If it is determined in step S4 that the luminance is concentrated on the low luminance portion Rlow (YES), the distance control unit 512 brings the illumination unit 3 (that is, the main body unit 10) closer to the wall surface 101 in step S9.
  • the drive unit 52 is controlled.
  • the image becomes bright as shown in FIG. 3B.
  • the luminance histogram at this time as shown in FIG. 4B, the luminance is distributed over the entire range from the low luminance portion Rlow to the high luminance portion Rhigh mainly in the middle luminance portion Rmid. Therefore, it becomes easy to confirm the crack 102 and the hollow 103 of the wall surface 101.
  • step S9 the distance control unit 512 may move the illumination unit 3 at a moving distance corresponding to the low luminance concentration level Low_rate as shown in FIG.
  • the concentration degree shown in FIG. 5 means a low luminance concentration degree Low_rate when the process proceeds from step S4 to step S9.
  • the distance control unit 512 linearly increases the moving distance as the low luminance concentration level Low_rate approaches 100% at a predetermined value or more.
  • a minus sign in the movement distance in FIG. 5 means that the illumination unit 3 approaches the wall surface 101.
  • step S9 the process proceeds to step S11. If it is not determined in step S4 that the luminance is concentrated on the low luminance portion Rlow (NO), the process proceeds to step S5.
  • the histogram analysis unit 22 determines whether or not the luminance is concentrated on the middle luminance unit Rmid in step S5.
  • the histogram analysis unit 22 determines that the luminance is concentrated in the middle luminance portion Rmid when analyzing that the luminance is concentrated and distributed in the middle luminance portion Rmid over a predetermined concentration degree.
  • the medium luminance concentration level Mid_rate is 60% or more, it may be determined that the luminance is concentrated in the medium luminance portion Rmid.
  • FIG. 6A is an example of an image in which the luminance is concentrated on the middle luminance portion Rmid.
  • underwater photographed images often have luminance concentrated on the middle luminance portion Rmid due to cloudiness of water, and thus tend to be images with reduced contrast.
  • the luminance histogram is in a state where the luminance is concentrated in the middle luminance portion Rmid as shown in FIG. 7A.
  • step S5 If it is determined in step S5 that the luminance is concentrated on the middle luminance portion Rmid (YES), the distance control unit 512 controls the drive unit 52 so that the illumination unit 3 is brought closer to the wall surface 101 in step S9. .
  • the image becomes bright as shown in FIG. 6B.
  • the luminance histogram at this time as shown in FIG. 7B, the luminance is distributed over the entire range from the low luminance portion Rlow to the high luminance portion Rhigh, mainly in the middle luminance portion Rmid. Therefore, it becomes easy to confirm the crack 102 and the hollow 103 of the wall surface 101.
  • step S9 the distance control unit 512, as shown in FIG. 5, increases the moving distance linearly as the medium luminance concentration level Mid_rate approaches 100% at a predetermined value or more. 10 should be moved.
  • the concentration level shown in FIG. 5 means a medium luminance concentration level Mid_rate when the process proceeds from step S5 to step S9.
  • step S5 If it is not determined in step S5 that the luminance is concentrated in the middle luminance portion Rmid (NO), the process proceeds to step S6.
  • the histogram analysis unit 22 determines whether or not the luminance is concentrated on the high luminance portion Rhigh in step S6.
  • the histogram analysis unit 22 determines that the luminance is concentrated in the high luminance portion Rhigh when analyzing that the luminance is concentrated and distributed in the high luminance portion Rhigh with a predetermined concentration or more.
  • the high brightness concentration level High_rate is 60% or more, it may be determined that the brightness is concentrated in the high brightness portion Rhigh.
  • FIG. 8A is an example of an image in which the luminance is concentrated on the high luminance portion Rhigh.
  • the luminance histogram is in a state where the luminance is concentrated in the high luminance portion Rhigh, as shown in FIG. 9A.
  • step S6 If it is determined in step S6 that the luminance is concentrated on the high luminance portion Rhigh (YES), the illumination control unit 511 controls the illumination unit 3 to reduce the brightness of the illumination in step S8. Then, the video is in a state as shown in FIG. 8B, and the luminance histogram is in a state in which the luminance is concentrated in the middle luminance portion Rmid as shown in FIG. 9B.
  • the distance control unit 512 controls the drive unit 52 to bring the illumination unit 3 closer to the wall surface 101 in step S9. Then, the video is in a state as shown in FIG. 8C, and the luminance histogram is such that the luminance is distributed mainly from the low luminance part Rlow to the high luminance part Rhigh mainly in the middle luminance part Rmid as shown in FIG. 9C. Become. Therefore, it becomes easy to confirm the crack 102 and the hollow 103 of the wall surface 101.
  • step S9 the distance control unit 512 also increases the moving distance linearly as the high luminance concentration level High_rate approaches 100% at a predetermined value or higher as shown in FIG. It is preferable to move the illumination unit 3.
  • the concentration level shown in FIG. 5 means a high luminance concentration level High_rate when the process proceeds from step S6 and FIG. 8 to step S9.
  • step S6 If it is not determined in step S6 that the luminance is concentrated in the high luminance part Rhigh (NO), the process proceeds to step S7.
  • the histogram analysis unit 22 determines whether or not the luminance is concentrated on the low luminance portion Rlow and the high luminance portion Rhigh in step S7.
  • FIG. 10A a state in which the brightness decreases from the circular bright central portion toward the outside is expressed with different hatching.
  • the luminance histogram at this time is in a state where the luminance is concentrated on the low luminance portion Rlow and the high luminance portion Rhigh, as shown in FIG. 11A.
  • the histogram analysis unit 22 determines whether or not the condition that the low luminance concentration level Low_rate is larger than the medium luminance concentration level Mid_rate and the high luminance concentration level High_rate is larger than the medium luminance concentration level Mid_rate is satisfied. In this case, it is determined that the state is as shown in FIG. 10A.
  • the distance control unit 512 controls the driving unit 52 to move the illumination unit 3 away from the wall surface 101 in step S10. To do.
  • the video is in a state as shown in FIG. 10B, and the luminance histogram is such that the luminance is distributed mainly from the low luminance part Rlow to the high luminance part Rhigh mainly in the middle luminance part Rmid as shown in FIG. 11B. Become. Therefore, it becomes easy to confirm the crack 102 and the hollow 103 of the wall surface 101.
  • step S10 the process proceeds to step S11. If it is not determined that the luminance is concentrated in the low luminance portion Rlow and the high luminance portion Rhigh (NO), the process proceeds to step S11.
  • the image quality correction unit 23 performs image quality correction processing on the video signal in step S11, and the video signal processing unit 2 outputs the video signal subjected to image quality correction processing in step S12. After step S12, the process returns to step S1, and steps S1 to S12 are repeated.
  • the illumination unit 3 is brought close to the photographing object. Accordingly, an image having a moderate brightness as shown in FIG. 3B or 6B and a luminance histogram having a wide range of brightness as shown in FIG. 4B or 7B can be obtained.
  • the illumination part 3 When the luminance of the video signal is concentrated on the high luminance part Rhigh, the illumination part 3 is moved closer to the object to be imaged after the brightness of the illumination part 3 is reduced. Accordingly, an image having a moderate brightness as shown in FIG. 8C and a luminance histogram in which the luminance as shown in FIG. 9C spreads over a wide range can be obtained.
