WO2017029797A1 - 波長変換フィルタ及びその製造方法並びに太陽電池モジュール - Google Patents

波長変換フィルタ及びその製造方法並びに太陽電池モジュール Download PDF

Info

Publication number
WO2017029797A1
WO2017029797A1 PCT/JP2016/003711 JP2016003711W WO2017029797A1 WO 2017029797 A1 WO2017029797 A1 WO 2017029797A1 JP 2016003711 W JP2016003711 W JP 2016003711W WO 2017029797 A1 WO2017029797 A1 WO 2017029797A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
ultraviolet
layer
transparent resin
ultraviolet absorber
Prior art date
Application number
PCT/JP2016/003711
Other languages
English (en)
French (fr)
Inventor
善光 生駒
夏希 佐藤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201680037623.3A priority Critical patent/CN107735700A/zh
Priority to US15/739,737 priority patent/US20180190848A1/en
Priority to JP2017535235A priority patent/JPWO2017029797A1/ja
Publication of WO2017029797A1 publication Critical patent/WO2017029797A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7732Halogenides
    • C09K11/7733Halogenides with alkali or alkaline earth metals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a wavelength conversion technique, and more particularly to a wavelength conversion filter that converts a wavelength of light having an excitation wavelength, a manufacturing method thereof, and a solar cell module using the wavelength conversion filter.
  • a solar cell module In a solar cell module, generally, only light of a part of the wavelength of sunlight is converted into electricity, which is a factor in reducing photoelectric conversion efficiency. On the other hand, a wavelength conversion technique is used in which light having a wavelength that cannot be used in the solar cell module is converted into light having a usable wavelength to improve photoelectric conversion efficiency. Also, since solar cell modules are often used outdoors, very high durability is required.
  • Patent Document 1 discloses a wavelength conversion filter using two types of inorganic wavelength conversion materials.
  • Patent Document 2 discloses a wavelength of a two-layer structure including a sealing layer containing a wavelength converting material and a sealing layer containing 2,2′-dihydroxy-4,4′-dimethoxybenzophenone as an ultraviolet absorber. A conversion filter is disclosed.
  • the wavelength conversion filter disclosed in Patent Document 1 uses an inorganic wavelength conversion material, it has excellent durability, but has a problem that ultraviolet rays cannot be sufficiently cut. This is because an inorganic wavelength conversion material has a low ultraviolet absorption coefficient, and therefore, when the particle size is large, it is difficult to cut ultraviolet light.
  • the wavelength conversion filter disclosed in Patent Document 2 is a sealing containing a wavelength conversion material by diffusing 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, which is an ultraviolet absorber, in the sealing material layer. There was a problem that the light transmission efficiency was reduced by entering the layer.
  • An object of this invention is to provide the wavelength conversion filter and its manufacturing method with which the state with the high wavelength conversion efficiency from ultraviolet light to visible light is maintained over a long period of time.
  • Another object of the present invention is to provide a solar cell module in which a wavelength conversion efficiency from ultraviolet light to visible light in a wavelength conversion filter is maintained for a long time.
  • a wavelength conversion filter according to an aspect of the present invention is provided with a wavelength conversion layer in which a wavelength conversion material is dispersed in a transparent resin base material, and a surface of the wavelength conversion layer.
  • An ultraviolet absorbing layer in which an ultraviolet absorber is dispersed.
  • the wavelength conversion layer contains 0.01 to 30 parts by mass of the wavelength conversion material with respect to 100 parts by mass of the transparent resin substrate contained in the wavelength conversion layer.
  • the solar cell module according to an aspect of the present invention includes the wavelength conversion filter and a surface protective layer that is provided on the wavelength conversion layer side that constitutes the wavelength conversion filter and protects the surface of the wavelength conversion layer.
  • the solar cell module which concerns on the aspect of this invention is provided in the said ultraviolet absorption layer side which comprises the said wavelength conversion filter, and is equipped with the photovoltaic cell which produces electric power with the visible light which permeate
  • the wavelength conversion filter manufacturing method is a wavelength conversion filter manufacturing method for manufacturing the wavelength conversion filter.
  • the reactive ultraviolet absorber is combined with the molecular skeleton of the transparent resin substrate contained in the ultraviolet absorbing layer to form an ultraviolet absorbing layer containing a stable ultraviolet absorber. .
  • the solar cell module according to the present embodiment the wavelength conversion filter constituting the solar cell module, and the wavelength conversion material included in the wavelength conversion filter will be described with reference to the drawings.
  • FIG. 1 is a cross-sectional view schematically showing an example of a solar cell module according to the present embodiment.
  • the solar cell module 1 includes a solar cell 10, a wavelength conversion filter 20 disposed on the light receiving surface 13 side of the solar cell 10, and surface protection disposed on the surface of the wavelength conversion filter 20.
  • the wavelength conversion filter 20 is provided on the surface of the wavelength conversion layer 30 in which the wavelength conversion material 35 is dispersed in the transparent resin base material 31 and the solar cell 10 side of the wavelength conversion layer 30 and in the transparent resin base material 41. It has a two-layer structure including an ultraviolet absorbing layer 40 in which an ultraviolet absorber 45 is dispersed.
  • the solar cell module 1 includes a wavelength conversion filter 20 and a surface protection layer 50 that is provided on the wavelength conversion layer 30 side that constitutes the wavelength conversion filter 20 and protects the surface of the wavelength conversion layer 30.
  • the solar cell module 1 includes a solar cell 10 that is provided on the ultraviolet absorption layer 40 side that constitutes the wavelength conversion filter 20 and generates power with visible light transmitted through the wavelength conversion filter 20.
  • the solar cell module 1 is arrange
  • a back surface protective layer 70 that is, the solar cell module 1 has a configuration in which the surface protective layer 50, the wavelength conversion filter 20, the solar cell 10, the back surface sealing member 60, and the back surface protective layer 70 are provided in this order from the top in the figure. .
  • the solar cell module 1 is configured such that light incident from the light incident surface 53 that is the surface of the surface protective layer 50 is received by the solar cell 10 as it is or after being converted by the wavelength conversion filter 20. An electromotive force is generated.
  • each configuration will be described in detail.
  • the solar battery cell 10 absorbs light incident from the light receiving surface 13 of the solar battery cell 10 and generates photovoltaic power.
  • the solar cell 10 is formed using a semiconductor material such as crystalline silicon, gallium arsenide (GaAs), indium phosphide (InP), for example.
  • the solar battery cell 10 is made of, for example, a laminate of crystalline silicon and amorphous silicon.
  • An electrode (not shown) is provided on the light receiving surface 13 of the solar battery cell 10 and the back surface 14 which is the surface opposite to the light receiving surface 13. The photovoltaic power generated in the solar battery cell 10 is supplied to the outside through the electrode.
  • a wavelength conversion filter 20 is disposed on the light receiving surface 13 side of the solar battery cell 10. As shown in FIG. 1, the wavelength conversion filter 20 has a two-layer structure including a wavelength conversion layer 30 and an ultraviolet absorption layer 40 provided on the surface of the wavelength conversion layer 30 on the solar battery cell 10 side.
  • the wavelength conversion layer 30 is a layer in which the wavelength conversion material 35 is dispersed in the transparent resin base material 31.
  • the wavelength conversion layer 30 has an effect that the wavelength conversion material 35 converts the received ultraviolet light 80 into visible light 85 having a longer wavelength.
  • the transparent resin base material 31 is a transparent resin that holds the wavelength conversion material 35 in a dispersed state and guides the received ultraviolet light 80 to the wavelength conversion material 35.
  • the transparent resin constituting the transparent resin substrate 31 include ethylene vinyl acetate copolymer (EVA), (meth) acrylic resin, polyvinyl butyral (PVB), polyimide, polyethylene, polypropylene, and polyethylene terephthalate (PET).
  • EVA ethylene vinyl acetate copolymer
  • PVB polyvinyl butyral
  • PET polyimide
  • a transparent resin is used.
  • an inorganic phosphor or an organic phosphor is used as the wavelength conversion material 35.
  • inorganic phosphors are preferred because of their high durability and moisture resistance.
  • the term “durability” means that the composition and crystal structure of the inorganic phosphor do not change or are difficult to change over time.
  • an inorganic phosphor has a crystal structure in which a part of atoms constituting a host crystal made of an inorganic compound is partially substituted with an emission center that emits fluorescence.
  • the inorganic phosphor used in the present embodiment is not particularly limited.
  • CaF 2 : Eu is used as the inorganic phosphor used in the present embodiment.
  • CaF 2 is a host crystal and Eu is a light emission center.
  • Organic phosphors include naphthalimide compounds and perylene compounds.
  • Examples of commercially available organic phosphors include Lumogen (Lumogen (registered trademark)) F Violet 570 (Naphthalimide compound), Lumogen F Yellow 083 (Perylene compound), Lumogen F Yellow 170 (Perylene compound) and the like. Can be used.
  • the phosphor As the phosphor, a phosphor that absorbs ultraviolet light having a wavelength of 400 nm or less and converts the wavelength from green light to near infrared light having a wavelength of 400 nm to 1100 nm is preferable. It is preferable that the phosphor has such a property because light supplied from the wavelength conversion filter to the solar battery cell includes many wavelength components having high photoelectric conversion efficiency in the solar battery cell. Moreover, as a fluorescent substance, what is efficiently excited by the wavelength 300nm or more with a relatively large sunlight spectrum is preferable. It is preferable that the phosphor has such properties because the amount of light supplied from the wavelength conversion filter to the solar battery cell is large.
  • the shape of the wavelength conversion material 35 is preferably granular or powdery.
  • the wavelength conversion material is easily dispersed in the transparent resin substrate 31.
  • the average particle size is usually 0.1 ⁇ m or more and less than 100 ⁇ m, preferably 0.3 ⁇ m or more and less than 30 ⁇ m, more preferably 1 ⁇ m or more and less than 10 ⁇ m.
  • the average particle diameter of the wavelength conversion material is within the above range, it becomes possible to produce a wavelength conversion member that sufficiently absorbs ultraviolet light and suppresses a decrease in visible light transmittance.
  • the average particle diameter of the wavelength conversion material can be measured by observing the cross section of the wavelength conversion member with a scanning electron microscope.
  • the average particle diameter is defined as the average value of the longest axial lengths of any 20 or more wavelength conversion material particles observed with a scanning electron microscope.
  • the wavelength conversion layer 30 is 0.01 to 30 parts by weight, preferably 0.1 to 20 parts by weight, more preferably 1 to 1 part by weight of the wavelength conversion material with respect to 100 parts by weight of the transparent resin substrate contained in the wavelength conversion layer. Contains 10 parts by weight. There exists a possibility that the wavelength conversion effect by a wavelength conversion material may not fully express that the compounding ratio of the wavelength conversion material with respect to the transparent resin base material in the wavelength conversion layer 30 is less than 0.01 mass part. Moreover, when the compounding ratio of the wavelength conversion material with respect to the transparent resin substrate in the wavelength conversion layer 30 exceeds 30 parts by mass, the light transmittance of the wavelength conversion layer 30 may be reduced.
  • the thickness of the wavelength conversion layer 30 is not particularly limited, but is, for example, 10 to 10,000 ⁇ m. It is preferable that the thickness of the wavelength conversion layer 30 be within this range because the wavelength conversion layer 30 can be thinned and the conversion efficiency of ultraviolet light incident on the wavelength conversion layer 30 into visible light is good.
  • the wavelength conversion layer 30 can be prepared by mixing the phosphor 35 with the transparent resin base material 31 to disperse the phosphor 35 in the transparent resin base material 31 and molding the phosphor into a sheet shape, a film shape, a plate shape, or the like. it can.
  • the ultraviolet absorbing layer 40 is a layer in which the ultraviolet absorbent 45 is dispersed in the transparent resin base material 41.
  • the ultraviolet absorbing layer 40 has an action in which the ultraviolet absorbent 45 absorbs the received ultraviolet light 80.
  • the transparent resin base material 41 is a transparent resin that holds the ultraviolet absorbent 45 in a dispersed state and guides the received ultraviolet light 80 to the ultraviolet absorbent 45.
  • the transparent resin constituting the transparent resin base material 41 the same resin as the transparent resin base material 31 can be used.
  • the transparent resin base material 41 for example, ethylene vinyl acetate copolymer (EVA), (meth) acrylic resin, polyvinyl butyral (PVB), polyimide, polyethylene, polypropylene, polyethylene terephthalate (PET) and the like are transparent. Resin is used.
  • ultraviolet absorber 45 for example, an organic ultraviolet absorber or an inorganic ultraviolet absorber is used.
  • the organic ultraviolet absorber for example, a reactive ultraviolet absorber or a stable ultraviolet absorber is used.
  • the reactive ultraviolet absorber has an ultraviolet absorbing portion that is a molecular structure that absorbs ultraviolet rays and has an action of binding to the molecular skeleton of the transparent resin substrate 41 contained in the ultraviolet absorbing layer 40.
  • the transparent resin bonding portion is a portion that is bonded to the molecular skeleton of the transparent resin substrate 41 by generating radical polymerization, cationic polymerization, anion polymerization, or the like by applying light or heat.
  • the reactive ultraviolet absorber is incorporated into the molecular skeleton of the transparent resin substrate 41 by bonding the transparent resin bonding portion with the molecular skeleton of the transparent resin substrate 41 included in the ultraviolet absorption layer 40.
  • the reactive ultraviolet absorber becomes difficult to diffuse in the transparent resin substrate 41 included in the ultraviolet absorption layer 40 by being taken into the molecular skeleton of the transparent resin substrate 41 included in the ultraviolet absorption layer 40.
  • the reactive ultraviolet absorber is mixed with the transparent resin base material 41, and is subjected to radical polymerization, cation polymerization, or anion polymerization at the transparent resin binding portion by applying light or heat to the transparent resin base material 41. It binds to the molecular skeleton.
  • the reactive ultraviolet absorber is bonded to the molecular skeleton of the transparent resin substrate 41 contained in the ultraviolet absorption layer 40, the bonded substance has the molecular skeleton of the transparent resin substrate 41 and the ultraviolet absorbing portion.
  • the substance after the combination of the reactive ultraviolet absorber and the molecular skeleton of the transparent resin base material 41 is a substance having the same or similar structure as the later-described stable ultraviolet absorber.
  • an organic ultraviolet absorbent such as a reactive ultraviolet absorbent and a stable ultraviolet absorbent, and an inorganic ultraviolet absorbent are indicated by reference numeral 45.
  • the stable ultraviolet absorber and inorganic ultraviolet absorber described later do not change the molecular structure even in the transparent resin substrate 41, and therefore it is appropriate to indicate the ultraviolet absorber with reference numeral 45.
  • the molecular structure of the reactive ultraviolet absorber changes before and after bonding to the molecular skeleton of the transparent resin substrate 41 by causing radical polymerization, cationic polymerization, or anion polymerization as described above.
  • reference numeral 45 in FIG. 1 indicates the reactive ultraviolet absorbent in a state before being bonded to the molecular skeleton of the transparent resin substrate 41.
  • the ultraviolet absorbing portion of the reactive ultraviolet absorber has at least one structure selected from a benzotriazole structure, a triazine structure, and a benzophenone structure.
  • the benzotriazole structure means a skeleton portion of benzotriazole, specifically, a skeleton portion excluding H in benzotriazole C 6 H 5 N 3 .
  • the triazine structure means a skeleton portion of triazine, specifically, a skeleton portion excluding H in triazine C 9 H 5 Cl 3 N 4 .
  • the benzophenone structure means a benzophenone skeleton portion, specifically, a skeleton portion excluding H in benzophenone C 13 H 10 O.
  • the reactive UV absorber has a transparent resin binding portion for binding to the molecular skeleton of the transparent resin substrate 41 in addition to the UV absorbing portion.
  • a transparent resin binding portion for example, a functional group such as a glycidyl group, a vinyl group, or a silanol group is used.
  • the reactive ultraviolet absorber contains such a functional group, the reactive ultraviolet absorber is combined with the molecular skeleton of the transparent resin base material 41 included in the ultraviolet absorbing layer 40, and the molecular skeleton of the transparent resin base material 41 is combined. It is preferable because it is easily taken in.
  • the reactive ultraviolet absorber may have a structure including a transparent resin skeleton structure bonded to the ultraviolet absorbing portion or a side chain bonded to the ultraviolet absorbing portion in addition to the ultraviolet absorbing portion.
  • the reactive ultraviolet absorber may have a structure including a transparent resin skeleton structure bonded to the ultraviolet absorbing portion or a side chain bonded to the ultraviolet absorbing portion in addition to the ultraviolet absorbing portion and the transparent resin binding portion.
  • the transparent resin skeleton structure means a skeleton structure composed of all or part of the molecular skeleton of the transparent resin substrate 41 contained in the ultraviolet absorption layer 40.
  • the molecular skeleton of the transparent resin substrate 41 is a (meth) acrylic resin,-(CC) n-COO- (n is a natural number) consisting of a part of the molecular skeleton of the (meth) acrylic resin Is a transparent resin skeleton structure.
  • the molecular skeleton of the transparent resin substrate 41 is an ethylene vinyl acetate copolymer (EVA),-(CC) n-OCOCH 3 (n is a natural number) consisting of a part of the EVA molecular skeleton. Is a transparent resin skeleton structure.
  • EVA ethylene vinyl acetate copolymer
  • skeleton structures of an ethylene vinyl acetate copolymer, a (meth) acrylic resin, and a polyolefin are referred to as an ethylene vinyl acetate copolymer skeleton structure, a (meth) acrylic resin skeleton structure, and a polyolefin skeleton structure, respectively.
  • the transparent resin skeleton structure of the reactive ultraviolet absorber contained in the ultraviolet absorption layer 40 is preferably the same as all or part of the molecular skeleton of the transparent resin substrate 41 contained in the ultraviolet absorption layer 40.
  • the transparent resin base material 41 contained in the ultraviolet absorbing layer 40 is a (meth) acrylic resin
  • the reactive ultraviolet absorber contained in the ultraviolet absorbing layer 40 has a (meth) acrylic resin skeleton structure. It is preferable.
  • the transparent resin base material 41 contained in the ultraviolet absorbing layer 40 is an ethylene vinyl acetate copolymer
  • the reactive ultraviolet absorber contained in the ultraviolet absorbing layer 40 has an ethylene vinyl acetate copolymer skeleton structure. It is preferable.
  • the side chain bonded to the ultraviolet absorbing portion of the reactive ultraviolet absorber include alkyl groups such as a methyl group and an ethyl group.
  • the reactive ultraviolet absorber for example, the following substances are used. That is, a compound having a (meth) acrylic resin skeleton structure and a benzotriazole structure in the molecule, a compound having an ethylene vinyl acetate copolymer skeleton structure and a benzotriazole structure in the molecule, and a polyolefin skeleton structure and benzoin in the molecule A compound having a triazole structure is used.
  • a compound having a (meth) acrylic resin skeleton structure and a triazine structure in the molecule, a compound having an ethylene vinyl acetate copolymer skeleton structure and a triazine structure in the molecule, and a polyolefin skeleton structure and a triazine structure in the molecule A compound having is used.
  • a compound having a (meth) acrylic resin skeleton structure and a benzophenone structure in the molecule, a compound having an ethylene vinyl acetate copolymer skeleton structure and a benzophenone structure in the molecule, and a polyolefin skeleton structure and a benzophenone structure in the molecule A compound having is used.
  • a crosslinking agent capable of reacting with the reactive ultraviolet absorber may be used in combination with the reactive ultraviolet absorber.
  • the reactive ultraviolet absorber and the crosslinking agent are used in combination, the reactive ultraviolet absorber is easily polymerized, and as a result, the diffusion of the reactive ultraviolet absorber hardly occurs.
  • the crosslinking agent for example, bifunctional methacrylate or polyfunctional methacrylate is used. These bifunctional methacrylates and polyfunctional methacrylates are useful as crosslinking agents for reactive ultraviolet absorbers having vinyl groups.
  • cross-linking agents examples include ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, polyethylene glycol # 400 dimethacrylate, and trimethylolpropane trimethacrylate manufactured by Shin-Nakamura Chemical Co., Ltd.
  • the stable ultraviolet absorber means an ultraviolet absorber having a molecular skeleton of a transparent resin and an ultraviolet absorbing portion having a molecular structure that is bonded to the molecular skeleton and absorbs ultraviolet rays.
  • the ultraviolet absorbing portion is the same as the ultraviolet absorbing portion of the reactive ultraviolet absorber, and has at least one structure selected from a benzotriazole structure, a triazine structure, and a benzophenone structure.
  • the transparent resin which comprises a part of stable type ultraviolet absorber should just be transparent resin, and is not specifically limited.
  • a transparent resin similar to the transparent resin used in the transparent resin substrate 41 is used.
  • transparent resins such as ethylene vinyl acetate copolymer (EVA), polyvinyl butyral (PVB), polyimide, polyethylene, polypropylene, and polyethylene terephthalate (PET) are used as transparent resins constituting a part of the stable ultraviolet absorber. Is used.
  • EVA ethylene vinyl acetate copolymer
  • PVB polyvinyl butyral
  • PET polyethylene terephthalate
  • the stable ultraviolet absorber for example, the following substances are used. That is, a (meth) acrylic acid copolymer having a benzotriazole structure in the side chain, an ethylene vinyl acetate copolymer having a benzotriazole structure in the side chain, and a polyolefin having a benzotriazole structure in the side chain are used. Further, a (meth) acrylic acid copolymer having a triazine structure in the side chain, an ethylene vinyl acetate copolymer having a triazine structure in the side chain, and a polyolefin having a triazine structure in the side chain are used.
  • a (meth) acrylic acid copolymer having a benzophenone structure in the side chain an ethylene vinyl acetate copolymer having a benzophenone structure in the side chain, and a polyolefin having a benzophenone structure in the side chain are used.
  • the stable ultraviolet absorber has a molecular weight of usually 5000 or more, preferably 10,000 or more.
  • the stable ultraviolet absorber has a molecular weight of usually 100,000 or less, preferably 50,000 or less.
  • the stable ultraviolet absorber is difficult to diffuse in the transparent resin substrate 41 included in the ultraviolet absorbing layer 40.
  • the molecular weight of the stable ultraviolet absorbent is less than 5000, the stable ultraviolet absorbent in the ultraviolet absorbing layer 40 diffuses in the transparent resin base material 41 and moves to the wavelength conversion layer 30, so that ultraviolet rays are emitted. Since it is absorbed by the stable ultraviolet absorber in the wavelength conversion layer 30, it is not preferable.
  • the molecular weight of the stable ultraviolet absorber exceeds 100,000, it is not preferable because mixing of the stable ultraviolet absorber and the transparent resin substrate 41 becomes difficult.
  • the inorganic ultraviolet absorber for example, nanoparticles of metal oxide such as zinc oxide ZnO, cerium oxide CeO 2 , titanium oxide TiO 2 are used.
  • the nanoparticle means a particle having an average particle diameter of less than 100 nm.
  • the ultraviolet absorbing layer 40 is usually 0.001 to 5 parts by weight, preferably 0.005 to 3 parts by weight, more preferably 0.01 to 1 part by weight of the ultraviolet absorber 45 with respect to 100 parts by weight of the transparent resin substrate. Including parts by mass. When the content of the ultraviolet absorber is within the above range, the absorption efficiency of the ultraviolet light incident on the ultraviolet absorption layer 40 is good. If the content of the ultraviolet absorber is less than 0.001 part by mass, the ultraviolet absorbing effect is not sufficient, and if it exceeds 1 part by mass, the ultraviolet absorbing effect is not improved any more, which is not economical.
  • the ultraviolet absorbent 45 is an organic stable ultraviolet absorbent or an inorganic ultraviolet absorbent
  • the ultraviolet absorbent layer 40 is mixed with the transparent resin base material 41 to mix the ultraviolet absorbent 45 with a transparent resin. Disperse in the substrate 41. Next, this dispersion can be produced by molding into a sheet form, a film form, a plate form or the like.
  • the ultraviolet absorbing layer 40 includes a substance having the same or similar structure as the stable ultraviolet absorber as follows. Can be manufactured.
  • the same or similar structure as the stable ultraviolet absorber means that the ultraviolet absorber has the molecular skeleton of the transparent resin substrate 41 and the ultraviolet absorbing portion.
  • the ultraviolet absorber 45 is mixed with the transparent resin substrate 41 to disperse the reactive ultraviolet absorber 45 in the transparent resin substrate 41.
  • the reactive ultraviolet absorber 45 and the molecular skeleton of the transparent resin base material 41 included in the ultraviolet absorbing layer 40 are combined to form the same or similar structure as the stable ultraviolet absorber in the ultraviolet absorbing layer 40.
  • UV absorbers are formed.
  • the bond between the reactive ultraviolet absorber 45 and the molecular skeleton of the transparent resin substrate 41 included in the ultraviolet absorption layer 40 is achieved by, for example, applying light or heat to the reactive ultraviolet absorber 45 and the transparent resin substrate 41. It is realized by causing radical polymerization, cationic polymerization or anionic polymerization.
  • the wavelength conversion filter 20 includes, for example, the wavelength conversion layer 30 obtained by the method for producing the wavelength conversion layer, the ultraviolet absorption layer 40 obtained by the method for producing the ultraviolet absorption layer, and heat fusion. It is manufactured by doing. For this reason, the manufacturing method of the wavelength conversion filter which concerns on this embodiment can include the manufacturing method of the said ultraviolet absorption layer.
  • the ultraviolet absorber 45 is an organic reaction type ultraviolet absorber
  • an example of the manufacturing method of the wavelength conversion filter which concerns on this embodiment is as follows.
  • a stable ultraviolet absorber is obtained by combining a reactive ultraviolet absorber and the molecular skeleton of the transparent resin substrate 41 contained in the ultraviolet absorbing layer 40.
  • a UV absorber having the same or similar structure is formed.
  • the operation of the wavelength conversion filter 20 will be described with reference to FIG.
  • the solar cell module 1 When the solar cell module 1 is irradiated with sunlight including ultraviolet light 80 and visible light 85, the ultraviolet light 80 and visible light 85 are incident on the surface protective layer 50 from the light incident surface 53 and are transmitted therethrough. The light is incident on the wavelength conversion layer 30 of the wavelength conversion filter 20.
  • the visible light 85 incident on the wavelength conversion layer 30 of the wavelength conversion filter 20 is sequentially transmitted through the wavelength conversion layer 30 and the ultraviolet absorption layer 40 of the wavelength conversion filter 20 without being substantially converted by the wavelength conversion material 35. Then, the solar battery cell 10 is irradiated as it is.
  • the ultraviolet light 80 that has entered the wavelength conversion layer 30 of the wavelength conversion filter 20 is converted into visible light 85 that is light on the long wavelength side by the wavelength conversion material 35, and is then applied to the solar battery cell 10.
  • the ultraviolet light 80 incident on the wavelength conversion layer 30 the ultraviolet light 80 that has not been converted into visible light 85 and has passed through the wavelength conversion layer 30 is absorbed by the ultraviolet absorber 45 in the ultraviolet absorption layer 40.
  • the light that passes through the ultraviolet absorbing layer 40 of the wavelength conversion filter 20 is substantially only visible light 85.
  • the photovoltaic cell 10 generates a photovoltaic power 90 by the visible light 85 transmitted through the wavelength conversion filter 20, and the photovoltaic power 90 is supplied to the outside of the solar battery module 1 through a terminal (not shown).
  • the ultraviolet light 80 is not substantially irradiated into the solar cell module 1, damage or deterioration of the solar cell module 1 due to the irradiation of the ultraviolet light 80 can be suppressed.
  • the wavelength conversion filter 20 used in the present embodiment since the ultraviolet absorber 45 in the ultraviolet absorption layer 40 is hardly diffused by being taken into the molecular skeleton of the transparent resin base material 41, the wavelength conversion layer 30 and the ultraviolet absorption. A two-layer structure with the layer 40 is maintained for a long time. For this reason, according to the wavelength conversion filter 20, a decrease in the wavelength conversion efficiency from ultraviolet light to visible light due to diffusion of the ultraviolet absorber 45 is unlikely to occur, and a state in which the wavelength conversion efficiency from ultraviolet light to visible light is high is long-term. Maintained. For this reason, the wavelength conversion filter 20 used in the present embodiment is suitable for the solar cell module 1.
  • the surface protective layer 50 disposed on the surface of the wavelength conversion filter 20 protects the wavelength conversion filter 20 and the solar battery cell 10 from the external environment of the solar battery module 1. Further, the surface protective layer 50 may have a filter function that does not transmit light in a specific wavelength region, if necessary.
  • the surface protective layer 50 is made of, for example, a glass substrate, polycarbonate, acrylic, polyester, fluorinated polyethylene, or the like.
  • the back surface sealing member 60 disposed on the back surface 14 of the solar battery cell 10 prevents moisture from entering the solar battery cell 10 and improves the overall strength of the solar battery module 1.
  • the back surface sealing member 60 is made of the same material as that which can be used for the transparent resin base material 31 and the transparent resin base material 41 of the wavelength conversion filter 20, for example.
  • the material of the back surface sealing member 60 may be the same as or different from the material of the transparent resin base material 31 or the transparent resin base material 41 of the wavelength conversion filter 20.
  • the back surface protective layer 70 disposed on the back surface of the back surface sealing member 60 protects the back surface sealing member 60 and the solar battery cell 10 from the external environment of the solar cell module 1.
  • the back surface protective layer 70 is made of, for example, the same material that can be used for the surface protective layer 50.
  • the material of the back surface protective layer 70 may be the same as or different from the material of the front surface protective layer 50.
  • the solar cell module 1 According to the solar cell module 1 according to the present embodiment, a state where the wavelength conversion efficiency of the wavelength conversion filter 20 from ultraviolet light to visible light is high is maintained for a long time. Moreover, according to the solar cell module 1 according to the present embodiment, since the ultraviolet light 80 is not substantially irradiated into the solar cell module 1, the damage or deterioration of the solar cell module 1 due to the irradiation of the ultraviolet light 80 is suppressed. Can do.
  • a calcium fluoride phosphor was synthesized and its characteristics were evaluated.
  • the following compound powder was used as a raw material.
  • each raw material was weighed in such a ratio that a phosphor having the composition Ca 0.99 F 2 Eu 0.01 was obtained.
  • the raw materials were sufficiently dry-mixed using a magnetic mortar and a magnetic pestle to obtain a fired raw material.
  • the firing raw material was transferred to an alumina crucible and fired in a reducing atmosphere (96% nitrogen 4% hydrogen mixed gas atmosphere) for 2 hours at a temperature of 850 ° C. using a tubular atmosphere furnace.
  • a phosphor having the composition Ca 0.99 F 2 Eu 0.01 was obtained.
  • (Wavelength conversion filter) [Wavelength conversion layer] 18 parts by weight of the synthesized phosphor and 100 parts by weight of EVA (Evaflex (registered trademark) EV450, manufactured by Mitsui DuPont Co., Ltd.) were heated at 150 ° C. for 30 minutes at a rotation speed of 30 rpm using a plast mill manufactured by Toyo Seiki Co., Ltd. And kneaded. The kneaded product was formed into a sheet having a thickness of 0.6 mm by hot pressing to produce a wavelength conversion layer.
  • [UV absorbing layer] Prepared 0.54 parts by mass of PUVA-50M-50K (molecular weight: 10,000) manufactured by Daiwa Kasei Co., Ltd.
  • EVA Evaflex EV450 manufactured by Mitsui DuPont Co., Ltd.
  • PUVA-50M-50K has an EVA molecular skeleton and an ultraviolet-absorbing portion having a benzotriazole structure.
  • this kneaded material was formed into a sheet having a thickness of 0.6 mm by hot pressing to produce an ultraviolet absorbing layer.
  • the wavelength conversion layer was produced by thermally fusing the wavelength conversion layer and the ultraviolet absorption layer at 100 ° C.
  • the external quantum efficiency was measured using a quantum efficiency measurement system QE-1100 manufactured by Otsuka Electronics Co., Ltd. Measurement and analysis conditions were as follows. Excitation wavelength: 350 nm Total number of times: 30 Exposure time: Auto Measurement temperature range: 30 to 200 ° C Measurement temperature step: 10 ° C Excitation wavelength range: ⁇ 20 nm Fluorescence wavelength range: 370-800nm Moreover, the deterioration acceleration test was done about the obtained wavelength conversion filter. The deterioration acceleration test was a test in which the wavelength conversion filter was allowed to stand at 80 ° C. for 5 hours in a constant temperature bath.
  • Example 2 (Wavelength conversion filter) [Wavelength conversion layer] The same wavelength conversion layer as in Example 1 was used.
  • [UV absorbing layer] 0.012 parts by mass of RUVA93 manufactured by Otsuka Chemical Co., Ltd. as an organic reactive ultraviolet absorber, and 100 parts by mass of EVA (manufactured by Mitsui DuPont, Evaflex (registered trademark) EV530) were prepared. Further, 0.3 parts by mass of Trigonox (registered trademark) 17 manufactured by Kayaku Akzo Corporation as a polymerization agent was prepared.
  • RUVA93 has a UV-absorbing portion having a benzotriazole structure. This kneaded product was formed into a sheet having a thickness of 0.6 mm by hot pressing to produce an ultraviolet absorbing layer.
  • the wavelength conversion layer was produced by thermally fusing the wavelength conversion layer and the ultraviolet absorption layer. (Measurement of external quantum efficiency and absorption rate) About the obtained wavelength conversion filter, it carried out similarly to Example 1, and measured the maintenance rate (%) of external quantum efficiency, and the maintenance rate (%) of the absorptance. The results are shown in Table 1.
  • Example 3 (Wavelength conversion filter) [Wavelength conversion layer] The same wavelength conversion layer as in Example 1 was used.
  • Nano-zinc oxide particle dispersant NANOBYK (registered trademark) -3841 manufactured by BYK Co., Ltd. as an inorganic ultraviolet absorber is 0.1 parts by mass in terms of nano-zinc oxide particles, EVA (Mitsui DuPont, EVAFLEX ( (Registered trademark) EV450) 100 parts by mass were prepared. And these were melt-kneaded with a plast mill manufactured by Toyo Seiki Co., Ltd. for 30 minutes at a heating temperature of 150 ° C. and a rotation speed of 30 rpm.
  • This kneaded product was formed into a sheet having a thickness of 0.6 mm by hot pressing to produce an ultraviolet absorbing layer.
  • the wavelength conversion layer was produced by thermally fusing the wavelength conversion layer and the ultraviolet absorption layer.
  • the results are shown in Table 1.
  • [Wavelength conversion layer] 0.02 part by mass of Lumogen (registered trademark) F violet 570 (manufactured by BASF Europe), which is an organic phosphor, and 100 parts by mass of EVA (manufactured by Mitsui DuPont, Evaflex (registered trademark) EV450) are prepared. did. These were melt-kneaded with a plast mill manufactured by Toyo Seiki Co., Ltd. at a heating temperature of 150 ° C. and a rotation speed of 30 rpm for 30 minutes. The kneaded product was formed into a sheet having a thickness of 0.6 mm by hot pressing to produce a wavelength conversion layer.
  • Lumogen registered trademark
  • F violet 570 manufactured by BASF Europe
  • EVA manufactured by Mitsui DuPont, Evaflex (registered trademark) EV450
  • Example 2 The same UV absorbing layer as in Example 2 was used [Fusion of wavelength conversion layer and UV absorbing layer] As in Example 1, the wavelength conversion layer was produced by thermally fusing the wavelength conversion layer and the ultraviolet absorption layer. (Measurement of external quantum efficiency and absorption rate) About the obtained wavelength conversion filter, it carried out similarly to Example 1, and measured the maintenance rate (%) of external quantum efficiency, and the maintenance rate (%) of the absorptance. The results are shown in Table 1.
  • Example 5 [Wavelength conversion layer] The same wavelength conversion layer as in Example 4 was used.
  • EVA manufactured by Mitsui DuPont, Evaflex (registered trademark) EV530
  • 3 parts by mass of TMPT manufactured by Shin-Nakamura Chemical Co., Ltd.
  • Trigonox registered trademark
  • Example 6 [Wavelength conversion layer] The same wavelength conversion layer as in Example 4 was used.
  • TMPT manufactured by Shin-Nakamura Chemical Co., Ltd.
  • Trigonox registered trademark
  • [Comparative Example 1] (Wavelength conversion filter) [Wavelength conversion layer] The same wavelength conversion layer as in Example 1 was used.
  • Tinuvin (registered trademark) P has a UV-absorbing portion having a benzotriazole structure, but has a small molecular weight of 225. This kneaded product was formed into a sheet having a thickness of 0.6 mm by hot pressing to produce an ultraviolet absorbing layer.
  • the wavelength conversion layer was produced by thermally fusing the wavelength conversion layer and the ultraviolet absorption layer. (Measurement of external quantum efficiency and absorption rate) About the obtained wavelength conversion filter, it carried out similarly to Example 1, and measured the maintenance rate (%) of external quantum efficiency, and the maintenance rate (%) of the absorptance. The results are shown in Table 1.
  • Tinuvin (registered trademark) P in the ultraviolet absorption layer 40 is not taken into the EVA molecular skeleton, which is the transparent resin base material 41, and diffuses into the wavelength conversion layer 30. It was. That is, in the wavelength conversion filter 20 after the deterioration acceleration test, the boundary between the wavelength conversion layer 30 and the ultraviolet absorption layer 40 is ambiguous, and the two-layer structure of the wavelength conversion layer 30 and the ultraviolet absorption layer 40 is not maintained. It was.
  • the wavelength conversion filter of the present invention a high wavelength conversion efficiency from ultraviolet light to visible light can be maintained for a long time.
  • the method for manufacturing a wavelength conversion filter of the present invention it is possible to efficiently manufacture a wavelength conversion filter that maintains a high wavelength conversion efficiency from ultraviolet light to visible light for a long period of time.
  • the solar cell module of the present invention a state in which the wavelength conversion efficiency of the wavelength conversion filter from ultraviolet light to visible light is high is maintained for a long time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明の波長変換フィルタ20は、透明樹脂基材31中に波長変換材料35が分散した波長変換層30と、この波長変換層30の表面に設けられ、透明樹脂基材41中に紫外線吸収剤45が分散した紫外線吸収層40と、を備え、波長変換層30は、この波長変換層30に含まれる透明樹脂基材31の100質量部に対して、波長変換材料35を0.01~30質量部含む。

Description

波長変換フィルタ及びその製造方法並びに太陽電池モジュール
 本発明は、波長変換技術に関し、特に励起波長の光に対して波長を変換する波長変換フィルタ及びその製造方法並びに前記波長変換フィルタを用いた太陽電池モジュールに関する。
 太陽電池モジュールでは、一般的に、太陽光のうちの一部の波長の光しか電気に変換されていないことが、光電変換効率の低下の要因になっている。これに対し、太陽電池モジュールにおいて利用不可能な波長の光を利用可能な波長の光に変換して光電変換効率の向上を図る波長変換技術が用いられている。また、太陽電池モジュールは、屋外で用いられることが多いため、非常に高い耐久性が求められている。
 これに対し、特許文献1には、無機系の2種類の波長変換材料を用いた波長変換フィルタが開示されている。また、特許文献2には、波長変換材を含む封止層と、紫外線吸収剤として2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノンを含む封止層で構成される二層構造の波長変換フィルタが開示されている。
特開2004-161841号公報 特開2014-232792号公報
 しかしながら、特許文献1に開示された波長変換フィルタは、無機系の波長変換材料を用いているため、耐久性に優れるものの、紫外線を十分にカットできないという問題があった。無機系の波長変換材料は、紫外線吸収係数が低いため、粒径が大きいと紫外光のカットが困難になり易いからである。また、特許文献2に開示される波長変換フィルタは、紫外線吸収剤である2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノンが封止材層中を拡散して波長変換材を含む封止層に侵入することにより、光透過効率が低下するという問題があった。
 本発明は、上記課題に鑑みてなされたものである。本発明は、紫外光から可視光への波長変換効率の高い状態が長期的に維持される波長変換フィルタ及びその製造方法を提供することを目的とする。また、本発明は、波長変換フィルタにおける紫外光から可視光への波長変換効率の高い状態が長期的に維持される太陽電池モジュールを提供することを目的とする。
 上記課題を解決するために、本発明の態様に係る波長変換フィルタは、透明樹脂基材中に波長変換材料が分散した波長変換層と、この波長変換層の表面に設けられ、透明樹脂基材中に紫外線吸収剤が分散した紫外線吸収層と、を備える。前記波長変換層は、この波長変換層に含まれる透明樹脂基材100質量部に対して、前記波長変換材料を0.01~30質量部含む。
 また、本発明の態様に係る太陽電池モジュールは、前記波長変換フィルタと、この波長変換フィルタを構成する前記波長変換層側に設けられ、前記波長変換層の表面を保護する表面保護層と、を備える。また、本発明の態様に係る太陽電池モジュールは、前記波長変換フィルタを構成する前記紫外線吸収層側に設けられ、前記波長変換フィルタを透過した可視光で発電する太陽電池セル、を備える。
 さらに、本発明の態様に係る波長変換フィルタの製造方法は、前記波長変換フィルタを製造する波長変換フィルタの製造方法である。この波長変換フィルタの製造方法は、前記反応型紫外線吸収剤と、前記紫外線吸収層に含まれる透明樹脂基材の分子骨格とを結合させて、安定型紫外線吸収剤を含む紫外線吸収層を形成する。
本実施形態に係る太陽電池モジュールの一例を模式的に示す断面図である。
 以下、本実施形態に係る太陽電池モジュール、太陽電池モジュールを構成する波長変換フィルタ、及び波長変換フィルタに含まれる波長変換材料について、図面を参照して説明する。
[太陽電池モジュール]
 図1は、本実施形態に係る太陽電池モジュールの一例を模式的に示す断面図である。図1に示すように、太陽電池モジュール1は、太陽電池セル10と、太陽電池セル10の受光面13側に配置された波長変換フィルタ20と、波長変換フィルタ20の表面に配置された表面保護層50とを含む。なお、波長変換フィルタ20は、透明樹脂基材31中に波長変換材料35が分散した波長変換層30と、波長変換層30の太陽電池セル10側の表面に設けられ透明樹脂基材41中に紫外線吸収剤45が分散した紫外線吸収層40と、からなる2層構造になっている。
 このため、太陽電池モジュール1は、波長変換フィルタ20と、波長変換フィルタ20を構成する波長変換層30側に設けられ、波長変換層30の表面を保護する表面保護層50とを備える。また、太陽電池モジュール1は、波長変換フィルタ20を構成する紫外線吸収層40側に設けられ、波長変換フィルタ20を透過した可視光で発電する太陽電池セル10を備える。
 また、太陽電池モジュール1は、太陽電池セル10の表面のうち受光面13と反対側の面である裏面14に配置された裏面封止部材60と、裏面封止部材60の裏面に配置された裏面保護層70とを含む。すなわち、太陽電池モジュール1は、図中上から、表面保護層50、波長変換フィルタ20、太陽電池セル10、裏面封止部材60及び裏面保護層70がこの順番で設けられた構成になっている。太陽電池モジュール1は、表面保護層50の表面である光入射面53から入射された光が、そのまま、又は波長変換フィルタ20で変換された後、太陽電池セル10で受光されることにより、光起電力を発生するようになっている。以下、各構成について詳しく説明する。
 (太陽電池セル)
 太陽電池セル10は、太陽電池セル10の受光面13から入射される光を吸収して光起電力を発生する。太陽電池セル10は、例えば、結晶系シリコン、ガリウム砒素(GaAs)、インジウム燐(InP)等の半導体材料を用いて形成される。具体的には、太陽電池セル10は、例えば、結晶シリコンとアモルファスシリコンとが積層されたものからなる。太陽電池セル10の受光面13と、受光面13と反対側の面である裏面14とには、図示しない電極が設けられる。太陽電池セル10で発生した光起電力は、電極を介して外部に供給される。
 (波長変換フィルタ)
 太陽電池セル10の受光面13側には、波長変換フィルタ20が配置される。図1に示すように、波長変換フィルタ20は、波長変換層30と、波長変換層30の太陽電池セル10側の表面に設けられた紫外線吸収層40とからなる2層構造になっている。
  <波長変換層>
 波長変換層30は、透明樹脂基材31中に波長変換材料35が分散した層である。波長変換層30は、波長変換材料35が、受光した紫外光80をより長波長の可視光85に変換する作用を有する。
 透明樹脂基材31は、波長変換材料35を分散した状態で保持するとともに、受光した紫外光80を波長変換材料35に導く透明樹脂である。透明樹脂基材31を構成する透明樹脂としては、例えば、エチレン酢酸ビニル共重合体(EVA)、(メタ)アクリル樹脂、ポリビニルブチラール(PVB)、ポリイミド、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)等の透明樹脂が用いられる。
 波長変換材料35としては、例えば、無機蛍光体、有機蛍光体が用いられる。このうち、無機蛍光体は、耐久性及び耐湿性が高いため好ましい。ここで耐久性とは、無機蛍光体の組成及び結晶構造が継時的に変化しない又はし難いことを意味する。
 無機蛍光体は、一般的に、無機化合物からなる母体結晶を構成する原子の一部が、蛍光を放射する発光中心で部分的に置換された結晶構造を有する。本実施形態で用いられる無機蛍光体としては、特に限定されない。本実施形態で用いられる無機蛍光体としては、例えば、CaF:Euが用いられる。CaF:Euは、CaFが母体結晶であり、Euが発光中心である。
 有機蛍光体としてはナフタルイミド系化合物、ペリレン系化合物等が挙げられる。有機蛍光体の市販品としては、例えば、ルモゲン(Lumogen(登録商標))Fバイオレット570(ナフタルイミド系化合物)、ルモゲンFイエロー083(ペリレン系化合物)、ルモゲンFイエロー170(ペリレン系化合物)等を用いることができる。
 蛍光体としては、波長400nm以下の紫外光を吸収して、波長400nm~1100nmの緑色光~近赤外光へ波長変換するものが好ましい。蛍光体がこのような性質を有すると、波長変換フィルタから太陽電池セルに供給される光が、太陽電池セルでの光電変換効率の大きい波長成分を多く含むため好ましい。また、蛍光体としては、太陽光スペクトルが相対的に大きい波長300nm以上で効率的に励起されるものが好ましい。蛍光体がこのような性質を有すると、波長変換フィルタから太陽電池セルに供給される光量が大きいため好ましい。
   [形状]
 波長変換材料35の形状は、粒状又は粉体状であることが好ましい、波長変換材料が粒状又は粉体状であると、波長変換材料35が透明樹脂基材31に分散しやすい。波長変換材料が粒状又は粉体状である場合、平均粒子径は、通常0.1μm以上100μm未満、好ましくは0.3μm以上30μm未満、より好ましくは1μm以上10μm未満である。波長変換材料の平均粒子径が上記範囲内にあると、紫外光を十分に吸収し、可視光の透過率の低下を抑制した波長変換部材を作製可能になる。波長変換材料の平均粒子径は、波長変換部材の断面を走査型電子顕微鏡で観察することにより、測定することができる。例えば、平均粒子径は、走査型電子顕微鏡で観察した、任意の20個以上の波長変換材料粒子の最長軸長の平均値と定義する。
   [透明樹脂基材と波長変換材料の配合比]
 波長変換層30は、波長変換層に含まれる透明樹脂基材100質量部に対して、波長変換材料を0.01~30質量部、好ましくは0.1~20質量部、より好ましくは1~10質量部含む。波長変換層30中の透明樹脂基材に対する波長変換材料の配合比が0.01質量部未満であると、波長変換材料による波長変換作用が十分に発現しないおそれがある。また、波長変換層30中の透明樹脂基材に対する波長変換材料の配合比が30質量部を超えると波長変換層30の光透過率が低下するおそれがある。
   [波長変換層の厚さ]
 波長変換層30の厚さは、特に限定されないが、例えば、10~10000μmである。波長変換層30の厚さがこの範囲内にあると、波長変換層30を薄くできるとともに、波長変換層30に入射された紫外光の可視光への変換効率がよいため好ましい。
   [波長変換層の製造方法]
 波長変換層30は、蛍光体35を透明樹脂基材31と混合することにより透明樹脂基材31中に分散させ、シート状、フィルム状、板状等の形態に成形することにより作製することができる。
  <紫外線吸収層>
 紫外線吸収層40は、透明樹脂基材41中に紫外線吸収剤45が分散した層である。
紫外線吸収層40は、紫外線吸収剤45が、受光した紫外光80を吸収する作用を有する。
 透明樹脂基材41は、紫外線吸収剤45を分散した状態で保持するとともに、受光した紫外光80を紫外線吸収剤45に導く透明樹脂である。透明樹脂基材41を構成する透明樹脂としては、透明樹脂基材31と同じものを用いることができる。具体的には、透明樹脂基材41として、例えば、エチレン酢酸ビニル共重合体(EVA)、(メタ)アクリル樹脂、ポリビニルブチラール(PVB)、ポリイミド、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)等の透明樹脂が用いられる。
 紫外線吸収剤45としては、例えば、有機系紫外線吸収剤や無機系紫外線吸収剤が用いられる。
   [有機系紫外線吸収剤]
 有機系紫外線吸収剤としては、例えば、反応型紫外線吸収剤又は安定型紫外線吸収剤が用いられる。ここで、反応型紫外線吸収剤とは、紫外線を吸収する分子構造である紫外線吸収部分を有し、かつ紫外線吸収層40に含まれる透明樹脂基材41の分子骨格と結合する作用を有する紫外線吸収剤を意味する。すなわち、反応型紫外線吸収剤は、紫外線吸収部分に加え、透明樹脂基材41の分子骨格と結合する分子構造である透明樹脂結合部分を有する。透明樹脂結合部分は、後述のように、光や熱を加えることにより、ラジカル重合、カチオン重合、アニオン重合等を生じて透明樹脂基材41の分子骨格と結合する部分である。反応型紫外線吸収剤は、透明樹脂結合部分が、紫外線吸収層40に含まれる透明樹脂基材41の分子骨格と結合することにより、透明樹脂基材41の分子骨格に取り込まれる。反応型紫外線吸収剤は、紫外線吸収層40に含まれる透明樹脂基材41の分子骨格に取り込まれることにより、紫外線吸収層40に含まれる透明樹脂基材41中で拡散しにくくなる。
 反応型紫外線吸収剤は、例えば、透明樹脂基材41と混合した状態で、光や熱を加えることにより、透明樹脂結合部分で、ラジカル重合、カチオン重合やアニオン重合を生じて透明樹脂基材41の分子骨格と結合する。反応型紫外線吸収剤が紫外線吸収層40に含まれる透明樹脂基材41の分子骨格と結合すると、結合後の物質は、透明樹脂基材41の分子骨格と紫外線吸収部分とを有する。このため、反応型紫外線吸収剤と透明樹脂基材41の分子骨格との結合後の物質は、後述の安定型紫外線吸収剤と同じ又は類似する構造の物質となる。なお、図1では、反応型紫外線吸収剤及び安定型紫外線吸収剤等の有機系紫外線吸収剤、並びに無機系紫外線吸収剤を符号45で示している。このうち、後述の安定型紫外線吸収剤及び無機系紫外線吸収剤は、透明樹脂基材41中でも分子構造が変化しないため、紫外線吸収剤を符号45で示すことは妥当である。しかし、反応型紫外線吸収剤は、上記のようにラジカル重合、カチオン重合やアニオン重合を生じて透明樹脂基材41の分子骨格と結合する前後で、分子構造が変化する。このため、紫外線吸収剤が反応型紫外線吸収剤である場合、図1中の符号45は、透明樹脂基材41の分子骨格と結合する前の状態の反応型紫外線吸収剤を示すものとする。
 反応型紫外線吸収剤の紫外線吸収部分は、ベンゾトリアゾール構造、トリアジン構造及びベンゾフェノン構造から選ばれる1種以上の構造を有する。ここでベンゾトリアゾール構造とは、ベンゾトリアゾールの骨格部分を意味し、具体的にはベンゾトリアゾールCのうちHを除いた骨格部分を意味する。また、トリアジン構造とは、トリアジンの骨格部分を意味し、具体的にはトリアジンCClのうちHを除いた骨格部分を意味する。さらに、ベンゾフェノン構造とは、ベンゾフェノンの骨格部分を意味し、具体的にはベンゾフェノンC1310OのうちHを除いた骨格部分を意味する。
 反応型紫外線吸収剤は、上記紫外線吸収部分に加えて、さらに透明樹脂基材41の分子骨格と結合するための透明樹脂結合部分を有する。このような透明樹脂結合部分としては、例えばグリシジル基、ビニル基、シラノール基等の官能基が用いられる。反応型紫外線吸収剤がこのような官能基を含むと、反応型紫外線吸収剤が、紫外線吸収層40に含まれる透明樹脂基材41の分子骨格と結合して、透明樹脂基材41の分子骨格に取り込まれやすいため好ましい。
 反応型紫外線吸収剤は、上記紫外線吸収部分に加えて、紫外線吸収部分に結合する透明樹脂骨格構造や紫外線吸収部分に結合する側鎖等を含む構造であってもよい。また、反応型紫外線吸収剤は、上記紫外線吸収部分及び透明樹脂結合部分に加えて、紫外線吸収部分に結合する透明樹脂骨格構造や紫外線吸収部分に結合する側鎖等を含む構造であってもよい。ここで、透明樹脂骨格構造とは、紫外線吸収層40に含まれる透明樹脂基材41の分子骨格の全部又は一部からなる骨格構造を意味する。例えば、透明樹脂基材41の分子骨格が(メタ)アクリル樹脂であれば、(メタ)アクリル樹脂の分子骨格の一部からなる-(C-C)n-COO-(nは自然数である)は透明樹脂骨格構造である。また、透明樹脂基材41の分子骨格がエチレン酢酸ビニル共重合体(EVA)であれば、EVAの分子骨格の一部からなる-(C-C)n-OCOCH(nは自然数である)は透明樹脂骨格構造である。以下、エチレン酢酸ビニル共重合体、(メタ)アクリル樹脂、及びポリオレフィンの骨格構造を、それぞれ、エチレン酢酸ビニル共重合体骨格構造、(メタ)アクリル樹脂骨格構造、及びポリオレフィン骨格構造という。
 紫外線吸収層40に含まれる反応型紫外線吸収剤の透明樹脂骨格構造は、紫外線吸収層40に含まれる透明樹脂基材41の分子骨格の全部又は一部と同一であることが好ましい。例えば、紫外線吸収層40に含まれる透明樹脂基材41が(メタ)アクリル樹脂であれば、紫外線吸収層40に含まれる反応型紫外線吸収剤は、(メタ)アクリル樹脂骨格構造を有するものであることが好ましい。同様に、紫外線吸収層40に含まれる透明樹脂基材41がエチレン酢酸ビニル共重合体であれば、紫外線吸収層40に含まれる反応型紫外線吸収剤は、エチレン酢酸ビニル共重合体骨格構造を有するものであることが好ましい。また、反応型紫外線吸収剤の紫外線吸収部分に結合する側鎖としては、例えば、メチル基、エチル基等のアルキル基が挙げられる。
 反応型紫外線吸収剤としては、例えば、以下の物質が用いられる。すなわち、分子内に(メタ)アクリル樹脂骨格構造とベンゾトリアゾール構造とを有する化合物、分子内にエチレン酢酸ビニル共重合体骨格構造とベンゾトリアゾール構造とを有する化合物、及び分子内にポリオレフィン骨格構造とベンゾトリアゾール構造とを有する化合物が用いられる。また、分子内に(メタ)アクリル樹脂骨格構造とトリアジン構造とを有する化合物、分子内にエチレン酢酸ビニル共重合体骨格構造とトリアジン構造とを有する化合物、及び分子内にポリオレフィン骨格構造とトリアジン構造とを有する化合物が用いられる。さらに、分子内に(メタ)アクリル樹脂骨格構造とベンゾフェノン構造とを有する化合物、分子内にエチレン酢酸ビニル共重合体骨格構造とベンゾフェノン構造とを有する化合物、及び分子内にポリオレフィン骨格構造とベンゾフェノン構造とを有する化合物が用いられる。
 なお、反応型紫外線吸収剤を用いる場合、反応型紫外線吸収剤に、反応型紫外線吸収剤と反応可能な架橋剤を併用してもよい。反応型紫外線吸収剤と架橋剤とを併用すると、反応型紫外線吸収剤が高分子化しやすくなり、この結果反応型紫外線吸収剤の拡散が起こりにくくなる。架橋剤としては、例えば、二官能メタクリレートや多官能メタクリレートが用いられる。これらの二官能メタクリレートや多官能メタクリレートは、ビニル基を有する反応型紫外線吸収剤の架橋剤として有用である。架橋剤の市販品としては、例えば、新中村化学工業株式会社製のエチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、ポリエチレングリコール♯400ジメタクリレート、トリメチロールプロパントリメタクリレート等が用いられる。
 また、安定型紫外線吸収剤とは、透明樹脂の分子骨格と、この分子骨格に結合し、紫外線を吸収する分子構造である紫外線吸収部分と、を有する紫外線吸収剤を意味する。ここで、紫外線吸収部分とは、反応型紫外線吸収剤の紫外線吸収部分と同じであり、ベンゾトリアゾール構造、トリアジン構造及びベンゾフェノン構造から選ばれる1種以上の構造を有する。また、安定型紫外線吸収剤の一部分を構成する透明樹脂は、透明な樹脂であればよく特に限定されない。安定型紫外線吸収剤の一部分を構成する透明樹脂としては、例えば、透明樹脂基材41で用いられる透明樹脂と同様の透明樹脂が用いられる。具体的には、安定型紫外線吸収剤の一部分を構成する透明樹脂として、エチレン酢酸ビニル共重合体(EVA)、ポリビニルブチラール(PVB)、ポリイミド、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)等の透明樹脂が用いられる。
 安定型紫外線吸収剤としては、例えば、以下の物質が用いられる。すなわち、側鎖にベンゾトリアゾール構造を有する(メタ)アクリル酸共重合体、側鎖にベンゾトリアゾール構造を有するエチレン酢酸ビニル共重合体、及び側鎖にベンゾトリアゾール構造を有するポリオレフィンが用いられる。また、側鎖にトリアジン構造を有する(メタ)アクリル酸共重合体、側鎖にトリアジン構造を有するエチレン酢酸ビニル共重合体、及び側鎖にトリアジン構造を有するポリオレフィンが用いられる。さらに、側鎖にベンゾフェノン構造を有する(メタ)アクリル酸共重合体、側鎖にベンゾフェノン構造を有するエチレン酢酸ビニル共重合体、及び側鎖にベンゾフェノン構造を有するポリオレフィンが用いられる。
 安定型紫外線吸収剤は、分子量が、通常5000以上、好ましくは10000以上である。また、安定型紫外線吸収剤は、分子量が、通常100000以下、好ましくは50000以下である。安定型紫外線吸収剤の分子量が、上記範囲内にあると、紫外線吸収層40に含まれる透明樹脂基材41中で、安定型紫外線吸収剤が拡散しにくい。なお、安定型紫外線吸収剤の分子量が5000未満であると、紫外線吸収層40中の安定型紫外線吸収剤が透明樹脂基材41中で拡散して波長変換層30に移動することにより、紫外線が波長変換層30中の安定型紫外線吸収剤に吸収されるため好ましくない。一方、安定型紫外線吸収剤の分子量が100000を超えると、安定型紫外線吸収剤と透明樹脂基材41との混合が困難になるため好ましくない。
   [無機系紫外線吸収剤]
 無機系紫外線吸収剤としては、例えば、酸化亜鉛ZnO、酸化セリウムCeO、酸化チタンTiO等の金属酸化物のナノ粒子が用いられる。ここでナノ粒子とは、平均粒子径が100nm未満の粒子を意味する。
   [透明樹脂基材と紫外線吸収剤の配合比]
 紫外線吸収層40は、透明樹脂基材100質量部に対して、紫外線吸収剤45を、通常0.001~5質量部、好ましくは0.005~3質量部、より好ましくは0.01~1質量部含む。紫外線吸収剤の含有量が上記範囲内にあると、紫外線吸収層40に入射された紫外光の吸収効率がよい。紫外線吸収剤の含有量が0.001質量部未満であると、紫外線吸収作用が十分でなく、1質量部を超えるとこれ以上紫外線吸収作用が向上しないため、経済的でない。
   [紫外線吸収層の製造方法]
 紫外線吸収層40は、紫外線吸収剤45が有機系の安定型紫外線吸収剤又は無機系紫外線吸収剤である場合、紫外線吸収剤45を透明樹脂基材41と混合して紫外線吸収剤45を透明樹脂基材41中に分散させる。次に、この分散体を、シート状、フィルム状、板状等の形態に成形することにより作製することができる。
 また、紫外線吸収層40は、紫外線吸収剤45が有機系の反応型紫外線吸収剤である場合は、次のようにして安定型紫外線吸収剤と同じ又は類似する構造の物質を含む紫外線吸収層40を製造することができる。ここで、安定型紫外線吸収剤と同じ又は類似する構造とは、透明樹脂基材41の分子骨格と、紫外線吸収部分と、を有する紫外線吸収剤であることを意味する。
 はじめに、紫外線吸収剤45を透明樹脂基材41と混合して反応型紫外線吸収剤45を透明樹脂基材41中に分散させる。次に、反応型紫外線吸収剤45と、紫外線吸収層40に含まれる透明樹脂基材41の分子骨格とを結合させることにより、紫外線吸収層40中で安定型紫外線吸収剤と同じ又は類似する構造の紫外線吸収剤が形成される。反応型紫外線吸収剤45と、紫外線吸収層40に含まれる透明樹脂基材41の分子骨格との結合は、例えば、反応型紫外線吸収剤45と透明樹脂基材41とに光や熱を加えて、ラジカル重合、カチオン重合やアニオン重合を生じさせることにより実現される。
  <波長変換フィルタの製造方法>
 本実施形態に係る波長変換フィルタ20は、例えば、上記波長変換層の製造方法で得られた波長変換層30と、上記紫外線吸収層の製造方法で得られた紫外線吸収層40と、熱融着することにより製造される。このため、本実施形態に係る波長変換フィルタの製造方法は、上記紫外線吸収層の製造方法を含み得る。紫外線吸収剤45が有機系の反応型紫外線吸収剤である場合、本実施形態に係る波長変換フィルタの製造方法の一例は、以下とおりである。すなわち、本実施形態に係る波長変換フィルタの製造方法では、反応型紫外線吸収剤と、前記紫外線吸収層40に含まれる透明樹脂基材41の分子骨格とを結合させることにより、安定型紫外線吸収剤と同じ又は類似する構造の紫外線吸収剤が形成される。
  <波長変換フィルタの作用>
 図1を用いて、波長変換フィルタ20の作用を説明する。太陽電池モジュール1に、紫外光80や、可視光85を含む太陽光が照射されると、紫外光80や可視光85は、光入射面53から表面保護層50に入射し、これを透過して、波長変換フィルタ20の波長変換層30に入射される。波長変換フィルタ20の波長変換層30に入射された可視光85は、実質的に波長変換材料35で変換されることなく、波長変換フィルタ20の波長変換層30及び紫外線吸収層40を順次透過して、そのまま太陽電池セル10に照射される。一方、波長変換フィルタ20の波長変換層30に入射された紫外光80は、波長変換材料35で長波長側の光である可視光85に変換された後、太陽電池セル10に照射される。なお、波長変換層30に入射された紫外光80のうち可視光85に変換されず波長変換層30を透過した紫外光80は、紫外線吸収層40中の紫外線吸収剤45に吸収される。この結果、波長変換フィルタ20の紫外線吸収層40を透過する光は、実質的に可視光85のみとなる。太陽電池セル10は、波長変換フィルタ20を透過した可視光85により光起電力90を生じ、光起電力90は図示しない端子を介して太陽電池モジュール1の外部に供給される。このように紫外光80は実質的に太陽電池モジュール1内部に照射されないため、紫外光80の照射による太陽電池モジュール1の損傷又は劣化を抑制することができる。
  <波長変換フィルタの効果>
 本実施形態で用いられる波長変換フィルタ20によれば、紫外線吸収層40中の紫外線吸収剤45が透明樹脂基材41の分子骨格に取り込まれることにより拡散しにくいため、波長変換層30と紫外線吸収層40との二層構造が長期的に維持される。このため、波長変換フィルタ20によれば、紫外線吸収剤45の拡散による紫外光から可視光への波長変換効率への低下が生じにくく、紫外光から可視光への波長変換効率の高い状態が長期的に維持される。このため、本実施形態で用いられる波長変換フィルタ20は、太陽電池モジュール1用に好適である。
 (表面保護層)
 波長変換フィルタ20の表面に配置される表面保護層50は、太陽電池モジュール1の外部環境から波長変換フィルタ20及び太陽電池セル10を保護するものである。また、表面保護層50は、必要により、特定の波長領域の光を透過させないフィルタ機能を備えていてもよい。表面保護層50は、例えば、ガラス基板、ポリカーボネート、アクリル、ポリエステル、フッ化ポリエチレン等からなる。
 (裏面封止部材)
 太陽電池セル10の裏面14に配置される裏面封止部材60は、太陽電池セル10への水分の浸入を防ぎ、太陽電池モジュール1全体の強度を向上させる。裏面封止部材60は、例えば、波長変換フィルタ20の透明樹脂基材31や透明樹脂基材41で用いられ得る材料と同じ材料からなる。なお、裏面封止部材60の材質は、波長変換フィルタ20の透明樹脂基材31や透明樹脂基材41の材質と同じであってもよいし異なっていてもよい。
 (裏面保護層)
 裏面封止部材60の裏面に配置される裏面保護層70は、太陽電池モジュール1の外部環境から裏面封止部材60及び太陽電池セル10を保護するものである。裏面保護層70は、例えば、表面保護層50で用いられ得る材料と同じ材料からなる。裏面保護層70の材質は、表面保護層50の材質と同じであってもよいし異なっていてもよい。
 (太陽電池モジュールの作用)
 太陽電池モジュール1の作用は、波長変換フィルタ20の作用の項で述べたため、説明を省略する。
 (太陽電池モジュールの効果)
 本実施形態に係る太陽電池モジュール1によれば、波長変換フィルタ20の紫外光から可視光への波長変換効率の高い状態が長期的に維持される。また、本実施形態に係る太陽電池モジュール1によれば、紫外光80は実質的に太陽電池モジュール1内部に照射されないため、紫外光80の照射による太陽電池モジュール1の損傷又は劣化を抑制することができる。
 以下、本実施形態を実施例によりさらに詳細に説明するが、本実施形態はこれら実施例に限定されるものではない。
 固相反応を利用する調製方法を用いて、フッ化カルシウム蛍光体を合成し、その特性を評価した。
 なお実施例では、以下に示す化合物粉末を原料として用いた。
 フッ化カルシウム(CaF):純度3N、株式会社高純度化学研究所製
 フッ化ユウロピウム(EuF):純度3N、和光純薬工業株式会社製
 [実施例1]
 (蛍光体)
 はじめに、組成Ca0.99Eu0.01の蛍光体が得られる割合で各原料を秤量した。次に磁性乳鉢及び磁性乳棒を用いて原料を十分に乾式混合し、焼成原料とした。その後、焼成原料をアルミナるつぼに移し、管状雰囲気炉を用いて850℃の温度で、還元雰囲気中(96%窒素4%水素混合ガス雰囲気中)で2時間、焼成した。焼成物をアルミナ乳鉢及びアルミナ乳棒を用いて解砕処理したところ、組成Ca0.99Eu0.01の蛍光体が得られた。
 (波長変換フィルタ)
  [波長変換層]
 合成した蛍光体18質量部と、EVA(三井デュポン株式会社製、エバフレックス(登録商標)EV450)100質量部とを、東洋精機株式会社製のプラストミルで加熱温度150℃、回転数30rpmで30分間、溶融混練した。この混練物を熱プレスで厚さ0.6mmにシート化して波長変換層を作製した。
  [紫外線吸収層]
 有機系の安定型紫外線吸収剤としての大和化成株式会社製PUVA-50M-50K(分子量:10000)0.54質量部と、EVA(三井デュポン株式会社製、エバフレックスEV450)100質量部とを用意した。そして、これらを東洋精機株式会社製のプラストミルで加熱温度150℃、回転数30rpmで30分間、溶融混練した。なお、PUVA-50M-50Kは、EVAの分子骨格と、ベンゾトリアゾール構造の紫外線吸収部分とを有するものである。次に、この混練物を熱プレスで厚さ0.6mmにシート化して紫外線吸収層を作製した。
  [波長変換層と紫外線吸収層との融着]
 波長変換層と紫外線吸収層とを100℃で熱融着して波長変換フィルタを作製した。
 (外部量子効率・吸収率の測定)
 得られた波長変換フィルタについて、大塚電子株式会社製量子効率測定システムQE-1100を用いて外部量子効率を測定した。測定及び解析条件は以下の通りとした。
  励起波長:350nm
  積算回数:30回
  露光時間:オート
  測定温度範囲:30~200℃
  測定温度ステップ:10℃
  励起波長範囲:±20nm
  蛍光波長範囲:370~800nm
 また、得られた波長変換フィルタについて、劣化加速試験を行った。劣化加速試験は、波長変換フィルタを、恒温槽中で80℃で5時間放置する試験とした。劣化加速試験後の波長変換フィルタついて、上記と同様にして外部量子効率・吸収率を測定した。
 劣化加速試験後の外部量子効率・吸収率値を劣化加速試験前の外部量子効率・吸収率値で除して、外部量子効率・吸収率の維持率(%)を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 [実施例2]
 (波長変換フィルタ)
  [波長変換層]
 実施例1と同じ波長変換層を用いた。
  [紫外線吸収層]
 有機系の反応型紫外線吸収剤としての大塚化学株式会社製RUVA93を0.012質量部と、EVA(三井デュポン株式会社製、エバフレックス(登録商標)EV530)100質量部とを用意した。また、重合剤としての化薬アクゾ株式会社製トリゴノックス(登録商標)17を0.3質量部用意した。そして、RUVA93の0.012質量部と、EVAの100質量部と、トリゴノックス17の0.3質量部とを東洋精機株式会社製のプラストミルで加熱温度150℃、回転数30rpmで30分間、溶融混練した。なお、RUVA93は、ベンゾトリアゾール構造の紫外線吸収部分を有するものである。この混練物を熱プレスで厚さ0.6mmにシート化して紫外線吸収層を作製した。
  [波長変換層と紫外線吸収層との融着]
 実施例1と同様に波長変換層と紫外線吸収層とを熱融着して波長変換フィルタを作製した。
 (外部量子効率及び吸収率の測定)
 得られた波長変換フィルタについて、実施例1と同様にして外部量子効率の維持率(%)及び吸収率の維持率(%)を測定した。結果を表1に示す。
 [実施例3]
 (波長変換フィルタ)
  [波長変換層]
 実施例1と同じ波長変換層を用いた。
  [紫外線吸収層]
 無機系の紫外線吸収剤としてのBYK株式会社製ナノ酸化亜鉛粒子分散剤NANOBYK(登録商標)-3841をナノ酸化亜鉛粒子換算で0.1質量部と、EVA(三井デュポン株式会社製、エバフレックス(登録商標)EV450)100質量部とを用意した。そして、これらを東洋精機株式会社製のプラストミルで加熱温度150℃、回転数30rpmで30分間、溶融混練した。この混練物を熱プレスで厚さ0.6mmにシート化して紫外線吸収層を作製した。
  [波長変換層と紫外線吸収層との融着]
 実施例1と同様に波長変換層と紫外線吸収層とを熱融着して波長変換フィルタを作製した。
 (外部量子効率及び吸収率の測定)
 得られた波長変換フィルタについて、実施例1と同様にして外部量子効率の維持率(%)及び吸収率の維持率(%)を測定した。結果を表1に示す。
[実施例4]
  [波長変換層]
 有機蛍光体であるルモゲン(Lumogen、登録商標)Fバイオレット570(BASF欧州会社製)0.02質量部と、EVA(三井デュポン株式会社製、エバフレックス(登録商標)EV450)100質量部とを用意した。これらを、東洋精機株式会社製のプラストミルで加熱温度150℃、回転数30rpmで30分間、溶融混練した。この混練物を熱プレスで厚さ0.6mmのシート状に成形して波長変換層を作製した。
  [紫外線吸収層]
 実施例2と同じ紫外線吸収層を用いた
  [波長変換層と紫外線吸収層との融着]
 実施例1と同様に波長変換層と紫外線吸収層とを熱融着して波長変換フィルタを作製した。
 (外部量子効率及び吸収率の測定)
 得られた波長変換フィルタについて、実施例1と同様にして外部量子効率の維持率(%)及び吸収率の維持率(%)を測定した。結果を表1に示す。
[実施例5]
  [波長変換層]
 実施例4と同じ波長変換層を用いた。
  [紫外線吸収層]
 有機系の反応型紫外線吸収剤としての大塚化学株式会社製RUVA93を0.012質量部と、EVA(三井デュポン株式会社製、エバフレックス(登録商標)EV530)100質量部とを用意した。また、架橋剤としてのTMPT(新中村化学工業株式会社製)3質量部と、重合剤としての化薬アクゾ株式会社製トリゴノックス(登録商標)17の0.3質量部とを用意した。そして、RUVA93の0.012質量部と、EVAの100質量部と、TMPTの3質量部と、トリゴノックス17の0.3質量部とを、東洋精機株式会社製のプラストミルで加熱温度150℃、回転数30rpmで30分間、溶融混練した。得られた混練物を熱プレスで厚さ0.6mmのシート状に成形して紫外線吸収層を作製した。
  [波長変換層と紫外線吸収層との融着]
 実施例1と同様に波長変換層と紫外線吸収層とを熱融着して波長変換フィルタを作製した。
 (外部量子効率及び吸収率の測定)
 得られた波長変換フィルタについて、実施例1と同様にして外部量子効率の維持率(%)及び吸収率の維持率(%)を測定した。結果を表1に示す。
[実施例6]
  [波長変換層]
 実施例4と同じ波長変換層を用いた。
  [紫外線吸収層]
 有機系の反応型紫外線吸収剤としての大塚化学株式会社製RUVA93を0.012質量部と、オレフィン系封止材(三井化学株式会社製タフマー(登録商標)P0275)100質量部とを用意した。また、架橋剤としてのTMPT(新中村化学工業株式会社製)3質量部と、重合剤としての化薬アクゾ株式会社製トリゴノックス(登録商標)17の0.3質量部とを用意した。そして、RUVA93の0.012質量部と、オレフィン系封止材の100質量部と、TMPTの3質量部と、トリゴノックス17の0.3質量部とを、東洋精機株式会社製のプラストミルで加熱温度150℃、回転数30rpmで30分間、溶融混練した。得られた混練物を熱プレスで厚さ0.6mmのシート状に成形して紫外線吸収層を作製した。
  [波長変換層と紫外線吸収層との融着]
 実施例1と同様に波長変換層と紫外線吸収層とを熱融着して波長変換フィルタを作製した。
 (外部量子効率及び吸収率の測定)
 得られた波長変換フィルタについて、実施例1と同様にして外部量子効率の維持率(%)及び吸収率の維持率(%)を測定した。結果を表1に示す。
 [比較例1]
 (波長変換フィルタ) 
  [波長変換層]
 実施例1と同じ波長変換層を用いた。
  [紫外線吸収層]
 有機系の反応型紫外線吸収剤としてのBASF欧州会社株式会社製チヌビン(Tinuvin、登録商標)P(分子量:225)を0.012質量部と、EVA(三井デュポン株式会社製、エバフレックス(登録商標)EV450)100質量部とを用意した。そして、これらを東洋精機株式会社製のプラストミルで加熱温度150℃、回転数30rpmで30分間、溶融混練した。なお、チヌビン(登録商標)Pは、ベンゾトリアゾール構造の紫外線吸収部分を有するが、分子量が225と小さいものである。この混練物を熱プレスで厚さ0.6mmにシート化して紫外線吸収層を作製した。
  [波長変換層と紫外線吸収層との融着]
 実施例1と同様に波長変換層と紫外線吸収層とを熱融着して波長変換フィルタを作製した。
 (外部量子効率及び吸収率の測定)
 得られた波長変換フィルタについて、実施例1と同様にして外部量子効率の維持率(%)及び吸収率の維持率(%)を測定した。結果を表1に示す。
 なお、劣化加速試験後の波長変換フィルタでは、紫外線吸収層40中のチヌビン(登録商標)Pは透明樹脂基材41であるEVAの分子骨格に取り込まれることはなく、波長変換層30に拡散していた。すなわち、劣化加速試験後の波長変換フィルタ20は、波長変換層30と紫外線吸収層40との境界があいまいになっており波長変換層30と紫外線吸収層40との二層構造が維持されていなかった。
 (実施例1~6及び比較例1の比較)
 表1より、実施例1~6では評価前後で外部量子効率が90%以上保持されているのに対して、比較例1の分子量の低い紫外線吸収剤を用いたものは外部量子効率が大幅に低下することが確認された。
 特願2015-161880号(出願日:2015年8月19日)及び特願2016-047729号(出願日:2016年3月11日)の全内容は、ここに援用される。
 以上、実施例に沿って本実施形態の内容を説明したが、本実施形態はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 本発明の波長変換フィルタによれば、紫外光から可視光への波長変換効率の高い状態が長期的に維持される。本発明の波長変換フィルタの製造方法によれば、紫外光から可視光への波長変換効率の高い状態が長期的に維持される波長変換フィルタを効率的に製造することができる。本発明の太陽電池モジュールによれば、波長変換フィルタの紫外光から可視光への波長変換効率の高い状態が長期的に維持される。
1 太陽電池モジュール
20 波長変換フィルタ
30 波長変換層
31、41 透明樹脂基材
35 蛍光体(波長変換材料)
40 紫外線吸収層
45 紫外線吸収剤(反応型紫外線吸収剤、安定型紫外線吸収剤)

Claims (10)

  1.  透明樹脂基材中に波長変換材料が分散した波長変換層と、
     この波長変換層の表面に設けられ、透明樹脂基材中に紫外線吸収剤が分散した紫外線吸収層と、
     を備え、
     前記波長変換層は、この波長変換層に含まれる透明樹脂基材100質量部に対して、前記波長変換材料を0.01~30質量部含むことを特徴とする波長変換フィルタ。
  2.  前記紫外線吸収剤は、無機系紫外線吸収剤であることを特徴とする請求項1に記載の波長変換フィルタ。
  3.  前記紫外線吸収剤は、紫外線を吸収する分子構造である紫外線吸収部分を有し、かつ前記紫外線吸収層に含まれる透明樹脂基材の分子骨格と結合する作用を有する反応型紫外線吸収剤であることを特徴とする請求項1に記載の波長変換フィルタ。
  4.  前記反応型紫外線吸収剤は、前記紫外線吸収層に含まれる透明樹脂基材の分子骨格と結合して、前記透明樹脂基材の分子骨格に取り込まれることを特徴とする請求項3に記載の波長変換フィルタ。
  5.  前記反応型紫外線吸収剤の紫外線吸収部分は、ベンゾトリアゾール構造、トリアジン構造及びベンゾフェノン構造から選ばれる1種以上の構造を有することを特徴とする請求項3又は4に記載の波長変換フィルタ。
  6.  前記紫外線吸収剤は、透明樹脂の分子骨格と、この分子骨格に結合し、紫外線を吸収する分子構造である紫外線吸収部分と、を有する安定型紫外線吸収剤であることを特徴とする請求項1に記載の波長変換フィルタ。
  7.  前記安定型紫外線吸収剤は、分子量が5000以上であることを特徴とする請求項6に記載の波長変換フィルタ。
  8.  前記安定型紫外線吸収剤の紫外線吸収部分は、ベンゾトリアゾール構造、トリアジン構造及びベンゾフェノン構造から選ばれる1種以上の構造を有することを特徴とする請求項6又は7に記載の波長変換フィルタ。
  9.  請求項1~8のいずれか1項に記載された波長変換フィルタと、
     この波長変換フィルタを構成する前記波長変換層側に設けられ、前記波長変換層の表面を保護する表面保護層と、
     前記波長変換フィルタを構成する前記紫外線吸収層側に設けられ、前記波長変換フィルタを透過した可視光で発電する太陽電池セルと、
     を備えることを特徴とする太陽電池モジュール。
  10.  請求項3~5のいずれか1項に記載された波長変換フィルタを製造する波長変換フィルタの製造方法であり、
     前記反応型紫外線吸収剤と、前記紫外線吸収層に含まれる透明樹脂基材の分子骨格とを結合させて、安定型紫外線吸収剤と同じ又は類似する構造の紫外線吸収剤を形成することを特徴とする波長変換フィルタの製造方法。
PCT/JP2016/003711 2015-08-19 2016-08-10 波長変換フィルタ及びその製造方法並びに太陽電池モジュール WO2017029797A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680037623.3A CN107735700A (zh) 2015-08-19 2016-08-10 波长转换滤波器和其制造方法以及太阳能电池模块
US15/739,737 US20180190848A1 (en) 2015-08-19 2016-08-10 Wavelength conversion filter, manufacturing method thereof, and solar cell module
JP2017535235A JPWO2017029797A1 (ja) 2015-08-19 2016-08-10 波長変換フィルタ及びその製造方法並びに太陽電池モジュール

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-161880 2015-08-19
JP2015161880 2015-08-19
JP2016-047729 2016-03-11
JP2016047729 2016-03-11

Publications (1)

Publication Number Publication Date
WO2017029797A1 true WO2017029797A1 (ja) 2017-02-23

Family

ID=58051580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003711 WO2017029797A1 (ja) 2015-08-19 2016-08-10 波長変換フィルタ及びその製造方法並びに太陽電池モジュール

Country Status (4)

Country Link
US (1) US20180190848A1 (ja)
JP (1) JPWO2017029797A1 (ja)
CN (1) CN107735700A (ja)
WO (1) WO2017029797A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210004749A (ko) * 2019-07-05 2021-01-13 삼성전자주식회사 광학 필터, 이미지 센서, 카메라 모듈 및 전자 장치
KR20210133755A (ko) * 2020-04-29 2021-11-08 삼성전자주식회사 광학 필터, 이미지 센서, 카메라 모듈 및 전자 장치
CN114854316A (zh) * 2022-06-06 2022-08-05 杭州福斯特应用材料股份有限公司 一种封装胶膜及其应用
CN114958215B (zh) * 2022-06-23 2023-07-07 苏州赛伍应用技术股份有限公司 一种uv光转换封装胶膜及其制备方法
CN115044325A (zh) * 2022-07-15 2022-09-13 上海海优威应用材料技术有限公司 双层结构转光膜及应用该转光膜的光伏组件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212554A (ja) * 1998-11-20 2000-08-02 Idemitsu Kosan Co Ltd 蛍光変換媒体及びそれを用いた表示装置
JP2000273437A (ja) * 1999-03-26 2000-10-03 Fuji Photo Film Co Ltd 高分子紫外線吸収剤ならびに該高分子紫外線吸収剤を含む有機材料、写真要素およびハロゲン化銀写真感光材料
JP2009512122A (ja) * 2005-09-12 2009-03-19 ビーエーエスエフ ソシエタス・ヨーロピア テリレン蛍光色素を基礎とする蛍光変換太陽電池
WO2011052571A1 (ja) * 2009-10-30 2011-05-05 住友化学株式会社 有機光電変換素子
WO2013172023A1 (ja) * 2012-05-16 2013-11-21 三井化学東セロ株式会社 太陽電池モジュール
JP2015513212A (ja) * 2012-02-01 2015-04-30 日東電工株式会社 太陽光捕集効率を向上させるためのガラスプレート上の波長変換層
JP2015138829A (ja) * 2014-01-21 2015-07-30 長州産業株式会社 太陽電池モジュール

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289904A (ja) * 2001-03-23 2002-10-04 Sumitomo Electric Ind Ltd 半導体受光素子とその製造方法
US8003132B2 (en) * 2008-06-30 2011-08-23 Johnson & Johnson Consumer Companies, Inc. Compositions comprising an ultraviolet radiation-absorbing polymer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212554A (ja) * 1998-11-20 2000-08-02 Idemitsu Kosan Co Ltd 蛍光変換媒体及びそれを用いた表示装置
JP2000273437A (ja) * 1999-03-26 2000-10-03 Fuji Photo Film Co Ltd 高分子紫外線吸収剤ならびに該高分子紫外線吸収剤を含む有機材料、写真要素およびハロゲン化銀写真感光材料
JP2009512122A (ja) * 2005-09-12 2009-03-19 ビーエーエスエフ ソシエタス・ヨーロピア テリレン蛍光色素を基礎とする蛍光変換太陽電池
WO2011052571A1 (ja) * 2009-10-30 2011-05-05 住友化学株式会社 有機光電変換素子
JP2015513212A (ja) * 2012-02-01 2015-04-30 日東電工株式会社 太陽光捕集効率を向上させるためのガラスプレート上の波長変換層
WO2013172023A1 (ja) * 2012-05-16 2013-11-21 三井化学東セロ株式会社 太陽電池モジュール
JP2015138829A (ja) * 2014-01-21 2015-07-30 長州産業株式会社 太陽電池モジュール

Also Published As

Publication number Publication date
JPWO2017029797A1 (ja) 2018-04-19
US20180190848A1 (en) 2018-07-05
CN107735700A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
WO2017029797A1 (ja) 波長変換フィルタ及びその製造方法並びに太陽電池モジュール
US20120266942A1 (en) Seal sheet and solar cell module
CN104927686B (zh) 一种具有高光转换效率的太阳能电池封装胶膜
US20130340808A1 (en) Wavelength conversion type sealing material sheet and solar battery module
JP2011258879A (ja) 太陽電池モジュール
Dai et al. Tuning solar absorption spectra via carbon quantum dots/VAE composite layer and efficiency enhancement for crystalline Si solar module
TW201803146A (zh) 基於間接能帶隙半導體奈米晶體之大面積發光太陽能集光器
JP2012054284A (ja) 波長変換組成物及び波長変換組成物からなる層を備えた光起電装置。
JP2012004146A (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP6164258B2 (ja) 太陽電池モジュール
CN102891203A (zh) 荧光转换白色封装材料及使用该封装材料的太阳能电池
JP2012069865A (ja) 太陽電池封止材及びそれを用いた太陽電池モジュール
WO2015108096A1 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
WO2012173006A1 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
KR101762476B1 (ko) 광 모듈용 투명시트, 이의 제조방법 및 광 모듈
JP2016206464A (ja) 反射シート、並びにこれを用いた太陽電池モジュールおよびled照明
WO2016129252A1 (ja) 蛍光体、波長変換部材及び光起電力デバイス
WO2016129023A1 (ja) 波長変換部材及びそれを用いた光起電力デバイス
KR20160012525A (ko) 광 모듈용 투명시트, 이의 제조방법 및 광 모듈
JP2012191068A (ja) 太陽電池モジュールおよびその製造方法
KR101793773B1 (ko) 광 모듈용 투명시트, 이의 제조방법 및 광 모듈
JP2014139992A (ja) 太陽電池封止材用樹脂組成物
KR101737685B1 (ko) 광전지 모듈용 백시트
WO2016067889A1 (ja) 波長変換型太陽電池モジュール
CN114701223B (zh) 一种太阳能电池背板复合膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836792

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017535235

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16836792

Country of ref document: EP

Kind code of ref document: A1