WO2017026242A1 - 車両の駆動装置 - Google Patents
車両の駆動装置 Download PDFInfo
- Publication number
- WO2017026242A1 WO2017026242A1 PCT/JP2016/071496 JP2016071496W WO2017026242A1 WO 2017026242 A1 WO2017026242 A1 WO 2017026242A1 JP 2016071496 W JP2016071496 W JP 2016071496W WO 2017026242 A1 WO2017026242 A1 WO 2017026242A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- engine
- speed reducer
- drive device
- output shaft
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
- B60K1/04—Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K11/00—Arrangement in connection with cooling of propulsion units
- B60K11/02—Arrangement in connection with cooling of propulsion units with liquid cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/24—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/26—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/36—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/40—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/40—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
- B60K6/405—Housings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
- B60K6/485—Motor-assist type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/50—Architecture of the driveline characterised by arrangement or kind of transmission units
- B60K6/54—Transmission for changing ratio
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/10—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
- B60L50/16—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L9/00—Electric propulsion with power supply external to the vehicle
- B60L9/16—Electric propulsion with power supply external to the vehicle using ac induction motors
- B60L9/18—Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D25/00—Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
- B62D25/20—Floors or bottom sub-units
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/19—Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
Definitions
- the present disclosure relates to a vehicle drive device including an engine and a motor generator as a power source of the vehicle.
- a hybrid vehicle equipped with an engine and a motor generator (hereinafter referred to as “MG”) as a power source of the vehicle has attracted attention because of the social demand for low fuel consumption and low exhaust emissions.
- MG motor generator
- Such a hybrid vehicle includes, for example, one described in Patent Document 1 (Japanese Patent No. 3350314).
- a transmission is connected to an engine via a clutch, a drive shaft of a wheel is connected to an output shaft of the transmission via a differential gear (differential gear mechanism), and four rings are connected to a ring gear of the differential gear.
- An object of the present disclosure is to provide a vehicle drive device that can realize EV traveling even with a small MG and can easily secure a space for mounting the MG.
- a first aspect of the present disclosure includes an engine serving as a power source of a vehicle and a transmission connected to the engine, and an axial direction of an output shaft of the engine is a longitudinal direction of the vehicle.
- the motor power generator is a motor generator (hereinafter referred to as “MG”) as a power source of the vehicle, and a speed reducer connected to the MG.
- MG and reduction gear are arranged outside the engine room that houses the engine, and the output shaft of the reduction gear is connected to the power transmission system that transmits the power of the output shaft of the transmission to the drive shaft of the wheel It is set as the structure made.
- the power of the MG can be transmitted to the wheel drive shaft via the speed reducer, so that even a small MG can generate the shaft torque necessary for EV traveling, which is an important function of the hybrid vehicle.
- a certain EV traveling can be realized.
- a hybrid vehicle capable of realizing EV traveling can be manufactured.
- the engine power can be transmitted to the drive shaft via the transmission, so that the engine power can be sufficiently self-running (self-running). Even under a high load such as towing, the driving force equivalent to or higher than that of the engine car as a base can be exhibited. Since the MG is located outside the engine room (that is, near the center of the vehicle body), even if a collision accident occurs, the damage to the MG is reduced and the MG is prevented from being exposed to the outside of the vehicle. Can also be reduced.
- the amount of heat generation tends to increase particularly in the case of a small MG.
- the driving of the MG needs to be limited.
- the liquid refrigerant in the MG case so as not to circulate outside the MG. If it does in this way, the heat inside MG can be efficiently conducted to a case via a refrigerant, can be emitted outside MG, and MG can be cooled effectively. As a result, overheating of the MG can be prevented, and the MG can be driven for a higher load and longer time. In addition, since the refrigerant scattered and filled in the MG case also promotes cooling of the stator and the rotor, a high cooling effect can be obtained at low cost without providing a complicated flow path in the MG case. .
- the refrigerant can be supplied as lubricating oil to the bearing required when the MG rotates at a high speed, the mechanical life of the MG can be extended while enhancing the cooling effect of the MG. Furthermore, the vibration associated with the rotation of the MG can be attenuated to improve quietness.
- the stator winding of the MG may be a segment type winding formed by joining a plurality of conductor segments.
- an appropriate gap is formed between the windings of the stator winding (that is, between the conductor segments), and the refrigerant easily enters the gap, so that the stator winding and the case through the refrigerant The heat transfer efficiency between the two can be improved.
- an insulating material as the refrigerant. In this way, even when a failure occurs in the insulating coating of the energized component in the MG case or when the energized component is damaged, a short circuit through the refrigerant in the MG case can be prevented.
- the refrigerant is stored in the MG case up to a position where at least the outer peripheral portion bottom surface side of the MG is immersed.
- the rotation of the rotor causes the refrigerant to be scraped up and mixed with the air, reducing the shear resistance when the rotating rotor and the refrigerant are in contact with each other, thereby reducing the rotation resistance of the rotor.
- MG efficiency can be improved.
- the foamed refrigerant mixed with air can reach every corner of the MG case, and the entire surface of the case can be used for heat transfer and heat dissipation. An excellent cooling effect can be obtained by applying to the end portion, the neutral point, and the lead wire.
- a heat dissipating solid is disposed so as to contact at least the coil end portion of the stator winding of the MG and the inner surface of the case. Also good.
- the heat of the coil end portion of the stator winding of the MG can be efficiently conducted to the case through the solid and released to the outside of the MG, and the MG can be effectively cooled. it can.
- overheating of the MG can be prevented, and the MG can be driven for a higher load and longer time.
- the coil end portion of the stator winding can be held in a solid state, it is possible to prevent the coil end portion from vibrating due to excitation and generating noise. Furthermore, it is possible to prevent the coil end portion and its insulating coating from being damaged by the vibration of the engine or the vehicle body.
- the stator winding of the MG is preferably a segment type winding formed by joining a plurality of conductor segments.
- an appropriate gap is formed between the windings of the stator winding (that is, between the conductor segments), and the liquid material can easily enter the gap during molding of the solid, so that fixing via the solid is possible.
- the heat transfer efficiency between the child winding and the case can be improved.
- an insulating material as a solid. In this way, even when a failure occurs in the insulating film at the coil end portion, it is possible to prevent a short circuit through the solid in the MG case.
- the insulation between the coil end portion and the case is enhanced by the presence of the insulating solid, the distance between the coil end portion and the case can be reduced, and the heat dissipation effect to the case can be enhanced.
- MG can be reduced in size.
- the solid is preferably arranged so as not to contact the rotating member of the MG. By doing so, it is possible to prevent the rotational resistance of the MG from increasing.
- the battery includes a battery mounted on the vehicle, an inverter that drives the MG, and a boost converter that boosts the voltage of the battery and makes the input voltage of the inverter higher than the voltage of the battery. It is good also as a structure. In this way, since the MG can be driven at a high voltage higher than the battery voltage, the efficiency of the MG at the high speed range of the vehicle (that is, the high rotation speed range of the MG) can be improved, and the fuel consumption can be further improved. Can be improved. In addition, the amount of battery mounted can be minimized, and an increase in vehicle weight and cost can be suppressed.
- the maximum torque Tmax, the maximum output Pmax, and the overall reduction ratio GRtotal may be set so that the radius Rtyre satisfies the relationship of the following formula (1) and the following formula (2).
- At least the upper side of the MG and the speed reducer is housed in a floor tunnel formed in the floor panel of the vehicle, and the lowermost surfaces of the MG and the speed reducer include the floor panel and the assembly parts. You may make it set the outer diameter of MG and a reduction gear so that it may be located above the lowermost surface of a vehicle. In this way, it is possible to mount the MG and the speed reducer using the existing floor tunnel with almost no change in the vehicle body structure of the base engine car.
- the MG and the speed reducer are located above the lowermost surface of the vehicle including the floor panel and the assembly parts (except for parts premised on deformation such as resin and rubber), the MG and the speed reducer And contact with the road surface can be avoided.
- a clutch may be provided between the output shaft of the speed reducer and the power transmission system.
- the energy loss due to the rotation of the MG and the reduction gear that is, the energy loss due to the rotational load of the MG and the reduction gear
- the clutch by disengaging the clutch when the MG fails, the engine can continue to run on its own.
- the system since it is not necessary to make the maximum speed of the reduction gear or MG correspond to the maximum speed of the vehicle, the system can be configured at a lower cost.
- FIG. 1 is a diagram illustrating a schematic configuration of a hybrid vehicle drive system according to a first embodiment.
- FIG. 2 is a cross-sectional view taken along the line AA in FIG.
- FIG. 3 is a cross-sectional view illustrating a schematic configuration of the MG of the first embodiment.
- FIG. 4 is a diagram illustrating the stator winding in the first embodiment.
- FIG. 5 is a block diagram illustrating a schematic configuration of the MG drive system in the first embodiment.
- FIG. 6 is a cross-sectional view illustrating a schematic configuration of the MG of the second embodiment.
- FIG. 7 is a diagram showing a schematic configuration of the hybrid vehicle drive system of the third embodiment.
- FIG. 8 is a diagram illustrating a schematic configuration of a drive system for a hybrid vehicle according to a fourth embodiment.
- FIG. 9 is a diagram illustrating the configuration of the differential gear mechanism and its peripheral portion according to the fourth embodiment.
- 10 is a cross-sectional view taken along the line BB of FIG.
- FIG. 11 is a diagram illustrating the configuration of the differential gear mechanism and its peripheral portion according to the fifth embodiment.
- 12 is a cross-sectional view taken along the line CC of FIG.
- Example 1 A first embodiment will be described with reference to FIGS. First, a schematic configuration of a hybrid vehicle drive system will be described with reference to FIGS. 1 and 2.
- an engine 11 serving as a power source for the vehicle and a transmission 12 connected to the engine 11 are mounted on the front side of the vehicle.
- the transmission 12 is a mechanical transmission, and may be a stepped transmission that switches a gear stage step by step from a plurality of gear stages, or a CVT (continuously variable transmission) that performs a stepless change. It may be.
- the engine 11 and the transmission 12 are arranged vertically so that the axial direction of the output shaft (crankshaft) of the engine 11 is the front-rear direction of the vehicle.
- the power of the output shaft of the engine 11 is transmitted to the transmission 12, and the power of the output shaft of the transmission 12 is transmitted to the drive shaft 14 of the rear wheel 15 (wheel) via the propeller shaft 39, the differential gear mechanism 13, and the like. It has become so.
- a small-diameter motor generator (hereinafter referred to as “MG”) 16 serving as a power source for the vehicle and a small-diameter speed reducer 17 connected to the MG 16 are mounted behind the engine 11 and the transmission 12. .
- the MG 16 and the speed reducer 17 are arranged outside the engine room in which the engine 11 is housed (for example, behind the dash panel 18 that partitions the engine room and the vehicle compartment).
- the MG 16 and the speed reducer 17 are arranged vertically so that the axial direction of the output shaft is the front-rear direction of the vehicle, and the speed reducer is connected to the input portion of the propeller shaft 39 to which the power of the output shaft of the transmission 12 is input.
- the 17 output shafts are connected via a power transmission mechanism 20 (for example, a gear or a chain).
- a power transmission mechanism 20 for example, a gear or a chain.
- a floor tunnel 22 extending in the front-rear direction of the vehicle is formed in the floor panel 21 of the vehicle, and the transmission 12 and the propeller shaft 39 are disposed along the floor tunnel 22, and the MG 16 and the deceleration are arranged.
- a machine 17 is arranged. 2 shows an example in which the MG 16 is arranged near the center of the floor tunnel 22.
- the present invention is not limited to this, and the MG 16 and the speed reducer 17 are arranged so as not to interfere with the propeller shaft 39 and the like. You can do it.
- the upper side (preferably the whole) of the MG 16 and the speed reducer 17 is accommodated in the floor tunnel 22, and the bottom surfaces of the MG 16 and the speed reducer 17 are assembly parts such as the floor panel 21 and the exhaust pipe 23 (however, The outer diameters of the MG 16 and the speed reducer 17 are set so as to be positioned above the lowermost surface of the vehicle including the parts including resin, rubber, and other components based on the assumption of deformation.
- the travel mode is switched, for example, between an engine travel mode, an HV travel mode, and an EV travel mode.
- the engine travel mode is a mode in which the engine travels in which the vehicle travels by driving the rear wheels 15 only with the power of the engine 11 of the engine 11 and the MG 16.
- the HV traveling mode is a mode for performing HV traveling in which the rear wheel 15 is driven by both the power of the engine 11 and the power of the MG 16 to travel the vehicle.
- the EV traveling mode is a mode in which EV traveling (including EV starting in which the vehicle is started only by the power of MG16) is driven by driving the rear wheel 15 only by the power of MG16 of the engine 11 and MG16.
- the stator 27 includes a stator core 29 having a plurality of slots 28 (see FIG. 4) in the circumferential direction, and a stator winding 30 composed of a plurality of phase windings wound around the stator core 29. ing.
- the stator winding 30 includes a plurality of substantially U-shaped conductor segments 31 inserted in a predetermined pattern from one side of the slot 28 and a conductor segment extending from the other side of the slot 28. This is a segment type winding formed by joining the tip portions of 31 in a predetermined pattern.
- the liquid refrigerant 32 is sealed in the case 24 of the MG 16 so as not to circulate outside the MG 16. Thereby, as indicated by an arrow in FIG. 3, the heat inside the MG 16 can be conducted to the case 24 via the refrigerant 32 and released to the outside of the MG 16. Further, as indicated by a broken line in FIG. 3, the refrigerant 32 is placed in the case 24 of the MG 16 up to a position (for example, a position slightly lower than the rotating shaft 25) where at least the outer peripheral portion bottom surface side of the rotor 26 is immersed in the state where the MG 16 is stopped. Is stored. Thus, when the MG 16 rotates, the refrigerant 32 is scraped up by the rotation of the rotor 26 and mixed with the air, so that the bubble-like refrigerant 32 reaches every corner in the case 24 of the MG 16.
- a position for example, a position slightly lower than the rotating shaft 25
- the refrigerant 32 is an insulating liquid, and for example, lubricating oil for automobiles such as ATF (hydraulic oil for automatic transmission) is used.
- lubricating oil for automobiles such as ATF (hydraulic oil for automatic transmission)
- ATF hydroaulic oil for automatic transmission
- a lubricating oil for automobiles is often added with an antifoaming agent that suppresses foaming in order to exert a sufficient lubricating action.
- a state in which the lubricating oil is mixed with air is used. Therefore, the addition amount of the antifoaming agent may be adjusted with the addition amount within the range where the antifoaming agent is not added or desired foaming occurs.
- a battery 33 mounted on the vehicle and an inverter 35 for driving the MG 16 are connected via a boost converter 34, and the MG 16 exchanges power with the battery 33 via the boost converter 34 and the inverter 35.
- the battery 33 is a direct current power source including a secondary battery.
- Boost converter 34 boosts the DC voltage of battery 33 to make the input voltage of inverter 35 higher than the DC voltage of battery 33.
- Inverter 35 converts the DC voltage boosted by boost converter 34 into an AC voltage, and drives MG 16.
- the MG 16 can be driven at a higher voltage than the voltage of the battery 33, the efficiency of the MG 16 in the high speed range of the vehicle (that is, the high rotation range of the MG 16) can be improved, and the fuel consumption can be further improved. Can be made. In addition, the amount of the battery 33 mounted can be minimized, and an increase in vehicle weight and cost can be suppressed.
- the maximum torque Tmax of MG16, the overall reduction ratio GRtotal ⁇ ⁇ , the vehicle weight IW, and the tire radius Rtyre of the rear wheel 15 of the vehicle satisfy the relationship of the following equation (1).
- the maximum torque TmaxT of MG16 and the overall reduction ratio GRtotal are set.
- the overall reduction ratio GRtotal is a reduction ratio determined by the reduction ratio of the reduction gear 17 and the final reduction ratio (for example, the reduction ratio in the differential gear mechanism 13).
- the above equation (1) is a condition for making the starting torque larger than a predetermined lower limit torque when performing the EV starting to start the vehicle only with the power of the MG 16.
- the lower limit torque is set based on the required start torque at NEDC having the smallest required start torque among JC08, NEDC, LA # 4, US06, and WLTP, which defines a travel pattern for measuring fuel consumption and exhaust gas. Has been. Therefore, by setting the maximum torque Tmax of the MG 16 and the overall reduction ratio GRtotal (the reduction ratio of the reducer 17) so as to satisfy the relationship of the above expression (1), the EV starts at a practical acceleration as a hybrid vehicle. Can do.
- the maximum output Pmax of the MG 16 is set so that the maximum output Pmax of the MG 16 and the vehicle weight IW satisfy the relationship of the following equation (2).
- the above equation (2) is a condition for making the regenerative power (generated power) larger than the predetermined lower limit power when performing regenerative power generation with the MG 16 when the vehicle is decelerated.
- the lower limit power is set based on the regenerative power in JC08 having the smallest regenerative power among JC08, NEDC, LA # 4, US06, and WLTP. Therefore, by setting the maximum output Pmax of the MG 16 so as to satisfy the relationship of the above expression (2), the regenerative power when performing regenerative power generation with the MG 16 when the vehicle is decelerated can be brought to a practical level as a hybrid vehicle. it can.
- the MG 16 and the speed reducer 17 are arranged outside the engine room in which the engine 11 is accommodated.
- the output shaft of the speed reducer 17 is connected to the propeller shaft 39 to which the power of the output shaft of the transmission 12 is input via the power transmission mechanism 20.
- the power of the MG 16 can be transmitted to the drive shaft 14 of the rear wheel 15 via the speed reducer 17, so that even the small MG 16 generates the shaft torque (torque of the drive shaft 14) necessary for EV travel.
- EV driving that is an important function of a hybrid vehicle can be realized.
- MG 16 even when a drive system of MG 16 (for example, MG 16, boost converter 34, inverter 35, etc.) fails, the power of engine 11 can be transmitted to drive shaft 14 via transmission 12.
- the power of 11 can sufficiently run (self-running).
- the load such as traction is high, the driving force equivalent to or higher than that of the engine vehicle as a base can be exhibited.
- the MG 16 since the MG 16 is disposed outside the engine room (that is, near the center of the vehicle body), even when a collision accident or the like occurs, damage to the MG 16 is reduced and the MG 16 is prevented from being exposed outside the vehicle. The possibility of an electric shock accident can also be reduced.
- the upper sides of the MG 16 and the speed reducer 17 are accommodated in a floor tunnel 22 formed on the floor panel 21 of the vehicle, and the lowermost surfaces of the MG 16 and the speed reducer 17 are lower than the lowermost surface of the vehicle.
- the outer diameters of the MG 16 and the speed reducer 17 are set so as to be positioned above.
- the MG 16 and the speed reducer 17 can be mounted using the existing floor tunnel 22 with almost no change in the vehicle body structure of the engine vehicle as a base.
- the lowermost surfaces of the MG 16 and the speed reducer 17 are located above the lowermost surface of the vehicle, the contact between the MG 16 and the speed reducer 17 and the road surface can be avoided.
- the liquid refrigerant 32 is sealed in the case 24 of the MG 16 so as not to circulate outside the MG 16.
- the heat inside the MG 16 can be efficiently conducted to the case 24 via the refrigerant 32 and released to the outside of the MG 16, and the MG 16 can be effectively cooled.
- overheating of the MG 16 can be prevented, and the MG 16 can be driven for a longer time and with a higher load.
- the refrigerant 32 scattered and filled in the case 24 of the MG 16 also promotes cooling of the stator 27 and the rotor 26, a high cooling effect can be achieved at low cost without providing a complicated flow path in the case 24 of the MG 16. Can be obtained.
- the refrigerant 32 can be supplied as lubricating oil to a bearing required when the MG 16 rotates at a high speed, the mechanical life of the MG 16 can be extended while enhancing the cooling effect of the MG 16. Furthermore, the vibration associated with the rotation of the MG 16 can be attenuated to improve quietness.
- stator winding 30 of the MG 16 a segment type winding formed by joining a plurality of substantially U-shaped conductor segments 31 in a predetermined pattern is used. Thereby, an appropriate gap is formed between the windings of the stator winding 30 (that is, between the conductor segments 31), and the refrigerant 32 easily enters the gap, so that the stator winding 30 via the refrigerant 32 and The efficiency of heat transfer with the case 24 can be improved.
- an insulating material is used as the refrigerant 32.
- the refrigerant 32 is stored in the case 24 of the MG 16 up to a position where at least the outer peripheral portion bottom surface side of the rotor 26 is immersed. Accordingly, the rotation of the rotor 26 causes the refrigerant 32 to be scraped up and mixed with air, thereby reducing the shear resistance when the rotating rotor 26 and the refrigerant 32 come into contact with each other, thereby reducing the rotation resistance of the rotor 26. And the efficiency of the MG 16 can be improved. Further, the foam-like refrigerant 32 mixed with air spreads to every corner in the case 24 of the MG 16 so that the entire surface of the case 24 can be used to the maximum for heat transfer and heat dissipation.
- Example 2 An excellent cooling effect can be obtained by engaging the coil end portion of the stator winding 30 (the portion protruding from the axial end surface of the stator core 29), the neutral point, and the lead wire 36.
- Example 2 Next, Example 2 will be described with reference to FIG. However, parts that are substantially the same as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified, and parts different from those in the first embodiment are mainly described.
- heat radiation solids 37 are provided on both sides in the axial direction of the stator core 29 in the case 24 of the MG 16.
- the solid 37 is disposed so as to be in contact with at least the coil end portion of the stator winding 30 (the portion protruding from the axial end surface of the stator core 29) and the inner surface (inner peripheral surface and axial inner surface) of the case 24.
- the heat of the coil end portion of the stator winding 30 of the MG 16 is conducted to the case 24 via the solid 37 and can be released to the outside of the MG 16.
- the solid 37 is formed in a substantially cylindrical shape with an insulating resin or the like, and is disposed so as not to contact the rotating shaft 25 and the rotor 26 which are rotating members of the MG 16.
- the heat dissipating solid 27 is disposed in the case 24 of the MG 16 so as to be in contact with at least the coil end portion of the stator winding 30 and the inner surface of the case 24.
- the heat of the coil end portion of the stator winding 30 of the MG 16 can be efficiently conducted to the case 24 via the solid 37 and released to the outside of the MG 16, and the MG 16 can be effectively cooled. it can.
- overheating of the MG 16 can be prevented, and the MG 16 can be driven for a longer time and with a higher load.
- coil 30 can be hold
- stator winding 30 of the MG 16 a segment type winding formed by joining a plurality of substantially U-shaped conductor segments 31 in a predetermined pattern is used.
- an appropriate gap is formed between the windings of the stator winding 30 (that is, between the conductor segments 31). Therefore, the material of the liquid solid 37 easily enters the gap during molding, so that the solid 37 Is filled in the gap, and the heat transfer efficiency between the stator winding 30 and the case 24 via the solid 37 can be improved.
- an insulating material is used as the solid 37.
- the insulation between the coil end portion and the case 24 is enhanced by the presence of the insulating solid 37, the distance between the coil end portion and the case 24 (for example, an axial interval) can be reduced. The heat dissipation effect can be enhanced, and the MG 16 can be downsized.
- Example 3 will be described with reference to FIG. However, parts that are substantially the same as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified, and parts different from those in the first embodiment are mainly described.
- a clutch 38 for interrupting power transmission is provided between the output shaft of the speed reducer 17 and the power transmission mechanism 20.
- the clutch 38 may be a hydraulically driven plate clutch, an electromagnetically driven electromagnetic clutch, a mechanical dog clutch, or the like.
- the clutch 38 is provided separately from the speed reducer 17 (that is, provided outside the case of the speed reducer 17).
- the clutch 38 may be provided integrally with the speed reducer 17 (that is, the clutch 38 is provided in the case of the speed reducer 17).
- the clutch 38 is provided between the output shaft of the speed reducer 17 and the power transmission mechanism 20.
- the clutch 38 is disengaged as necessary (for example, the clutch 38 is disengaged in the engine running mode), so that the energy loss due to the rotation of the MG 16 and the speed reducer 17 (that is, the energy loss due to the rotational load of the MG 16 and the speed reducer 17). Can be eliminated, and fuel consumption can be improved.
- the engine 11 can continue to run by disconnecting the clutch 38 when the MG 16 fails. Further, since it is not necessary to correspond to the maximum rotational speed of the speed reducer 17 or MG 16 up to the maximum speed of the vehicle, the system can be configured at a lower cost.
- Example 4 Next, Example 4 will be described with reference to FIGS. However, parts that are substantially the same as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified, and parts different from those in the first embodiment are mainly described.
- the speed reducer 17 is directly connected to the output shaft of the propeller shaft 39 inside the differential gear mechanism 13. At this time, the arrangement position of the MG 16 and the speed reducer 17 is behind the vehicle with respect to the differential gear mechanism 13.
- FIG. 9 is a view of the differential gear mechanism 13 as viewed from above the vehicle.
- FIG. 10 is a view of the BB cross section of FIG. 9 as viewed from the left side of the vehicle.
- the output shaft of the propeller shaft 39 is connected to a bevel gear 391.
- the bevel gear 391 meshes with a ring gear 131 that is a component of the differential gear mechanism 13.
- This ring gear 131 has a well-known configuration arranged coaxially with the drive shaft 14.
- a differential gear 132 is disposed on the opposite side of the ring gear 131 from the surface that meshes with the bevel gear 391.
- the differential gear 132 has a known structure including left and right side gears and pinion gears (not shown), and can transmit the driving force transmitted to the ring gear 131 to the drive shaft 14.
- the bevel gear 391 located at the output side end of the propeller shaft 39 is directly connected to the output shaft 171 of the speed reducer 17. That is, the power transmitted to the propeller shaft 39 by the engine 11 is also transmitted to the speed reducer 17, and conversely, the power transmitted to the speed reducer 17 by the MG 16 is also transmitted to the propeller shaft 39.
- the MG 16 and the speed reducer 17 are fixed to the unit case 133 of the differential gear mechanism 13.
- the unit case 133 accommodates the ring gear 131 and the differential gear 132 described above. Further, the unit case 133 is provided with a hole through which the propeller shaft 39, the drive shaft 14, and the output shaft 171 of the speed reducer 17 pass. Further, as shown in FIG. 10, the drive shaft 14 is arranged above the output shaft 171 of the speed reducer 17.
- the speed reducer 17 is directly connected to the output shaft of the propeller shaft 39 inside the differential gear mechanism 13.
- the driving force generated by the MG 16 can be transmitted to the drive shaft 14 and the propeller shaft 39 without using the power transmission mechanism 20 as in the above-described embodiments.
- the power from the drive shaft 14 and the propeller shaft 39 can be transmitted to the MG 16 without using the power transmission mechanism 20 as in the above-described embodiments. That is, when the driving force is generated by the MG 16, the mechanical loss from the MG 16 to the rear wheel 15 can be reduced. Similarly, when power is generated by the MG 16, the mechanical loss from the rear wheel 15 to the MG 16 can be reduced.
- Example 5 Next, Example 5 will be described with reference to FIGS. However, substantially the same parts as those in the first or fourth embodiment are denoted by the same reference numerals, and the description thereof will be omitted or simplified. The parts different from the first or fourth embodiment will be mainly described.
- FIG. 11 is a bird's-eye view of the differential gear mechanism 13 as viewed from above the vehicle.
- FIG. 12 is a cross-sectional view taken along the line CC of FIG. 11 as viewed from the left side of the vehicle.
- the speed reducer 17 is connected to the output shaft of the propeller shaft 39 via the differential gear mechanism 13.
- the structure is not the structure in which the propeller shaft 39 and the speed reducer 17 are directly connected as in the fourth embodiment, but the structure in which the speed reducer 17 and the propeller shaft 39 are separated.
- the output shaft of the propeller shaft 39 is connected to the bevel gear 391.
- the bevel gear 391 meshes with a ring gear 131 that is a component of the differential gear mechanism 13.
- the output shaft 171 of the speed reducer 17 is connected to a second bevel gear 172 different from the bevel gear 391 described above.
- the second bevel gear 172 meshes with the ring gear 131 at a portion different from the bevel gear 391 described above.
- the ring gear 131 meshes with both the bevel gear 391 connected to the propeller shaft 39 and the second bevel gear 172 connected to the speed reducer 17 of the MG 16.
- a differential gear 132 is arranged on the ring gear 131 on the side of the surface that meshes with the bevel gear 391.
- the MG 16 and the speed reducer 17 are the same as those of the fourth embodiment described above in that they are fixed to the unit case 13 of the differential gear mechanism 13.
- the unit case 133 accommodates the ring gear 131 and the differential gear 132 described above, and a hole through which the propeller shaft 39, the drive shaft 14, and the output shaft 171 of the speed reducer 17 are provided. Is the same as in the fourth embodiment.
- the propeller shaft 39 is arranged below the vehicle from the drive shaft 14 and the output shaft 171 of the speed reducer 17.
- the drive shaft 14 is disposed below the vehicle with respect to the output shaft 171 of the speed reducer 17.
- these structures are arranged in the order of the output shaft 171, the drive shaft 14, and the propeller shaft 39 of the reduction gear 17 from above the vehicle.
- the mechanical loss of the hybrid vehicle drive system can be reduced as in the fourth embodiment.
- positioned at the vehicle rear which has a comparatively sufficient space can also be show
- the degree of freedom in arranging the MG 16 and the speed reducer 17 can be improved.
- FIG. 12 shows an example in which the axial direction of the propeller shaft 39 and the axial direction of the output shaft 171 of the speed reducer 17 are parallel to each other, but the relationship between the axial directions of the two is not necessarily parallel. It can be freely arranged at any angle such as 60 degrees or 60 degrees. Further, the positions of the reducer 17 and the MG 16 in the vehicle height direction can be freely arranged at an arbitrary height.
- the present disclosure is applied to the drive system for driving the rear wheels.
- the present disclosure is not limited to this, and the present disclosure may be applied to the drive system for driving the front wheels (for example, FIG.
- the system shown in Fig. 1 may be reversed, and the arrangement of the engine and transmission may be applied to a so-called vertical engine front wheel drive system in which the output shaft of the transmission is connected to the front shaft while maintaining the arrangement of the engine and transmission. May be).
- the example in which the bevel gear 391 located at the end of the propeller shaft 39 is connected to the output shaft 171 of the speed reducer 17 is shown.
- this connection may be performed via a member such as a gear different from the ring gear 131.
- the output shaft 171 of the speed reducer 17 is extended and connected to the propeller shaft 39. However, by extending the end of the propeller shaft 39 further than the bevel gear 391, the output of the speed reducer 17 is increased. It is good also as a structure connected to the axis
- the drive shaft 14 is arranged above the output shaft 171 of the speed reducer 17 is shown.
- the drive shaft 14 may be disposed below the vehicle with respect to the output shaft 171 of the speed reducer 17.
- Example 4 and Example 5 above the output shaft of the speed reducer 17 was connected to the differential gear mechanism 13 without a clutch.
- a clutch may be disposed between the output shaft 171 of the speed reducer 17 and the differential gear mechanism 13.
- the MG 16 and the speed reducer 17 may be formed integrally with the unit case 133 of the differential gear mechanism 13, or the MG 16 and the speed reducer 17 are disposed in the unit case 133. Also good.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Hybrid Electric Vehicles (AREA)
Abstract
車両の駆動装置は、車両の動力源となるエンジン(11)と、エンジン(11)に接続された変速機(12)とを備え、エンジン(11)の出力軸の軸方向が車両の前後方向となるようにエンジン(11)及び変速機(12)が縦置きで配置される。駆動装置は、車両の動力源となるモータジェネレータ(MG)(16)と、MG(16)に接続された減速機(17)とを備え、エンジン(11)が収容されたエンジンルームの外側にMG(16)及び減速機(17)が配置され、変速機(12)の出力軸の動力を車輪(15)の駆動軸(14)に伝達する動力伝達系に減速機(17)の出力軸が動力伝達可能に連結されている。
Description
本出願は、2015年8月7日に出願された日本特許出願番号2015-156831号と、2016年2月5日に出願された日本特許出願番号2016-21262号に基づくもので、ここにその記載内容を援用する。
本開示は、車両の動力源としてエンジン及びモータジェネレータを備えた車両の駆動装置に関する。
近年、低燃費、低排気エミッションの社会的要請から車両の動力源としてエンジンとモータジェネレータ(以下「MG」と表記する)とを搭載したハイブリッド車が注目されている。このようなハイブリッド車においては、例えば、特許文献1(特許第3350314号公報)に記載されたものがある。このものは、エンジンにクラッチを介して変速機を接続し、この変速機の出力軸に差動歯車(ディファレンシャルギヤ機構)を介して車輪の駆動軸を連結すると共に、差動歯車のリングギヤに四輪駆動車用のトランスファを介してMGの出力軸を連結することでMGの動力を駆動軸に伝達できるようにしている。
ハイブリッド車において、低燃費や低排気エミッションの要求を満たすためには、エンジンとMGのうちMGの動力のみで車両を走行させるEV走行(MGの動力のみで車両を発進させるEV発進を含む)が重要な機能となる。しかし、上記特許文献1の技術では、MGの出力軸を減速機構を介さずにトランスファに直接接続した構成としているため、小型のMGでは、EV走行に必要な軸トルク(駆動軸のトルク)を発生させることができない可能性があり、ハイブリッド車の重要な機能であるEV走行の実現が困難である。また、EV走行に必要な軸トルクを発生させるには、MGを大型化する必要があり、この場合、MGの搭載スペースを確保することが困難になる。
本開示の目的は、小型のMGでもEV走行を実現することができ、MGの搭載スペースを容易に確保することができる車両の駆動装置を提供することにある。
上記目的を達成するために、本開示の第1の態様は、車両の動力源となるエンジンと、該エンジンに接続された変速機とを備え、エンジンの出力軸の軸方向が車両の前後方向となるようにエンジン及び変速機が縦置きで配置された車両の駆動装置において、車両の動力源となるモータジェネレータ(以下「MG」と表記する)と、該MGに接続された減速機とを備え、エンジンが収容されたエンジンルームの外側にMG及び減速機が配置され、変速機の出力軸の動力を車輪の駆動軸に伝達する動力伝達系に減速機の出力軸が動力伝達可能に連結されている構成としたものである。
この構成では、MGの動力を減速機を介して車輪の駆動軸に伝達することができるため、小型のMGでもEV走行に必要な軸トルクを発生させることができ、ハイブリッド車の重要な機能であるEV走行を実現することができる。これにより、MGを小型化することが可能となり、更に、エンジンルームの外側にMG及び減速機を配置する構成とすることで、MG及び減速機の搭載スペースを容易に確保することができる。このため、エンジン及び変速機が縦置きで配置されたエンジン車(エンジンのみを動力源とする車両)をベースとしてハイブリッド車を製造する場合でも、ベースとなるエンジン車の車体構造をあまり変更せずに、EV走行を実現可能なハイブリッド車を製造することができる。
また、次のような利点もある。MG駆動系の故障が発生した場合でも、エンジンの動力を変速機を介して駆動軸に伝達することができるため、エンジンの動力で十分に自走(自力走行)することができる。牽引等の負荷が高い条件においても、ベースとなるエンジン車と同等以上の駆動力を発揮することができる。MGがエンジンルームの外側(つまり車体の中央寄り)に配置されるため、衝突事故等を起こした場合でも、MGの損傷が低減されると共に、MGが車外に露出することを防止して感電事故の可能性も低減することができる。
ところで、MGの動力を減速機を介して駆動軸に伝達する構成では、特に小型のMGの場合には発熱量が多くなる傾向がある。MGの発熱によりMGが過熱状態になると、MGの駆動を制限する必要が生じる。
そこで、第2の態様のように、MGのケース内には、液状の冷媒をMGの外部と循環しないように封入するようにすると良い。このようにすれば、MG内部の熱を冷媒を介して効率的にケースに伝導させてMGの外部に放出することができ、MGを効果的に冷却することができる。これにより、MGの過熱を防止することができ、より高負荷、長時間のMGの駆動が可能になる。また、MGのケース内で飛散・充満する冷媒が固定子や回転子の冷却も促進するため、MGのケース内に複雑な流路を設けることなく、低コストで高い冷却効果を得ることができる。しかも、冷媒をMGの外部と循環させる循環路を設ける必要がなく、車両への搭載性を向上させることができる。また、MGが高速回転する際に必要な軸受への潤滑油として冷媒を供給することができるため、MGの冷却効果を高めながらMGの機械的寿命も延長することができる。更に、MGの回転に伴う振動を減衰して静粛性を向上させることもできる。
この場合、第3の態様のように、MGの固定子巻線は、複数の導体セグメントを接合して形成されたセグメント型の巻線にすると良い。このようにすれば、固定子巻線の巻線間(つまり導体セグメント間)に適度な隙間が形成され、その隙間に冷媒が容易に入り込むことにより、冷媒を介した固定子巻線とケースとの間の熱伝達効率を向上させることができる。
また、第4の態様のように、冷媒として、絶縁性を有するものを用いるようにすると良い。このようにすれば、MGのケース内の通電部品の絶縁被膜に不具合が発生した場合や通電部品が損傷した場合でも、MGのケース内での冷媒を介しての短絡を防止することができる。
更に、第5の態様のように、MGのケース内には、該MGの少なくとも回転子の外周部底面側が浸る位置まで冷媒を貯溜するようにすると良い。このようにすれば、回転子の回転により冷媒が掻き上げられて空気と混ざり合い、回転する回転子と冷媒とが接触する際のせん断抵抗を低下させて、回転子の回転抵抗を低下せることができ、MGの効率を向上させることができる。また、空気と混ざり合った泡状の冷媒がMGのケース内の隅々まで行き渡って、ケース表面全体を伝熱や放熱のために最大限に利用することができると共に、冷媒が巻線のコイルエンド部、中性点、引き出し線にも掛かることによって優れた冷却効果を得ることができる。
或は、第6の態様のように、MGのケース内には、該MGの少なくとも固定子巻線のコイルエンド部とケースの内面とに接触するように放熱用の固体を配置するようにしても良い。このようにすれば、MGの固定子巻線のコイルエンド部の熱を固体を介して効率的にケースに伝導させてMGの外部に放出することができ、MGを効果的に冷却することができる。これにより、MGの過熱を防止することができ、より高負荷、長時間のMGの駆動が可能になる。また、固定子巻線のコイルエンド部を固体で保持することができるため、コイルエンド部が励磁により振動して騒音が発生することを防止することができる。更に、エンジンや車体の振動によりコイルエンド部やその絶縁被膜が損傷することを防止することができる。
この場合、第7の態様のように、MGの固定子巻線は、複数の導体セグメントを接合して形成されたセグメント型の巻線にすると良い。このようにすれば、固定子巻線の巻線間(つまり導体セグメント間)に適度な隙間が形成され、固体の成形時にその隙間に液状の材料が容易に入り込むことにより、固体を介した固定子巻線とケースとの間の熱伝達効率を向上させることができる。
また、第8の態様のように、固体として、絶縁性を有するものを用いるようにすると良い。このようにすれば、コイルエンド部の絶縁被膜に不具合が発生した場合でも、MGのケース内での固体を介しての短絡を防止することができる。また、絶縁性の固体の存在によりコイルエンド部とケースとの間の絶縁性が高められるため、コイルエンド部とケースの距離を縮めることができ、ケースへの放熱効果を高めることができると共に、MGを小型化することができる。
更に、第9の態様のように、固体は、MGの回転部材に接触しないように配置するようにすると良い。このようにすれば、MGの回転抵抗が増加することを防止することができる。
また、第10の態様のように、車両に搭載されたバッテリと、MGを駆動するインバータと、バッテリの電圧を昇圧してインバータの入力電圧をバッテリの電圧よりも高くする昇圧コンバータとを備えた構成としても良い。このようにすれば、バッテリ電圧よりも高い高電圧でMGで駆動することができるため、車両の高速域(つまりMGの高回転域)でのMGの効率を向上させることができ、燃費を更に向上させることができる。また、バッテリの搭載量を必要最小限に抑えることができ、車両重量及びコストの増加を抑えることができる。
更に、第11の態様のように、MGの最大トルクTmax と、MGの最大出力Pmax と、減速機の減速比と最終減速比で決まる総合減速比GRtotal と、車両の重量IWと、車両のタイヤ半径Rtyreとが、下記(1)式及び下記(2)式の関係を満たすように、最大トルクTmax と最大出力Pmax と総合減速比GRtotal とを設定するようにしても良い。
Tmax ×GRtotal >IW×1.05×Rtyre…(1)
Pmax >|20.61×(-0.79)×IW|…(2)
上記(1)式の関係を満たすようにMGの最大トルクTmax と総合減速比GRtotal を設定することで、ハイブリッド車として実用的な加速度でEV発進を行うことができる。また、上記(2)式の関係を満たすようにMGの最大出力Pmax を設定することで、車両の減速時にMGで回生発電を行う際の回生パワー(発電電力)をハイブリッド車として実用的なレベルにすることができる。
Pmax >|20.61×(-0.79)×IW|…(2)
上記(1)式の関係を満たすようにMGの最大トルクTmax と総合減速比GRtotal を設定することで、ハイブリッド車として実用的な加速度でEV発進を行うことができる。また、上記(2)式の関係を満たすようにMGの最大出力Pmax を設定することで、車両の減速時にMGで回生発電を行う際の回生パワー(発電電力)をハイブリッド車として実用的なレベルにすることができる。
また、第12の態様のように、車両のフロアパネルに形成されたフロアトンネル内にMG及び減速機の少なくとも上部側が収容されると共にMG及び減速機の最下面がフロアパネル及び組付部品を含む車両の最下面よりも上方に位置するようにMG及び減速機の外径を設定するようにしても良い。このようにすれば、ベースとなるエンジン車の車体構造をほとんど変更することなく既存のフロアトンネルを利用して、MG及び減速機を搭載することができる。また、MG及び減速機の最下面がフロアパネル及び組付部品(但し樹脂やゴム等の変形を前提とした部品を除く)を含む車両の最下面よりも上方に位置するため、MG及び減速機と路面との接触を回避することができる。
また、第13の態様のように、減速機の出力軸と動力伝達系との間にクラッチを設けるようにしても良い。このようにすれば、必要に応じてクラッチを切り離すことで、MG及び減速機の連れ回しによるエネルギ損失(つまりMG及び減速機の回転負荷よるエネルギ損失)を無くすことができる。また、MGの故障時にクラッチを切り離すことで、エンジンにより自走を続けることができる。更に、減速機やMGの最高回転速度を車両の最高速度まで対応させる必要がなくなるため、より安価にシステムを構成することができる。
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は実施例1におけるハイブリッド車の駆動システムの概略構成を示す図である。
図2は図1のA-A断面図である。
図3は実施例1のMGの概略構成を示す断面図である。
図4は実施例1における固定子巻線を説明する図である。
図5は実施例1におけるMG駆動系の概略構成を示すブロック図である。
図6は実施例2のMGの概略構成を示す断面図である。
図7は実施例3のハイブリッド車の駆動システムの概略構成を示す図である。
図8は実施例4のハイブリッド車の駆動システムの概略構成を示す図である。
図9は実施例4のディファレンシャルギヤ機構及びその周辺部の構成を示す図である。
図10は図9のB-B断面図である。
図11は実施例5のディファレンシャルギヤ機構及びその周辺部の構成を示す図である。
図12は図11のC-C断面図である。
以下、具体化した幾つかの実施例を説明する。
(実施例1)
実施例1を図1乃至図5に基づいて説明する。まず、図1及び図2に基づいてハイブリッド車の駆動システムの概略構成を説明する。
(実施例1)
実施例1を図1乃至図5に基づいて説明する。まず、図1及び図2に基づいてハイブリッド車の駆動システムの概略構成を説明する。
図1に示すように、車両の動力源となるエンジン11と、このエンジン11に接続された変速機12とが車両の前側部に搭載されている。変速機12は、機械式の変速機であり、複数の変速段の中から変速段を段階的に切り換える有段変速機であっても良いし、無段階に変速するCVT(無段変速機)であっても良い。これらのエンジン11及び変速機12は、エンジン11の出力軸(クランク軸)の軸方向が車両の前後方向となるように縦置きで配置されている。エンジン11の出力軸の動力が変速機12に伝達され、この変速機12の出力軸の動力がプロペラシャフト39やディファレンシャルギヤ機構13等を介して後輪15(車輪)の駆動軸14に伝達されるようになっている。
更に、車両の動力源となる小径のモータジェネレータ(以下「MG」と表記する)16と、このMG16に接続された小径の減速機17とがエンジン11及び変速機12の後方に搭載されている。これらのMG16及び減速機17は、エンジン11が収容されたエンジンルームの外側(例えばエンジンルームと車室とを仕切るダッシュパネル18よりも後方)に配置されている。
また、MG16及び減速機17は、出力軸の軸方向が車両の前後方向となるように縦置きで配置され、変速機12の出力軸の動力が入力されるプロペラシャフト39の入力部に減速機17の出力軸が動力伝達機構20(例えばギヤやチェーン等)を介して連結されている。これにより、MG16の出力軸の動力が減速機17に伝達され、この減速機17の出力軸の動力がプロペラシャフト39やディファレンシャルギヤ機構13等を介して後輪15の駆動軸14に伝達されるようになっている。
図2に示すように、車両のフロアパネル21には、車両の前後方向に延びるフロアトンネル22が形成され、このフロアトンネル22に沿って変速機12及びプロペラシャフト39が配置されると共にMG16及び減速機17が配置されている。尚、図2では、MG16がフロアトンネル22の中央付近に配置された例が示されているが、これに限定されず、プロペラシャフト39等と干渉しないようにMG16及び減速機17を配置するようにすれば良い。また、フロアトンネル22内にMG16及び減速機17の少なくとも上部側(好ましくは全体)が収容されると共に、MG16及び減速機17の最下面がフロアパネル21及び排気管23等の組付部品(但し樹脂やゴム等の変形を前提とした部品を除く)を含む車両の最下面よりも上方に位置するように、MG16及び減速機17の外径が設定されている。
以上のように構成されたハイブリッド車の駆動システムでは、走行モードを、例えば、エンジン走行モードとHV走行モードとEV走行モードとの間で切り換えるようになっている。エンジン走行モードは、エンジン11とMG16のうちエンジン11の動力のみで後輪15を駆動して車両を走行させるエンジン走行を行うモードである。HV走行モードは、エンジン11の動力とMG16の動力の両方で後輪15を駆動して車両を走行させるHV走行を行うモードである。EV走行モードは、エンジン11とMG16のうちMG16の動力のみで後輪15を駆動して車両を走行させるEV走行(MG16の動力のみで車両を発進させるEV発進を含む)を行うモードである。また、車両の減速時には、車両の運動エネルギをMG16で電気エネルギに変換してバッテリ33(図5参照)に充電(回収)する回生発電を行う。
次に、図3及び図4に基づいてMG16の概略構成を説明する。図3に示すように、MG16のケース24内には、回転軸25と一体的に回転する回転子26(ロータ)と、この回転子26の外周側に配置された固定子27(ステータ)とが設けられている。固定子27は、周方向に複数のスロット28(図4参照)を有する固定子コア29と、この固定子コア29に巻装された複数の相巻線よりなる固定子巻線30とを備えている。
図4に示すように、固定子巻線30は、複数の略U字形状の導体セグメント31を所定のパターンでスロット28の一方側から挿入し、該スロット28の他方側から延出した導体セグメント31の先端部を所定のパターンで接合して形成されたセグメント型の巻線である。
また、図3に示すように、MG16のケース24内には、液状の冷媒32がMG16の外部と循環しないように封入されている。これにより、図3に矢印で示すように、MG16内部の熱を冷媒32を介してケース24に伝導させてMG16の外部に放出できるようにしている。また、図3に破線で示すように、MG16のケース24内には、MG16が停止した状態で少なくとも回転子26の外周部底面側が浸る位置(例えば回転軸25よりも少し低い位置)まで冷媒32が貯溜されている。これにより、MG16が回転したときに、回転子26の回転により冷媒32が掻き上げられて空気と混ざり合い、泡状の冷媒32がMG16のケース24内の隅々まで行き渡るようにしている。
冷媒32は、絶縁性を有する液体であり、例えばATF(自動変速機用の作動油)等の自動車用の潤滑油が用いられる。尚、一般に、自動車用の潤滑油は、十分な潤滑作用を発揮するために発泡を抑える消泡剤を添加することが多いが、本実施例では、潤滑油が空気と混ざり合う状態を利用するため、消泡剤を添加しないか又は望ましい発泡が起こる範囲内の添加量で消泡剤の添加量を調整しても良い。
次に、図5に基づいてMG16の駆動系の概略構成を説明する。車両に搭載されたバッテリ33とMG16を駆動するインバータ35とが昇圧コンバータ34を介して接続され、MG16が昇圧コンバータ34及びインバータ35を介してバッテリ33と電力を授受するようになっている。バッテリ33は、二次電池等からなる直流電源である。昇圧コンバータ34は、バッテリ33の直流電圧を昇圧してインバータ35の入力電圧をバッテリ33の直流電圧よりも高くする。インバータ35は、昇圧コンバータ34によって昇圧された直流電圧を交流電圧に変換してMG16を駆動する。
これにより、バッテリ33の電圧よりも高い高電圧でMG16で駆動することができるため、車両の高速域(つまりMG16の高回転域)でのMG16の効率を向上させることができ、燃費を更に向上させることができる。また、バッテリ33の搭載量を必要最小限に抑えることができ、車両重量及びコストの増加を抑えることができる。
また、本実施例1では、MG16の最大トルクTmax と、総合減速比GRtotal と、車両の重量IWと、車両の後輪15のタイヤ半径Rtyreとが、下記(1)式の関係を満たすように、MG16の最大トルクTmax と総合減速比GRtotal とが設定されている。ここで、総合減速比GRtotal は、減速機17の減速比と最終減速比(例えばディファレンシャルギヤ機構13での減速比)で決まる減速比である。
Tmax ×GRtotal >IW×1.05×Rtyre …(1)
上記(1)式は、MG16の動力のみで車両を発進させるEV発進を行う際の発進トルクを所定の下限トルクよりも大きくするための条件である。ここで、下限トルクは、燃費や排出ガスの測定用の走行パターンを規定する、JC08、NEDC、LA#4、US06、WLTPのうちで要求発進トルクが最も小さいNEDCにおける要求発進トルクに基づいて設定されている。従って、上記(1)式の関係を満たすようにMG16の最大トルクTmax と総合減速比GRtotal (減速機17の減速比)を設定することで、ハイブリッド車として実用的な加速度でEV発進を行うことができる。
上記(1)式は、MG16の動力のみで車両を発進させるEV発進を行う際の発進トルクを所定の下限トルクよりも大きくするための条件である。ここで、下限トルクは、燃費や排出ガスの測定用の走行パターンを規定する、JC08、NEDC、LA#4、US06、WLTPのうちで要求発進トルクが最も小さいNEDCにおける要求発進トルクに基づいて設定されている。従って、上記(1)式の関係を満たすようにMG16の最大トルクTmax と総合減速比GRtotal (減速機17の減速比)を設定することで、ハイブリッド車として実用的な加速度でEV発進を行うことができる。
更に、MG16の最大出力Pmax と、車両の重量IWとが、下記(2)式の関係を満たすように、MG16の最大出力Pmax が設定されている。
Pmax >|20.61×(-0.79)×IW| …(2)
上記(2)式は、車両の減速時にMG16で回生発電を行う際の回生パワー(発電電力)を所定の下限パワーよりも大きくするための条件である。ここで、下限パワーは、JC08、NEDC、LA#4、US06、WLTPのうちで回生パワーが最も小さいJC08における回生パワーに基づいて設定されている。従って、上記(2)式の関係を満たすようにMG16の最大出力Pmax を設定することで、車両の減速時にMG16で回生発電を行う際の回生パワーをハイブリッド車として実用的なレベルにすることができる。
上記(2)式は、車両の減速時にMG16で回生発電を行う際の回生パワー(発電電力)を所定の下限パワーよりも大きくするための条件である。ここで、下限パワーは、JC08、NEDC、LA#4、US06、WLTPのうちで回生パワーが最も小さいJC08における回生パワーに基づいて設定されている。従って、上記(2)式の関係を満たすようにMG16の最大出力Pmax を設定することで、車両の減速時にMG16で回生発電を行う際の回生パワーをハイブリッド車として実用的なレベルにすることができる。
以上説明した本実施例1では、エンジン11及び変速機12が縦置きで配置された駆動システムにおいて、エンジン11が収容されたエンジンルームの外側にMG16及び減速機17を配置する。そして、変速機12の出力軸の動力が入力されるプロペラシャフト39に動力伝達機構20を介して減速機17の出力軸を連結するようにしている。
これにより、MG16の動力を減速機17を介して後輪15の駆動軸14に伝達することができるため、小型のMG16でもEV走行に必要な軸トルク(駆動軸14のトルク)を発生させることができ、ハイブリッド車の重要な機能であるEV走行を実現することができる。これにより、MG16を小型化することが可能となり、更に、エンジンルームの外側にMG16及び減速機17を配置する構成とすることで、MG16及び減速機17の搭載スペースを容易に確保することができる。このため、エンジン11及び変速機12が縦置きで配置されたエンジン車(エンジンのみを動力源とする車両)をベースとしてハイブリッド車を製造する場合でも、ベースとなるエンジン車の車体構造をあまり変更せずに、EV走行を実現可能なハイブリッド車を製造することができる。
また、MG16の駆動系(例えば、MG16、昇圧コンバータ34、インバータ35等)の故障が発生した場合でも、エンジン11の動力を変速機12を介して駆動軸14に伝達することができるため、エンジン11の動力で十分に自走(自力走行)することができる。更に、牽引等の負荷が高い条件においても、ベースとなるエンジン車と同等以上の駆動力を発揮することができる。また、MG16がエンジンルームの外側(つまり車体の中央寄り)に配置されるため、衝突事故等を起こした場合でも、MG16の損傷が低減されると共に、MG16が車外に露出することを防止して感電事故の可能性も低減することができる。
更に、本実施例1では、車両のフロアパネル21に形成されたフロアトンネル22内にMG16及び減速機17の少なくとも上部側が収容されると共にMG16及び減速機17の最下面が車両の最下面よりも上方に位置するようにMG16及び減速機17の外径を設定するようにしている。これにより、ベースとなるエンジン車の車体構造をほとんど変更することなく既存のフロアトンネル22を利用して、MG16及び減速機17を搭載することができる。また、MG16及び減速機17の最下面が車両の最下面よりも上方に位置するため、MG16及び減速機17と路面との接触を回避することができる。
また、本実施例1では、MG16のケース24内に、液状の冷媒32をMG16の外部と循環しないように封入している。これにより、MG16内部の熱を冷媒32を介して効率的にケース24に伝導させてMG16の外部に放出することができ、MG16を効果的に冷却することができる。これにより、MG16の過熱を防止することができ、より高負荷、長時間のMG16の駆動が可能になる。また、MG16のケース24内で飛散・充満する冷媒32が固定子27や回転子26の冷却も促進するため、MG16のケース24内に複雑な流路を設けることなく、低コストで高い冷却効果を得ることができる。しかも、冷媒32をMG16の外部と循環させる循環路を設ける必要がなく、車両への搭載性を向上させることができる。また、MG16が高速回転する際に必要な軸受への潤滑油として冷媒32を供給することができるため、MG16の冷却効果を高めながらMG16の機械的寿命も延長することができる。更に、MG16の回転に伴う振動を減衰して静粛性を向上させることもできる。
更に、本実施例1では、MG16の固定子巻線30として、複数の略U字形状の導体セグメント31を所定のパターンで接合して形成されたセグメント型の巻線を用いるようにしている。これにより、固定子巻線30の巻線間(つまり導体セグメント31間)に適度な隙間が形成され、その隙間に冷媒32が容易に入り込むことにより、冷媒32を介した固定子巻線30とケース24との間の熱伝達効率を向上させることができる。
また、本実施例1では、冷媒32として、絶縁性を有するものを用いるようにしている。これにより、MG16のケース24内の通電部品(例えば固定子巻線30等)の絶縁被膜に不具合が発生した場合や通電部品が損傷した場合でも、MG16のケース24内での冷媒32を介しての短絡を防止することができる。
更に、本実施例1では、MG16のケース24内に、少なくとも回転子26の外周部底面側が浸る位置まで冷媒32を貯溜するようにしている。これにより、回転子26の回転により冷媒32が掻き上げられて空気と混ざり合い、回転する回転子26と冷媒32とが接触する際のせん断抵抗を低下させて、回転子26の回転抵抗を低下せることができ、MG16の効率を向上させることができる。また、空気と混ざり合った泡状の冷媒32がMG16のケース24内の隅々まで行き渡って、ケース24表面全体を伝熱や放熱のために最大限に利用することができると共に、冷媒32が固定子巻線30のコイルエンド部(固定子コア29の軸方向端面から突出する部分)、中性点、引き出し線36にも掛かることによって優れた冷却効果を得ることができる。
(実施例2)
次に、図6を用いて実施例2を説明する。但し、前記実施例1と実質的に同一部分には同一符号を付して説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。
(実施例2)
次に、図6を用いて実施例2を説明する。但し、前記実施例1と実質的に同一部分には同一符号を付して説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。
本実施例2では、図6に示すように、MG16のケース24内のうち固定子コア29の軸方向両側に、それぞれ放熱用の固体37が設けられている。この固体37は、少なくとも固定子巻線30のコイルエンド部(固定子コア29の軸方向端面から突出する部分)とケース24の内面(内周面及び軸方向内面)とに接触するように配置されている。これにより、図6に矢印で示すように、MG16の固定子巻線30のコイルエンド部の熱を固体37を介してケース24に伝導させてMG16の外部に放出できるようにしている。また、固体37は、絶縁性を有する樹脂等により略円筒状に形成され、MG16の回転部材である回転軸25及び回転子26には接触しないように配置されている。
以上説明した本実施例2では、MG16のケース24内に、少なくとも固定子巻線30のコイルエンド部とケース24の内面とに接触するように放熱用の固体27を配置するようにしている。これにより、MG16の固定子巻線30のコイルエンド部の熱を固体37を介して効率的にケース24に伝導させてMG16の外部に放出することができ、MG16を効果的に冷却することができる。これにより、MG16の過熱を防止することができ、より高負荷、長時間のMG16の駆動が可能になる。また、固定子巻線30のコイルエンド部を固体37で保持することができるため、コイルエンド部が励磁により振動して騒音が発生することを防止することができる。更に、エンジン11や車体の振動によりコイルエンド部やその絶縁被膜が損傷することを防止することができる。
更に、本実施例2では、MG16の固定子巻線30として、複数の略U字形状の導体セグメント31を所定のパターンで接合して形成されたセグメント型の巻線を用いるようにしている。これにより、固定子巻線30の巻線間(つまり導体セグメント31間)に適度な隙間が形成されるため、成形時、液体状態の固体37の材料がその隙間に容易に入り込むことにより固体37が隙間に充填され、固体37を介した固定子巻線30とケース24との間の熱伝達効率を向上させることができる。
また、本実施例2では、固体37として、絶縁性を有するものを用いるようにしている。これにより、コイルエンド部の絶縁被膜に不具合が発生した場合でも、MG16のケース内での固体37を介しての短絡を防止することができる。また、絶縁性の固体37の存在によりコイルエンド部とケース24との間の絶縁性が高められるため、コイルエンド部とケース24の距離(例えば軸方向の間隔)を縮めることができ、ケース24への放熱効果を高めることができると共に、MG16を小型化することができる。
更に、本実施例2では、固体37を、MG16の回転部材である回転軸25及び回転子26に接触しないように配置しているため、MG16の回転抵抗が増加することを防止することができる。
(実施例3)
次に、図7を用いて実施例3を説明する。但し、前記実施例1と実質的に同一部分には同一符号を付して説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。
(実施例3)
次に、図7を用いて実施例3を説明する。但し、前記実施例1と実質的に同一部分には同一符号を付して説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。
本実施例3では、図7に示すように、減速機17の出力軸と動力伝達機構20との間に、動力伝達を断続するためのクラッチ38が設けられている。このクラッチ38は、油圧駆動式のプレート式クラッチであっても良いし、電磁駆動式の電磁クラッチであっても良いし、機械式のドッグクラッチ等でも良い。クラッチ38は、減速機17とは別体で設けられている(つまり減速機17のケース外に設けられている)。尚、減速機17と一体的にクラッチ38を設ける(つまり減速機17のケース内にクラッチ38を設ける)ようにしても良い。
以上説明した本実施例3では、減速機17の出力軸と動力伝達機構20との間にクラッチ38を設けるようにしている。これにより、必要に応じてクラッチ38を切り離す(例えばエンジン走行モード時にクラッチ38を切り離す)ことで、MG16及び減速機17の連れ回しによるエネルギ損失(つまりMG16及び減速機17の回転負荷よるエネルギ損失)を無くすことができ、燃費を向上させることができる。また、MG16の故障時にクラッチ38を切り離すことで、エンジン11により自走を続けることができる。更に、減速機17やMG16の最高回転速度を車両の最高速度まで対応させる必要がなくなるため、より安価にシステムを構成することができる。
(実施例4)
次に、図8乃至図10を用いて実施例4を説明する。但し、前記実施例1と実質的に同一部分には同一符号を付して説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。
(実施例4)
次に、図8乃至図10を用いて実施例4を説明する。但し、前記実施例1と実質的に同一部分には同一符号を付して説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。
本実施例4では、図8に示すように、減速機17がディファレンシャルギヤ機構13の内部で、プロペラシャフト39の出力軸に直接連結されている。このときMG16及び減速機17の配置位置は、ディファレンシャルギヤ機構13よりも車両後方である。
図9及び図10を用いて、プロペラシャフト39、ディファレンシャルギヤ機構13、減速機17の関係について詳細に説明する。図9は、ディファレンシャルギヤ機構13を車両上方から見た図面である。図10は、図9のB-B断面を車両左側方向から見た図面である。
まず、プロペラシャフト39とディファレンシャルギヤ機構13との関係について説明する。プロペラシャフト39の出力軸はベベルギア391に連結されている。そして、このベベルギア391は、ディファレンシャルギヤ機構13の構成要素であるリングギア131に噛み合っている。このリングギア131は駆動軸14と同軸上に配置された周知の構成である。
また、リングギア131においてベベルギア391と噛み合う側の面とは反対側にディファレンシャルギヤ132が配置されている。このディファレンシャルギヤ132は、図示しない左右のサイドギアやピニオンギア等により構成された周知の構造であって、リングギア131に伝達した駆動力をドライブシャフト14に伝達することができる。
次に、プロペラシャフト39、ディファレンシャルギヤ機構13と減速機17の計3者の関係について説明する。ここで、プロペラシャフト39の出力側の端部に位置するベベルギア391は、減速機17の出力軸171に直接連結されている。つまりエンジン11によりプロペラシャフト39に伝達された動力は減速機17にも伝達され、また逆にMG16により減速機17に伝達された動力はプロペラシャフト39にも伝達される構造である。
そして、MG16及び減速機17は、ディファレンシャルギヤ機構13のユニットケース133に固定されている。ユニットケース133は、前述のリングギア131やディファレンシャルギヤ132を内部に収容している。また、ユニットケース133には、プロペラシャフト39やドライブシャフト14、減速機17の出力軸171が貫通する穴が設けられている。また、図10に示すように、ドライブシャフト14は、減速機17の出力軸171よりも車両上方に配置されている。
以上説明した本実施例4では、減速機17がディファレンシャルギヤ機構13の内部でプロペラシャフト39の出力軸に直接連結されている。これにより前述の各実施例の様に動力伝達機構20を用いることなく、MG16で発生する駆動力を駆動軸14やプロペラシャフト39に伝達することができる。また、前述の各実施例の様に動力伝達機構20を用いることなく、駆動軸14やプロペラシャフト39からの動力をMG16に伝達することができる。つまりMG16により駆動力を発生させる場合には、MG16から後輪15に至る間の機械的損失を少なくすることができる。同様に、MG16により発電を行う場合には、後輪15からMG16に至る間の機械的損失を少なくすることができる。
また車両前方に比べて、比較的スペースの余裕がある車両後方にMG16や減速機17を配置することができる。
(実施例5)
次に、図11及び図12を用いて実施例5を説明する。但し、前記実施例1または実施例4と実質的に同一部分には同一符号を付して説明を省略又は簡略化し、主として前記実施例1または実施例4と異なる部分について説明する。
(実施例5)
次に、図11及び図12を用いて実施例5を説明する。但し、前記実施例1または実施例4と実質的に同一部分には同一符号を付して説明を省略又は簡略化し、主として前記実施例1または実施例4と異なる部分について説明する。
図11は、ディファレンシャルギヤ機構13を車両上方から見た鳥瞰図である。図12は、図11のC-C断面を車両左側方向から見た図面である。本実施例5では、図11及び図12に示すように、減速機17がディファレンシャルギヤ機構13を介して、プロペラシャフト39の出力軸に連結されている。言い換えると、前述の実施例4の様にプロペラシャフト39と減速機17とが直接連結された構造ではなく、減速機17とプロペラシャフト39とが分断された構造である。
プロペラシャフト39の出力軸はベベルギア391に連結されている。そして、このベベルギア391は、ディファレンシャルギヤ機構13の構成要素であるリングギア131に噛み合っている。
一方、減速機17の出力軸171は、前述のベベルギア391とは異なる第2ベベルギア172に連結されている。そしてこの第2ベベルギア172は、前述のベベルギア391とは異なる部位でリングギア131に噛み合っている。
このようにリングギア131は、プロペラシャフト39に連結されたベベルギア391と、MG16の減速機17に連結された第2ベベルギア172の両方のギアに噛み合っている。
更に、リングギア131においてベベルギア391と噛み合う面の側にディファレンシャルギヤ132が配置されている。なお、MG16及び減速機17は、ディファレンシャルギヤ機構13のユニットケース13に固定されている点は前述の実施例4と同一である。
また、ユニットケース133が、前述のリングギア131やディファレンシャルギヤ132を内部に収容している点、プロペラシャフト39やドライブシャフト14、減速機17の出力軸171が貫通する穴が設けられている点も前述の実施例4と同一である。
ここで図12に示すように、プロペラシャフト39は、ドライブシャフト14及び減速機17の出力軸171よりも車両下方に配置されている。また、ドライブシャフト14は、減速機17の出力軸171よりも車両下方に配置されている。言い換えると、車両上方から減速機17の出力軸171、ドライブシャフト14、プロペラシャフト39の順番でこれらの構造物が配置されている。
以上説明した本実施例5では、前述の実施例4と同様にハイブリッド車の駆動システムの機械的損失を少なくすることができる。また、比較的スペースの余裕がある車両後方にMG16や減速機17を配置することができるという効果を奏することもできる。
更に、減速機17がディファレンシャルギヤ機構13を介して、プロペラシャフト39の出力軸に連結される構造にすることにより、MG16や減速機17を配置する際の自由度を向上することができる。
図12においては、プロペラシャフト39の軸方向と、減速機17の出力軸171の軸方向とが平行である例を示したが、両者の軸方向の関係は平行である必要はなく、例えば30度や60度といった任意の角度に自由に配置することができる。また、減速機17やMG16の車両高さ方向の位置についても任意の高さに自由に配置することができる。
尚、上記各実施例1~5では、後輪駆動用の駆動システムに本開示を適用したが、これに限定されず、前輪駆動用の駆動システムに本開示を適用しても良い(例えば図1に示すシステムの前後を逆にしたシステムとしても良いし、エンジンと変速機の配置は図1のまま変速機の出力軸が前軸に接続される、いわゆる縦置きエンジン前輪駆動システムに適用しても良い)。
上記実施例4では、プロペラシャフト39の端部に位置するベベルギア391を、減速機17の出力軸171に連結する例を示した。しかし、この連結はリングギア131とは異なるギア等の部材を介して行われても良い。
上記実施例4では、減速機17の出力軸171を延伸させてプロペラシャフト39に接続する構成としたが、プロペラシャフト39の端部をベベルギア391よりも更に延伸させることで、減速機17の出力軸171に接続する構成としても良い。
ドライブシャフト14を減速機17の出力軸171よりも車両上方に配置する例を示した。しかしドライブシャフト14を、減速機17の出力軸171よりも車両下方に配置しても良い。
上記実施例4及び実施例5では、減速機17の出力軸がクラッチを介することなくディファレンシャルギヤ機構13に連結されていた。しかし、減速機17の出力軸171とディファレンシャルギヤ機構13との間にクラッチを配置しても良い。
上記実施例4及び実施例5では、MG16及び減速機17は、ディファレンシャルギヤ機構13のユニットケース133と一体に形成されても良いし、MG16及び減速機17をユニットケース133の中に配置しても良い。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
Claims (13)
- 車両の動力源となるエンジン(11)と、該エンジン(11)に接続された変速機(12)とを備え、前記エンジン(11)の出力軸の軸方向が前記車両の前後方向となるように前記エンジン(11)及び前記変速機(12)が縦置きで配置された車両の駆動装置において、
前記車両の動力源となるモータジェネレータ(以下「MG」と表記する)(16)と、該MG(16)に接続された減速機(17)とを備え、
前記エンジン(11)が収容されたエンジンルームの外側に前記MG(16)及び前記減速機(17)が配置され、前記変速機(12)の出力軸の動力を車輪(15)の駆動軸(14)に伝達する動力伝達系に前記減速機(17)の出力軸が動力伝達可能に連結されていることを特徴とする車両の駆動装置。 - 前記MG(16)のケース(24)内には、液状の冷媒(32)が前記MG(16)の外部と循環しないように封入されていることを特徴とする請求項1に記載の車両の駆動装置。
- 前記MG(16)の固定子巻線(30)は、複数の導体セグメント(31)を接合して形成されたセグメント型の巻線であることを特徴とする請求項2に記載の車両の駆動装置。
- 前記冷媒(32)は、絶縁性を有することを特徴とする請求項2又は3に記載の車両の駆動装置。
- 前記MG(16)のケース(24)内には、該MG(16)の少なくとも回転子(26)の外周部底面側が浸る位置まで前記冷媒(32)が貯溜されていることを特徴とする請求項2乃至4のいずれかに記載の車両の駆動装置。
- 前記MG(16)のケース(24)内には、該MG(16)の少なくとも固定子巻線(30)のコイルエンド部と前記ケース(24)の内面とに接触するように放熱用の固体(37)が配置されていることを特徴とする請求項1に記載の車両の駆動装置。
- 前記MG(16)の固定子巻線(30)は、複数の導体セグメント(31)を接合して形成されたセグメント型の巻線であることを特徴とする請求項6に記載の車両の駆動装置。
- 前記固体(37)は、絶縁性を有することを特徴とする請求項6又は7に記載の車両の駆動装置。
- 前記固体(37)は、前記MG(16)の回転部材(25,26)に接触しないように配置されていることを特徴とする請求項6乃至8のいずれかに記載の車両の駆動装置。
- 前記車両に搭載されたバッテリ(33)と、前記MG(16)を駆動するインバータ(35)と、前記バッテリ(33)の電圧を昇圧して前記インバータ(35)の入力電圧を前記バッテリ(33)の電圧よりも高くする昇圧コンバータ(34)とを備えていることを特徴とする請求項1乃至9のいずれかに記載の車両の駆動装置。
- 前記MG(16)の最大トルクTmax と、前記MG(16)の最大出力Pmax と、前記減速機(17)の減速比と最終減速比で決まる総合減速比GRtotal と、前記車両の重量IWと、前記車両のタイヤ半径Rtyreとが、下記(1)式及び下記(2)式の関係を満たすように、前記最大トルクTmax と前記最大出力Pmax と前記総合減速比GRtotal とが設定されていることを特徴とする請求項1乃至10のいずれかに記載の車両の駆動装置。
Tmax ×GRtotal >IW×1.05×Rtyre…(1)
Pmax >|20.61×(-0.79)×IW|…(2) - 前記車両のフロアパネル(21)に形成されたフロアトンネル(22)内に前記MG(16)及び前記減速機(17)の少なくとも上部側が収容されると共に前記MG(16)及び前記減速機(17)の最下面が前記フロアパネル(21)及び組付部品(23)を含む前記車両の最下面よりも上方に位置するように前記MG(16)及び前記減速機(17)の外径が設定されていることを特徴とする請求項1乃至11のいずれかに記載の車両の駆動装置。
- 前記減速機(17)の出力軸と前記動力伝達系との間にクラッチ(38)が設けられていることを特徴とする請求項1乃至12のいずれかに記載の車両の駆動装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680045597.9A CN107921857A (zh) | 2015-08-07 | 2016-07-22 | 汽车驱动装置 |
DE112016003612.4T DE112016003612T5 (de) | 2015-08-07 | 2016-07-22 | Vorrichtung zum Antreiben eines Fahrzeugs |
US15/748,592 US20190001802A1 (en) | 2015-08-07 | 2016-07-22 | Device for driving vehicle |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015156831 | 2015-08-07 | ||
JP2015-156831 | 2015-08-07 | ||
JP2016021262A JP2017036026A (ja) | 2015-08-07 | 2016-02-05 | 車両の駆動装置 |
JP2016-021262 | 2016-02-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017026242A1 true WO2017026242A1 (ja) | 2017-02-16 |
Family
ID=57984563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/071496 WO2017026242A1 (ja) | 2015-08-07 | 2016-07-22 | 車両の駆動装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017026242A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0995149A (ja) * | 1995-09-29 | 1997-04-08 | Fuji Heavy Ind Ltd | ハイブリッド自動車の駆動装置 |
JP2001173762A (ja) * | 1999-10-05 | 2001-06-26 | Aisin Aw Co Ltd | ドライブユニットの潤滑装置 |
JP2002125337A (ja) * | 2000-10-17 | 2002-04-26 | Mitsubishi Electric Corp | 車両用交流発電機 |
JP2004048939A (ja) * | 2002-07-12 | 2004-02-12 | Denso Corp | コイルエンド接触冷却型回転電機 |
JP2004357432A (ja) * | 2003-05-29 | 2004-12-16 | Toyota Motor Corp | 電動機ユニットおよびこれを備える車両 |
JP2008306861A (ja) * | 2007-06-08 | 2008-12-18 | Komatsu Ltd | モータ利用機械 |
JP2011037296A (ja) * | 2009-08-06 | 2011-02-24 | Mazda Motor Corp | 車両用駆動装置の構成方法 |
US20130075183A1 (en) * | 2011-09-23 | 2013-03-28 | Yoshitaka KOCHIDOMARI | Vehicle With Electric Transaxle |
JP2015196413A (ja) * | 2014-03-31 | 2015-11-09 | スズキ株式会社 | ハイブリッド四輪駆動車 |
-
2016
- 2016-07-22 WO PCT/JP2016/071496 patent/WO2017026242A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0995149A (ja) * | 1995-09-29 | 1997-04-08 | Fuji Heavy Ind Ltd | ハイブリッド自動車の駆動装置 |
JP2001173762A (ja) * | 1999-10-05 | 2001-06-26 | Aisin Aw Co Ltd | ドライブユニットの潤滑装置 |
JP2002125337A (ja) * | 2000-10-17 | 2002-04-26 | Mitsubishi Electric Corp | 車両用交流発電機 |
JP2004048939A (ja) * | 2002-07-12 | 2004-02-12 | Denso Corp | コイルエンド接触冷却型回転電機 |
JP2004357432A (ja) * | 2003-05-29 | 2004-12-16 | Toyota Motor Corp | 電動機ユニットおよびこれを備える車両 |
JP2008306861A (ja) * | 2007-06-08 | 2008-12-18 | Komatsu Ltd | モータ利用機械 |
JP2011037296A (ja) * | 2009-08-06 | 2011-02-24 | Mazda Motor Corp | 車両用駆動装置の構成方法 |
US20130075183A1 (en) * | 2011-09-23 | 2013-03-28 | Yoshitaka KOCHIDOMARI | Vehicle With Electric Transaxle |
JP2015196413A (ja) * | 2014-03-31 | 2015-11-09 | スズキ株式会社 | ハイブリッド四輪駆動車 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2017036026A (ja) | 車両の駆動装置 | |
JP5035631B2 (ja) | 駆動装置 | |
JP3536837B2 (ja) | ハイブリッド車両用駆動装置 | |
WO2014192380A1 (ja) | 車両用駆動装置 | |
JP4218671B2 (ja) | ハイブリッド車両の動力出力装置 | |
JP6079519B2 (ja) | 車両用駆動装置 | |
KR20110004409A (ko) | 구동장치 | |
JP7103165B2 (ja) | 電動車両 | |
CN103847497A (zh) | 用于混合动力车辆的动力传动系统 | |
JP4968543B2 (ja) | 駆動装置 | |
JP6662359B2 (ja) | ハイブリッド車両の駆動力制御装置 | |
KR20150062529A (ko) | 전기자동차 | |
JP2008256075A (ja) | 動力伝達装置 | |
WO2017026243A1 (ja) | 車両の駆動装置 | |
WO2019202947A1 (ja) | モータユニット | |
WO2017026242A1 (ja) | 車両の駆動装置 | |
US10843576B2 (en) | Electric vehicle | |
WO2019202945A1 (ja) | モータユニット | |
JP6995439B2 (ja) | ハイブリッド車の冷却装置 | |
JP6693604B2 (ja) | 四輪駆動車の動力伝達装置 | |
JP2006264463A (ja) | ハイブリッド車両の駆動装置 | |
JP4038469B2 (ja) | ハイブリッド車両の車両構造 | |
JP2009261072A (ja) | 車両用電動機 | |
JP2015008595A (ja) | 電動車両用機電一体型駆動装置 | |
KR20140071580A (ko) | 전기자동차 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16834939 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112016003612 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16834939 Country of ref document: EP Kind code of ref document: A1 |