  • the illumination unit 3 When the luminance of the video signal is concentrated on the low luminance portion Rlow and the high luminance portion Rhigh, the illumination unit 3 is kept away from the object to be photographed, thereby having an appropriate brightness as shown in FIG. 10B. It can be set as the image
  • the generated video signal indicates a video having a brightness histogram that has a moderate brightness and a wide range of brightness. .
  • the image quality correction unit 23 includes a delay unit 231, a Gaussian filter 232, a subtracter 233, a delay unit 234, a low-pass filter 235, a multiplier 236, and an adder 237.
  • Each component in the image quality correction unit 23 may be configured by a hardware circuit, or all or a part may be configured by software.
  • the luminance signal included in the video signal input to the video signal processing unit 2 is defined as a luminance signal Y0.
  • the luminance signal Y0 is input to the delay device 231 and the Gaussian filter 232.
  • the Gaussian filter is a low-pass filter that extracts a very low frequency signal using a Gaussian function. As shown in FIG. 13, the frequency characteristic FG of the Gaussian filter 232 has a very low cutoff frequency.
  • a low-pass filter having an extremely low cutoff frequency and a long tap length may be used.
  • the delay unit 231 delays the luminance signal Y0 by the time required for processing in the Gaussian filter 232 and outputs the delayed signal as the luminance signal Y1.
  • the Gaussian filter 232 extracts the low frequency component signal Y2 from the luminance signal Y0.
  • the low frequency component signal Y2 when the luminance signal Y0 is an edge signal as indicated by a solid line, the low frequency component signal Y2 has a waveform as indicated by a broken line. As shown in FIG. 13, the band of the low frequency component signal Y2 is a band limited by the frequency characteristic FG.
  • the subtractor 233 subtracts the low frequency component signal Y2 from the luminance signal Y1, and outputs a high frequency component signal Y3 shown in FIG. Since the subtracter 233 subtracts the low frequency component signal Y2 from the video signal Y1 of the entire band, the band of the high frequency component signal Y3 is as shown in FIG.
  • the high frequency component signal Y3 output from the subtracter 233 is input to the low pass filter 235.
  • the frequency characteristic FL of the low-pass filter 235 is as shown in FIG. 13, and the cutoff frequency of the low-pass filter 235 is higher than the cutoff frequency of the Gaussian filter 232.
  • the output signal Y4 of the low-pass filter 235 is a signal obtained by extracting the low-frequency side signal in the high-frequency component signal Y3 by the frequency characteristic FL, and has a waveform shown in (c) of FIG.
  • the output signal Y4 is referred to as a low frequency side high frequency component signal Y4.
  • the low-frequency high-frequency component signal Y4 is input to the multiplier 236.
  • the multiplier 236 multiplies the low frequency side high frequency component signal Y4 by the gain G1 to generate a correction component signal Y5 shown in FIG.
  • the gain G1 is for adjusting the effect of improving the contrast of the contour portion of the image by the image quality correction unit 23, and is usually a positive number less than 1 exceeding 0.
  • the delay unit 234 further delays the luminance signal Y1 by the time required for the processing in the low-pass filter 235 and the multiplier 236, and outputs it as the luminance signal Y6.
  • the adder 237 adds the luminance signal Y6 and the correction component signal Y5, and outputs a corrected luminance signal Y7 shown in (e) of FIG.
  • the image quality correction unit 23 performs the image quality correction process for enhancing the contrast in the edge signal portion of the luminance signal Y0 on the luminance signal Y0.
  • the luminance value decreases at the corner of the edge portion where the luminance value rises from the first level, and the luminance value increases. Then, the luminance value is increased at the corner portion of the edge portion that shifts to the second level.
  • the luminance value is increased at the corner of the edge portion where the luminance value falls from the second level, and the luminance value falls.
  • the luminance value is lowered at the corner of the edge portion that shifts to the first level.
  • FIG. 15A is the same image as FIG. 3B, FIG. 6B, FIG. 8C, and FIG. 10B.
  • the image quality correction process described above is performed on the luminance signal (luminance signal Y0) included in the video signal, the contrast of the crack 102 and the depression 103 is enhanced as conceptually shown in FIG. 15B. Therefore, the inspector can more accurately confirm the crack 102 or the depression 103 existing on the wall surface 101.
  • a control unit such as a microcomputer or a microprocessor may be provided in the main body unit 10, and the histogram analysis unit 22, or the histogram generation unit 21 and the histogram analysis unit 22 may be provided in the control unit.
  • the control unit 51 may include the histogram analysis unit 22 or the histogram generation unit 21 and the histogram analysis unit 22.
  • At least one of the illumination control unit 511 and the distance control unit 512 provided in the control unit 51 may be provided in the control unit in the main body unit 10.
  • the functions of the histogram generation unit 21, the histogram analysis unit 22, the illumination control unit 511, and the distance control unit 512 may be realized by a computer program (a control program for the underwater photographing apparatus).
  • the control program for the underwater imaging device may be recorded on a non-temporary recording medium.
  • control program for the underwater imaging device may cause the computer to execute the following steps.
  • the control program divides the luminance signal from the minimum luminance to the maximum luminance included in the video signal output from the imaging unit that images the underwater shooting target object into a plurality of luminance groups, and A step of generating histogram data indicating a frequency distribution is executed.
  • control program executes a step of analyzing how the frequencies of the plurality of luminance groups are distributed based on the histogram data. And a control program performs the step which adjusts the distance of a to-be-photographed object and the illumination part which illuminates a to-be-photographed object according to the analysis result of histogram data.
  • the underwater photographing apparatus of the second embodiment includes a propulsion mechanism 54 such as a screw so that the main body 20 itself can move the main body 20 closer to or away from the wall surface 101.
  • the distance control unit 512 controls the propulsion mechanism 54 so as to move the lighting unit 3 (that is, the main body unit 20) closer to or away from the wall surface 101.
  • the underwater photographing apparatus of the second embodiment also operates as shown in FIG. Also in the control method of the underwater photographing apparatus of the second embodiment, the control as shown in FIG. 2 is executed. Also in the control program for the underwater photographing apparatus of the second embodiment, the computer is caused to execute steps as shown in FIG.
  • the main body unit 30 includes the illumination unit expansion / contraction mechanism 4 so that only the illumination unit 3 can be moved closer to or away from the wall surface 101.
  • the illumination part expansion / contraction mechanism 4 can be configured such that, for example, the illumination part 3 is attached to the distal end of a telescopic arm.
  • the distance control unit 512 controls the illumination unit expansion / contraction mechanism 4 so as to move the illumination unit 3 closer to or away from the wall surface 101.
  • the distance control unit 512 controls the propulsion mechanism 54 so as to move the main body unit 30 closer to or away from the wall surface 101, and controls the illumination unit telescopic mechanism 4 so as to move the illumination unit 3 closer to or away from the wall surface 101. Also good.
  • the illumination unit expansion / contraction mechanism 4 for moving only the illumination unit 3 closer to or away from the wall surface 101 may be provided in the main body unit 10 shown in FIG.
  • the present invention can be used when photographing an underwater photographing object.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Studio Devices (AREA)
  • Structure And Mechanism Of Cameras (AREA)
  • Image Analysis (AREA)

Abstract

撮像部(1)は、水中の撮影対象物を撮像する。照明部(3)は、撮影対象物を照明する。ヒストグラム生成部(21)は、映像信号に含まれる輝度信号の最小輝度から最大輝度までを複数の輝度群に分割して、複数の輝度群それぞれの頻度の分布を示すヒストグラムデータを生成する。ヒストグラム解析部(22)は、ヒストグラムデータに基づいて、複数の輝度群それぞれの頻度がどのように分布しているかを解析する。距離制御部(512)は、ヒストグラムデータの解析結果に応じて、撮影対象物と照明部(3)との距離を調整するよう制御する。

Description

水中撮影装置、水中撮影装置の制御方法、水中撮影装置の制御プログラム
 本開示は、水中の撮影対象物を撮影する水中撮影装置、水中撮影装置の制御方法、水中撮影装置の制御プログラムに関する。
 水中構造物の一例として、水を蓄えるダムの壁面がある。水中の壁面の劣化を検査するために、水中撮影装置が用いられることがある。水中撮影装置は水中に沈められて、壁面を撮影する。検査者は、撮影映像によって壁面の劣化の有無を確認する。
特開2012-137706号公報 特許第4453777号公報
 水深が深い場所では、太陽光は十分に届かない。そこで、水中撮影装置は照明装置を備え、壁面に照明光を照射しながら壁面を撮影する。ところが、照明光の照射の状況によって撮影映像が暗くなりすぎたり、明るくなりすぎたりすることがある。この場合、検査者は、撮影映像によって壁面の劣化の有無を的確に確認することができない。
 本発明はこのような問題点に鑑み、水中の撮影対象物を的確に確認することができる撮影映像を得ることができる水中撮影装置、水中撮影装置の制御方法、水中撮影装置の制御プログラムを提供することを目的とする。
 実施形態の第1の態様によれば、水中の撮影対象物を撮像する撮像部と、前記撮影対象物を照明する照明部と、前記撮像部より出力された映像信号に含まれる輝度信号の最小輝度から最大輝度までを複数の輝度群に分割して、前記複数の輝度群それぞれの頻度の分布を示すヒストグラムデータを生成するヒストグラム生成部と、前記ヒストグラムデータに基づいて、前記複数の輝度群それぞれの頻度がどのように分布しているかを解析するヒストグラム解析部と、前記ヒストグラム解析部による前記ヒストグラムデータの解析結果に応じて、前記撮影対象物と前記照明部との距離を調整するよう制御する距離制御部とを備えることを特徴とする水中撮影装置が提供される。
 実施形態の第2の態様によれば、撮像部によって水中の撮影対象物を撮像し、ヒストグラム生成部によって、前記撮像部より出力された映像信号に含まれる輝度信号の最小輝度から最大輝度までを複数の輝度群に分割して、前記複数の輝度群それぞれの頻度の分布を示すヒストグラムデータを生成し、ヒストグラム解析部によって、前記ヒストグラムデータに基づいて、前記複数の輝度群それぞれの頻度がどのように分布しているかを解析し、距離制御部によって、前記ヒストグラムデータの解析結果に応じて、前記撮影対象物と、前記撮影対象物を照明する照明部との距離を調整することを特徴とする水中撮影装置の制御方法が提供される。
 実施形態の第3の態様によれば、コンピュータに、水中の撮影対象物を撮像する撮像部より出力された映像信号に含まれる輝度信号の最小輝度から最大輝度までを複数の輝度群に分割して、前記複数の輝度群それぞれの頻度の分布を示すヒストグラムデータを生成するステップと、前記ヒストグラムデータに基づいて、前記複数の輝度群それぞれの頻度がどのように分布しているかを解析するステップと、前記ヒストグラムデータの解析結果に応じて、前記撮影対象物と、前記撮影対象物を照明する照明部との距離を調整するステップとを実行させることを特徴とする水中撮影装置の制御プログラムが提供される。
 実施形態の水中撮影装置、水中撮影装置の制御方法、水中撮影装置の制御プログラムによれば、水中の撮影対象物を的確に確認することができる撮影映像を得ることができる。
図1は、第1実施形態の水中撮影装置を示すブロック図である。 図2は、各実施形態の水中撮影装置の動作、各実施形態の水中撮影装置の制御方法及び制御プログラムを説明するためのフローチャートである。 図3Aは、輝度が低輝度部に集中している映像の一例を示す図である。 図3Bは、図3Aの状態から、照明部と撮影対象物との距離を調整した後の映像を示す図である。 図4Aは、図3Aに示す映像の輝度ヒストグラムを示す図である。 図4Bは、図3Bに示す映像の輝度ヒストグラムを示す図である。 図5は、図2のステップS9における集中度に応じた照明部の移動のさせ方の一例を示す図である。 図6Aは、輝度が中輝度部に集中している映像の一例を示す図である。 図6Bは、図6Aの状態から、照明部と撮影対象物との距離を調整した後の映像を示す図である。 図7Aは、図6Aに示す映像の輝度ヒストグラムを示す図である。 図7Bは、図6Bに示す映像の輝度ヒストグラムを示す図である。 図8Aは、輝度が高輝度部に集中している映像の一例を示す図である。 図8Bは、図8Aの状態から、照明の明るさを低減させた状態の映像を示す図である。 図8Cは、図8Bの状態から、照明部と撮影対象物との距離を調整した後の映像を示す図である。 図9Aは、図8Aに示す映像の輝度ヒストグラムを示す図である。 図9Bは、図8Bに示す映像の輝度ヒストグラムを示す図である。 図9Cは、図8Cに示す映像の輝度ヒストグラムを示す図である。 図10Aは、輝度が低輝度部及び高輝度部に集中している映像の一例を示す図である。 図10Bは、図10Aの状態から、照明部と撮影対象物との距離を調整した後の映像を示す図である。 図11Aは、図10Aに示す映像の輝度ヒストグラムを示す図である。 図11Bは、図10Bに示す映像の輝度ヒストグラムを示す図である。 図12は、各実施形態の水中撮影装置が備える画質補正部の具体的な構成例を示すブロック図である。 図13は、図12に示す画質補正部の動作を説明するための周波数特性を示す図である。 図14は、図12に示す画質補正部の動作を説明するための波形図である。 図15Aは、画質補正部による画質補正前の映像を示す図である。 図15Bは、画質補正部による画質補正後の映像を概念的に示す図である。 図16は、第2実施形態の水中撮影装置を示すブロック図である。 図17は、第3実施形態の水中撮影装置を示すブロック図である。
 以下、各実施形態の水中撮影装置、水中撮影装置の制御方法、水中撮影装置の制御プログラムについて、添付図面を参照して説明する。
<第1実施形態>
 図1において、ダム100は水を蓄えている。ダム100の壁面101の大部分は、水中にある。ダム100の壁面101は水中構造物の一例である。水中には、水中撮影装置の本体部10が沈められている。水中撮影装置(本体部10)は壁面101を撮影し、検査者は壁面101の撮影映像に基づいて壁面101の劣化の有無を確認する。
 第1実施形態においては、本体部10は水面上方より例えばワイヤで吊り下げられており、本体部10を壁面101に近付けたり遠ざけたりすることができるように構成されている。
 本体部10は、壁面101を撮影するための撮像部1と、撮像部1より出力された映像信号を処理する映像信号処理部2と、壁面101を照明する照明部3とを備える。壁面101は、撮影対象物である。撮像部1は、CCDまたはCMOSを備える。照明部3は、任意の光源で構成することができる。
 映像信号処理部2は、映像信号に含まれる輝度信号に基づいて、ヒストグラムデータを生成するヒストグラム生成部21と、ヒストグラムデータを解析するヒストグラム解析部22と、映像信号を補正して画質を補正する画質補正部23とを有する。映像信号処理部2は、ハードウェアによる回路で構成してもよく、全てまたは一部をソフトウェア(コンピュータプログラム)で構成してもよい。
 ヒストグラム生成部21によるヒストグラムデータの具体的な生成の仕方、及び、ヒストグラム解析部22によるヒストグラムデータの具体的な解析の仕方は後述する。
 水上または地上には、制御部51と、駆動部52と、表示部53が設けられている。制御部51は、照明部3による照明を制御するための照明制御部511と、本体部10と壁面101との間の距離を制御するための距離制御部512とを有する。
 制御部51は、パーソナルコンピュータ、マイクロコンピュータ、マイクロプロセッサ等で構成することができる。駆動部52は、任意の駆動機構で構成することができる。表示部53は、液晶パネル等の任意のディスプレイで構成することができる。
 制御部51には、ヒストグラム解析部22によるヒストグラムデータの解析結果を示すデータが供給される。
 駆動部52は、ワイヤで吊り下げられている本体部10を水平方向に移動させるよう駆動する。駆動部52は、水平方向に加えて、本体部10を垂直方向に移動させるよう駆動する。表示部53は、映像信号処理部2より出力された映像信号を表示する。検査者は、表示部53に表示された映像を見て、壁面101の劣化の有無を確認する。
 図2に示すフローチャートを用いて、第1実施形態の水中撮影装置の動作及び水中撮影装置の制御方法を具体的に説明する。図2において、撮像部1は、ステップS1にて、撮影対象物(ここでは壁面101)を撮影する。ヒストグラム生成部21は、ステップS2にて、映像信号に含まれる輝度信号に基づいて、ヒストグラムデータ(輝度ヒストグラム)を生成する。
 ヒストグラム生成部21は、輝度信号の全階調を複数の輝度群(階調群)に分割して、それぞれの輝度群に含まれる画素数をカウントしてヒストグラムデータを生成する。映像信号は例えば256階調であり、ヒストグラム生成部21は、輝度信号の全階調を例えば16の輝度群に分割する。
 図4Aは、ヒストグラムデータの一例を示している。低輝度側に位置する階調群0~4を低輝度部Rlow、高輝度側に位置する階調群11~15を高輝度部Rhigh、低輝度部Rlowと高輝度部Rhighとの間に位置する階調群5~10を中輝度部Rmidとする。低輝度部Rlowと中輝度部Rmidと高輝度部Rhighの分割の仕方は一例であり、図4Aに示すものに限定されない。
 ヒストグラム解析部22は、ステップS3にて、輝度信号が、低輝度部Rlowと中輝度部Rmidと高輝度部Rhighとのそれぞれにどのように分布しているかを解析する。
 ヒストグラム解析部22は、ヒストグラムの総和Hist_sumを式(1)に基づいて算出する。Hist[i]は、階調群0~15それぞれの頻度である。
Figure JPOXMLDOC01-appb-M000001
 ヒストグラム解析部22は、式(2)に基づいて低輝度集中度Low_rateを算出し、式(3)に基づいて中輝度集中度Mid_rateを算出し、式(4)に基づいて高輝度集中度High_rateを算出する。
 Low_rate=(Hist[0]+Hist[1]+Hist[2]+Hist[3]+Hist[4])×100/Hist_sum  …(2)
 Mid_rate=(Hist[5]+Hist[6]+Hist[7]+Hist[8]+Hist[9]+Hist[10])×100/Hist_sum  …(3)
 High_rate=(Hist[11]+Hist[12]+Hist[13]+Hist[14]+Hist[15])×100/Hist_sum  …(4)
 低輝度集中度Low_rate、中輝度集中度Mid_rate、高輝度集中度High_rateを算出する式(2)~(4)は一例であり、式(2)~(4)に限定されない。ヒストグラム解析部22は、任意の計算式によって、低輝度部Rlowと中輝度部Rmidと高輝度部Rhighとのそれぞれの頻度の集中の程度を求めればよい。
 ヒストグラム解析部22は、ステップS4にて、輝度が低輝度部Rlowに集中しているか否かを判定する。ヒストグラム解析部22は、輝度が低輝度部Rlowに所定の集中度以上集中して分布していると解析したとき、輝度が低輝度部Rlowに集中していると判定する。一例として、低輝度集中度Low_rateが60%以上であるとき、輝度が低輝度部Rlowに集中していると判定する。
 図3Aは、輝度が低輝度部Rlowに集中している映像の一例である。図3A及びこれ以降の映像を示す図において、映像には、壁面101に亀裂102及び窪み103が映っているとする。
 本体部10が壁面101と離れていると、照明部3による照明が壁面101に十分に届かず、暗い映像となることがある。このときの、輝度ヒストグラムは、図4Aに示すように、輝度が低輝度部Rlowに集中した状態となる。
 ステップS4にて輝度が低輝度部Rlowに集中していると判定されると(YES)、距離制御部512は、ステップS9にて、照明部3(即ち、本体部10)を壁面101に近付けるよう駆動部52を制御する。
 照明部3を壁面101に近付けると、図3Bに示すように、映像が明るくなる。このときの、輝度ヒストグラムは、図4Bに示すように、輝度が中輝度部Rmidを主として、低輝度部Rlowから高輝度部Rhighまでの全体に分布した状態となる。よって、壁面101の亀裂102及び窪み103が確認しやすくなる。
 距離制御部512は、ステップS9において、図5に示すように、低輝度集中度Low_rateに応じた移動距離で照明部3を移動させるのがよい。図5に示す集中度とは、ステップS4からステップS9に移行した場合には、低輝度集中度Low_rateを意味する。
 距離制御部512は、低輝度集中度Low_rateが所定の値以上で100%に近付くに従って、移動距離を線形的に大きくする。図5の移動距離におけるマイナスの符号は、照明部3が壁面101に近付くことを意味する。
 ステップS9の後、処理はステップS11に移行される。ステップS4にて輝度が低輝度部Rlowに集中していると判定されないと(NO)、処理はステップS5に移行される。
 ヒストグラム解析部22は、ステップS5にて、輝度が中輝度部Rmidに集中しているか否かを判定する。ヒストグラム解析部22は、輝度が中輝度部Rmidに所定の集中度以上集中して分布していると解析したとき、輝度が中輝度部Rmidに集中していると判定する。同様に、中輝度集中度Mid_rateが60%以上であるとき、輝度が中輝度部Rmidに集中していると判定すればよい。
 図6Aは、輝度が中輝度部Rmidに集中している映像の一例である。一般的に、水中の撮影映像は水の濁りによって輝度が中輝度部Rmidに集中することが多く、コントラストが低下した映像となりやすい。このときの、輝度ヒストグラムは、図7Aに示すように、輝度が中輝度部Rmidに集中した状態となる。
 ステップS5にて輝度が中輝度部Rmidに集中していると判定されると(YES)、距離制御部512は、ステップS9にて、照明部3を壁面101に近付けるよう駆動部52を制御する。
 本体部10を壁面101に近付けると、図6Bに示すように、映像が明るくなる。このときの、輝度ヒストグラムは、図7Bに示すように、輝度が中輝度部Rmidを主として、低輝度部Rlowから高輝度部Rhighまでの全体に分布した状態となる。よって、壁面101の亀裂102及び窪み103が確認しやすくなる。
 同様に、距離制御部512は、ステップS9において、図5に示すように、中輝度集中度Mid_rateが所定の値以上で100%に近付くに従って、移動距離を線形的に大きくするように、本体部10を移動させるのがよい。図5に示す集中度とは、ステップS5からステップS9に移行した場合には、中輝度集中度Mid_rateを意味する。
 ステップS5にて輝度が中輝度部Rmidに集中していると判定されないと(NO)、処理はステップS6に移行される。
 ヒストグラム解析部22は、ステップS6にて、輝度が高輝度部Rhighに集中しているか否かを判定する。ヒストグラム解析部22は、輝度が高輝度部Rhighに所定の集中度以上集中して分布していると解析したとき、輝度が高輝度部Rhighに集中していると判定する。同様に、高輝度集中度High_rateが60%以上であるとき、輝度が高輝度部Rhighに集中していると判定すればよい。
 図8Aは、輝度が高輝度部Rhighに集中している映像の一例である。このときの、輝度ヒストグラムは、図9Aに示すように、輝度が高輝度部Rhighに集中した状態となる。
 ステップS6にて輝度が高輝度部Rhighに集中していると判定されると(YES)、照明制御部511は、ステップS8にて、照明の明るさを低減させるよう照明部3を制御する。すると、映像は図8Bに示すような状態となり、輝度ヒストグラムは、図9Bに示すように、輝度が中輝度部Rmidに集中した状態となる。
 続けて、距離制御部512は、ステップS9にて、照明部3を壁面101に近付けるよう駆動部52を制御する。すると、映像は図8Cに示すような状態となり、輝度ヒストグラムは、図9Cに示すように、輝度が中輝度部Rmidを主として、低輝度部Rlowから高輝度部Rhighまでの全体に分布した状態となる。よって、壁面101の亀裂102及び窪み103が確認しやすくなる。
 ここでも同様に、距離制御部512は、ステップS9において、図5に示すように、高輝度集中度High_rateが所定の値以上で100%に近付くに従って、移動距離を線形的に大きくするように、照明部3を移動させるのがよい。図5に示す集中度とは、ステップS6及び図8からステップS9に移行した場合には、高輝度集中度High_rateを意味する。
 ステップS6にて輝度が高輝度部Rhighに集中していると判定されないと(NO)、処理はステップS7に移行される。
 ヒストグラム解析部22は、ステップS7にて、輝度が低輝度部Rlow及び高輝度部Rhighに集中しているか否かを判定する。
 本体部10が壁面101に近すぎると、照明が壁面101に局所的に当たることから、図10Aに示すように、一部が極端に明るく、照明が当たらない部分が暗い映像となる。図10Aでは、便宜上、円形の明るい中央部から外側に向かって明るさが低減していく状態を、ハッチングを異ならせて表現している。このときの、輝度ヒストグラムは、図11Aに示すように、輝度が低輝度部Rlow及び高輝度部Rhighに集中した状態となる。
 ヒストグラム解析部22は、低輝度集中度Low_rateが中輝度集中度Mid_rateより大きく、かつ、高輝度集中度High_rateが中輝度集中度Mid_rateより大きいという条件を満たすか否かを判定し、その条件を満たせば、図10Aのような状態であると判断する。
 輝度が低輝度部Rlow及び高輝度部Rhighに集中していると判定されると(YES)、距離制御部512は、ステップS10にて、照明部3を壁面101から遠ざけるよう駆動部52を制御する。
 すると、映像は図10Bに示すような状態となり、輝度ヒストグラムは、図11Bに示すように、輝度が中輝度部Rmidを主として、低輝度部Rlowから高輝度部Rhighまでの全体に分布した状態となる。よって、壁面101の亀裂102及び窪み103が確認しやすくなる。
 ステップS10の後、処理はステップS11に移行される。また、輝度が低輝度部Rlow及び高輝度部Rhighに集中していると判定されないと(NO)、処理はステップS11に移行される。
 画質補正部23は、ステップS11にて、映像信号に対して画質補正処理を施し、映像信号処理部2は、ステップS12にて、画質補正処理が施された映像信号を出力する。ステップS12の後、処理はステップS1に戻され、ステップS1~S12が繰り返される。
 以上のように、撮影対象物を撮影することによって生成された映像信号の輝度が低輝度部Rlowまたは中輝度部Rmidに集中している場合には、照明部3を撮影対象物に近付ける。これによって、図3Bまたは図6Bに示すような適度の明るさを有し、図4Bまたは図7Bに示すような輝度が広範囲に広がる輝度ヒストグラムを有する映像とすることができる。
 映像信号の輝度が高輝度部Rhighに集中している場合には、照明部3による照明の明るさを低減させた上で照明部3を撮影対象物に近付ける。これによって、図8Cに示すような適度の明るさを有し、図9Cに示すような輝度が広範囲に広がる輝度ヒストグラムを有する映像とすることができる。
 映像信号の輝度が低輝度部Rlow及び高輝度部Rhighに集中している場合には、照明部3を撮影対象物から遠ざけることにより、図10Bに示すような適度の明るさを有し、図11Bに示すような輝度が広範囲に広がる輝度ヒストグラムを有する映像とすることができる。
 ステップS4~S7でいずれもNOと判定された場合には、生成された映像信号は、そもそも適度の明るさを有し、輝度が広範囲に広がる輝度ヒストグラムを有する映像を示しているということである。
 ここで、図12~図14を用いて、画質補正部23の具体的な構成例、及び、その構成例によって実行される画質補正処理を説明する。
 図12に示すように、画質補正部23は、遅延器231,ガウシアンフィルタ232,減算器233,遅延器234,ローパスフィルタ235,乗算器236,加算器237を備える。画質補正部23内の各構成は、ハードウェアによる回路によって構成してもよいし、全てまたは一部をソフトウェアで構成してもよい。
 映像信号処理部2に入力される映像信号に含まれる輝度信号を輝度信号Y0とする。輝度信号Y0は、遅延器231及びガウシアンフィルタ232に入力される。ガウシアンフィルタとは、ガウス関数を利用して極めて低い周波数信号を抽出するローパスフィルタのことである。図13に示すように、ガウシアンフィルタ232の周波数特性FGは極めて低い遮断周波数を有する。
 ガウシアンフィルタ232の代わりに、極めて低い遮断周波数を有し、タップ長の長いローパスフィルタを用いてもよい。
 遅延器231は、輝度信号Y0をガウシアンフィルタ232における処理に要する時間だけ遅延させて、輝度信号Y1として出力する。ガウシアンフィルタ232は、輝度信号Y0より低周波成分信号Y2を抽出する。
 図14の(a)に示すように、輝度信号Y0が実線にて示すようなエッジ信号の場合、低周波成分信号Y2は破線にて示すような波形となる。図13に示すように、低周波成分信号Y2の帯域は周波数特性FGで制限された帯域となる。
 減算器233は、輝度信号Y1から低周波成分信号Y2を減算して、図14の(b)示す高周波成分信号Y3を出力する。減算器233は全帯域の映像信号Y1から低周波成分信号Y2を減算するので、高周波成分信号Y3の帯域は図13に示すとおりとなる。
 減算器233より出力された高周波成分信号Y3はローパスフィルタ235に入力される。ローパスフィルタ235の周波数特性FLは図13に示すとおりであり、ローパスフィルタ235の遮断周波数はガウシアンフィルタ232の遮断周波数よりも高い。
 ローパスフィルタ235の出力信号Y4は、高周波成分信号Y3における低域側の信号を周波数特性FLによって抽出した信号であり、図14の(c)に示す波形となる。出力信号Y4を低域側高周波成分信号Y4と称することとする。低域側高周波成分信号Y4は乗算器236に入力される。
 乗算器236は低域側高周波成分信号Y4にゲインG1を乗算して、図14の(d)に示す補正成分信号Y5を生成する。ゲインG1は画質補正部23による画像の輪郭部分のコントラストの改善効果を調整するためのものであり、通常は0を超える1未満の正数である。
 遅延器234は、輝度信号Y1をローパスフィルタ235及び乗算器236における処理に要する時間だけさらに遅延させて、輝度信号Y6として出力する。加算器237は、輝度信号Y6と補正成分信号Y5とを加算して、図14の(e)に示す補正輝度信号Y7を出力する。
 以上のように、画質補正部23は、輝度信号Y0に対して、輝度信号Y0におけるエッジ信号の部分でコントラストを強調する画質補正処理を施すのがよい。
 具体的には、輝度値が第1のレベルから第2のレベルへと立ち上がるエッジ信号の場合、輝度値が第1のレベルから立ち上がるエッジ部分の角部で輝度値を低下させ、輝度値が上昇して第2のレベルへと移行するエッジ部分の角部で輝度値を増大させる。
 また、輝度値が第2のレベルから第1のレベルへと立ち下がるエッジ信号の場合、輝度値が第2のレベルから立ち下がるエッジ部分の角部で輝度値を増大させ、輝度値が下降して第1のレベルへと移行するエッジ部分の角部で輝度値を低下させる。
 図15Aは、図3B,図6B,図8C,図10Bと同様の映像である。映像信号に含まれる輝度信号(輝度信号Y0)に対して以上説明した画質補正処理を施すと、亀裂102及び窪み103の部分は、図15Bに概念的に示すようにコントラストが強調される。よって、検査者は、壁面101に存在する亀裂102または窪み103をさらに的確に確認することができる。
 図1において、本体部10内にマイクロコンピュータまたはマイクロプロセッサ等の制御部を設け、ヒストグラム解析部22、または、ヒストグラム生成部21及びヒストグラム解析部22を制御部に設けてもよい。ヒストグラム解析部22、または、ヒストグラム生成部21及びヒストグラム解析部22を制御部51に設けてもよい。
 制御部51に設けた照明制御部511と距離制御部512との少なくとも一方を、本体部10内の制御部に設けてもよい。
 ヒストグラム生成部21,ヒストグラム解析部22,照明制御部511,距離制御部512の機能を、コンピュータプログラム(水中撮影装置の制御プログラム)で実現してもよい。水中撮影装置の制御プログラムは、非一時的な記録媒体に記録されていてもよい。
 即ち、水中撮影装置の制御プログラムは、コンピュータに、次のステップを実行させればよい。まず、制御プログラムは、水中の撮影対象物を撮像する撮像部より出力された映像信号に含まれる輝度信号の最小輝度から最大輝度までを複数の輝度群に分割して、複数の輝度群それぞれの頻度の分布を示すヒストグラムデータを生成するステップを実行させる。
 次に、制御プログラムは、ヒストグラムデータに基づいて、複数の輝度群それぞれの頻度がどのように分布しているかを解析するステップを実行させる。そして、制御プログラムは、ヒストグラムデータの解析結果に応じて、撮影対象物と、撮影対象物を照明する照明部との距離を調整するステップを実行させる。
<第2実施形態>
 図16に示す第2実施形態の水中撮影装置において、図1に示す第1実施形態の水中撮影装置と同一部分には同一符号を付し、その説明を省略する。
 図16に示すように、第2実施形態の水中撮影装置は、本体部20自身が本体部20を壁面101に近付けたり遠ざけたりすることができるように、スクリュー等の推進機構54を備える。距離制御部512は、照明部3(即ち、本体部20)を壁面101に近付けたり遠ざけたりするよう推進機構54を制御する。
 第2実施形態の水中撮影装置においても、図2に示すように動作する。第2実施形態の水中撮影装置の制御方法においても、図2に示すような制御を実行する。第2実施形態の水中撮影装置の制御プログラムにおいても、コンピュータに図2に示すようなステップを実行させる。
<第3実施形態>
 図17に示す第3実施形態の水中撮影装置において、図16に示す第2実施形態の水中撮影装置と同一部分には同一符号を付し、その説明を省略する。
 図17に示す第3実施形態の水中撮影装置においては、照明部3のみを壁面101に近付けたり遠ざけたりすることができるよう、本体部30は照明部伸縮機構4を備える。照明部伸縮機構4は、例えば伸縮自在のアームの先端部に照明部3が取り付けられている構成とすることができる。
 距離制御部512は、照明部3を壁面101に近付けたり遠ざけたりするよう照明部伸縮機構4を制御する。距離制御部512は、本体部30を壁面101に近付けたり遠ざけたりするよう推進機構54を制御し、かつ、照明部3を壁面101に近付けたり遠ざけたりするよう照明部伸縮機構4を制御してもよい。
 照明部3のみを壁面101に近付けたり遠ざけたりするための照明部伸縮機構4を、図1に示す本体部10に設けてもよい。
 本発明は以上説明した各実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更可能である。
 本発明は、水中の撮影対象物を撮影する場合に利用できる。

Claims (7)

  1.  水中の撮影対象物を撮像する撮像部と、
     前記撮影対象物を照明する照明部と、
     前記撮像部より出力された映像信号に含まれる輝度信号の最小輝度から最大輝度までを複数の輝度群に分割して、前記複数の輝度群それぞれの頻度の分布を示すヒストグラムデータを生成するヒストグラム生成部と、
     前記ヒストグラムデータに基づいて、前記複数の輝度群それぞれの頻度がどのように分布しているかを解析するヒストグラム解析部と、
     前記ヒストグラム解析部による前記ヒストグラムデータの解析結果に応じて、前記撮影対象物と前記照明部との距離を調整するよう制御する距離制御部と、
     を備えることを特徴とする水中撮影装置。
  2.  前記ヒストグラム解析部は、前記輝度信号が、前記複数の輝度群を低輝度側に位置する低輝度部と、高輝度側に位置する高輝度部と、前記低輝度部と前記高輝度部との間に位置する中輝度部とのそれぞれにどのように分布しているかを解析し、
     前記ヒストグラム解析部によって、前記輝度信号が前記低輝度部または前記中輝度部に所定の集中度以上集中して分布していると解析されたとき、前記距離制御部は、前記照明部を前記撮影対象物に近付けるよう制御する
     ことを特徴とする請求項1記載の水中撮影装置。
  3.  前記照明部による照明の明るさを制御する照明制御部をさらに備え、
     前記ヒストグラム解析部によって、前記輝度信号が前記高輝度部に所定の集中度以上集中して分布していると解析されたとき、前記照明制御部は、前記照明部による照明の明るさを下げるよう制御し、前記距離制御部は、前記照明部を前記撮影対象物に近付けるよう制御する
     ことを特徴とする請求項2記載の水中撮影装置。
  4.  前記ヒストグラム解析部によって、前記輝度信号が前記低輝度部及び前記高輝度部それぞれに所定の集中度以上集中して分布していると解析されたとき、前記距離制御部は、前記照明部を前記撮影対象物から遠ざけるよう制御する
     ことを特徴とする請求項2または3に記載の水中撮影装置。
  5.  前記輝度信号におけるエッジ部分のコントラストを強調する画質補正部をさらに備えることを特徴とする請求項1~4のいずれか1項に記載の水中撮影装置。
  6.  撮像部によって水中の撮影対象物を撮像し、
     ヒストグラム生成部によって、前記撮像部より出力された映像信号に含まれる輝度信号の最小輝度から最大輝度までを複数の輝度群に分割して、前記複数の輝度群それぞれの頻度の分布を示すヒストグラムデータを生成し、
     ヒストグラム解析部によって、前記ヒストグラムデータに基づいて、前記複数の輝度群それぞれの頻度がどのように分布しているかを解析し、
     距離制御部によって、前記ヒストグラムデータの解析結果に応じて、前記撮影対象物と、前記撮影対象物を照明する照明部との距離を調整する
     ことを特徴とする水中撮影装置の制御方法。
  7.  コンピュータに、
     水中の撮影対象物を撮像する撮像部より出力された映像信号に含まれる輝度信号の最小輝度から最大輝度までを複数の輝度群に分割して、前記複数の輝度群それぞれの頻度の分布を示すヒストグラムデータを生成するステップと、
     前記ヒストグラムデータに基づいて、前記複数の輝度群それぞれの頻度がどのように分布しているかを解析するステップと、
     前記ヒストグラムデータの解析結果に応じて、前記撮影対象物と、前記撮影対象物を照明する照明部との距離を調整するステップと、
     を実行させることを特徴とする水中撮影装置の制御プログラム。
PCT/JP2016/063142 2015-08-24 2016-04-27 水中撮影装置、水中撮影装置の制御方法、水中撮影装置の制御プログラム WO2017033498A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/884,574 US10594947B2 (en) 2015-08-24 2018-01-31 Underwater imaging apparatus, method for controlling an underwater imaging apparatus, and program for controlling an underwater imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-164419 2015-08-24
JP2015164419A JP6551048B2 (ja) 2015-08-24 2015-08-24 水中撮影装置、水中撮影装置の制御方法、水中撮影装置の制御プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/884,574 Continuation US10594947B2 (en) 2015-08-24 2018-01-31 Underwater imaging apparatus, method for controlling an underwater imaging apparatus, and program for controlling an underwater imaging apparatus

Publications (1)

Publication Number Publication Date
WO2017033498A1 true WO2017033498A1 (ja) 2017-03-02

Family

ID=58099844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063142 WO2017033498A1 (ja) 2015-08-24 2016-04-27 水中撮影装置、水中撮影装置の制御方法、水中撮影装置の制御プログラム

Country Status (3)

Country Link
US (1) US10594947B2 (ja)
JP (1) JP6551048B2 (ja)
WO (1) WO2017033498A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113365389B (zh) * 2021-06-15 2022-07-19 中国科学院深海科学与工程研究所 一种深海照明系统的设计方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168169A (ja) * 1987-12-23 1989-07-03 Fuji Electric Co Ltd 照明方式決定の支援装置
JPH07201712A (ja) * 1993-12-27 1995-08-04 Dainippon Screen Mfg Co Ltd 照度分布調整装置
JPH07220058A (ja) * 1991-07-12 1995-08-18 Omron Corp 照明条件設定支援装置および方法
JPH107084A (ja) * 1996-06-21 1998-01-13 Chugoku Electric Power Co Inc:The 水中ロボットの操縦装置
JP2009300871A (ja) * 2008-06-16 2009-12-24 Edm Kk 画像処理装置用照明装置及び方法
WO2013038550A1 (ja) * 2011-09-15 2013-03-21 日立Geニュークリア・エナジー株式会社 水中検査装置
JP2013220254A (ja) * 2012-04-18 2013-10-28 Sony Corp 画像処理装置と画像処理方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769776A (en) * 1985-08-30 1988-09-06 Hitachi, Ltd. Apparatus for measuring the concentration of filamentous microorganisms in a mixture including microorganisms
US5185671A (en) * 1991-06-21 1993-02-09 Westinghouse Electric Corp. Adaptive control of an electronic imaging camera
US6192145B1 (en) * 1996-02-12 2001-02-20 Sarnoff Corporation Method and apparatus for three-dimensional scene processing using parallax geometry of pairs of points
US7760994B2 (en) * 2006-04-06 2010-07-20 Nikon Corporation Image capturing apparatus with underwater image compensation and underwater flash compensation
WO2008022005A2 (en) * 2006-08-09 2008-02-21 Fotonation Vision Limited Detection and correction of flash artifacts from airborne particulates
US7710465B2 (en) * 2006-12-22 2010-05-04 Nikon Corporation Image capturing apparatus with clarity sensor, underwater image compensation and underwater flash compensation
JP4453777B2 (ja) 2008-07-15 2010-04-21 日本ビクター株式会社 画質改善装置及び方法
JP2012137706A (ja) 2010-12-28 2012-07-19 Hitachi-Ge Nuclear Energy Ltd 画像処理方法,画像処理装置およびそれを搭載した水中検査装置
KR102124598B1 (ko) * 2013-09-30 2020-06-19 삼성전자주식회사 이미지 획득 방법 및 장치
WO2015133098A1 (ja) * 2014-03-06 2015-09-11 日本電気株式会社 画像処理装置、撮像装置、画像処理方法及びプログラムを記憶した記憶媒体
JP2015211233A (ja) * 2014-04-23 2015-11-24 キヤノン株式会社 画像処理装置および画像処理装置の制御方法
US10222688B2 (en) * 2014-09-22 2019-03-05 Woods Hole Oceanographic Institution Continuous particle imaging and classification system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168169A (ja) * 1987-12-23 1989-07-03 Fuji Electric Co Ltd 照明方式決定の支援装置
JPH07220058A (ja) * 1991-07-12 1995-08-18 Omron Corp 照明条件設定支援装置および方法
JPH07201712A (ja) * 1993-12-27 1995-08-04 Dainippon Screen Mfg Co Ltd 照度分布調整装置
JPH107084A (ja) * 1996-06-21 1998-01-13 Chugoku Electric Power Co Inc:The 水中ロボットの操縦装置
JP2009300871A (ja) * 2008-06-16 2009-12-24 Edm Kk 画像処理装置用照明装置及び方法
WO2013038550A1 (ja) * 2011-09-15 2013-03-21 日立Geニュークリア・エナジー株式会社 水中検査装置
JP2013220254A (ja) * 2012-04-18 2013-10-28 Sony Corp 画像処理装置と画像処理方法

Also Published As

Publication number Publication date
JP6551048B2 (ja) 2019-07-31
US20180152614A1 (en) 2018-05-31
JP2017046021A (ja) 2017-03-02
US10594947B2 (en) 2020-03-17

Similar Documents

Publication Publication Date Title
KR101861153B1 (ko) 화상처리장치 및 그 제어 방법
US20080259176A1 (en) Image pickup apparatus, image processing apparatus, image pickup method, and image processing method
JP6030396B2 (ja) 映像処理装置
JP6097588B2 (ja) 画像処理装置及び画像処理方法
US9444992B2 (en) Focus control apparatus and method
JP2015156600A (ja) 画像信号処理装置,画像信号処理方法,および撮像装置
JP2014179756A (ja) 画像処理装置、その制御方法、および制御プログラム
JPWO2017169039A1 (ja) 画像処理装置、撮像装置、および画像処理方法、並びにプログラム
JP2008103785A (ja) 輪郭強調回路、輪郭強調方法、撮像装置およびビューファインダ
JP2009188463A5 (ja)
US20130176464A1 (en) Image Processing Method
JP4550016B2 (ja) 輝度変換装置
WO2017033498A1 (ja) 水中撮影装置、水中撮影装置の制御方法、水中撮影装置の制御プログラム
JP2007336258A (ja) 映像信号処理装置及び映像信号処理方法
US8982244B2 (en) Image capturing apparatus for luminance correction, a control method therefor, and a recording medium
JP2006332809A (ja) 撮像装置
JP2009273691A (ja) 内視鏡画像処理装置および方法
JP2008263313A (ja) 画像処理装置および画像処理プログラム
JP2018000644A (ja) 画像処理装置及び電子内視鏡システム
JP6786273B2 (ja) 画像処理装置、画像処理方法、及びプログラム
JP2009147520A (ja) シーン推定装置、シーン推定方法、プログラム、撮像装置、撮像方法
JP2014098859A (ja) 撮像装置および撮像方法
JP2011135379A (ja) 撮像装置、撮像方法及びプログラム
JP2003259211A (ja) 画像処理装置及び画像処理方法
JP2004046329A (ja) 画像輪郭強調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16838845

Country of ref document: EP

Kind code of ref document: A1