WO2017033227A1 - 蒸気タービン - Google Patents

蒸気タービン Download PDF

Info

Publication number
WO2017033227A1
WO2017033227A1 PCT/JP2015/073513 JP2015073513W WO2017033227A1 WO 2017033227 A1 WO2017033227 A1 WO 2017033227A1 JP 2015073513 W JP2015073513 W JP 2015073513W WO 2017033227 A1 WO2017033227 A1 WO 2017033227A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
blade row
flow path
gap
moving blade
Prior art date
Application number
PCT/JP2015/073513
Other languages
English (en)
French (fr)
Inventor
拓郎 香田
Original Assignee
三菱重工コンプレッサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工コンプレッサ株式会社 filed Critical 三菱重工コンプレッサ株式会社
Priority to PCT/JP2015/073513 priority Critical patent/WO2017033227A1/ja
Priority to US15/572,528 priority patent/US10513937B2/en
Priority to EP15902199.7A priority patent/EP3284915B1/en
Priority to JP2017536070A priority patent/JP6507460B2/ja
Publication of WO2017033227A1 publication Critical patent/WO2017033227A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/001Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/04Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/10Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using sealing fluid, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/60Shafts

Definitions

  • This invention relates to a steam turbine driven by steam.
  • the steam turbine includes a rotor that rotates about an axis and a casing that covers the rotor.
  • the rotor includes a rotor shaft that extends in the axial direction around the axis, and a plurality of moving blade rows that are fixed to the outer periphery of the rotor shaft and arranged in the axial direction.
  • the steam turbine has a stationary blade row that is fixed to the inner periphery of the casing and disposed on the upstream side of each stage of a plurality of stages of moving blade rows.
  • the steam turbine of Patent Document 1 has a ring-shaped protrusion that protrudes downstream from the downstream end face of the inner ring provided on the inner peripheral side of the stationary blade of the stationary blade row.
  • this steam turbine has a ring-shaped protrusion that protrudes upstream from an upstream end face of a cylindrical moving blade support provided on the inner peripheral side of the moving blade constituting the moving blade row.
  • the ring-shaped protrusion on the stationary blade side is arranged on the outer peripheral side of the ring-shaped protrusion on the moving blade side, and these are provided so as to overlap in the axial direction. As a result, the gap between the stationary blade and the moving blade is bent in a crank shape, and the steam flowing through the steam main flow path is prevented from leaking to the inner peripheral side from the gap between the moving blade row and the stationary blade row.
  • This invention provides a steam turbine capable of reducing the amount of leakage of steam flowing through the steam main flow path and improving turbine efficiency.
  • the steam turbine includes a shaft core portion that rotates about an axis, and a disk portion that is fixed to the shaft core portion and extends outward in the radial direction of the shaft core portion.
  • a shaft, a plurality of moving blade rows fixed in the outer periphery of the disk portion and extending in the axial direction in which the shaft core portion extends, and an upstream of the moving blade row in the axial direction for each of the plurality of moving blade rows A plurality of stages composed of a set of the moving blade row and the stationary blade row disposed adjacent to the upstream side of the moving blade row, A gap flow extending radially inward from the steam main flow path extending in the axial direction and passing through the steam in the gap between the stationary blade row and the moving blade row constituting the speed regulating stage arranged on the most upstream side A path is formed, one end communicates with the gap channel, and the other end of the vapor in the gap channel. Is formed in the disk portion communication passage said moving blade row of the control
  • the steam turbine in the steam turbine according to the first aspect, is provided on the steam main flow path side in the radial direction of the gap flow path, from the moving blade row to the stationary blade row. You may make it provide the fin extended toward.
  • the interval between the speed-control stage moving blade row and the stationary blade row can be narrowed, and the amount of steam flowing into the gap flow channel can be further suppressed.
  • the steam turbine is the steam turbine according to the second aspect, wherein the clearance width of the gap channel is such that the tip of the fin and the downstream end of the stationary blade row are the same. And may be smaller than the gap between the upstream end of the moving blade row of the speed control stage and the downstream end of the stationary blade row of the speed control stage.
  • the steam turbine is the steam turbine according to any one of the first to third aspects, wherein the gap channel extends from the main steam channel to the radially inner side.
  • the gap flow path is bent in a crank shape from the outer peripheral side toward the inner peripheral side, the flow path resistance is increased, and the amount of steam flowing out from the steam main flow path can be suppressed.
  • the amount of steam leaking through the steam main flow path when steam flows from the communication path into the gap flow path formed in the gap between the stationary blade row and the moving blade row constituting the speed control stage. Can be reduced, and the turbine efficiency can be improved.
  • FIG. 1 is a cross-sectional view of a steam turbine according to a first embodiment of the present invention.
  • FIG. 2 is a view showing a structure for attaching the rotor blade to the disk portion in the steam turbine according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the speed-control stage stationary blade row and the moving blade row in the steam turbine according to the first embodiment of the present invention.
  • the steam turbine 1 of the present embodiment includes a rotor 20 that rotates about an axis Ar and a casing 10 that covers the rotor 20 in a rotatable manner.
  • the direction in which the axis Ar extends is the axial direction Da
  • the first side of the axial direction Da is the upstream side (one side) Dau
  • the second side of the axial direction Da is the downstream side (the other side) ) Dad.
  • a radial direction in a shaft core portion 22 to be described later with reference to the axis Ar is simply a radial direction Dr
  • a side closer to the axis Ar in the radial direction Dr is a radial inner side Dr
  • a radial inner side Dri in the radial direction Dr is The opposite side is the radially outer side Dro.
  • the circumferential direction of the shaft core portion 22 around the axis line Ar is simply referred to as a circumferential direction Dc.
  • the rotor 20 includes a rotor shaft 21 and a moving blade row 31 provided in a plurality of rows at intervals along the axial direction Da of the rotor shaft 21.
  • the rotor shaft 21 has a cylindrical shape centered on the axis Ar, and a plurality of axial core portions 22 extending in the axial direction Da and a plurality of axial core portions 22 extending radially outward from the axial core portion 22 and spaced apart from each other in the axial direction Da.
  • the rotor blade row 31 is attached to the outer periphery of the disk portion 23 which is the outer peripheral portion of the rotor shaft 21.
  • the moving blade row 31 is provided with a plurality of rows at intervals along the axial direction Da of the rotor shaft 21. In the case of the present embodiment, seven moving blade rows 31 are provided. Therefore, in the case of this embodiment, the moving blade row 31 is provided from the first to seventh moving blade rows 31.
  • the steam turbine 1 is further provided with a plurality of stationary blade rows 41 that are fixed to the inner periphery of the casing 10 and spaced apart along the axial direction Da.
  • the stationary blade row 41 is adjacent to the upstream side of the moving blade row 31 in the axial direction Da for each of the plurality of moving blade rows 31.
  • the number of stationary blade rows 41 is seven, which is the same as the number of moving blade rows 31. Therefore, in the case of this embodiment, the stationary blade row 41 is provided from the first stage to the seventh stage stationary blade row 41.
  • the plurality of stationary blade rows 41 are respectively arranged adjacent to the upstream blade Dau with respect to the moving blade row 31.
  • One stage 50 is formed for each set of the moving blade row 31 and the stationary blade row 41 disposed adjacent to the upstream side Dau of the moving blade row 31.
  • the steam turbine 1 of the present embodiment includes seven stages 50 because the stationary blade row 41 is provided for each of the seven rotor blade rows 31. That is, in the steam turbine 1 of the present embodiment, the first stage 51, the second stage 52, the third stage 53, the fourth stage 54, the fifth stage 55, the sixth stage 56, and the seventh stage in order from the upstream side Dau. A step 57 is provided.
  • the most upstream first stage 51 among the plurality of stages 50 forms the speed regulating stage 50a.
  • the speed control stage 50a adjusts the rotation speed of the rotor 20 by adjusting the flow rate of the steam S sent to the stage 50 on the downstream side Dad from the speed control stage 50a.
  • the second stage 52, the third stage 53, and the fourth stage 54 constitute the intermediate pressure stage 50b. Further, in the steam turbine 1 of the present embodiment, the fifth stage 55, the sixth stage 56, and the seventh stage 57 constitute the low pressure stage 50c.
  • the stationary blade row 41 of the first stage 51 constituting a part of the speed regulating stage 50a is referred to as a speed regulating stage stationary blade row 41a.
  • the moving blade row 31 of the first stage 51 constituting another part of the speed adjusting stage 50a is referred to as a speed adjusting stage moving blade row 31a.
  • the stationary blade row 41 of the second stage 52 to the stationary blade row 41 of the fourth stage 54 constituting a part of the intermediate pressure stage 50b are referred to as an intermediate pressure stage stationary blade row 41b.
  • the moving blade row 31 of the second stage 52 to the moving blade row 31 of the fourth stage 54 constituting another part of the intermediate pressure stage 50b are referred to as an intermediate pressure stage moving blade row 31b.
  • the fifth stage 55 stationary blade row 41 to the seventh stage 57 stationary blade row 41 constituting a part of the low pressure stage 50c are referred to as a low pressure stage stationary blade row 41c.
  • the moving blade row 31 of the fifth stage 55 to the moving blade row 31 of the seventh stage 57 constituting another part of the low pressure stage 50c are referred to as a low pressure stage moving blade row 31c.
  • the disk portion 23 of the rotor shaft 21 to which the speed-control stage moving blade row 31a is fixed is referred to as a speed-control stage disk portion 23a.
  • the disk portion 23 of the rotor shaft 21 to which the intermediate pressure stage moving blade row 31b is fixed is referred to as an intermediate pressure stage disk portion 23b.
  • the disk part 23 of the rotor shaft 21 to which the low-pressure stage moving blade row 31c is fixed is called a low-pressure stage disk part 23c.
  • each blade array 31 has a plurality of blades 32 arranged in the circumferential direction Dc.
  • Each rotor blade 32 includes a blade body 33 extending in the radial direction Dr, a shroud 34 provided on the radially outer side Dro of the blade body 33, and a platform 35 provided on the radially inner side Dri of the blade body 33. And a blade root 36 (see FIG. 2) provided on the radially inner side Dri of the platform 35.
  • the shroud 34 and the platform 35 form a part of the steam main flow path 15 through which the steam S flows.
  • the steam main flow path 15 extends in the axial direction Da across the plurality of moving blade rows 31 and the stationary blade rows 41.
  • the steam main flow path 15 has an annular shape around the rotor 20.
  • axial fins (fins) 35 ⁇ / b> Fa and 35 ⁇ / b> Fb are provided in the speed-regulating stage moving blade row 31 a.
  • Axial fins (fins) 35Fa and 35Fb are provided facing an opening on the steam main flow channel 15 side in the radial direction Dr of a gap flow channel 100A described later.
  • the axial fins (fins) 35Fa and 35Fb extend from the speed-regulating stage moving blade row 31a toward the speed-control stage stationary blade row 41a.
  • the axial fins (Fin) 35Fa and 35Fb of the present embodiment are provided on the upstream side Dau of the platform 35 of the moving blade 32 in the axial direction Da.
  • the axial fin 35Fa is formed so as to protrude from the radially outer side Dro of the end face 35u facing the upstream side in the axial direction Da of the platform 35 to the upstream side Dau.
  • the axial fin 35Fb is formed so as to protrude from the radially inner side Dri of the end face 35u of the platform 35 to the upstream side Dau.
  • the end face 35u of the platform 35 which is the front edge portion of the moving blade 32 of the speed-control stage moving blade row 31a and the stationary blade 42 which is the rear edge portion of the stator blade 42 of the speed-control stage stationary blade row 41a.
  • the clearance with the inner ring 46 to be described later is narrowed.
  • the axial fin 35Fa and the axial fin 35Fb allow the steam S to flow radially inward Dri from the main steam flow path 15 extending in the axial direction Da toward the gap between the speed-control stage moving blade row 31a and the speed-control stage stationary blade row 41a. The leak is suppressed.
  • the blade root 36 is a blade groove 28 formed in the outer peripheral portion of the disk portion 23 in the rotor shaft 21, as will be described later. It is inserted in.
  • the blade root 36 of each blade 32 is formed so as to extend from the platform inner peripheral surface 35 f facing the radial inner side Dri of the platform 35 to the radial inner side Dri. Yes.
  • the blade root 36 includes a blade root main body 37 extending from the platform inner peripheral surface 35f to the radially inner side Dri, and engagement protrusions 38 protruding from the blade root main body 37 toward both sides in the circumferential direction Dc.
  • the engaging projections 38 protrude from the blade root body 37 at a plurality of locations spaced along the radial direction Dr.
  • the engaging convex part 38 engages with an engaging concave part 29 formed in a blade groove 28 described later.
  • the engaging projections 38 are formed at three locations spaced along the radial direction Dr.
  • the engaging protrusions 38A, 38B, and 38C are convex on one side and the other side of the blade root 36 in the circumferential direction Dc, respectively, in a direction away from the center of the blade root 36 in the circumferential direction Dc along the circumferential direction Dc. It has a curved surface shape.
  • the protruding size toward the circumferential direction Dc of the engaging convex portion 38B and the engaging convex portion 38C disposed on the radially inner side Dri gradually decreases. Is formed.
  • the first trunk portion 39A between the platform 35 and the engaging convex portion 38A, the second trunk portion 39B between the engaging convex portion 38A and the engaging convex portion 38B, and the engaging convex portion 38B is formed so that the width dimension in the circumferential direction Dc gradually decreases from the platform 35 side toward the radially inner side Dri.
  • the blade root 36 has a so-called Christmas tree shape.
  • Each engagement convex portion 38 is formed with a blade root outer surface 38f that faces a direction including a directional component toward the radially outer side Dro.
  • the blade root outer surface 38f is a surface formed on the radially outer side Dro in the engagement convex portion 38. Note that the direction of the blade root outer surface 38f only needs to include a direction component toward the radially outer side Dr, and may be a direction parallel to the radial direction Dr or a direction inclined with respect to the radial direction Dr.
  • each engagement convex portion 38 is formed with a blade root inner side surface 38g facing a direction including a direction component toward the radially inner side Dri.
  • the blade root inner surface 38g is a surface formed on the radially inner side Dri in the engagement convex portion 38.
  • the direction of the blade root inner side surface 38g only needs to include a direction component toward the radially inner side Dri, and may be a direction parallel to the radial direction Dr or a direction inclined with respect to the radial direction Dr.
  • a blade groove 28 extending toward the radially inner side Dri is formed on the outer peripheral portion of each disk portion 23.
  • the blade groove 28 is formed to be recessed from the rotor outer peripheral surface 23 f formed at the outermost radial direction Dro of the disk portion 23 toward the radial inner side Dri.
  • the rotor outer peripheral surface 23f faces the platform inner peripheral surface 35f.
  • the blade groove 28 is formed to complement the outer peripheral shape of the blade root 36.
  • the blade groove 28 has engaging recesses 29 that are recessed toward both sides in the circumferential direction Dc at a plurality of positions spaced along the radial direction Dr.
  • the engagement recesses 29 are formed at three locations spaced along the radial direction Dr on one side and the other side in the circumferential direction Dc of the blade groove 28, respectively.
  • Each of these three engagement recesses 29A, 29B, and 29C has a curved surface shape that is recessed in a direction away from the center in the circumferential direction Dc of the blade groove 28 along the circumferential direction Dc.
  • Each engagement recess 29 has a blade groove inner side surface 29f facing a direction including a direction component toward the radially inner side Dri.
  • the blade groove inner side surface 29 f is a surface formed on the radially outer side Dro in the engagement recess 29.
  • the direction of the blade groove inner side surface 29f only needs to include a direction component toward the radially inner side Dri, and may be a direction parallel to the radial direction Dr or a direction inclined with respect to the radial direction Dr.
  • each engaging recess 29 has a blade groove outer surface 29g facing a direction including a directional component toward the radially outer side Dro.
  • the blade groove outer surface 29g is a surface formed on the radially inner side Dri in the engagement recess 29.
  • the direction of the blade groove outer surface 29g only needs to include a direction component toward the radially outer side Dr, and may be a direction parallel to the radial direction Dr or a direction inclined with respect to the radial direction Dr.
  • each rotor blade 32 pivots about the axis line Ar of the rotor shaft 21 together with the disk portion 23 of the rotor shaft 21. Thereby, centrifugal force acts on each rotor blade 32. Due to this centrifugal force, the moving blade 32 tends to displace toward the radially outer side Dro. As a result, the blade root outer surfaces 38f of the engaging convex portions 38A, 38B, and 38C and the blade groove inner side surfaces 29f of the engaging concave portions 29A, 29B, and 29C abut each other. That is, the blade 32 is supported in a state where the blade root outer surface 38f of the blade root 36 and the blade groove inner surface 29f of the blade groove 28 are in contact with each other.
  • the blade root inner side surface 38g of the engaging convex portions 38A, 38B, and 38C and the blade groove outer surface 29g of the engaging concave portions 29A, 29B, and 29C are provided.
  • the distance goes away.
  • the gap 101 between each blade root inner side surface 38g and blade groove outer side surface 29g becomes large.
  • the gap 101 is formed continuously along the axial direction Da so as to communicate the upstream side Dau and the downstream side Dad of the disk portion 23.
  • the speed-regulating stage disk portion 23 a is thick on the upstream side surface 23 u facing the upstream side Dau, in which the plate thickness along the axial direction Da is set larger than the platform 35 in order to increase the strength. It has a part 23n. Further, the speed-regulating stage disk portion 23a has a thickness in which the plate thickness in the axial direction Da gradually increases from the platform inner peripheral surface 35f side of the platform 35 toward the thick portion 23n on the radially outer side Dro of the thick portion 23n. It has a thickness increasing portion 23z.
  • the disk inclined surface 23k and the orthogonal surface 23t are formed on the upstream side surface 23u facing the upstream side Dau.
  • the disk inclined surface 23k is inclined from the end face 35u on the upstream side Dau of the platform 35 toward the upstream side Dau toward the radially inner side Dri.
  • the orthogonal surface 23t extends perpendicularly to the axial direction Da from the disk inclined surface 23k toward the radially inner side Dri.
  • the stationary blade row 41 includes a plurality of stationary blades 42 arranged in the circumferential direction Dc, an annular outer ring 43 provided on the radially outer side Dro of the plurality of stationary blades 42, and a plurality of stationary blades 42. And an annular inner ring 46 provided on the radially inner side Dri of the blade 42. That is, the plurality of stationary blades 42 are disposed between the outer ring 43 and the inner ring 46.
  • the stationary blade 42 is fixed to the outer ring 43 and the inner ring 46.
  • An annular space between the outer ring 43 and the inner ring 46 forms part of the steam main flow path 15 through which the steam S flows.
  • the outer ring 43 includes a ring main body 44 to which a plurality of stationary blades 42 are fixed, and a ring protrusion 45 protruding from the ring main body 44 to the downstream side Dad.
  • the ring protrusion 45 faces the shroud 34 of the moving blade row 31 adjacent to the downstream side Dad of the stationary blade row 41 with a gap in the radial direction Dr.
  • the governing stage stationary blade row 41a is formed with a first orthogonal surface 41s, an inclined surface 41k, and a second orthogonal surface 41t.
  • the first orthogonal surface 41s faces the end surface 35u of the platform 35 of the speed-regulating blade row 31a.
  • the inclined surface 41k faces the disk inclined surface 23k of the disk portion 23 on the radially inner side Dri of the first orthogonal surface 41s.
  • the second orthogonal surface 41t faces the orthogonal surface 23t of the disk portion 23 on the radially inner side Dri of the inclined surface 41k.
  • the first orthogonal surface 41s, the inclined surface 41k, and the second orthogonal surface 41t are substantially parallel to the end surface 35u, the disk inclined surface 23k, and the orthogonal surface 23t, respectively, so as to have a predetermined clearance along the axial direction Da. Is formed.
  • the gap channel 100A includes an outer peripheral side channel portion 103 extending toward the radially inner side Dri, and an inclined flow inclined toward the upstream side Dau from the outer peripheral side channel portion 103 toward the radially inner side Dri. It has a path portion 104 and an inner circumferential side channel portion 105 extending from the inclined channel portion 104 toward the radially inner side Dri.
  • the outer peripheral flow path portion 103 is formed between the end surface 35u of the platform 35 and the first orthogonal surface 41s.
  • the outer peripheral side flow path portion 103 extends from the steam main flow path 15 to the inclined flow path portion 104.
  • the inclined channel portion 104 is formed between the inclined surface 41k and the disk inclined surface 23k.
  • the inclined channel portion 104 is formed as a channel continuous with the outer peripheral side channel portion 103.
  • the inner peripheral flow path portion 105 is formed between the second orthogonal surface 41t and the orthogonal surface 23t.
  • the inner peripheral flow path portion 105 is formed as a flow path that is continuous with the inclined flow path portion 104.
  • the gap channel 100A is preferably formed such that the length dimension R1 in the radial direction Dr is equal to or longer than the length R2 in the radial direction Dr of the blade root 36 of the rotor blade 32.
  • the inner circumferential side flow path portion 105 of the gap flow path 100A is connected to a space 17 provided with a plurality of seal members 16 such as a labyrinth seal, on the radially inner side Dri from the nozzle chamber 11.
  • the seal member 16 is provided on the radially inner side Dri of the nozzle chamber 11.
  • the seal member 16 seals between the shaft core portion 22 and the casing 10 so that steam does not flow out of the casing 10 from between.
  • the space 17 communicates with the outside of the steam turbine 1 through the seal member 16. Therefore, the pressure P1 in the space 17 is lower than the pressure P2 of the steam main flow path chamber 12, and is set to about 1 atm, for example.
  • the channel widths of the outer circumferential channel unit 103, the inclined channel unit 104, and the inner circumferential channel unit 105 are set to the tip end portions of the axial fins 35Fa and 35Fb, and the speed control stage stationary blade row 41a. It is formed larger than the clearance in the axial direction Da with the rear end 46b of the inner ring 46 which is the downstream end of the inner ring 46. Further, the flow path width is formed to be smaller than the clearance between the end surface 35u of the platform 35, which is the upstream end of the speed-control stage moving blade row 31a, and the rear end 46b of the inner ring 46 of the speed-control stage stationary blade row 41a. Has been.
  • An upstream end portion 101a that is one end (first end) in the axial direction Da of the clearance 101 between each rotor blade 32 and the blade groove 28 of the speed regulating rotor blade row 31a is connected to the clearance channel 100A.
  • the gap 101 is formed so that the steam in the steam main flow path chamber 12 where steam having a pressure P2 higher than the steam pressure P1 in the space 17 is present from the downstream end 101b which is the other end (second end) in the axial direction Da. It flows backward toward the upstream end 101a. That is, as shown in FIG.
  • each gap formed between the blade root inner side surface 38g of the engaging convex portions 38A, 38B, 38C and the blade groove outer side surface 29g of the engaging concave portions 29A, 29B, 29C. 101 functions as a communication path 102.
  • the gap channel 100A communicates with the steam main channel chamber 12 in which steam having a pressure P2 higher than the steam pressure P1 in the space 17 exists via the communication path 102.
  • the steam Sh in the steam main channel chamber 12 having a pressure P2 higher than that of the space 17 is jetted into the gap channel 100A through the communication path 102. Then, in the gap channel 100A, the flow of the steam S flowing from the main steam channel 15 into the gap channel 100A is contracted by the high-pressure steam Sh ejected from the communication passage 102. Due to this contraction effect, the inflow of the steam S flowing into the gap channel 100A can be suppressed.
  • the steam turbine 1 of the present embodiment a part of the steam S flowing through the steam main channel 15 flows into the gap channel 100A.
  • the steam Sh in the steam main channel chamber 12 having a pressure higher than the pressure of the steam S in the space 17 flows into the gap channel 100 ⁇ / b> A through the communication path 102.
  • the flow of the steam S leaking from the steam main channel 15 flowing in the gap channel 100A is contracted. That is, the flow of the steam S flowing out from the steam main channel 15 to the gap channel 100A is inhibited, and the amount of the steam S leaking from the steam main channel 15 to the gap channel 100A can be suppressed. Therefore, it is possible to reduce the amount of the steam S flowing through the steam main flow path 15 leaking to the radially inner side Dri and improve the turbine efficiency.
  • the clearance channel 100A is provided with axial fins 35Fa and 35Fb extending from the moving blade row 31 side toward the stationary blade row 41 side. Therefore, it is possible to reduce the amount of the steam S flowing into the gap channel 100A by narrowing the interval between the speed-control stage moving blade row 31a and the speed-control stage stationary blade row 41a in the axial direction Da. Accordingly, it is possible to further reduce the amount of the steam S flowing through the steam main channel 15 leaking to the radially inner side Dri.
  • the flow path width of the gap flow path 100A is formed to be larger than the clearance in the axial direction Da between the front ends of the axial fins 35Fa and 35Fb and the rear end 46b of the inner ring 46 of the speed control stationary vane row 41a.
  • a gap channel 100A having a minimum required channel width can be formed between the speed-control stage moving blade row 31a and the speed-control stage stationary blade row 41a. Therefore, it is possible to form the gap channel 100A that makes the most efficient use of the contraction effect caused by the steam Sh ejected from the communication passage 102.
  • the flow path width of the gap flow path 100A is formed to be smaller than the clearance between the end surface 35u of the platform 35 of the speed-control stage moving blade row 31a and the rear end 46b of the inner ring 46 of the speed-control stage stationary blade row 41a. . Thereby, it is possible to suppress the influence of the steam Sh ejected from the communication path 102 due to excessively widening between the speed-control stage moving blade row 31a and the speed-control stage stationary blade row 41a, and to form the gap channel 100A. Can do.
  • the gap channel 100A with the above-described channel width, it is possible to form the gap channel 100A that efficiently uses the contraction effect by the steam Sh ejected from the communication path 102.
  • FIG. 4 is a cross-sectional view of the speed-control stage stationary blade row and the moving blade row in the steam turbine according to the second embodiment of the present invention.
  • the disk portion 23 of the moving blade row 31 of the speed regulating stage 50a is connected to the disk first orthogonal surface 23p on the upstream side surface 23u facing the upstream side Dau.
  • a disk intermediate peripheral surface 23q and a disk second orthogonal surface 23r are formed.
  • the disk first orthogonal surface 23p extends perpendicularly to the axial direction Da from the end surface 35u on the upstream side Dau of the platform 35 toward the radially inner side Dri.
  • the disc intermediate circumferential surface 23q extends from the disc first orthogonal surface 23p to the upstream side Dau along the axial direction Da, and faces the radially outer side Dro.
  • the disk second orthogonal surface 23r extends perpendicularly to the axial direction Da from the upstream side Dau of the disk intermediate peripheral surface 23q toward the radially inner side Dri.
  • a first orthogonal surface 46p, an intermediate peripheral surface 46q, and a second orthogonal surface 46r are formed in the speed-regulating stage stationary blade row 41a of the second embodiment.
  • the first orthogonal surface 46p faces the end surface 35u of the platform 35 of the speed-control stage rotor cascade 31a and the disk first orthogonal surface 23p of the speed-control stage disk portion 23a.
  • the intermediate peripheral surface 46q extends from the first orthogonal surface 46p to the upstream side Dau along the axial direction Da, and faces the radially inner side Dri.
  • the second orthogonal surface 46r extends orthogonally to the axial direction Da toward the radially inner side Dri from the upstream side Dau of the intermediate peripheral surface 46q.
  • the end surface 35u, the disc first orthogonal surface 23p, the disc intermediate peripheral surface 23q, and the disc second orthogonal surface 23r, and the first orthogonal surface 46p, the intermediate peripheral surface 46q, and the second orthogonal surface 46r are respectively predetermined. Are formed substantially parallel to each other with a clearance therebetween. In other words, the end face 35u, the disk first orthogonal surface 23p, the disk intermediate peripheral surface 23q, and the disk second orthogonal surface 23r, and the first orthogonal surface 46p, the intermediate peripheral surface 46q, and the second orthogonal surface 46r A path 100B is formed.
  • seal fins 60 are provided on the intermediate circumferential surface 46q.
  • the seal fin 60 protrudes from the intermediate peripheral surface 46q toward the disk second orthogonal surface 23r in the radial inner side Dri.
  • the seal member provided on the intermediate peripheral surface 46q is not limited to the seal fin 60, and it is only necessary to seal between the intermediate peripheral surface 46q and the disk second orthogonal surface 23r.
  • a labyrinth seal may be provided between the intermediate circumferential surface 46q and the disk second orthogonal surface 23r.
  • a clearance channel 100B formed between the speed-regulating stationary vane row 41a and the speed-control stage moving blade row 31a includes an outer-side channel portion 108, an intermediate-channel portion 109, an inner-side channel portion 110,
  • the outer peripheral flow path portion 108 is provided between the end surface 35u of the platform 35 and the disk first orthogonal surface 23p and the first orthogonal surface 46p.
  • the outer peripheral flow path portion 108 extends from the steam main flow path 15 toward the radially inner side Dri.
  • the intermediate flow path portion 109 is provided between the disk intermediate peripheral surface 23q and the intermediate peripheral surface 46q.
  • the intermediate flow path 109 is connected to the outer peripheral flow path 108 and extends from the outer peripheral flow path 108 to the upstream Dau in the axial direction Da.
  • the inner circumferential side flow path portion 110 is formed between the disk second orthogonal surface 23r and the second orthogonal surface 46r.
  • the inner peripheral flow path part 110 extends into the space 17 from the intermediate flow path part 109 toward the radially inner side Dri.
  • the upstream end portion 101a of the gap 101 between each blade 32 and the blade groove 28 of the speed-regulating blade row 31a is connected to the gap channel 100B.
  • the steam in the steam main flow path chamber 12 where steam having a pressure P2 higher than the steam pressure P1 in the space 17 flows back from the downstream end 101b toward the upstream end 101a. That is, each gap 101 formed between the blade root inner side surface 38g of the engagement convex portions 38A, 38B, 38C and the blade groove outer side surface 29g of the engagement concave portions 29A, 29B, 29C shown in FIG. It functions as the communication path 102.
  • high-pressure steam Sh in the steam main flow path chamber 12 is jetted into the gap flow path 100B through the communication path 102. Then, in the clearance channel 100B, the flow of the steam Sn flowing from the main steam channel 15 into the clearance channel 100B is contracted by the high-pressure steam Sh ejected from the communication passage 102. Due to this contraction effect, it is possible to suppress the inflow of the steam Sn flowing into the gap channel 100B.
  • a part of the steam S flowing through the steam main flow path 15 flows into the outer peripheral side flow path portion 108 of the gap flow path 100B.
  • the steam S that has flowed into the outer peripheral side flow path part 108 flows to the space 17 through the intermediate flow path part 109 and the inner peripheral side flow path part 110.
  • the steam Sh in the steam main channel chamber 12 whose pressure is higher than the pressure of the steam S in the space 17 flows into the gap channel 100 ⁇ / b> B through the communication path 102.
  • the flow of the steam S flowing in the outer peripheral side flow path part 108 and the inner peripheral side flow path part 110 of the gap flow path 100B is contracted.
  • the flow of the steam S flowing out from the steam main channel 15 to the gap channel 100B is inhibited, and the amount of the steam S leaking from the steam main channel 15 to the gap channel 100B can be suppressed. Therefore, it is possible to suppress the steam S flowing through the steam main flow path 15 from leaking to the radially inner side Dri and improve the turbine efficiency.
  • the gap channel 100B is bent largely in a crank shape from the radially outer side Dro toward the radially inner side Dri in the order of the outer circumferential side channel portion 108, the intermediate channel portion 109, and the inner circumferential side channel portion 110. . Therefore, the flow path resistance of the gap flow path 100B is increased, and the amount of the steam S flowing out from the steam main flow path 15 can be suppressed.
  • a seal fin 60 extending inward in the radial direction Dri is provided in the intermediate flow path portion 109 which is a portion bent in a crank shape. Thereby, the sealing performance in the gap channel 100B can be enhanced.
  • the gap formed between the blade root inner side surface 38g of the engaging projections 38A, 38B, 38C of each blade 32 and the blade groove outer side surface 29g of the engagement recesses 29A, 29B, 29C of the blade groove 28. 101 is used as the communication path 102, but is not limited thereto.
  • a communication path 102 that connects the upstream Dau and the downstream Dad of the disk portion 23 may be formed between the blade grooves 28 adjacent to each other in the circumferential direction Dc in the disk portion 23.
  • a recess formed in the blade root inner side surface 38g of each engaging blade 38A of each rotor blade 32 so as to be recessed radially outward from the blade root inner side surface 38g may be used as the communication path 102.
  • the communication passage 102 may be a recess formed in the engagement groove 29A, 29B, 29C of the blade groove 28 so as to be recessed from the blade groove outer surface 29g to the radially inner side Dri.
  • each part of the steam turbine 1 can be changed as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

蒸気タービン(1)は、軸線(Ar)を中心として回転する軸芯部(22)に固定されたディスク部(23)とを有するロータ軸(21)と、ディスク部(23)の外周に固定された複数の動翼列(31)と、動翼列(31)の上流側に隣接している静翼列(41)と、を備えている。調速段(50a)を構成する動翼列(31)及び静翼列(41)の隙間に、蒸気主流路(15)から径方向内側に延びる隙間流路(100A)が形成されている。一端が隙間流路(100A)に連通し、他端が隙間流路(100A)内の蒸気の圧力よりも高い圧力の蒸気が存在する空間に連通する連通路(102)がディスク部(23)に形成されている。

Description

蒸気タービン
 この発明は、蒸気で駆動する蒸気タービンに関する。
 蒸気タービンは、軸線を中心として回転するロータと、このロータを覆うケーシングとを備えている。ロータは、軸線を中心として軸方向に延びるロータ軸と、ロータ軸の外周に固定されて軸方向に並ぶ複数段の動翼列と、を有する。蒸気タービンは、ケーシングの内周に固定され、複数段の動翼列の各段の上流側に配置されている静翼列を有する。
 特許文献1の蒸気タービンは、静翼列の静翼の内周側に設けられた内輪の下流側端面から下流側に突出するリング状突起を有している。また、この蒸気タービンでは、動翼列を構成する動翼の内周側に設けられた筒状の動翼支持部の上流側端面から上流側に突出するリング状突起を有している。さらに、この蒸気タービンでは、静翼側のリング状突起を、動翼側のリング状突起の外周側に配置し、これらを軸方向で重なり合うよう設けている。これにより、静翼と動翼との間の隙間をクランク状に屈曲させ、蒸気主流路を流れる蒸気が動翼列と静翼列との隙間から内周側に漏れ出ることを抑えている。
特開2015-25404号公報
 しかしながら、蒸気タービンの効率改善のため、蒸気主流路を流れる蒸気の漏れを、より確実に抑えることが望まれている。
 この発明は、蒸気主流路を流れる蒸気の漏れ量を低減し、タービン効率を改善することのできる蒸気タービンを提供する。
 この発明に係る第一態様によれば、蒸気タービンは、軸線を中心として回転する軸芯部と、前記軸芯部に固定されて前記軸芯部における径方向外側に広がるディスク部とを有するロータ軸と、前記ディスク部の外周に固定され、前記軸芯部が延びる軸方向に並んでいる複数の動翼列と、複数の前記動翼列毎に、前記動翼列の前記軸方向における上流側に隣接している静翼列と、を備え、前記動翼列と、前記動翼列の上流側に隣接配置されている前記静翼列との組で構成される複数の段のうち、最も上流側に配置されている調速段を構成する前記静翼列及び前記動翼列の隙間に、前記軸方向に延在して蒸気が流通する蒸気主流路から径方向内側に延びる隙間流路が形成され、一端が前記隙間流路に連通し、他端が前記隙間流路内の前記蒸気の圧力よりも高い圧力の前記蒸気が存在する空間に連通する連通路が前記調速段の前記動翼列が固定された前記ディスク部に形成されている。
 このような構成によれば、隙間流路内に連通路を通して蒸気が流れ込む。これにより、隙間流路内を流れる蒸気主流路から漏れ出た蒸気の流れが縮流される。つまり、隙間流路での蒸気の流れが阻害され、蒸気主流路から隙間流路に漏れ出す蒸気の量を抑えることができる。
 この発明に係る第二態様によれば、蒸気タービンは、第一態様の蒸気タービンにおいて、前記隙間流路の前記径方向の前記蒸気主流路側に設けられ、前記動翼列から前記静翼列に向かって延びるフィンを備えるようにしてもよい。
 これにより、隙間流路にフィンを設けることで、調速段の動翼列と静翼列との間の間隔を狭めて、隙間流路に流入する蒸気の量をより抑えることができる。
 この発明に係る第三態様によれば、蒸気タービンは、第二態様の蒸気タービンにおいて、前記隙間流路の流路幅は、前記フィンの先端部と前記静翼列の下流側の端部との隙間よりも大きく、前記調速段の前記動翼列の上流側の端部と前記調速段の前記静翼列の下流側の端部との隙間よりも小さくてもよい。
 これにより、連通路から噴出する蒸気による縮流効果を効率的に利用した隙間流路を形成することができる。
 この発明に係る第四態様によれば、蒸気タービンは、第一から第三態様の何れか一つの蒸気タービンにおいて、記隙間流路は、前記蒸気主流路から前記径方向内側に延びる外周側流路部と、前記外周側流路部に接続され、前記軸方向に延びる中間流路部と、前記中間流路部から前記径方向内側に延びる内周側流路部と、を備えていてもよい。
 これにより、隙間流路は、外周側から内周側に向かってクランク状に屈曲するため、流路抵抗が大きくなり、蒸気主流路から流れ出る蒸気の量を抑えることができる。
 上述した蒸気タービンによれば、調速段を構成する静翼列及び動翼列の隙間に形成された隙間流路に連通路から蒸気が流入することで、蒸気主流路を流れる蒸気の漏れ量を低減し、タービン効率を改善することが可能となる。
この発明の第1実施形態における蒸気タービンの断面図である。 この発明の第1実施形態の蒸気タービンにおける動翼のディスク部への取付構造を示す図である。 この発明の第1実施形態の蒸気タービンにおける調速段の静翼列及び動翼列の断面図である。 この発明の第2実施形態の蒸気タービンにおける調速段の静翼列及び動翼列の断面図である。
(第1実施形態)
 図1は、この発明の第1実施形態における蒸気タービンの断面図である。図2は、この発明の第1実施形態の蒸気タービンにおける動翼のディスク部への取付構造を示す図である。図3は、この発明の第1実施形態の蒸気タービンにおける調速段の静翼列及び動翼列の断面図である。
 図1に示すように、本実施形態の蒸気タービン1は、軸線Arを中心として回転するロータ20と、ロータ20を回転可能に覆うケーシング10と、を有している。
 なお、以下の説明の都合上、軸線Arが延びている方向を軸方向Da、軸方向Daの第一側を上流側(一方側)Dau、軸方向Daの第二側を下流側(他方側)Dadとする。また、軸線Arを基準とした後述する軸芯部22における径方向を単に径方向Dr、この径方向Drで軸線Arに近づく側を径方向内側Dri、この径方向Drで径方向内側Driとは反対側を径方向外側Droとする。また、軸線Arを中心とした軸芯部22の周方向を単に周方向Dcとする。
 ロータ20は、ロータ軸21と、ロータ軸21の軸方向Daに沿って間隔をあけて複数列設けられた動翼列31と、を有している。
 ロータ軸21は、軸線Arを中心として円柱状を成し、軸方向Daの延びる軸芯部22と、軸芯部22から径方向外側Droに広がり軸方向Daに互いに間隔をあけて並ぶ複数のディスク部23と、を有する。ディスク部23は、複数の動翼列31毎に設けられている。
 動翼列31は、ロータ軸21の外周部分であるディスク部23の外周に取り付けられている。動翼列31は、ロータ軸21の軸方向Daに沿って間隔をあけて複数列が設けられている。本実施形態の場合、動翼列31の数は、7つ設けられている。よって、本実施形態の場合、動翼列31として、第1段から第7段の動翼列31まで設けられている。
 蒸気タービン1は、さらに、ケーシング10の内周に固定され、軸方向Daに沿って間隔を空けて設けられた複数の静翼列41を備えている。静翼列41は、複数の動翼列31毎に、動翼列31の軸方向Daの上流側に隣接している。本実施形態の場合、静翼列41の数は、動翼列31の数と同じ7つ設けられている。よって、本実施形態の場合、静翼列41として、第1段から第7段の静翼列41まで設けられている。複数の静翼列41は、それぞれ動翼列31に対して上流側Dauに隣接して配置されている。
 ケーシング10には、外部からの蒸気Sが流入するノズル室11と、ノズル室11からの蒸気Sが流れる蒸気主流路室12と、蒸気主流路室12から流れた蒸気Sを排出する排気室13と、が形成されている。ノズル室11と蒸気主流路室12と間には、複数の動翼列31及び静翼列41のうちで最も上流側Dauの動翼列31及び静翼列41が配置されている。言い換えると、ケーシング10内は、この最も上流側Dauの動翼列31及び静翼列41により、ノズル室11と蒸気主流路室12とに仕切られている。蒸気主流路室12には、複数の動翼列31及び静翼列41のうちで最も上流側Dauの動翼列31及び静翼列41を除く静翼列41の全てと、複数の動翼列31の全てとが配置されている。
 動翼列31と、この動翼列31の上流側Dauに隣接配置されている静翼列41との組毎に一つの段50が形成されている。本実施形態の蒸気タービン1は、7つの動翼列31のそれぞれに対して静翼列41が設けられているので、7つの段50を備える。つまり、本実施形態の蒸気タービン1は、上流側Dauから順に、第一段51、第二段52、第三段53、第四段54、第五段55、第六段56、及び第七段57を備えている。
 本実施形態の蒸気タービン1では、複数の段50のうち、最上流の第一段51が、調速段50aを成している。調速段50aは、この調速段50aよりも下流側Dadの段50へ送られる蒸気Sの流量を調節してロータ20の回転数を調整する。
 本実施形態の蒸気タービン1では、第二段52、第三段53、及び第四段54が、中圧段50bを成す。また、本実施形態の蒸気タービン1では、第五段55、第六段56、及び第七段57が、低圧段50cを成す。
 よって、以下では、調速段50aの一部を構成する第一段51の静翼列41を調速段静翼列41aと呼ぶ。調速段50aの他の一部を構成する第一段51の動翼列31を調速段動翼列31aと呼ぶ。
 また、中圧段50bの一部を構成する第二段52の静翼列41から第四段54の静翼列41を中圧段静翼列41bと呼ぶ。中圧段50bの他の一部を構成する第二段52の動翼列31から第四段54の動翼列31を中圧段動翼列31bと呼ぶ。
 また、低圧段50cの一部を構成する第五段55の静翼列41から第七段57の静翼列41を低圧段静翼列41cと呼ぶ。低圧段50cの他の一部を構成する第五段55の動翼列31から第七段57の動翼列31を低圧段動翼列31cと呼ぶ。
 さらに、調速段動翼列31aが固定されているロータ軸21のディスク部23を調速段ディスク部23aと呼ぶ。中圧段動翼列31bが固定されているロータ軸21のディスク部23を中圧段ディスク部23bと呼ぶ。低圧段動翼列31cが固定されているロータ軸21のディスク部23を低圧段ディスク部23cと呼ぶ。
 図1、図2に示すように、各動翼列31は、周方向Dcに並ぶ複数の動翼32を有している。各動翼32は、径方向Drに延びる翼体33と、この翼体33の径方向外側Droに設けられているシュラウド34と、この翼体33の径方向内側Driに設けられているプラットフォーム35と、プラットフォーム35の径方向内側Driに設けられている翼根36(図2参照)と、を有する。この動翼32においてシュラウド34とプラットフォーム35との間は、蒸気Sが流通する蒸気主流路15の一部を成している。蒸気主流路15は、複数の動翼列31及び静翼列41に跨って軸方向Daに延在している。蒸気主流路15は、ロータ20の周りで環状をなしている。
 図3に示すように、調速段動翼列31aには、アキシャルフィン(フィン)35Fa及び35Fbが設けられている。アキシャルフィン(フィン)35Fa及び35Fbは、後述する隙間流路100Aの径方向Drの蒸気主流路15側の開口に面して設けられている。アキシャルフィン(フィン)35Fa及び35Fbは、調速段動翼列31aから調速段静翼列41aに向かって延びている。
 本実施形態のアキシャルフィン(フィン)35Fa及び35Fbは、動翼32のプラットフォーム35の軸方向Daの上流側Dauに設けられている。アキシャルフィン35Faは、プラットフォーム35の軸方向Daの上流側を向く端面35uの径方向外側Droから、上流側Dauに突出するよう形成されている。アキシャルフィン35Fbは、プラットフォーム35の端面35uの径方向内側Driから、上流側Dauに突出するよう形成されている。
 これらアキシャルフィン35Fa及び35Fbにより、調速段動翼列31aの動翼32の前縁部であるプラットフォーム35の端面35uと、調速段静翼列41aの静翼42の後縁部である静翼42の後述する内側リング46とのクリアランスを狭めている。これにより、アキシャルフィン35Fa及びアキシャルフィン35Fbは、軸方向Daに延びる蒸気主流路15から調速段動翼列31aと調速段静翼列41aとの隙間に向かって径方向内側Driへの蒸気Sの漏れを抑えている。
 図2に示すように、動翼列31を構成する複数の動翼32のそれぞれにおいて、翼根36は、後述するように、ロータ軸21におけるディスク部23の外周部に形成された翼溝28に嵌め込まれている。
 図2に示すように、各動翼列31において、それぞれの動翼32の翼根36は、プラットフォーム35の径方向内側Driを向くプラットフォーム内周面35fから径方向内側Driに延びるよう形成されている。翼根36は、プラットフォーム内周面35fから径方向内側Driに延びる翼根本体37と、翼根本体37から周方向Dc両側に向かってそれぞれ突出する係合凸部38とを有する。係合凸部38は、径方向Drに沿って間隔を空けた複数箇所で翼根本体37から突出している。係合凸部38は、後述する翼溝28に形成された係合凹部29に係合する。この実施形態において、係合凸部38は、径方向Drに沿って間隔を空けた3カ所に形成されている。係合凸部38A、38B、38Cは、翼根36の周方向Dcの一方側と他方側に、それぞれ、翼根36の周方向Dcの中心から周方向Dcに沿って離間する方向に凸となる湾曲面形状を有している。
 ここで、プラットフォーム35側の係合凸部38Aに対し、径方向内側Driに配置された係合凸部38B及び係合凸部38Cは、周方向Dcに向かった突出寸法が、漸次小さくなるよう形成されている。また、翼根本体37におけるプラットフォーム35と係合凸部38Aとの間の第一幹部39A、係合凸部38Aと係合凸部38Bとの間の第二幹部39B、及び係合凸部38Bと係合凸部38Cとの間の第三幹部39Cは、プラットフォーム35側から径方向内側Driに向かって、周方向Dcの幅寸法が漸次小さくなるよう形成されている。これにより、翼根36は、いわゆるクリスマスツリー状をなしている。
 各係合凸部38には、径方向外側Droに向かう方向成分を含む方向を向く翼根外側面38fが形成されている。翼根外側面38fは、係合凸部38において、径方向外側Droに形成された面である。なお、翼根外側面38fの向きは、径方向外側Droに向かう方向成分を含んでいればよく、径方向Drと平行な方向や、径方向Drに対して傾斜した方向であってもよい。
 また、各係合凸部38には、径方向内側Driに向かう方向成分を含む方向を向く翼根内側面38gが形成されている。翼根内側面38gは、係合凸部38において、径方向内側Driに形成された面である。なお、翼根内側面38gの向きは、径方向内側Driに向かう方向成分を含んでいればよく、径方向Drと平行な方向や、径方向Drに対して傾斜した方向であってもよい。
 各ディスク部23の外周部には、径方向内側Driに向かって延びる翼溝28が形成されている。翼溝28は、ディスク部23の最も径方向外側Droに形成されたロータ外周面23fから径方向内側Driに窪んで形成されている。ロータ外周面23fは、プラットフォーム内周面35fと対向している。
 翼溝28は、翼根36の外周形状を補形するよう形成されている。翼溝28は、径方向Drに沿って間隔を空けた複数箇所に、周方向Dcの両側に向かって窪む係合凹部29を有している。この実施形態において、係合凹部29は、翼溝28の周方向Dcの一方側と他方側に、それぞれ、径方向Drに沿って間隔を空けた3カ所に形成されている。これら3カ所の係合凹部29A、29B、29Cは、それぞれ、翼溝28の周方向Dcの中心から周方向Dcに沿って離間する方向に窪む湾曲面形状を有している。
 各係合凹部29は、径方向内側Driに向かう方向成分を含む方向を向く翼溝内側面29fを有している。翼溝内側面29fは、係合凹部29において、径方向外側Droに形成された面である。なお、翼溝内側面29fの向きは、径方向内側Driに向かう方向成分を含んでいればよく、径方向Drと平行な方向や、径方向Drに対して傾斜した方向であってもよい。
 また、各係合凹部29は、径方向外側Droに向かう方向成分を含む方向を向く翼溝外側面29gを有している。翼溝外側面29gは、係合凹部29において、径方向内側Driに形成された面である。なお、翼溝外側面29gの向きは、径方向外側Droに向かう方向成分を含んでいればよく、径方向Drと平行な方向や、径方向Drに対して傾斜した方向であってもよい。
 ここで、ロータ軸21が軸線Ar回りに回転すると、ロータ軸21のディスク部23とともに、各動翼32がロータ軸21の軸線Arを中心として旋回する。これにより、各動翼32には遠心力が作用する。この遠心力によって径方向外側Droに向かって動翼32が変位しようとする。その結果、係合凸部38A、38B、及び38Cの各翼根外側面38fと、係合凹部29A、29B、及び29Cの各翼溝内側面29fとが突き当たる。すなわち、翼根36の各翼根外側面38fと、翼溝28の各翼溝内側面29fとが接触した状態で、動翼32が支持される。
 一方、動翼32に遠心力が生じることで、係合凸部38A、38B、及び38Cの翼根内側面38gと、係合凹部29A、29B、及び29Cの翼溝外側面29gとの間の距離が離れる。その結果、それぞれの翼根内側面38gと翼溝外側面29gと間の隙間101が大きくなる。図3に示すように、この隙間101は、ディスク部23の上流側Dauと下流側Dadとを連通するよう、軸方向Daに沿って連続して形成される。
 図3に示すように、調速段ディスク部23aは、上流側Dauを向く上流側面23uに、その強度を増すためにプラットフォーム35よりも軸方向Daに沿った板厚が大きく設定された厚肉部23nを有している。さらに、調速段ディスク部23aは、厚肉部23nの径方向外側Droに、プラットフォーム35のプラットフォーム内周面35f側から厚肉部23nに向かって、軸方向Daの板厚が漸次増大する肉厚増大部23zを有している。
 これにより、調速段ディスク部23aは、上流側Dauを向く上流側面23uに、ディスク傾斜面23kと、直交面23tと、が形成されている。ディスク傾斜面23kは、プラットフォーム35の上流側Dauの端面35uから径方向内側Driに向かって上流側Dauに傾斜している。直交面23tは、ディスク傾斜面23kから径方向内側Driに向かって軸方向Daに直交して延びている。
 図1に示すように、静翼列41は、周方向Dcに並ぶ複数の静翼42と、複数の静翼42の径方向外側Droに設けられている環状の外側リング43と、複数の静翼42の径方向内側Driに設けられている環状の内側リング46と、を有する。すなわち、複数の静翼42は、外側リング43と内側リング46との間に配置されている。静翼42は、外側リング43と内側リング46とに固定されている。外側リング43と内側リング46との間の環状の空間は、蒸気Sが流れる蒸気主流路15の一部を成している。外側リング43は、複数の静翼42が固定されているリング本体部44と、このリング本体部44から下流側Dadに突出しているリング突出部45と、を有する。このリング突出部45は、静翼列41の下流側Dadに隣接している動翼列31のシュラウド34と径方向Drに間隔をあけて対向している。
 複数の静翼列41のうち、調速段静翼列41aには、第一直交面41sと、傾斜面41kと、第二直交面41tと、が形成されている。
 第一直交面41sは、調速段動翼列31aのプラットフォーム35の端面35uに対向している。傾斜面41kは、第一直交面41sの径方向内側Driでディスク部23のディスク傾斜面23kに対向している。第二直交面41tは、傾斜面41kの径方向内側Driでディスク部23の直交面23tに対向している。
 これら第一直交面41s、傾斜面41k、第二直交面41tとは、それぞれ端面35u、ディスク傾斜面23k、直交面23tに対し、軸方向Daに沿って所定のクリアランスを隔てるよう、ほぼ平行に形成されている。
 このようにして調速段静翼列41aと、調速段動翼列31aとの隙間に、蒸気主流路15から径方向内側Driに延びる隙間流路100Aが形成されている。この実施形態において、隙間流路100Aは、径方向内側Driに向かって延びる外周側流路部103と、外周側流路部103から径方向内側Driに向かうにしたがって上流側Dauに傾斜した傾斜流路部104と、傾斜流路部104から径方向内側Driに向かって延びる内周側流路部105と、を有する。
 外周側流路部103は、プラットフォーム35の端面35uと第一直交面41sとの間に形成されている。外周側流路部103は、蒸気主流路15から傾斜流路部104まで延びている。
 傾斜流路部104は、傾斜面41kとディスク傾斜面23kとの間に形成されている。傾斜流路部104は、外周側流路部103と連続した流路として形成されている。
 内周側流路部105は、第二直交面41tと直交面23tとの間に形成されている。内周側流路部105は、傾斜流路部104と連続した流路として形成されている。
 ここで、隙間流路100Aは、径方向Drにおける長さ寸法R1が、動翼32の翼根36の径方向Drにおける長さR2と同じか、長さR2より長く形成することが好ましい。
 隙間流路100Aの内周側流路部105は、ノズル室11よりも径方向内側Driで、ラビリンスシール等の複数のシール部材16が設けられた空間17に繋がれている。シール部材16は、ノズル室11の径方向内側Driに設けられている。シール部材16は、軸芯部22とケーシング10とに間から蒸気がケーシング10の外部に流出しないようにシールしている。空間17は、シール部材16を介して蒸気タービン1の外部と連通している。そのため、空間17内の圧力P1は蒸気主流路室12の圧力P2よりも低くなっており、例えば1atm程度に設定されている。
 また、隙間流路100Aにおいて、外周側流路部103、傾斜流路部104、及び内周側流路部105の流路幅は、アキシャルフィン35Fa及び35Fbの先端部と、調速段静翼列41aの下流側の端部である内側リング46の後端46bとの軸方向Daのクリアランスよりも大きく形成されている。また、この流路幅は、調速段動翼列31aの上流側の端部であるプラットフォーム35の端面35uと、調速段静翼列41aの内側リング46の後端46bとのクリアランスよりも小さく形成されている。
 この隙間流路100Aには、調速段動翼列31aの各動翼32と翼溝28との隙間101の軸方向Daの一端(第一端)である上流側端部101aが繋がっている。隙間101は、空間17内の蒸気の圧力P1よりも高い圧力P2の蒸気が存在する蒸気主流路室12の蒸気が、軸方向Daの他端(第二端)である下流側端部101bから上流側端部101aに向かって逆流する。すなわち、図2に示したように、係合凸部38A、38B、38Cの翼根内側面38gと、係合凹部29A、29B、29Cの翼溝外側面29gとの間に形成された各隙間101は、連通路102として機能する。これにより、隙間流路100Aは、連通路102を介して空間17内の蒸気の圧力P1よりも高い圧力P2の蒸気が存在する蒸気主流路室12と連通している。
 図3に示すように、隙間流路100Aにおいては、ノズル室11から調速段静翼列41aの静翼42を通った蒸気主流路15の蒸気の一部が、内側リング46の後端46bと、調速段動翼列31aのプラットフォーム35の端面35uとの隙間から、隙間流路100Aに流れ込む。
 一方、連通路102を通して、空間17よりも高い圧力P2を有している蒸気主流路室12の蒸気Shが、隙間流路100Aに噴出して流れ込む。すると、隙間流路100Aにおいては、連通路102から噴出された高圧の蒸気Shにより、蒸気主流路15から隙間流路100Aに流入する蒸気Sの流れが縮流される。この縮流効果によって、隙間流路100Aに流入する蒸気Sの流れ込みを抑えることができる。
 以上のように、本実施形態の蒸気タービン1によれば、蒸気主流路15を流れる蒸気Sの一部が隙間流路100Aに流入する。隙間流路100Aには、空間17内の蒸気Sの圧力よりも圧力の高い蒸気主流路室12内の蒸気Shが、連通路102を通って流れ込む。これにより、隙間流路100A内を流れる蒸気主流路15から漏れ出た蒸気Sの流れが縮流される。つまり、蒸気主流路15から隙間流路100Aに流れ出た蒸気Sの流れが阻害され、蒸気主流路15から隙間流路100Aに漏れ出す蒸気Sの量を抑えることができる。したがって、蒸気主流路15を流れる蒸気Sが径方向内側Driに漏れる量を低減し、タービン効率を改善することが可能となる。
 また、隙間流路100Aに、動翼列31側から、静翼列41側に向かって延びるアキシャルフィン35Fa及び35Fbを備えている。そのため、調速段動翼列31aと調速段静翼列41aとの軸方向Daの間の間隔を狭めて、隙間流路100Aに流入する蒸気Sの量をより抑えることができる。したがって、蒸気主流路15を流れる蒸気Sが径方向内側Driに漏れる量をより低減することができる。
 また、隙間流路100Aの流路幅は、アキシャルフィン35Fa及び35Fbの先端部と、調速段静翼列41aの内側リング46の後端46bとの軸方向Daのクリアランスよりも大きく形成されている。これにより、調速段動翼列31aと調速段静翼列41aとの間に、必要最低限の流路幅を有する隙間流路100Aを形成することができる。したがって,連通路102から噴出する蒸気Shによる縮流効果を最も効率的に利用した隙間流路100Aを形成することができる。
 また、隙間流路100Aの流路幅は、調速段動翼列31aのプラットフォーム35の端面35uと、調速段静翼列41aの内側リング46の後端46bとのクリアランスよりも小さく形成されている。これにより、調速段動翼列31aと調速段静翼列41aとの間を広げすぎて連通路102から噴出する蒸気Shの影響がなくなってしまうことを抑えて、隙間流路100Aを形成することができる。
 したがって、上記のような流路幅で隙間流路100Aを形成することで、連通路102から噴出する蒸気Shによる縮流効果を効率的に利用した隙間流路100Aを形成することができる。
(第2実施形態)
 次に、この発明にかかる蒸気タービンの第2実施形態について説明する。この第2実施形態で示す蒸気タービンは、第1実施形態の蒸気タービンに対して、隙間流路100Bが異なるのみである。したがって、第2実施形態の説明においては、第1実施形態と同一部分に同一符号を付して説明するとともに重複説明を省略する。つまり、第1実施形態で説明した構成と共通する蒸気タービンの全体構成については、その説明を省略する。
 図4は、この発明の第2実施形態の蒸気タービンにおける調速段の静翼列及び動翼列の断面図である。
 図4に示すように、第2実施形態の蒸気タービン1において、調速段50aの動翼列31のディスク部23は、上流側Dauを向く上流側面23uに、ディスク第一直交面23pと、ディスク中間周面23qと、ディスク第二直交面23rと、が形成されている。
 ディスク第一直交面23pは、プラットフォーム35の上流側Dauの端面35uから径方向内側Driに向かって軸方向Daに直交して延びている。ディスク中間周面23qは、ディスク第一直交面23pから軸方向Daに沿って上流側Dauに延び、径方向外側Droを向いている。ディスク第二直交面23rは、ディスク中間周面23qの上流側Dauから径方向内側Driに向かって軸方向Daに直交して延びている。
 第2実施形態の調速段静翼列41aには、第一直交面46pと、中間周面46qと、第二直交面46rと、が形成されている。
 第一直交面46pは、調速段動翼列31aのプラットフォーム35の端面35u及び調速段ディスク部23aのディスク第一直交面23pに対向している。
 中間周面46qは、第一直交面46pから軸方向Daに沿って上流側Dauに延び、径方向内側Driを向いている。
 第二直交面46rは、中間周面46qの上流側Dauからの径方向内側Driに向かって軸方向Daに直交して延びている。
 これら端面35u、ディスク第一直交面23p、ディスク中間周面23q、及びディスク第二直交面23rと、第一直交面46p、中間周面46q、及び第二直交面46rとは、それぞれ所定のクリアランスを隔ててほぼ平行に形成されている。つまり、端面35u、ディスク第一直交面23p、ディスク中間周面23q、及びディスク第二直交面23rと、第一直交面46p、中間周面46q、及び第二直交面46rとによって隙間流路100Bが形成されている。
 また、中間周面46qには、シールフィン60が設けられている。シールフィン60は、中間周面46qから径方向内側Driにディスク第二直交面23rに向かって突出している。
 なお、中間周面46qに設けられるシール部材は、シールフィン60に限定されるものではなく、中間周面46qとディスク第二直交面23rとの間を封止することができればよい。例えば、中間周面46qとディスク第二直交面23rとの間にラビリンスシールが設けられていてもよい。
 調速段静翼列41aと調速段動翼列31aとの間に形成された隙間流路100Bは、外周側流路部108と、中間流路部109と、内周側流路部110と、を有する。
 外周側流路部108は、プラットフォーム35の端面35u及びディスク第一直交面23pと第一直交面46pとの間に設けられている。外周側流路部108は、蒸気主流路15から径方向内側Driに向かって延びている。
 中間流路部109は、ディスク中間周面23qと中間周面46qとの間に設けられている。中間流路部109は、外周側流路部108に接続され、外周側流路部108から軸方向Daの上流側Dauに延びている。
 内周側流路部110は、ディスク第二直交面23rと第二直交面46rとの間に形成されている。内周側流路部110は、中間流路部109から径方向内側Driに向かって空間17に延びている。
 この隙間流路100Bには、調速段動翼列31aの各動翼32と翼溝28との隙間101の上流側端部101aが繋がっている。隙間101は、空間17内の蒸気の圧力P1よりも高い圧力P2の蒸気が存在する蒸気主流路室12の蒸気が、下流側端部101bから上流側端部101aに向かって逆流する。すなわち、図2に示した係合凸部38A、38B、38Cの翼根内側面38gと、係合凹部29A、29B、29Cの翼溝外側面29gとの間に形成された各隙間101は、連通路102として機能する。
 図4に示すように、隙間流路100Bにおいては、ノズル室11から調速段静翼列41aを通った蒸気主流路15の蒸気Sの一部が、内側リング46の後端46bと、調速段動翼列31aのプラットフォーム35の端面35uとの隙間から、隙間流路100Bに流れ込む。
 一方、連通路102を通して、蒸気主流路室12の高い圧力の蒸気Shが、隙間流路100Bに噴出して流れ込む。すると、隙間流路100Bにおいては、連通路102から噴出された高圧の蒸気Shにより、蒸気主流路15から隙間流路100Bに流入する蒸気Snの流れが縮流される。この縮流効果によって、隙間流路100Bに流入する蒸気Snの流れ込みを抑えることができる。
 この実施形態の蒸気タービン1によれば、蒸気主流路15を流れる蒸気Sの一部が隙間流路100Bの外周側流路部108に流入する。外周側流路部108に流入した蒸気Sは、中間流路部109及び内周側流路部110を経て空間17まで流通する。この際、隙間流路100Bには、空間17内の蒸気Sの圧力よりも圧力の高い蒸気主流路室12内の蒸気Shが連通路102を通って流れ込む。これにより、隙間流路100Bの外周側流路部108や内周側流路部110内を流れる蒸気Sの流れが縮流される。つまり、蒸気主流路15から隙間流路100Bに流れ出た蒸気Sの流れが阻害され、蒸気主流路15から隙間流路100Bに漏れ出す蒸気Sの量を抑えることができる。したがって、蒸気主流路15を流れる蒸気Sが径方向内側Driに漏れることを抑え、タービン効率を改善することが可能となる。
 また、隙間流路100Bは、外周側流路部108、中間流路部109、内周側流路部110の順に径方向外側Droから径方向内側Driに向かってクランク状に大きく屈曲している。そのため、隙間流路100Bの流路抵抗が大きくなり、蒸気主流路15から流れ出る蒸気Sの量を抑えることができる。
 さらに、クランク状に屈曲した部分である中間流路部109には、径方向内側Driに延びるシールフィン60が設けられている。これにより、隙間流路100Bにおけるシール性を高めることができる。
(その他の実施形態)
 なお、この発明は、上述した各実施形態に限定されるものではなく、この発明の趣旨を逸脱しない範囲において、設計変更可能である。
 例えば、各動翼32の係合凸部38A、38B、38Cの翼根内側面38gと、翼溝28の係合凹部29A、29B、29Cの翼溝外側面29gとの間に形成された隙間101を、連通路102として用いるようにしたがこれに限らない。
 例えば、係合凸部38A、38B、38Cの翼根内側面38gと、翼溝28の係合凹部29A、29B、29Cの翼溝外側面29gとの間に限らず、翼根36の内周部や、ディスク部23で周方向Dcにおいて互いに隣接する翼溝28の間に、ディスク部23の上流側Dauと下流側Dadとを連通する連通路102を形成しても良い。
 さらに、各動翼32の係合凸部38A、38B、38Cの翼根内側面38gに、翼根内側面38gから径方向外側Droに窪むよう形成した凹部を連通路102としてもよい。また、翼溝28の係合凹部29A、29B、29Cの翼溝外側面29gに、翼溝外側面29gから径方向内側Driに窪むよう形成した凹部を連通路102としてもよい。
 さらに、蒸気タービン1の各部の構成については、適宜変更することが可能である。
 調速段を構成する静翼列及び動翼列の隙間に形成された隙間流路に連通路から蒸気が流入することで、蒸気主流路を流れる蒸気の漏れ量を低減し、タービン効率を改善することが可能となる。
 1  蒸気タービン
 10  ケーシング
 11  ノズル室
 12  蒸気主流路室
 13  排気室
 15  蒸気主流路
 16  シール部材
 17  空間
 20  ロータ
 21  ロータ軸
 22  軸芯部
 23  ディスク部
 23f  ロータ外周面
 23k  ディスク傾斜面
 23n  厚肉部
 23p  ディスク第一直交面
 23q  ディスク中間周面
 23r  ディスク第二直交面
 23t  直交面
 23u  上流側面
 23z  肉厚増大部
 28  翼溝
 29、29A、29B、29C  係合凹部
 29f  翼溝内側面
 29g  翼溝外側面
 31  動翼列
 32  動翼
 33  翼体
 34  シュラウド
 35  プラットフォーム
 35Fa、35Fb  アキシャルフィン(フィン)
 35f  プラットフォーム内周面
 35u  端面
 36  翼根
 38、38A、38B、38C  係合凸部
 38f  翼根外側面
 38g  翼根内側面
 39A  第一幹部
 39B  第二幹部
 39C  第三幹部
 41  静翼列
 41k  傾斜面
 41s、46p  第一直交面
 41t、46r  第二直交面
 42  静翼
 43  外側リング
 44  リング本体部
 45  リング突出部
 46  内側リング
 46d  下流側面
 46b  後端
 46q  中間周面
 50  段
 50a  調速段
 50b  中圧段
 50c  低圧段
 60  シールフィン
 100A、100B  隙間流路
 101  隙間
 101a  上流側端部
 101b  下流側端部
 102  連通路
 103,108  外周側流路部
 104  傾斜流路部
 105、110  内周側流路部
 109  中間流路部
 121、122  凹部
 Ar  軸線
 Da  軸方向
 Dad  下流側
 Dau  上流側
 Dc  周方向
 Dr  径方向
 Dri  径方向内側
 Dro  径方向外側
 P1  圧力
 P2  圧力
 R1  寸法
 S、Sh  蒸気

Claims (4)

  1.  軸線を中心として回転する軸芯部と、前記軸芯部に固定されて前記軸芯部における径方向外側に広がるディスク部とを有するロータ軸と、
     前記ディスク部の外周に固定され、前記軸芯部が延びる軸方向に並んでいる複数の動翼列と、
     複数の前記動翼列毎に、前記動翼列の前記軸方向における上流側に隣接している静翼列と、を備え、
     前記動翼列と、前記動翼列の上流側に隣接配置されている前記静翼列との組で構成される複数の段のうち、最も上流側に配置されている調速段を構成する前記静翼列及び前記動翼列の隙間に、前記軸方向に延在して蒸気が流通する蒸気主流路から径方向内側に延びる隙間流路が形成され、
     一端が前記隙間流路に連通し、他端が前記隙間流路内の前記蒸気の圧力よりも高い圧力の前記蒸気が存在する空間に連通する連通路が前記調速段の前記動翼列が固定された前記ディスク部に形成されている蒸気タービン。
  2.  前記隙間流路の前記径方向の前記蒸気主流路側に設けられ、前記動翼列から前記静翼列に向かって延びるフィンを備える請求項1に記載の蒸気タービン。
  3.  前記隙間流路の流路幅は、前記フィンの先端部と前記静翼列の下流側の端部との隙間よりも大きく、前記調速段の前記動翼列の上流側の端部と前記調速段の前記静翼列の下流側の端部との隙間よりも小さい請求項2に記載の蒸気タービン。
  4.  前記隙間流路は、前記蒸気主流路から前記径方向内側に延びる外周側流路部と、
     前記外周側流路部に接続され、前記軸方向に延びる中間流路部と、
     前記中間流路部から前記径方向内側に延びる内周側流路部と、
    を備える請求項1から3の何れか一項に記載の蒸気タービン。
PCT/JP2015/073513 2015-08-21 2015-08-21 蒸気タービン WO2017033227A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2015/073513 WO2017033227A1 (ja) 2015-08-21 2015-08-21 蒸気タービン
US15/572,528 US10513937B2 (en) 2015-08-21 2015-08-21 Steam turbine
EP15902199.7A EP3284915B1 (en) 2015-08-21 2015-08-21 Steam turbine
JP2017536070A JP6507460B2 (ja) 2015-08-21 2015-08-21 蒸気タービン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/073513 WO2017033227A1 (ja) 2015-08-21 2015-08-21 蒸気タービン

Publications (1)

Publication Number Publication Date
WO2017033227A1 true WO2017033227A1 (ja) 2017-03-02

Family

ID=58100156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073513 WO2017033227A1 (ja) 2015-08-21 2015-08-21 蒸気タービン

Country Status (4)

Country Link
US (1) US10513937B2 (ja)
EP (1) EP3284915B1 (ja)
JP (1) JP6507460B2 (ja)
WO (1) WO2017033227A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD941360S1 (en) * 2019-01-31 2022-01-18 Elliott Company Oval steam turbine casing
JP7356285B2 (ja) 2019-07-31 2023-10-04 三菱重工業株式会社 軸流タービン
JP2021110291A (ja) * 2020-01-10 2021-08-02 三菱重工業株式会社 動翼、及び軸流回転機械

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257410A (en) * 1975-11-07 1977-05-11 Hitachi Ltd Leakage sealing mechanism for axial fluid machine
JPH03291542A (ja) * 1990-04-10 1991-12-20 Mitsubishi Heavy Ind Ltd 漏洩蒸気温度計測方法
JPH10252412A (ja) * 1997-03-12 1998-09-22 Mitsubishi Heavy Ind Ltd ガスタービンシール装置
JPH1122413A (ja) * 1997-07-08 1999-01-26 Mitsubishi Heavy Ind Ltd ガスタービン静翼のシール装置
JP2005240727A (ja) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd 衝動型軸流タービン
JP2015081604A (ja) * 2013-10-24 2015-04-27 ゼネラル・エレクトリック・カンパニイ 圧縮機の前方への漏れを制御するための方法およびシステム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55177006U (ja) * 1979-06-06 1980-12-19
DE3006286A1 (de) * 1980-02-01 1981-08-06 BBC AG Brown, Boveri & Cie., Baden, Aargau Ueberdruckdampfturbine mit einer gleichdruckregelstufe
JPS59130005U (ja) * 1983-02-21 1984-08-31 株式会社東芝 蒸気タ−ビン
JPS6170102A (ja) * 1984-09-12 1986-04-10 Mitsubishi Heavy Ind Ltd 蒸気タ−ビンのノズル室
FR2675536B1 (fr) * 1991-04-19 1994-12-09 Alsthom Gec Turbine a action a rotor tambour et perfectionnement a ces turbines.
JPH06200704A (ja) * 1992-12-28 1994-07-19 Mitsubishi Heavy Ind Ltd 蒸気タービンノズル室
JPH0734807A (ja) * 1993-07-26 1995-02-03 Mitsubishi Heavy Ind Ltd 複流型蒸気タービン
JP2895363B2 (ja) * 1993-09-27 1999-05-24 三菱重工業株式会社 蒸気タービンロータ冷却装置
JP2004332616A (ja) 2003-05-07 2004-11-25 Toshiba Corp 軸流型ターボ機械
US6896482B2 (en) * 2003-09-03 2005-05-24 General Electric Company Expanding sealing strips for steam turbines
US8047767B2 (en) * 2005-09-28 2011-11-01 General Electric Company High pressure first stage turbine and seal assembly
US8888436B2 (en) * 2011-06-23 2014-11-18 General Electric Company Systems and methods for cooling high pressure and intermediate pressure sections of a steam turbine
JP2013076341A (ja) * 2011-09-30 2013-04-25 Mitsubishi Heavy Ind Ltd 蒸気タービンのシール構造
JP5951534B2 (ja) * 2013-03-13 2016-07-13 株式会社東芝 蒸気タービン
JP2015025404A (ja) 2013-07-25 2015-02-05 株式会社東芝 軸流蒸気タービンのシール構造
US9702261B2 (en) 2013-12-06 2017-07-11 General Electric Company Steam turbine and methods of assembling the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257410A (en) * 1975-11-07 1977-05-11 Hitachi Ltd Leakage sealing mechanism for axial fluid machine
JPH03291542A (ja) * 1990-04-10 1991-12-20 Mitsubishi Heavy Ind Ltd 漏洩蒸気温度計測方法
JPH10252412A (ja) * 1997-03-12 1998-09-22 Mitsubishi Heavy Ind Ltd ガスタービンシール装置
JPH1122413A (ja) * 1997-07-08 1999-01-26 Mitsubishi Heavy Ind Ltd ガスタービン静翼のシール装置
JP2005240727A (ja) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd 衝動型軸流タービン
JP2015081604A (ja) * 2013-10-24 2015-04-27 ゼネラル・エレクトリック・カンパニイ 圧縮機の前方への漏れを制御するための方法およびシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3284915A4 *

Also Published As

Publication number Publication date
US10513937B2 (en) 2019-12-24
EP3284915B1 (en) 2019-06-19
EP3284915A4 (en) 2018-04-25
JPWO2017033227A1 (ja) 2018-03-08
JP6507460B2 (ja) 2019-05-08
US20180156050A1 (en) 2018-06-07
EP3284915A1 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
US9476315B2 (en) Axial flow turbine
US20080018054A1 (en) Aspirating labyrinth seal
JP6408888B2 (ja) タービンバケット閉鎖組立体及びその組立方法
US20060275107A1 (en) Combined blade attachment and disk lug fluid seal
US20140234076A1 (en) Outer rim seal assembly in a turbine engine
JP2003184508A (ja) 回転機械における出没式のパッキンセグメントのための蒸気供給孔
JP2006342796A (ja) ガスタービンエンジンのシールアッセンブリ、ロータアッセンブリおよびロータアッセンブリ用ブレード
WO2017033227A1 (ja) 蒸気タービン
MXPA06015256A (es) Maquinas giratorias y metodos para ensamblar.
WO2020008771A1 (ja) 静翼セグメント、及び蒸気タービン
CN104736906B (zh) 旋转机械
JP6603971B2 (ja) 蒸気タービン
EP2649279B1 (en) Fluid flow machine especially gas turbine penetrated axially by a hot gas stream
CN110431286B (zh) 用于涡轮机的尖端平衡狭缝
KR102509379B1 (ko) 회전 기계 및 시일 부재
US20140363283A1 (en) Shroud arrangement for a fluid flow machine
JP6521273B2 (ja) 蒸気タービン
EP3663514B1 (en) Steam turbine blade and steam turbine
JP6197985B2 (ja) シール構造、これを備えたタービン装置
JP2004332616A (ja) 軸流型ターボ機械
US11613997B2 (en) Steam turbine
US20170284209A1 (en) Turbine rotor assembly, turbine, and rotor blade
JP2015178832A (ja) 冷却孔入口を備えるロータ軸

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902199

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15572528

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017536070

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2015902199

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE