WO2017030416A1 - 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 - Google Patents
리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 Download PDFInfo
- Publication number
- WO2017030416A1 WO2017030416A1 PCT/KR2016/009183 KR2016009183W WO2017030416A1 WO 2017030416 A1 WO2017030416 A1 WO 2017030416A1 KR 2016009183 W KR2016009183 W KR 2016009183W WO 2017030416 A1 WO2017030416 A1 WO 2017030416A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrolyte
- secondary battery
- lithium secondary
- group
- formula
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a lithium secondary battery electrolyte and a lithium secondary battery comprising the same, which can ensure cycle life characteristics and high temperature durability.
- a battery is a device that converts chemical energy generated during the electrochemical redox reaction of chemical substances into electrical energy.
- a primary battery that needs to be discarded when all the energy inside the battery is consumed and a rechargeable battery that can be recharged many times Can be divided into:
- the secondary battery has an advantage of being able to be charged and discharged many times using reversible mutual conversion of chemical energy and electrical energy.
- the lithium secondary battery is rechargeable, and has an advantage that the energy density per unit weight is three times higher than that of a conventional lead storage battery, nickel-cadmium battery, nickel hydrogen battery, and nickel zinc battery, and enables fast charging. It is widely used as a driving power source for portable electronic devices such as video cameras, mobile phones, and notebook computers.
- the lithium secondary battery includes a cathode including a cathode active material capable of intercalation and deintercalation of lithium, and a cathode including a cathode active material capable of intercalating and deintercalating lithium. It is used by injecting an electrolyte solution into a containing battery cell.
- a non-aqueous organic solvent in which lithium salt is dissolved is used instead of an aqueous electrolyte having high reactivity with lithium.
- the organic solvent is preferably stable at high voltage, has high ion conductivity, high dielectric constant, and low viscosity.
- a passivation layer such as a solid electrolyte interface (hereinafter referred to as an 'SEI film') is formed on the surface of the cathode, and a protection layer is formed on the surface of the anode.
- the SEI membrane and the protective layer prevent the decomposition of the electrolyte during charging and discharging and serve as an ion tunnel. Therefore, as the SEI film and the protective layer have high stability and low resistance, the lifespan of the lithium secondary battery may be improved.
- the present invention provides a lithium secondary battery electrolyte comprising an electrolyte additive that can improve the battery performance.
- the present invention provides a lithium secondary battery comprising the electrolyte solution for the lithium secondary battery.
- An electrolyte solution for a lithium secondary battery containing an electrolyte salt and an organic solvent
- the electrolyte provides a lithium secondary battery electrolyte further comprising a compound represented by the following formula (1) as an electrolyte additive.
- R is a linear or branched alkylene group having 1 to 3 carbon atoms
- R 1 is a linear or branched alkylene group having 1 to 5 carbon atoms or an arylene group having 5 to 8 carbon atoms,
- n is an integer of 0-10.
- the compound represented by Chemical Formula 1 may be included in an amount of 0.05 wt% to 7 wt% based on the total weight of the electrolyte.
- a lithium secondary battery including an electrolyte solution for a lithium secondary battery of the present invention.
- a lithium secondary battery can be manufactured.
- Example 1 is a graph showing a result of maintaining a high temperature (60 ° C.) storage capacity of a lithium secondary battery according to Experimental Example 1 of the present invention.
- Figure 2 is a graph showing the results of the change in the thickness of the cell at high temperature (60 °C) storage of the lithium secondary battery according to Experimental Example 1 of the present invention.
- a and “b” means the number of carbon atoms in the specific functional group. That is, the functional group may include “a” to "b” carbon atoms.
- “carbon atoms, linear or branched alkylene group of 1 to 3” is an alkyl group containing carbon atoms of 1 to 3 carbon atoms, i.e. -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, -CH 2 CH (CH 3 )-, and -CH (CH 3 ) CH 2- .
- alkyl group or "alkylene group” means a branched or unbranched aliphatic hydrocarbon group.
- the alkyl group or alkylene group may be substituted or unsubstituted.
- aryl group or "arylene group” herein means an aromatic ring or aromatic ring system (i.e., a ring sharing adjacent atom pairs) containing only carbon in the ring backbone. When aryl is a ring system, all rings in the system are aromatic.
- the arylene group is a phenylene group, biphenylene group, naphthylene group, phenanthrenylene group, naphthacenylene group and the like, but is not limited thereto. In other embodiments, aryl groups may be substituted or unsubstituted.
- Lithium secondary batteries known to date are difficult to prevent corrosion of metal materials, and in particular, there are insufficient points in maintaining performance at effective levels under extreme conditions such as overcharge, overdischarge, and high temperature storage. Accordingly, the present invention provides a lithium secondary battery electrolyte comprising an additive capable of preventing chemical reaction between the electrolyte and the electrode by forming an SEI film and a protective layer on the electrode surface, respectively, to improve the life characteristics and high temperature safety lithium secondary The battery can be manufactured.
- An electrolyte solution for a lithium secondary battery containing an electrolyte salt and an organic solvent
- the electrolyte provides a lithium secondary battery electrolyte further comprising a compound represented by the following formula (1) as an electrolyte additive.
- R is a linear or branched alkylene group having 1 to 3 carbon atoms
- R 1 is a linear or branched alkylene group having 1 to 5 carbon atoms or an arylene group having 5 to 8 carbon atoms,
- n is an integer of 0-10.
- R is a linear alkylene group having 1 to 3 carbon atoms
- R 1 is an arylene group having 5 to 8 carbon atoms
- n is an integer of 0 to 5.
- the electrolyte solution of the present invention when the electrolyte solution contains a compound containing a sulfonate group as a substituent, such as the compound represented by the formula (1), by the coordination bond between the sulfonate group and the electrode current collector metal on the electrode surface A stable film can be formed to prevent corrosion of the electrode, particularly the anode surface. That is, when the electrode surface of the lithium secondary battery is exposed to the electrolyte under extreme conditions such as overcharge, overdischarge, and high temperature storage, it reacts with the sulfonate group and the hydroxyl group of the electrode surface of the compound included in the electrolyte additive as shown in Scheme 1 below. While water molecules are detached and oxygen of the sulfonate group forms coordination bonds with sites having a positive charge on the surface of the metal component of the electrode current collector, a film is formed on the surface of the electrode. The chemical reaction of the electrode can be suppressed.
- a compound containing a sulfonate group as a substituent such
- the compound containing an unsaturated functional group such as a triple bond or a polar functional group at the terminal since it accepts electrons more easily from the negative electrode than the polar solvent, it is reduced at a voltage lower than that of the polar solvent and thus polarized.
- the solvent may be reduced before it is reduced. That is, the unsaturated or polar functional groups contained in the compound represented by Formula 1 may be more easily reduced and / or decomposed into radicals and / or ions upon charging.
- radicals and / or ions may precipitate or form insoluble compounds by bonding with lithium ions, and the insoluble compounds react with various functional groups present on the surface of the carbon-based negative electrode or the carbon-based negative electrode itself to form covalent bonds. Or adsorbed on the cathode surface.
- a modified SEI film having improved stability capable of maintaining a solid state even after prolonged charging and discharging is formed on the cathode surface.
- Such a rigid modified SEI membrane can effectively reduce or prevent the penetration of the electrolyte can reduce the gas generated during high temperature storage.
- a compound containing an isocyanate group or a nitrile group as a substituent such as the compound represented by Chemical Formula 1
- the electrolyte additive of the present invention includes a compound containing the isocyanate group or the nitrile group as a substituent
- the complex is formed on the electrode surface by reacting with various transition metal ions or hydroxyl groups present on the electrode surface as shown in Scheme 2 below. It can form a modified protective film consisting of a complex (complex).
- the coating formed by such a composite can ensure stability by maintaining a solid state for a long time even after high temperature, charging and discharging, compared to the coating (protective layer) formed only by decomposition of the organic solvent.
- This robust modified protective layer can more effectively block the entry of the organic solvent solvated by the lithium ions into the electrode during the intercalation of the lithium ions. Therefore, since the modified protective film more effectively blocks direct contact between the organic solvent and the positive electrode, reversibility of lithium ion occlusion / release can be further improved, and consequently, a high temperature stability improvement effect of the battery can be realized.
- the compound represented by the formula (1) containing a triple bond structure, both a sulfonate group and an isocyanate group (-NCO) in the compound as an electrolyte additive, the positive and negative electrode surface By forming stable SEI films and protective films on the substrates, high temperature life characteristics and high temperature durability of the lithium secondary battery can be remarkably improved even under extreme conditions such as high temperature storage.
- the compound represented by Formula 1 may be represented by the following Formula 1a or 1b.
- the compound represented by Formula 1 may be included in 0.05 wt% to 7 wt%, preferably 0.1 wt% to 5 wt% based on the total weight of the electrolyte. If the additive is contained in less than 0.05% by weight, since the effect of forming the SEI film and the protective film on the electrode surface is inadequate, the capacity deteriorates with a longer storage period, and when the additive content exceeds 7% by weight, such as side reactions. Since the gas generation suppression effect is insufficient due to the generation, it may cause a problem that the battery thickness increases with the interpolation period.
- the electrolyte salt is (i) Li +, Na + and K + cations and (ii) selected from the group consisting of PF 6 -, BF 4 -, Cl -, Br -, I - , ClO 4 -, AsF 6 - , B 10 Cl 10 -, CH 3 CO 2 -, CF 3 SO 3 -, CF 3 SO 3 -, SbF 6 -, AlCl 4 -, AlO 4 -, CH 3 SO 3 - , N (CF 3 SO 2) 2 - and C (CF 2 SO 2) 3 - can be made of a combination of an anion selected from the group, typically, examples of LiCl, LiBr, LiI, LiClO 4, LiBF 4, LiB 10 consisting of Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCH 3 CO 2 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4
- the electrolyte salt may include a single substance or a mixture of two or more selected from the group consisting of LiPF 6 , LiCH 3 CO 2 , LiCF 3 CO 2 , LiCH 3 SO 3 , LiFSI, LiTFSI, and (CF 3 SO 2 ) 2 NLi. have.
- the electrolyte salt may be appropriately changed within a usable range, but may be included in an electrolyte solution at a concentration of 0.8 M to 1.5 M in order to obtain an effect of forming an anti-corrosion coating on the surface of an electrode. If the concentration of the electrolyte salt exceeds 1.5M, it is difficult to realize a stable film forming effect.
- the non-aqueous organic solvent may include conventional organic solvents usable as non-aqueous organic solvents of lithium secondary batteries, such as cyclic carbonate solvent, linear carbonate solvent, ester solvent or ketone solvent. These may be used alone or in combination of two or more in an appropriate ratio.
- the cyclic carbonate solvent may include one or two or more mixed solutions selected from the group consisting of ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate (BC).
- the linear carbonate solvent is dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), ethyl methyl carbonate (EMC), vinylene carbonate (VC), fluoroethylene carbonate (FEC), methyl 1 type, or 2 or more types of mixed solution chosen from the group which consists of propyl carbonate (MPC) and ethylpropyl carbonate (EPC).
- ester solvent is methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone and ⁇ -1 type, or 2 or more types of mixed solution chosen from the group which consists of caprolactone is mentioned.
- polymethylvinyl ketone or the like may be used as the ketone solvent.
- the present invention provides a lithium secondary battery including the positive electrode, the negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte solution, the lithium secondary battery comprising the electrolyte solution for the lithium secondary battery of the present invention as the electrolyte solution.
- the positive electrode may be formed by coating a positive electrode active material on an electrode current collector, wherein the positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery, for example, stainless steel, Aluminum, nickel, titanium, calcined carbon, or a surface treated with carbon, nickel, titanium, silver, or the like on the surface of aluminum or stainless steel may be used.
- the positive electrode current collector may use various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric having fine irregularities formed on a surface thereof so as to increase the adhesion with the positive electrode active material.
- the positive electrode active material is not particularly limited as long as it is a lithium-containing transition metal oxide used as a positive electrode active material in the manufacture of a general lithium secondary battery.
- the negative electrode may be formed by coating a negative electrode active material on a negative electrode current collector, and the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
- the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
- copper and stainless steel Aluminum, nickel, titanium, calcined carbon, surface treated with carbon, nickel, titanium, silver, and the like on the surface of copper or stainless steel, aluminum-cadmium alloy and the like can be used.
- the negative electrode current collector like the positive electrode current collector, may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven fabric having fine irregularities formed on a surface thereof.
- the negative electrode active material may be a carbon material, lithium metal, silicon or tin that can be stored and released lithium ions in the manufacturing of a general lithium secondary battery, for example, low crystalline carbon and high crystallinity Both carbon and the like can be used.
- Soft crystalline carbon and hard carbon are typical low crystalline carbon
- high crystalline carbon is natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch-based carbon fiber.
- high temperature calcined carbon such as mesophase pitch based carbonfiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch derived cokes.
- the positive electrode and the negative electrode active material may further include a binder and a conductive material.
- the binder is a component that assists the bonding between the conductive material, the active material and the current collector, and is typically added in an amount of 1 to 50 wt% based on the total weight of the electrode mixture.
- binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro Low ethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers thereof, and the like.
- PVDF polyvinylidene fluoride
- CMC carboxymethyl cellulose
- EPDM ethylene-propylene-diene polymer
- sulfonated-EPDM styrene-butadiene rubber
- fluorine rubber various
- the conductive material is a component for further improving the conductivity of the electrode active material, and may be added in an amount of 1 to 20 wt% based on the total weight of the electrode mixture.
- a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
- the electrolyte solution containing the additive for preventing corrosion of the electrode of the present invention is impregnated with an electrolyte solution
- the battery The formation process can be performed.
- the urethane reaction efficiency between -NCO, which is the terminal group of the compound represented by Formula 1, and OH, which is an impurity on the electrode surface is further increased, and thus the protective effect is more enhanced. I think it will increase.
- a passivation film is formed on the electrode surface to prevent the electrode surface from being exposed even under extreme conditions such as overcharge, overdischarge, and high temperature storage, thereby preventing electrode corrosion.
- Various performances, such as the cycle life characteristic of a secondary battery, can be improved.
- a negative electrode active material slurry was prepared. The slurry was applied on a 10 ⁇ m thick copper current collector using a doctor blade to a thickness of about 60 ⁇ m, dried for 0.5 hours in a hot air dryer at 100 ° C., and then dried again under vacuum, 120 ° C. for 4 hours, and rolled. (roll press) to prepare a negative electrode plate.
- SBR styrene-butadiene rubber
- CMC carboxymethylcellulose
- FCG6 artificial graphite
- the slurry was applied on a 20 ⁇ m thick aluminum current collector using a doctor blade, dried about 0.5 ⁇ m in a hot air dryer at 100 ° C., and then dried again under vacuum, 120 ° C. for 4 hours, and rolled. (roll press) to prepare a positive electrode plate.
- An electrode assembly is manufactured through a separator of porous polyethylene having a thickness of 14 ⁇ m coated with a ceramic between the negative electrode prepared above and the negative electrode, the electrode assembly is placed in a case, and the prepared electrolyte is transferred into the case. Injected to prepare a lithium secondary battery.
- An electrolyte and a lithium secondary battery including the same were prepared in the same manner as in Example 1, except that 3 wt% of the compound of Formula 1b was used instead of the compound of Formula 1a as an electrolyte additive.
- An electrolyte solution and a lithium secondary battery including the same were prepared in the same manner as in Example 1, except that 0.02% by weight of the compound of Formula 1a was included as an electrolyte additive.
- An electrolyte solution and a lithium secondary battery were manufactured in the same manner as in Example 1, except that 7.3 wt% of the compound of Formula 1a was included as an electrolyte additive.
- the secondary batteries of Examples 1 and 2 have a lower capacity decay reduction rate according to storage periods than the secondary batteries of Comparative Examples 1 to 3.
- the secondary batteries of Examples 1 and 2 have a lower cell thickness increase (change) according to the storage period compared to those of Comparative Examples 1 to 3.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
Abstract
본 발명은 전극 표면 상에 안정적인 SEI 막 및 보호층을 형성하여 전해액과 전극 간의 화학 반응을 방지할 수 있는 첨가제를 포함하는 리튬 이차전지용 전해액과, 이를 포함함으로써 수명 특성 및 고온 안전성이 개선된 리튬 이차전지에 관한 것이다.
Description
관련 출원(들)과의 상호 인용
본 출원은 2015년 08월 19일자 한국 특허 출원 제10-2015-0116637호 및 2016년 08월 18일자 한국 특허 출원 제10-2016-0104607호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 사이클 수명 특성 및 고온 내구성을 확보할 수 있는 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지에 관한 것이다.
최근 첨단 전자산업의 발달로 전자 장비의 소형화 및 경량화가 가능하게 됨에 따라 휴대용 전자 기기의 사용이 증가하고 있고, 이러한 휴대용 전자 기기의 전원으로 높은 에너지 밀도를 가진 전지의 필요성이 증대되고 있다.
전지는 내부에 들어 있는 화학 물질의 전기 화학적 산화 환원 반응시 발생하는 화학 에너지를 전기 에너지로 변환하는 장치로, 전지 내부의 에너지가 모두 소모되면 폐기하여야 하는 일차전지와 여러 번 충전할 수 있는 이차전지로 나눌 수 있다.
상기 이차전지는 화학 에너지와 전기 에너지의 가역적 상호 변환을 이용하여 여러 번 충,방전하여 사용할 수 있다는 장점이 있다. 특히, 리튬 이차전지는 재충전이 가능하고, 기존의 납 축전지, 니켈-카드뮴 전지, 니켈수소 전지, 니켈아연 전지 등과 비교하여 단위 중량당 에너지 밀도가 3배 이상 높고 고속 충전이 가능하다는 장점이 있어, 비디오 카메라, 휴대폰, 노트북 컴퓨터 등 휴대용 전자기기의 구동 전원으로 다양하게 이용되고 있다.
리튬 이차전지는 리튬을 인터칼레이션(intercalation) 및 디인터칼레이션(deintercalation)할 수 있는 양극 활물질을 포함하는 양극과 리튬을 인터칼레이션 및 디인터칼레이션할 수 있는 음극 활물질을 포함하는 음극을 포함하는 전지 셀에 전해액을 주입하여 사용된다.
리튬 이차전지는 높은 구동 전압에서 작동되므로 리튬과 반응성이 높은 수계 전해액 대신 리튬염이 용해된 비수계 유기용매가 사용된다. 상기 유기용매는 고전압에서 안정적이며, 이온전도도와 유전율이 높고 점도가 낮은 것이 바람직하다.
예컨대, 리튬 이차전지에 카보네이트 계통의 극성 비수계 용매가 사용되면 초기 충전시 음극/양극과 전해액 사이의 부반응에 의해 전하가 과량 사용되는 비가역반응이 진행된다. 상기 비가역반응에 의해 음극 표면에 고체전해질막 (Solid Electrolyte Interface; 이하 'SEI 막'이라 칭함)과 같은 패시베이션층(passivation layer)이 형성되고, 양극 표면에는 보호층(protection layer)이 형성된다.
상기 SEI 막 및 보호층은 충,방전시에 전해액의 분해를 방지하고 이온터널(ion tunnel)의 역할을 수행한다. 따라서, 상기 SEI 막 및 보호층이 높은 안정성 및 낮은 저항을 가질수록 리튬 이차전지의 수명이 향상될 수 있다.
이에, 전지 성능을 개선하기 위하여, 우수한 안정성 및 낮은 저항을 가지는 SEI 막 및 보호층을 형성할 수 있는 유기전해액의 필요성이 대두되고 있다.
선행기술문헌
대한민국 공개특허공보 제10-2007-0031807호
상기한 문제점을 해결하기 위하여, 본 발명에서는 전지 성능을 개선할 수 있는 전해액 첨가제를 포함하는 리튬 이차전지용 전해액을 제공한다.
또한, 본 발명에서는 상기 리튬 이차전지용 전해액을 포함하는 리튬 이차전지를 제공한다.
본 발명의 일 실시예에서는
전해질염 및 유기용매를 포함하는 리튬 이차전지용 전해액으로서,
상기 전해액은 하기 화학식 1로 표현되는 화합물을 전해액 첨가제로 더 포함하는 리튬 이차전지용 전해액을 제공한다.
[화학식 1]
상기 식에 있어서,
R은 탄소수 1 내지 3의 선형 또는 분지형 알킬렌기이고,
R1은 탄소수 1 내지 5의 선형 또는 분지형 알킬렌기 또는 탄소수 5 내지 8의 아릴렌기이며,
n은 0 내지 10의 정수이다.
상기 화학식 1로 나타내는 화합물은 전해액 전체 중량을 기준으로 0.05 중량% 내지 7 중량%로 포함될 수 있다.
또한, 본 발명의 일 실시예에서는
양극, 음극, 상기 양극 및 음극 사이에 개재된 분리막, 및
본 발명의 리튬 이차전지용 전해액을 포함하는 리튬 이차전지를 제공한다.
본 발명에 따르면, 전극 표면상에 더욱 안정적인 SEI 막 및 보호층을 형성하여 전해액과 전극 간의 화학 반응을 방지할 수 있는 첨가제를 포함하는 리튬 이차전지용 전해액을 제공함으로써, 수명 특성 및 고온 안전성이 개선된 리튬 이차전지를 제조할 수 있다.
본 명세서에 첨부되는 다음의 도면은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니다.
도 1 은 본 발명의 실험예 1 에 따른 리튬 이차전지의 고온(60℃)저장 용량유지율 결과를 보여주는 그래프이다.
도 2 는 본 발명의 실험예 1 에 따른 리튬 이차전지의 고온(60℃)저장 시 셀의 두께 변화 결과를 보여주는 그래프이다.
이하, 본 발명에 대하여 상세히 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 발명의 이해를 돕기 위하여 발명자가 가장 최선의 방법으로 설명하기 위하여 개념을 적절하게 정의한 것으로, 본 발명의 범위가 이하 설명의 범위로 한정하여 해석되는 것은 아니다.
한편, 본 발명을 설명하기에 앞서, 명세서 내에서 "탄소수 a 내지 b"의 기재에 있어서, "a" 및 "b"는 구체적인 작용기에서 탄소 원자의 개수를 의미한다. 즉, 상기 작용기는 "a" 내지 "b" 개의 탄소원자를 포함할 수 있다. 예를 들어, "탄소수 1 내지 3의 선형 또는 분지형 알킬렌기"는 탄소수 1 내지 3의 탄소 원자를 포함하는 알킬기, 즉 -CH2-, -CH2CH2-, -CH2CH2CH2-, -CH2CH(CH3)-, 및 -CH(CH3)CH2-를 의미한다.
또한, 본 명세서에서, "알킬기" 또는 "알킬렌기"이라는 용어는 분지된 또는 분지되지 않은 지방족 탄화수소기를 의미한다. 상기 알킬기 또는 알킬렌기는 치환 또는 비치환될 수 있다. 일 구현예에서, 알킬렌기는 메틸렌기, 에틸렌기, 프로필ㄹ렌, 이소프로필렌기, 부틸렌기, 이소부틸렌기, tert-부틸렌기, 펜틸렌기, 3-펜틸렌기, 헥실렌기, 시클로프로필렌기, 시클로펜틸렌기, 시클로헥실렌기, 또는 시클로헵틸렌기 등을 포함하나, 이들로 한정되지 않으며, 이들 각각은 다른 구현예에서 선택적으로 치환될 수 있다.
또한, 본 명세서에서, "아릴기" 또는 "아릴렌기"이라는 용어는 고리 골격에 탄소만을 포함하는 방향족 고리 또는 방향족 고리 시스템 (i.e., 인접한 원자쌍을 공유하는 고리)을 의미한다. 아릴이 고리시스템인 경우에, 상기 시스템에서 모든 고리는 방향족이다. 일 구현예에서, 상기 아릴렌기는 페닐렌기, 비페닐렌기, 나프틸렌기, 페난트레닐렌기, 나프타세닐렌기 등이나, 이들로 한정되지 않는다. 다른 구현예에서 아릴기는 치환되거나 치환되지 않을 수 있다.
현재까지 알려진 리튬 이차전지는 금속 재료의 부식을 방지하기 어렵고, 특히 과충전, 과방전 및 고온 보존 등의 극한 조건에서는 성능을 유효한 수준으로 유지하기에는 부족한 점이 있었다. 이에, 본 발명에서는 전극 표면에 각각 SEI 막 및 보호층을 형성하여 전해액과 전극 간의 화학 반응을 방지할 수 있는 첨가제를 포함하는 리튬 이차전지용 전해액을 제공함으로써, 수명 특성 및 고온 안전성이 개선된 리튬 이차전지를 제조할 수 있다.
이하, 본 발명을 구현예를 들어 상세히 설명한다.
이차전지용 비수 전해액
구체적으로, 본 발명의 일 실시예에서는
전해질염 및 유기용매를 포함하는 리튬 이차전지용 전해액으로서,
상기 전해액은 하기 화학식 1로 나타내는 화합물을 전해액 첨가제로 추가로 포함하는 리튬 이차전지용 전해액을 제공한다.
[화학식 1]
상기 식에 있어서,
R은 탄소수 1 내지 3의 선형 또는 분지형 알킬렌기이고,
R1은 탄소수 1 내지 5의 선형 또는 분지형 알킬렌기 또는 탄소수 5 내지 8의 아릴렌기이며,
n은 0 내지 10의 정수이다.
보다 구체적으로, 상기 R은 탄소수 1 내지 3의 선형 알킬렌기이고, R1은 탄소수 5 내지 8의 아릴렌기이며, n은 0 내지 5의 정수이다.
상기 본 발명의 전해액에 있어서, 전해액 첨가제로 상기 화학식 1로 표현되는 화합물과 같이, 설포네이트기를 치환기로 함유하는 화합물을 포함하는 경우, 상기 설포네이트기와 전극 집전체 금속 간의 배위 결합에 의해 전극 표면에 안정한 피막을 형성되어, 전극 특히 양극 표면의 부식을 방지할 수 있다. 즉, 과충전, 과방전 및 고온 보존 등의 극한 조건하에서 리튬 이차전지의 전극 표면이 전해액에 노출되면, 하기 반응식 1과 같이 전해액 첨가제로 포함된 상기 화합물의 설포네이트기와 전극 표면의 히드록실기와 반응하면서 물 분자가 탈리되고, 상기 설포네이트기의 산소가 전극 집전체의 금속 성분 표면에서 양 전하(positive charge)를 띠는 사이트와 배위 결합을 형성하면서, 전극 표면에 피막을 형성하기 때문에, 전해액과의 전극의 화학 반응을 억제할 수 있다.
[반응식 1]
또한, 전해액 첨가제로 말단에 삼중결합과 같은 불포화작용기 또는 극성작용기를 함유하는 상기 화합물을 포함하는 경우, 극성용매에 비해 음극으로부터 전자를 더욱 용이하게 받아들이기 때문에, 극성용매보다 낮은 전압에서 환원되어 극성용매가 환원되기 전에 환원될 수 있다. 즉, 상기 화학식 1로 표시되는 화합물에 함유된 불포화작용기 또는 극성작용기는 충전시에 라디칼 및/또는 이온으로 더욱 용이하게 환원 및/또는 분해될 수 있다. 이러한 라디칼 및/또는 이온은 리튬 이온과의 결합에 의해 불용성 화합물을 석출시키거나 형성할 수 있고, 상기 불용성 화합물은 탄소계 음극 표면에 존재하는 각종 작용기 또는 탄소계 음극 자체와 반응하여 공유 결합을 형성하거나 음극 표면에 흡착될 수 있다. 결론적으로, 이러한 결합 및/또는 흡착에 의해서, 음극 표면에는 장기간의 충,방전 후에도 견고한 상태를 유지할 수 있는 안정성이 향상된 변성 SEI막이 형성된다. 이러한 견고한 변성 SEI막은 전해액의 침투를 효과적으로 줄이거나 방지할 수 있어 고온 저장 시 발생하는 가스를 저감할 수 있다.
또한, 상기 화학식 1로 표현되는 화합물과 같이 이소시아네이트기 또는 니트릴기를 치환기로 함유하는 화합물은 극성용매에 비하여 충전시에 라디칼 및/또는 이온으로 용이하게 산화 및/또는 분해될 수 있다. 따라서, 본 발명의 전해액 첨가제로 상기 이소시아네이트기 또는 니트릴기를 치환기로 함유하는 화합물을 포함하는 경우, 하기 반응식 2와 같이 전극 표면에 존재하는 각종 전이금속 이온 또는 히드록실기와 반응하여 전극 표면에 복합체(complex)로 이루어진 변성(modified) 보호 피막을 형성할 수 있다. 이러한 복합체에 의해 형성된 피막은 유기용매의 분해에 의해서만 형성된 피막(보호층)에 비하여 고온, 충,방전 후에도 장기간 동안 견고한 상태를 유지하여 안정성을 확보할 수 있다.
[반응식 2]
이러한 견고한 변성 보호층은 리튬이온의 인터컬레이션시에 상기 리튬이온을 용매화시킨 유기용매가 전극 내부로 들어가는 것을 보다 효과적으로 차단할 수 있다. 따라서, 상기 변성 보호 피막이 유기용매와 양극의 직접적인 접촉을 더욱 효과적으로 차단하므로 리튬이온 흡장/방출의 가역성이 더욱 향상되고 결과적으로 전지의 고온 안정성 개선 효과를 구현할 수 있다.
결론적으로, 본 발명의 이차전지용 전해액의 경우, 화합물 내에 삼중결합 구조와, 설포네이트기 및 이소시아네이트기 (-NCO)를 모두 함유하는 상기 화학식 1로 나타내는 화합물을 전해액 첨가제로 포함함으로써, 양극 및 음극 표면에 각각 안정한 SEI 막과 보호막을 형성하여, 고온 보존과 같은 극한 조건에서도 리튬 이차전지의 고온 수명 특성과 고온 내구성 등을 현저하게 개선시킬 수 있다.
구체적으로, 상기 화학식 1로 나타내는 화합물은 하기 화학식 1a 또는 화학식 1b로 나타낼 수 있다.
[화학식 1a]
[화학식 1b]
이때, 상기 화학식 1로 나타내는 화합물은 전해액 전체 중량을 기준으로 0.05 중량% 내지 7 중량%, 바람직하게 0.1 중량% 내지 5 중량%로 포함될 수 있다. 만약, 상기 첨가제가 0.05 중량% 미만으로 포함되는 경우, 전극 표면의 SEI 막 및 보호막의 형성 효과가 미비하기 때문에 보관 기간이 길수록 용량이 퇴화되고, 첨가제 함량이 7 중량%를 초과하는 경우 부반응 등의 발생으로 가스 발생 억제 효과가 미비하여, 보간 기간에 따라 전지 두께가 증가하는 문제점을 유발할 수 있다.
또한, 본 발명의 전해액에 있어서, 상기 전해질 염은 (i) Li+, Na+ 및 K+로 구성된 군에서 선택된 양이온과 (ii) PF6
-, BF4
-, Cl-, Br-, I-, ClO4
-, AsF6
-, B10Cl10
-, CH3CO2
-, CF3SO3
-, CF3SO3
-, SbF6
-, AlCl4
-, AlO4
-, CH3SO3
-, N(CF3SO2)2
- 및 C(CF2SO2)3
-로 구성된 군에서 선택된 음이온의 조합으로 이루어질 수 있으며, 대표적으로 예로는 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCH3CO2, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, LiAlO4, LiCH3SO3, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬으로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있고, 이들 외에도 리튬 이차전지의 전해액에 통상적으로 사용되는 리튬 비스퍼플루오로에탄설포이미드 (lithium bisperfluoroethanesulfonimide, LiN(C2F5SO2)2
, LiBETI), 리튬 플루오로메탄설포이미드 (lithium fluoromethanesulfonimide, LiFSI), 또는 리튬 (비스)트리플루오로메탄설포이미드 (lithium (bis)trifluoromethanesulfonimide, LiN(CF3SO2)2, LiTFSI)나타내는 리튬 이미드염과 같은 전해질염을 제한 없이 사용할 수 있다. 구체적으로 전해질염은 LiPF6, LiCH3CO2, LiCF3CO2, LiCH3SO3, LiFSI, LiTFSI 및 (CF3SO2)2NLi으로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있다.
상기 전해질염은 통상적으로 사용 가능한 범위 내에서 적절히 변경할 수 있으나, 최적의 전극 표면의 부식 방지용 피막 형성 효과를 얻기 위하여, 전해액 내에 0.8 M 내지 1.5M의 농도로 포함할 수 있다. 만약, 상기 전해질염의 농도가 1.5M을 초과하는 경우 안정한 피막 형성 효과를 구현하기 어렵다.
또한, 본 발명의 비수 전해액에 있어서, 상기 비수성 유기용매는 환형 카보네이트 용매, 선형 카보네이트 용매, 에스테르 용매 또는 케톤 용매 등 리튬 이차전지의 비수성 유기용매로 사용 가능한 통상의 유기용매들을 포함할 수 있으며, 이들을 단독으로뿐만 아니라 2종 이상 적절한 비율로 혼용하여 사용할 수 있다.
상기 환형 카보네이트 용매는 에틸렌 카보네이트(EC), 프로필렌카보네이트(PC) 및 부틸렌 카보네이트(BC)로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합 용액을 들 수 있다. 또한, 상기 선형 카보네이트 용매로는 디메틸카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 에틸메틸카보네이트(EMC), 비닐렌 카보네이트(VC), 플루오르에틸렌 카보네이트(FEC), 메틸프로필카보네이트(MPC) 및 에틸프로필 카보네이트(EPC)로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합 용액을 들 수 있다. 또한, 상기 에스테르 용매로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, δ-발레로락톤 및 ε-카프로락톤으로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합 용액을 들 수 있다. 또한, 케톤 용매로는 폴리메틸비닐 케톤 등이 사용될 수 있다.
이차전지
또한, 본 발명에서는 양극, 음극, 상기 양극 및 음극 사이에 개재된 분리막, 및 전해액을 포함하는 리튬 이차전지에 있어서, 상기 전해액으로 본 발명의 리튬 이차전지용 전해액을 구비한 리튬 이차전지를 제공한다.
상기 양극은 전극 집전체 상에 양극 활물질을 도포하여 형성할 수 있으며, 이때 상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않으며, 예를 들면 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 이때, 상기 양극 집전체는 양극 활물질과의 접착력을 높일 수도 있도록, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 사용할 수 있다.
또한, 상기 양극 활물질은 일반적인 리튬 이차전지 제조 시 양극 활물질로 사용된 리튬 함유 전이금속 산화물이라면 특별히 제한하지 않으며, 예를 들면 LiCoO2, LixNiO2(0.5<x<1.3), LixMnO2(0.5<x<1.3), LixMn2O4(0.5<x<1.3), Lix(NiaCobMnc)O2(0.5<x<1.3, 0<a<1, 0<b<1, 0<c<1, a+b+c=1, NCM), LixNi1
-yCoyO2(0.5<x<1.3, 0<y<1), LixCo1
-
yMnyO2(0.5<x<1.3, 0≤y<1), LixNi1
-yMnyO2(0.5<x<1.3, O≤y<1), Lix(NiaCobMnc)O4(0.5<x<1.3, 0<a<2, 0<b<2, 0<c<2, a+b+c=2), LixMn2
-
zNizO4(0.5<x<1.3, 0<z<2), LixMn2
-
zCozO4(0.5<x<1.3, 0<z<2), LixCoPO4(0.5<x<1.3) 및 LixFePO4(0.5<x<1.3)로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으며, 구체적인 예로 Lix(NiaCobMnc)O2(0.5<x<1.3, 0<a<1, 0<b<1, 0<c<1, a+b+c=1, NCM), 즉 Li(Ni1/3Mn1/3Co1/3)O2, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2 및 Li(Ni0.8Mn0.1Co0.1)O2 로 이루어진 군으로부터 선택된 단일물 또는 이들 중 2종 이상의 리튬 전이금속 산화물을 들 수 있다.
상기 음극은 음극 집전체 상에 음극 활물질을 도포하여 형성할 수 있으며, 이때 상기 음극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않으며, 예를 들면 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 상기 음극 집전체는 양극 집전체와 마찬가지로, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 사용될 수 있다.
또한, 상기 음극 활물질은 일반적인 리튬 이차전지 제조 시 리튬 이온이 흡장 및 방출될 수 있는 탄소재, 리튬금속, 규소 또는 주석 등을 사용할 수 있으며, 예를 들면 상기 탄소재로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소(soft carbon) 및 경화탄소(hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연(Kish graphite), 열분해 탄소(pyrolytic carbon), 액정 피치계 탄소섬유(mesophase pitch based carbonfiber), 탄소 미소구체(meso-carbon microbeads), 액정피치(Mesophase pitches) 및 석유와 석탄계 코크스(petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소를 들 수 있다.
상기 양극 및 음극 활물질은 바인더 및 도전재를 더 포함할 수 있다.
이때, 상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 전극 합제 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플로라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 전극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 전극 합제 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 써멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
본 발명에서는 전지 케이스 내에 양극, 음극, 상기 양극 및 음극 사이에 개재된 분리막으로 이루어진 전지 조립체를 장착한 다음, 상기 본 발명의 전극 부식 방지용 첨가제를 포함하는 전해액을 주액하여 전해액을 함침시킨 후, 전지를 포메이션 공정을 수행할 수 있다. 또한, 활성화 전, 후에 상온 또는 고온 에이징 (aging) 공정을 수행함으로써, 상기 화학식 1로 나태는 화합물의 말단기인 -NCO기와 전극표면의 불순물인 OH와의 우레탄 반응 효율이 더욱 증가하여, 보호 효과가 보다 증가할 것으로 생각됩니다.
이때, 상기 전해액과 전극 표면이 반응하면서, 전극 표면에 부동태막이 형성되어, 과충전, 과방전 및 고온 보존 등의 극한 조건 시에도 상기 전극 표면이 노출되는 것을 막아 전극 부식 현상을 방지할 수 있으므로, 리튬 이차전지의 사이클 수명 특성 등의 제반 성능을 향상시킬 수 있다.
전술한 바와 같은 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였다. 그러나 본 발명의 범주에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능하다. 본 발명의 기술적 사상은 본 발명의 기술한 실시예에 국한되어 정해져서는 안되며, 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
실시예
실시예 1.
(음극 제조)
천연 흑연 98 중량%, 스티렌-부타디엔 고무(SBR)바인더 (ZEON) 1.0 중량% 및 카르복시메틸셀룰로오스(CMC, NIPPON A&L) 1.0 중량%를 혼합한 후 증류수에 투입하고 기계식 교반기를 사용하여 60분간 교반하여 음극활물질 슬러리를 제조하였다. 상기 슬러리를 닥터 블레이드를 사용하여 10㎛ 두께의 구리 집전체 위에 약 60㎛ 두께로 도포하고 100℃의 열풍건조기에서 0.5시간 동안 건조한 후 진공, 120℃의 조건에서 4시간 동안 다시 한번 건조하고, 압연(roll press)하여 음극판을 제조하였다.
(양극 제조)
Li(Ni0.6Mn0.2Co0.2)O2
97.45 중량%, 인조흑연(SFG6, Timcal) 분말 0.5 중량%, 카본블랙(Ketjenblack, ECP) 0.7 중량%, 개질 아크릴로니트릴 고무(BM-720H, Zeon Corporation) 0.25 중량%, 폴리비닐리덴플루오라이드(PVdF, S6020,Solvay) 1.1 중량%를 혼합하여 N-메틸-2-피롤리돈 용매에 투입한 후 기계식 교반기를 사용하여 30분간 교반하여 양극활물질 슬러리를 제조하였다. 상기 슬러리를 닥터 블레이드를 사용하여 20㎛ 두께의 알루미늄 집전체 위에 약 60㎛ 두께로 도포하고 100℃의 열풍건조기에서 0.5시간 동안 건조한 후 진공, 120℃의 조건에서 4시간 동안 다시 한번 건조하고, 압연(roll press)하여 양극판을 제조하였다.
(전해액 제조)
1.0M LiPF6을 함유하는 비수계 용매 (에틸렌카보네이트(EC), 에틸메틸카보네이트(EMC) 및 디에틸카보네이트(DEC)=3:5:2 vol%)에 첨가제로 상기 화학식 1a로 나타내는 화합물 0.2 중량%를 첨가하여 유기전해액을 제조하였다.
(이차전지 제조)
상기에서 제조한 음극과, 음극 사이에 세라믹이 코팅된 두께 14㎛의 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 상기 제조된 전해액을 주입하여 리튬 이차전지를 제조하였다.
실시예 2.
전해액 첨가제로 상기 화학식 1a의 화합물 대신 화학식 1b의 화합물 3 중량%를 포함하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 전해액 및 이를 포함하는 리튬 이차전지를 제조하였다.
비교예 1.
전해액 첨가제를 포함하지 않은 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 전해액 및 이를 포함하는 리튬 이차전지를 제조하였다.
비교예 2.
전해액 첨가제로 상기 화학식 1a의 화합물을 0.02 중량% 포함하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 전해액 및 이를 포함하는 리튬 이차전지를 제조하였다.
비교예 3.
전해액 첨가제로 상기 화학식 1a의 화합물을 7.3 중량% 포함하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 전해액 및 리튬 이차전지를 제조하였다.
실험예
실험예
1: 고온저장(60℃)에 대한 용량 저하 측정
상기 실시예 1 및 2와 비교예 1 내지 3에서 제조된 각각의 리튬 이차전지를 25℃에서 SOC 100% 로 충전한 후 셀을 60℃ chamber에 저장한 후 보관 기간에 따른 용량 퇴화 거동을 측정하고, 그 결과를 하기 도 1에 나타내었다.
도 1을 참고하여, 실시예 1 및 2의 이차전지가 비교예 1 내지 3의 이차전지에 비하여 보관 기간에 따른 용량 퇴화 감소율이 낮은 것을 알 수 있다.
실험예
2: 고온(60℃)에서의 가스 발생 측정
상기 실시예 1 및 2와 비교예 1 내지 3에 제조된 각각의 리튬 이차전지를 25℃에서 SOC 100% 로 충전한 후 셀을 60℃ chamber에 저장한 후 보관 기간에 따른 가스 발생에 따른 셀 두께 변화를 확인하고, 그 결과를 하기 도 2에 나타내었다.
도 2를 참조하여, 실시예 1 및 2의 이차전지가 비교예 1 내지 3의 이차전지에 비하여, 보관 기간에 따른 셀 두께 증가(변화)가 낮은 것을 알 수 있다.
이러한 실험예 1 및 2에서 얻어진 결과로부터, 실시예 1 및 2의 이차전지는 전해액 첨가제에 의해 전극 표면에 안전한 피막을 형성하기 때문에, 전해액의 침투를 효과적으로 줄이거나 방지할 수 있고, 따라서 고온 저장 시 전해액의 부반응에 따른 가스 발생을 저감할 수 있는 효과를 구현할 수 있음을 확인할 수 있다.
Claims (11)
- 청구항 1에 있어서,상기 화학식 1에 있어서, R은 탄소수 1 내지 3의 선형 알킬렌기이고, R1은 탄소수 5 내지 8의 아릴렌기이며, n은 0 내지 5의 정수인 것을 특징으로 하는 리튬 이차전지용 전해액.
- 청구항 1에 있어서,상기 화학식 1로 나타내는 화합물은 전해액 전체 중량을 기준으로 0.05 중량% 내지 7 중량%로 포함되는 것을 특징으로 하는 리튬 이차전지용 전해액.
- 청구항 4에 있어서,상기 화학식 1로 나타내는 화합물은 전해액 전체 중량을 기준으로 0.1 중량% 내지 5 중량%로 포함되는 것을 특징으로 하는 리튬 이차전지용 전해액.
- 청구항 1에 있어서,상기 전해질 염은 (i) Li+, Na+ 및 K+로 이루어진 군으로부터 선택된 적어도 하나의 양이온과, (ii) PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, AsF6 -, B10Cl10 -, CH3CO2 -, CF3SO3 -, CF3SO3 -, SbF6 -, AlCl4 -, AlO4 -, CH3SO3 -, N(CF3SO2)2 - 및 C(CF2SO2)3 -로 이루어진 군으로부터 선택된 적어도 하나의 음이온의 조합으로 이루어진 것을 특징으로 하는 리튬 이차전지용 전해액.
- 청구항 6에 있어서,상기 전해질 염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCH3CO2, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, LiAlO4, LiCH3SO3, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 및 4 페닐 붕산 리튬으로 이루어진 군으로부터 선택된 단일물 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지용 전해액.
- 청구항 6에 있어서,상기 전해질 염은 리튬 비스퍼플루오로에탄설포이미드 (LiN(C2F5SO2)2), 리튬 플루오로메탄설포이미드 및 리튬 (비스)트리플루오로메탄설포이미드 (LiN(CF3SO2)2)로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 추가로 포함하는 것을 특징으로 하는 리튬 이차전지용 전해액.
- 청구항 1에 있어서,상기 전해질염은 0.8M 내지 1.5M의 농도로 포함되는 것을 특징으로 하는 리튬 이차전지용 전해액.
- 청구항 1에 있어서,상기 비수성 유기용매는 환형 카보네이트 용매, 선형 카보네이트 용매, 에스테르 용매 및 케톤 용매로 이루어진 군으로부터 선택된 단일 용액 또는 이들 중 2종 이상의 혼합 용액을 포함하는 것을 특징으로 하는 리튬 이차전지용 전해액.
- 양극, 음극, 상기 양극 및 음극 사이에 개재된 분리막, 및 비수 전해액을 포함하는 리튬 이차전지에 있어서,상기 비수 전해액은 청구항 1에 기재된 이차전지용 비수 전해액인 것을 특징으로 하는 리튬 이차전지.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680048474.0A CN107925128B (zh) | 2015-08-19 | 2016-08-19 | 用于锂二次电池的电解质溶液和包括该电解质溶液的锂二次电池 |
EP16837358.7A EP3324478B1 (en) | 2015-08-19 | 2016-08-19 | Electrolyte for lithium secondary battery and lithium secondary battery comprising same |
JP2018509518A JP6541873B2 (ja) | 2015-08-19 | 2016-08-19 | リチウム二次電池用電解液およびこれを含むリチウム二次電池 |
PL16837358T PL3324478T3 (pl) | 2015-08-19 | 2016-08-19 | Elektrolit dla akumulatora litowego i zawierający go akumulator litowy |
US15/750,707 US10693179B2 (en) | 2015-08-19 | 2016-08-19 | Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0116637 | 2015-08-19 | ||
KR20150116637 | 2015-08-19 | ||
KR1020160104607A KR101997812B1 (ko) | 2015-08-19 | 2016-08-18 | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 |
KR10-2016-0104607 | 2016-08-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017030416A1 true WO2017030416A1 (ko) | 2017-02-23 |
Family
ID=58051633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/009183 WO2017030416A1 (ko) | 2015-08-19 | 2016-08-19 | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017030416A1 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109904457A (zh) * | 2019-03-26 | 2019-06-18 | 湖州昆仑动力电池材料有限公司 | 一种锂离子电池电解液用阻燃添加剂及应用 |
WO2019114685A1 (zh) * | 2017-12-15 | 2019-06-20 | 华为技术有限公司 | 一种电解液添加剂、锂二次电池电解液和锂二次电池 |
CN114583277A (zh) * | 2020-03-27 | 2022-06-03 | 宁德新能源科技有限公司 | 电化学装置及包括其的电子装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020086069A (ko) * | 2001-05-11 | 2002-11-18 | 제일모직주식회사 | 비수성 전해액 및 이를 포함하는 리튬 이차 전지 |
KR100746479B1 (ko) * | 2005-09-15 | 2007-08-03 | 주식회사 엘지화학 | 비수전해액 첨가제 및 이를 이용한 전기 화학 소자 |
KR100867535B1 (ko) * | 2006-09-20 | 2008-11-06 | 주식회사 엘지화학 | 비수 전해액 첨가제 및 이를 이용한 이차 전지 |
KR20080097599A (ko) * | 2007-05-02 | 2008-11-06 | 주식회사 엘지화학 | 비수전해액 첨가제 및 이를 이용한 이차 전지 |
KR20140063672A (ko) * | 2011-08-12 | 2014-05-27 | 우베 고산 가부시키가이샤 | 비수전해액 및 그것을 사용한 전기화학소자 |
-
2016
- 2016-08-19 WO PCT/KR2016/009183 patent/WO2017030416A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020086069A (ko) * | 2001-05-11 | 2002-11-18 | 제일모직주식회사 | 비수성 전해액 및 이를 포함하는 리튬 이차 전지 |
KR100746479B1 (ko) * | 2005-09-15 | 2007-08-03 | 주식회사 엘지화학 | 비수전해액 첨가제 및 이를 이용한 전기 화학 소자 |
KR100867535B1 (ko) * | 2006-09-20 | 2008-11-06 | 주식회사 엘지화학 | 비수 전해액 첨가제 및 이를 이용한 이차 전지 |
KR20080097599A (ko) * | 2007-05-02 | 2008-11-06 | 주식회사 엘지화학 | 비수전해액 첨가제 및 이를 이용한 이차 전지 |
KR20140063672A (ko) * | 2011-08-12 | 2014-05-27 | 우베 고산 가부시키가이샤 | 비수전해액 및 그것을 사용한 전기화학소자 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019114685A1 (zh) * | 2017-12-15 | 2019-06-20 | 华为技术有限公司 | 一种电解液添加剂、锂二次电池电解液和锂二次电池 |
CN109935904A (zh) * | 2017-12-15 | 2019-06-25 | 华为技术有限公司 | 一种电解液添加剂、锂二次电池电解液和锂二次电池 |
US20200303775A1 (en) * | 2017-12-15 | 2020-09-24 | Huawei Technologies Co., Ltd. | Electrolyte Additive, Lithium Secondary Battery Electrolyte, and Lithium Secondary Battery |
EP3719912A4 (en) * | 2017-12-15 | 2021-01-27 | Huawei Technologies Co., Ltd. | ELECTROLYTE ADDITIVE, ELECTROLYTE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY |
CN109935904B (zh) * | 2017-12-15 | 2021-08-20 | 华为技术有限公司 | 一种电解液添加剂、锂二次电池电解液和锂二次电池 |
CN109904457A (zh) * | 2019-03-26 | 2019-06-18 | 湖州昆仑动力电池材料有限公司 | 一种锂离子电池电解液用阻燃添加剂及应用 |
CN109904457B (zh) * | 2019-03-26 | 2022-05-13 | 湖州昆仑亿恩科电池材料有限公司 | 一种锂离子电池电解液用阻燃添加剂及应用 |
CN114583277A (zh) * | 2020-03-27 | 2022-06-03 | 宁德新能源科技有限公司 | 电化学装置及包括其的电子装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016159702A1 (ko) | 비수 전해액 및 이를 구비한 리튬 이차전지 | |
WO2015030402A1 (ko) | 리튬 전이금속 복합 입자, 이의 제조방법, 및 이를 포함하는 양극 활물질 | |
WO2015065102A1 (ko) | 리튬 이차전지 | |
WO2019112167A1 (ko) | 리튬금속전지용 음극 및 이를 포함한 리튬금속전지 | |
WO2017086672A1 (ko) | 비수전해액 및 이를 포함하는 리튬 이차전지 | |
WO2015190705A1 (ko) | 비수 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2012021029A2 (ko) | 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지 | |
WO2017146426A1 (ko) | 겔 폴리머 전해질용 조성물 및 이를 포함하는 리튬 이차전지 | |
WO2020105974A1 (ko) | 이차 전지의 활성화 방법 | |
WO2020085823A1 (ko) | 리튬 이차전지용 음극의 제조방법 | |
WO2019147082A1 (ko) | 리튬 이차전지용 음극 및 상기 음극을 포함하는 리튬 이온 이차 전지 | |
WO2019098541A1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2013180522A1 (ko) | 리튬 이차전지 | |
WO2019027137A1 (ko) | 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지 | |
WO2017213441A1 (ko) | 리튬전지 | |
WO2016052996A1 (ko) | 비수 전해액 리튬 이차전지 | |
WO2020159263A1 (ko) | 이차전지용 음극의 제조방법 | |
WO2019221410A1 (ko) | 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지 | |
WO2019078688A2 (ko) | 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 | |
KR101997812B1 (ko) | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2015037852A1 (ko) | 비수계 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2017030416A1 (ko) | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2019083257A1 (ko) | 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지 | |
WO2019078506A2 (ko) | 리튬 이차전지용 양극 활물질의 제조방법, 이에 의해 제조된 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 | |
WO2020197093A1 (ko) | 리튬 이차전지용 전해질 첨가제를 포함하는 리튬 이차전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16837358 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016837358 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2018509518 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |