WO2017022817A1 - 光電変換素子 - Google Patents

光電変換素子 Download PDF

Info

Publication number
WO2017022817A1
WO2017022817A1 PCT/JP2016/072898 JP2016072898W WO2017022817A1 WO 2017022817 A1 WO2017022817 A1 WO 2017022817A1 JP 2016072898 W JP2016072898 W JP 2016072898W WO 2017022817 A1 WO2017022817 A1 WO 2017022817A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
substrate
groove
conversion element
conductive
Prior art date
Application number
PCT/JP2016/072898
Other languages
English (en)
French (fr)
Inventor
健治 勝亦
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to US15/750,798 priority Critical patent/US20180233295A1/en
Priority to CN201680026210.5A priority patent/CN107615425B/zh
Priority to JP2016560017A priority patent/JP6076573B1/ja
Priority to EP16833096.7A priority patent/EP3333863A4/en
Publication of WO2017022817A1 publication Critical patent/WO2017022817A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2081Serial interconnection of cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2077Sealing arrangements, e.g. to prevent the leakage of the electrolyte
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a photoelectric conversion element.
  • a photoelectric conversion element using a dye As a photoelectric conversion element, a photoelectric conversion element using a dye has been attracting attention because it is inexpensive and high photoelectric conversion efficiency can be obtained, and various developments have been made on photoelectric conversion elements using a dye.
  • a photoelectric conversion element using a dye includes at least one photoelectric conversion cell, and the photoelectric conversion cell generally includes a conductive substrate provided with a conductive layer on a substrate, a counter substrate facing the conductive layer, a conductive layer, An oxide semiconductor layer provided between the counter substrate and the counter substrate (see, for example, Patent Document 1 below).
  • This invention is made
  • the present inventor examined the photoelectric conversion element described in Patent Document 1 in order to solve the above problems. As a result, when the resistance value between the conductive layers of two adjacent photoelectric conversion cells included in the photoelectric conversion element was measured, it was found that the resistance value was relatively small. From this, the present inventors have found that a conductive film made of a conductive material remains on the substrate at the bottom of the groove between the conductive layers of two adjacent photoelectric conversion cells, that is, along the longitudinal direction of the groove. Therefore, it was considered that the conductive film made of the remaining conductive material might reduce the resistance value between the conductive layers of two adjacent photoelectric conversion cells.
  • the present inventor at the bottom of the groove between the conductive layers of two adjacent photoelectric conversion cells, that is, in the conductive film provided on the substrate along the longitudinal direction of the groove, Ascertained that there is a correlation between the number of cracks having a length greater than or equal to a specific value, observed per specific length along the longitudinal direction of the groove, and the photoelectric conversion characteristics, and according to the invention described above, We found that the problem could be solved.
  • the present invention is a photoelectric conversion element having a substrate and a plurality of conductive layers provided on the substrate and arranged with a groove therebetween, the photoelectric conversion element including at least one photoelectric conversion cell,
  • the conversion cell includes one conductive layer of the plurality of conductive layers, a counter substrate facing the conductive layer, and an oxide semiconductor layer provided between the conductive layer and the counter substrate,
  • a conductive film is provided on the substrate along the longitudinal direction of the groove between a plurality of conductive layers.
  • a crack having a length of 5 ⁇ m or more is a length along the longitudinal direction of the groove. This is a photoelectric conversion element present at a rate of 15 or more per 100 ⁇ m.
  • a crack having a length of 5 ⁇ m or more is 15 or more per 100 ⁇ m length along the longitudinal direction. For this reason, the conductive path in the conductive film is sufficiently cut by this crack, and the insulation between the conductive layers can be sufficiently secured. As a result, the photoelectric conversion characteristics of the photoelectric conversion element can be improved.
  • the conductive film is preferably made of the same material as the conductive layer.
  • cracks having a length of 5 ⁇ m or more exist in the conductive film at a rate of 200 or less per 100 ⁇ m in length along the longitudinal direction of the groove.
  • the transparency of the groove is higher than in the case where cracks exist at a rate exceeding 200 per 100 ⁇ m in length along the longitudinal direction of the groove.
  • cracks having a length of 5 ⁇ m or more exist in the conductive film at a rate of 40 or less per 100 ⁇ m length along the longitudinal direction of the groove.
  • cracks having a length of 5 ⁇ m or more exist in the conductive film at a ratio of 34 or more per 100 ⁇ m in length along the longitudinal direction of the groove in the conductive film. .
  • the photoelectric conversion characteristics of the photoelectric conversion element can be further improved.
  • the groove between the plurality of conductive layers is covered with an insulating material.
  • insulation between the conductive layers can be more sufficiently ensured by the insulating material entering the cracks.
  • the maximum thickness of the conductive film is 150 nm or less, the width of the groove is 200 nm or less, and the bottom of the crack reaches the interface between the substrate and the conductive film. It is preferable.
  • the conductive path in the conductive film is effectively cut by the crack, and the insulation between the conductive layers can be effectively ensured.
  • the photoelectric conversion characteristics of the photoelectric conversion element can be effectively improved.
  • the bottom of the crack reaches a position farther from the conductive film than the interface between the substrate and the conductive film in the substrate.
  • the resistance of the conductive film can be further increased.
  • the crack is preferably in contact with the conductive layer.
  • the insulation between the adjacent conductive layers is further improved as compared with the case where the crack does not contact the conductive layer.
  • the “conductive film” refers to a layer having a maximum thickness smaller than that of the conductive layer.
  • the number of “cracks” is observed with a scanning electron microscope (Scanning) Electron Microscope: SEM) at 10 regions having a length of 100 ⁇ m along the longitudinal direction of the grooves between the plurality of conductive layers.
  • the average value of the number of cracks observed in this case shall be said.
  • whether or not the observed line is a crack is a line whose width is 0.1 to 2 ⁇ m and whose line is lighter than its surroundings or whose line is light. Judgment can be made by whether or not there is.
  • the “maximum thickness of the conductive film” refers to a transmission electron microscope (Transmission Electron Microscope; 10 regions having a length of 100 ⁇ m along the longitudinal direction of the grooves between the plurality of conductive layers. (TEM) means the average value of the maximum thicknesses of the conductive films observed in the respective regions.
  • TEM Transmission Electron Microscope
  • a photoelectric conversion element capable of sufficiently improving photoelectric conversion characteristics is provided.
  • FIG. 1 is a cross-sectional end view showing a first embodiment of a photoelectric conversion element of the present invention. It is a top view which shows a part of 1st Embodiment of the photoelectric conversion element of this invention. It is a top view which shows the pattern of the transparent conductive layer in the photoelectric conversion element of FIG. It is a fragmentary top view which shows the bottom part of the groove
  • FIG. 5 is a partial cross-sectional end view along the line VV in FIG. 4. It is a top view which shows the 1st integrated sealing part of FIG. It is a top view which shows the 2nd integrated sealing part of FIG.
  • FIG. 3 is an end view of a partially cut surface along the line VIII-VIII in FIG. 2.
  • FIG. 1 is a sectional end view showing a preferred embodiment of the photoelectric conversion element of the present invention
  • FIG. 2 is a plan view showing a part of the preferred embodiment of the photoelectric conversion element of the present invention
  • FIG. 4 is a plan view showing a pattern of a transparent conductive layer in one photoelectric conversion element
  • FIG. 4 is a partial plan view showing a bottom of a groove between adjacent transparent conductive layers in FIG. 3
  • FIG. 6 is a plan view showing the first integrated sealing portion of FIG. 1
  • FIG. 7 is a plan view showing the second integrated sealing portion of FIG. 1
  • FIG. FIG. 9 is a partially cut end view along line VIII-VIII in FIG. 2
  • FIG. 9 is a plan view showing a conductive substrate on which an insulating material, a connecting portion for fixing a backsheet, and an oxide semiconductor layer are formed. is there.
  • the photoelectric conversion element 100 includes a conductive substrate 15 provided with a transparent substrate 11 and a plurality of transparent conductive layers 12 disposed on the transparent substrate 11 with grooves 90 interposed therebetween.
  • the photoelectric conversion element 100 has a single transparent substrate 11 and a plurality (four in this embodiment) of photoelectric conversion cells 50 formed on the transparent substrate 11.
  • the plurality of photoelectric conversion cells 50 will be referred to as photoelectric conversion cells 50A to 50D as necessary for convenience of explanation.
  • the photoelectric conversion cell 50 includes one transparent conductive layer 12 of the plurality of transparent conductive layers 12, the counter substrate 20 facing the transparent conductive layer 12, and an oxidation provided between the transparent conductive layer 12 and the counter substrate 20.
  • a physical semiconductor layer 13 In the present embodiment, the oxide semiconductor layer 13 is provided on the transparent conductive layer 12.
  • the conductive substrate 15 and the counter substrate 20 are joined by an annular sealing portion 30A, and a cell space formed by the conductive substrate 15, the counter substrate 20 and the annular sealing portion 30A is filled with an electrolyte 40.
  • the oxide semiconductor layer 13 is arranged inside the annular sealing portion 30A, and the oxide semiconductor layer 13 carries a dye.
  • the plurality of photoelectric conversion cells 50 are connected in series by a conductive material 60P.
  • a back sheet 80 is provided on the counter substrate 20 side of the photoelectric conversion cell 50 (see FIG. 1).
  • the counter substrate 20 includes a counter electrode, and includes a metal substrate 21 as an electrode and a catalyst layer 22 provided on the conductive substrate 15 side of the metal substrate 21 to promote a catalytic reaction.
  • the opposing substrates 20 are separated from each other.
  • the conductive substrate 15 includes a transparent substrate 11 and a plurality of transparent conductive layers 12A to 12F as electrodes provided on the transparent substrate 11 and arranged with a groove 90 therebetween. ing.
  • the transparent conductive layers 12A to 12F are the transparent conductive layers 12 constituting the electrodes of the photoelectric conversion cells 50A to 50D
  • the transparent conductive layers 12E and 12F are the photoelectric conversion cells 50A to 50D. It is the transparent conductive layer 12 which does not comprise this electrode.
  • the transparent conductive layers 12E and 12F are provided around the transparent conductive layers 12A to 12D.
  • the transparent conductive layer 12E is arranged so as to be bent along the sealing portion 30A.
  • the transparent conductive layer 12F is an annular transparent conductive layer 12 for fixing the peripheral edge 80a of the back sheet 80 (see FIG. 1).
  • each of the transparent conductive layers 12A to 12D includes a rectangular main body portion 12a having a side edge portion 12b and a protruding portion 12c protruding sideways from the side edge portion 12b of the main body portion 12a.
  • the protruding portion 12c of the transparent conductive layer 12C of the photoelectric conversion cell 50C among the transparent conductive layers 12A to 12D is an overhang portion that protrudes laterally with respect to the arrangement direction X of the photoelectric conversion cells 50A to 50D. 12d and a facing portion 12e extending from the overhanging portion 12d and facing the main body portion 12a of the adjacent photoelectric conversion cell 50D via the groove 90.
  • the protruding portion 12c of the transparent conductive layer 12B has a protruding portion 12d and a facing portion 12e. Also in the photoelectric conversion cell 50A, the protruding portion 12c of the transparent conductive layer 12A has a protruding portion 12d and a facing portion 12e.
  • the photoelectric conversion cell 50D is already connected to the photoelectric conversion cell 50C, and there is no other photoelectric conversion cell 50 to be connected. For this reason, in the photoelectric conversion cell 50D, the protruding portion 12c of the transparent conductive layer 12D does not have the facing portion 12e. In other words, the protruding portion 12c of the transparent conductive layer 12D is constituted only by the overhang portion 12d.
  • the transparent conductive layer 12D connects the first current extraction portion 12f for extracting the current generated in the photoelectric conversion element 100 to the outside, the first current extraction portion 12f, and the main body portion 12a. It further has a connection portion 12g extending along the side edge portion 12b of 12C.
  • the first current extraction portion 12f is disposed in the vicinity of the photoelectric conversion cell 50A and on the opposite side of the transparent conductive layer 12B with respect to the transparent conductive layer 12A.
  • the transparent conductive layer 12E also has a second current extraction portion 12h for extracting the current generated in the photoelectric conversion element 100 to the outside, and the second current extraction portion 12h is in the vicinity of the photoelectric conversion cell 50A.
  • the transparent conductive layer 12A is disposed on the opposite side of the transparent conductive layer 12B.
  • the first current extraction unit 12f and the second current extraction unit 12h are arranged adjacent to each other through the groove 90B (90) around the photoelectric conversion cell 50A.
  • the groove 90 is formed along the edge of the first groove 90A formed along the edge of the main body 12a of the transparent conductive layer 12 and the portion of the transparent conductive layer 12 excluding the main body 12a.
  • the second groove 90 ⁇ / b> B intersects with the peripheral edge 80 a of the backsheet 80.
  • the crack 91 is , Extending from each of the edges on both sides of the groove 90 toward the edge of the groove 90 on the opposite side.
  • the crack 91 is in contact with the edge of the groove 90, that is, the transparent conductive layer 12.
  • the conductive film 92 there are 15 or more cracks 91 having a length of 5 ⁇ m or more per 100 ⁇ m length along the longitudinal direction of the groove 90.
  • the edge of the groove 90 is linear, but it may not be linear.
  • a connection terminal 16 is provided on each protrusion 12c of the transparent conductive layers 12A to 12C and the transparent conductive layer 12E.
  • Each connection terminal 16 is connected to the conductive material 60P, and is sealed outside the sealing portion 30A, extending along the sealing portion 30A, and from the conductive material connecting portion 16A to the outside of the sealing portion 30A.
  • a conductive material non-connecting portion 16B extending along the portion 30A.
  • the transparent conductive layers 12A to 12C at least the conductive material connection portion 16A of the connection terminals 16 is provided on the facing portion 12e of the protruding portion 12c, and the adjacent photoelectric conversion cell 50 to be connected is connected. It faces the main body 12a.
  • the conductive material connection portion 16A of the connection terminals 16 faces the main body portion 12a of the adjacent photoelectric conversion cell 50A to be connected.
  • connection terminal 16A of the connection terminal 16 provided on the protrusion part 12c of the transparent conductive layer 12C in the photoelectric conversion cell 50C and the metal substrate 21 of the counter substrate 20 in the adjacent photoelectric conversion cell 50D via the conductive material 60P.
  • the conductive material 60P is disposed so as to pass over the sealing portion 30A.
  • the conductive material connecting portion 16A of the connection terminal 16 in the photoelectric conversion cell 50B and the metal substrate 21 of the counter substrate 20 in the adjacent photoelectric conversion cell 50C are connected via the conductive material 60P, and the connection terminal in the photoelectric conversion cell 50A.
  • 16 conductive material connecting portions 16A and the metal substrate 21 of the counter substrate 20 in the adjacent photoelectric conversion cell 50B are connected via a conductive material 60P, and adjacent to the conductive material connecting portion 16A of the connection terminal 16 on the transparent conductive layer 12E.
  • the metal substrate 21 of the counter substrate 20 is connected via a conductive material 60P.
  • External connection terminals 18a and 18b are provided on the first current extraction unit 12f and the second current extraction unit 12h, respectively.
  • the sealing portion 30A is provided so as to overlap the first sealing portion 31A and the annular first sealing portion 31A provided between the conductive substrate 15 and the counter substrate 20, It has the 2nd sealing part 32A which clamps the edge part 20a of the opposing board
  • adjacent first sealing portions 31 ⁇ / b> A are integrated to form a first integrated sealing portion 31.
  • the first integrated sealing portion 31 includes an annular portion (hereinafter referred to as “annular portion”) 31a that is not provided between two adjacent counter substrates 20, and two adjacent counter substrates.
  • partition portion 31b a portion that partitions the inner opening 31c of the annular portion 31a.
  • second sealing portions 32 ⁇ / b> A are integrated between the adjacent counter substrates 20 to constitute a second integrated sealing portion 32.
  • the second integrated sealing portion 32 is formed between an annular portion (hereinafter referred to as “annular portion”) 32 a that is not provided between two adjacent counter substrates 20 and two adjacent counter substrates 20. It is provided, and is comprised by the part (henceforth a "partition part”) 32b which partitions off the inner side opening 32c of the cyclic
  • insulation is provided between the first sealing portion 31A and the groove 90 so as to enter the groove 90 between the adjacent transparent conductive layers 12A to 12F and to straddle the adjacent transparent conductive layer 12.
  • a material 33 is provided. That is, a portion of the groove 90 along the first sealing portion 31 ⁇ / b> A is covered with the insulating material 33.
  • the second integrated sealing portion 32 is provided between the main body portion 32 d provided on the opposite side of the counter substrate 20 to the conductive substrate 15 and the adjacent counter substrates 20. And an adhesive portion 32e.
  • the second integrated sealing portion 32 is bonded to the first integrated sealing portion 31 by an adhesive portion 32e.
  • a back sheet 80 is provided on the conductive substrate 15.
  • the backsheet 80 includes a laminate 80A including a weather resistant layer and a metal layer, and an adhesive portion 80B that is provided on the opposite side of the laminate 80A from the metal layer and adheres to the conductive substrate 15 via the connecting portion 14.
  • the bonding portion 80B is for bonding the back sheet 80 to the conductive substrate 15, and as long as it is formed on the peripheral portion of the stacked body 80A as shown in FIG.
  • the bonding portion 80B may be provided on the entire surface of the stacked body 80A on the photoelectric conversion cell 50 side.
  • the peripheral edge portion 80a of the back sheet 80 is connected to the transparent conductive layers 12D, 12E, and 12F of the transparent conductive layer 12 through the connecting portion 14 by the bonding portion 80B.
  • the bonding portion 80 ⁇ / b> B is separated from the sealing portion 30 ⁇ / b> A of the photoelectric conversion cell 50.
  • the connecting portion 14 is also separated from the sealing portion 30A.
  • the current collector wiring 17 having a lower resistance than that of the transparent conductive layer 12D extends so as to pass through the main body portion 12a, the connection portion 12g, and the current extraction portion 12f. .
  • the current collecting wiring 17 is arranged so as not to intersect the connecting portion 14 between the back sheet 80 and the conductive substrate 15. In other words, the current collecting wiring 17 is disposed on the inner side than the connecting portion 14.
  • bypass diodes 70A to 70D are connected in parallel to the photoelectric conversion cells 50A to 50D, respectively.
  • the bypass diode 70A is fixed on the partition part 32b of the second integrated sealing part 32 between the photoelectric conversion cell 50A and the photoelectric conversion cell 50B, and the bypass diode 70B is connected to the photoelectric conversion cell 50B.
  • the bypass diode 70C is fixed on the partition part 32b of the second integrated sealing part 32 between the photoelectric conversion cell 50C and the bypass diode 70C is a second integrated sealing part between the photoelectric conversion cell 50C and the photoelectric conversion cell 50D. It is fixed on 32 partition portions 32b.
  • the bypass diode 70D is fixed on the sealing portion 30A of the photoelectric conversion cell 50D.
  • a conductive material 60Q is fixed to the metal substrate 21 of the counter substrate 20 so as to pass through the bypass diodes 70A to 70D. Further, a conductive material 60P branches from the conductive material 60Q between the bypass diodes 70A and 70B, between the bypass diodes 70B and 70C, and between the bypass diodes 70C and 70D, and the conductive material connecting portion 16A on the transparent conductive layer 12A, the transparent conductive layer The conductive material connection portion 16A on 12B and the conductive material connection portion 16A on the transparent conductive layer 12C are connected to each other. The conductive material 60P is also fixed to the metal substrate 21 of the counter substrate 20 of the photoelectric conversion cell 50A.
  • the conductive material 60P includes the bypass diode 70A and the conductive material connection portion 16A of the connection terminal 16 on the transparent conductive layer 12E. Connected. Further, the bypass diode 70D is connected to the transparent conductive layer 12D through the conductive material 60P.
  • a desiccant 95 is provided on the counter substrate 20 of each photoelectric conversion cell 50.
  • the length is 5 ⁇ m.
  • the above cracks 91 are present at a ratio of 15 or more per 100 ⁇ m length along the longitudinal direction of the groove 90. For this reason, the conductive path in the conductive film 92 is sufficiently cut by the crack 91, and the insulation between the transparent conductive layers 12 can be sufficiently secured. As a result, the photoelectric conversion characteristics of the photoelectric conversion element 100 can be improved.
  • the crack 91 is in contact with the edge of the groove 90, that is, the transparent conductive layer 12 in the conductive film 92 between the adjacent transparent conductive layers 12. For this reason, compared with the case where the crack 91 does not contact the edge part of the groove
  • a portion of the groove 90 along the first sealing portion 31A is covered with the insulating material 33.
  • insulation between the transparent conductive layers 12 can be more sufficiently ensured by the insulating material entering the cracks 91 present in the groove 90.
  • the sealing portion 30A and the insulating material 33 are arranged so as to overlap each other. For this reason, compared with the case where the insulating material 33 is arrange
  • the first current extraction unit 12f and the second current extraction unit 12h are disposed in the vicinity of the photoelectric conversion cell 50A and on the opposite side of the transparent conductive layer 12B with respect to the transparent conductive layer 12A.
  • the first current extraction portion 12f of the layer 12A and the second current extraction portion 12h of the transparent conductive layer 12F are arranged adjacent to each other via the groove 90.
  • the external connection terminals 18a and 18b can be arranged adjacent to each of the first current extraction unit 12f and the second current extraction unit 12h. Therefore, the number of connectors for taking out current from the external connection terminals 18a and 18b to the outside can be reduced to one.
  • the external connection terminals 18a and 18b are also arranged far apart.
  • two connectors of a connector connected to the external connection terminal 18a and a connector connected to the external connection terminal 18b are required.
  • the external connection terminals 18a and 18b can be arranged adjacent to each other, only one connector is required. For this reason, according to the photoelectric conversion element 100, space saving can be achieved.
  • the generated current is small. Specifically, the generated current is 2 mA or less. For this reason, a part of the transparent conductive layer 12D of the photoelectric conversion cell 50D on one end side of the photoelectric conversion cells 50A and 50D on both ends of the photoelectric conversion cells 50A to 50D is used for the counter substrate 20 of the photoelectric conversion cell 50A on the other end side. Even if it arrange
  • the photoelectric conversion cells 50A to 50D are arranged in a line along the X direction, and one of the photoelectric conversion cells 50A and 50D at both ends of the photoelectric conversion cells 50A to 50D.
  • the transparent conductive layer 12D of 50D has a main body 12a provided inside the sealing portion 30A, a first current extraction portion 12f, and a connection portion 12g that connects the main body portion 12a and the first current extraction portion 12f. .
  • the photoelectric conversion elements 50C and 50D which are a part of the photoelectric conversion cells 50A to 50D, are folded halfway, and the photoelectric conversion cell 50A and the photoelectric conversion cell 50D are arranged so as to be adjacent to each other. In order to connect two adjacent photoelectric conversion cells 50 to each other, it is possible to further shorten the installation area of the connection terminal 16 provided along the arrangement direction (X direction in FIG. 2) of the photoelectric conversion cells 50A to 50D. Space can be further saved.
  • the photoelectric conversion element 100 when the photoelectric conversion element 100 is used in a low illumination environment, since the generated current is usually small, the photoelectric conversion element 100 includes the main body portion 12a and the first current extraction portion 12f. Even if it has the connection part 12g which connects to, the fall of a photoelectric conversion characteristic can fully be suppressed.
  • the current collecting wiring 17 is arranged so as not to intersect the connecting portion 14 between the back sheet 80 and the conductive substrate 15.
  • the current collecting wiring 17 is generally porous and has air permeability, so that gas such as water vapor can pass through.
  • the current collecting wiring 17 is connected to the back sheet 80 and the conductive substrate 15. If it is arranged so as not to intersect the portion 14, it is possible to prevent water vapor and the like from entering the space between the back sheet 80 and the conductive substrate 15 through the current collecting wiring 17 from the outside. As a result, the photoelectric conversion element 100 can have excellent durability.
  • the current collection wiring 17 has resistance lower than transparent conductive layer 12D, even if a generated current becomes large, the fall of a photoelectric conversion characteristic can fully be suppressed.
  • the conductive material 60P connected to the metal substrate 21 of the counter substrate 20 in one photoelectric conversion cell 50 among the two adjacent photoelectric conversion cells 50 is connected to the conductive material on the protruding portion 12c in the other photoelectric conversion cell 50.
  • the conductive material connecting portion 16A is connected to the portion 16A, and is provided outside the sealing portion 30A on the protruding portion 12c. That is, the connection between two adjacent photoelectric conversion cells 50 is performed outside the sealing portion 30A. For this reason, according to the photoelectric conversion element 100, it becomes possible to improve an aperture ratio.
  • the projecting portion 12c protrudes laterally from the main body portion 12a; It has a facing portion 12e extending from the overhanging portion 12d and facing the main body portion 12a of the adjacent photoelectric conversion cell 50, and at least the conductive material connecting portion 16A of the connection terminals 16 is provided on the facing portion 12e.
  • connection terminal 16A of the connection terminals 16 is provided on the facing portion 12e facing the main body portion 12a of the adjacent photoelectric conversion cell 50. Therefore, unlike the case where at least the conductive material connection portion 16A of the connection terminals 16 is not provided on the facing portion 12e facing the main body portion 12a of the adjacent photoelectric conversion cell 50, the connection terminal 16A is connected to the conductive material connection portion 16A. It is possible to sufficiently prevent the conductive material 60P from crossing the metal substrate 21 of the counter substrate 20 of the adjacent photoelectric conversion cell 50. As a result, it is possible to sufficiently prevent a short circuit between adjacent photoelectric conversion cells 50.
  • the conductive material connecting portion 16A and the conductive material non-connecting portion 16B are both disposed along the sealing portion 30A. For this reason, compared with the case where the electrically conductive material connection part 16A and the electrically conductive material non-connection part 16B are arranged along the direction away from the sealing part 30A, the space required for the connection terminal 16 can be omitted.
  • the adhesive portion 80B of the back sheet 80 is separated from the sealing portion 30A of the photoelectric conversion cell 50. For this reason, it is sufficiently suppressed that the adhesive portion 80B contracts at a low temperature to pull the sealing portion 30A and an excessive stress is applied to the interface between the sealing portion 30A and the conductive substrate 15 or the counter substrate 20. Is done. In addition, even at a high temperature, the adhesive portion 80B sufficiently expands and pushes the sealing portion 30A to apply an excessive stress to the interface between the sealing portion 30A and the conductive substrate 15 or the counter substrate 20. Is done. That is, excessive stress is sufficiently suppressed from being applied to the interface between the sealing portion 30 ⁇ / b> A and the conductive substrate 15 or the counter substrate 20 at both high and low temperatures. For this reason, the photoelectric conversion element 100 can have excellent durability.
  • the second sealing portion 32A is bonded to the first sealing portion 31A, and the edge portion 20a of the counter substrate 20 includes the first sealing portion 31A and the second sealing portion 32A. It is pinched by. For this reason, even if a stress in a direction away from the conductive substrate 15 acts on the counter substrate 20, the separation is sufficiently suppressed by the second sealing portion 32 ⁇ / b> A. Further, the partition part 32b of the second integrated sealing part 32 is bonded to the first sealing part 31A through the gap S between the adjacent counter substrates 20. For this reason, the counter substrates 20 of adjacent photoelectric conversion cells 50 are reliably prevented from contacting each other.
  • the conductive substrate 15 the oxide semiconductor layer 13, the insulating material 33, the connecting portion 14, the dye, the counter substrate 20, the sealing portion 30A, the electrolyte 40, the conductive materials 60P and 60Q, the back sheet 80, and the desiccant 95. This will be described in detail.
  • the conductive substrate 15 includes the transparent substrate 11 and the plurality of transparent conductive layers 12A to 12F.
  • the material which comprises the transparent substrate 11 should just be a transparent material, for example, as such a transparent material, glass, such as borosilicate glass, soda lime glass, white plate glass, quartz glass, polyethylene terephthalate (PET), for example , Polyethylene naphthalate (PEN), polycarbonate (PC), and polyethersulfone (PES).
  • PET polyethylene terephthalate
  • PEN Polyethylene naphthalate
  • PC polycarbonate
  • PES polyethersulfone
  • the thickness of the transparent substrate 11 is appropriately determined according to the size of the photoelectric conversion element 100, and is not particularly limited, but may be in the range of 50 to 10,000 ⁇ m, for example.
  • the material contained in the transparent conductive layer 12 examples include conductive metal oxides such as tin-added indium oxide (ITO), tin oxide (SnO 2 ), and fluorine-added tin oxide (FTO).
  • the transparent conductive layer 12 may be a single layer or a laminate of a plurality of layers containing different conductive metal oxides. When the transparent conductive layer 12 is composed of a single layer, the transparent conductive layer 12 preferably includes FTO because it has high heat resistance and chemical resistance.
  • the transparent conductive layer 12 may further include a glass frit.
  • the thickness of the transparent conductive layer 12 may be in the range of 0.01 to 2 ⁇ m, for example.
  • the width W of the groove 90 is not particularly limited, but is preferably 400 ⁇ m or less (see FIG. 4). In this case, an extra space can be omitted as compared with the case where the width W of the groove 90 exceeds 400 ⁇ m.
  • the width W of the groove 90 is preferably 250 ⁇ m or less, more preferably 220 ⁇ m or less, and even more preferably 200 ⁇ m or less.
  • the width W of the groove 90 is preferably 40 ⁇ m or more. In this case, the insulating property between the adjacent transparent conductive layers 12 is further improved as compared with the case where the width W of the groove 90 is less than 40 ⁇ m.
  • the width W of the groove 90 is more preferably 60 ⁇ m or more, and further preferably 80 ⁇ m or more.
  • the conductive film 92 is made of the same material as the transparent conductive layer 12.
  • the maximum thickness of the conductive film 92 is not particularly limited, but is preferably 150 nm or less. In this case, compared with the case where the maximum thickness of the conductive film 92 exceeds 150 nm, the resistance between the two adjacent transparent conductive layers 12 is reduced, and the photoelectric conversion characteristics of the photoelectric conversion element 100 can be further improved. it can.
  • the maximum thickness of the conductive film 92 is preferably 100 nm or less, and more preferably 70 nm or less. However, the maximum thickness of the conductive film 92 is preferably 30 nm or more, and more preferably 50 nm or more.
  • a crack 91 having a length of 5 ⁇ m or more is 100 ⁇ m in length along the longitudinal direction of the groove 90 in the conductive film 92 provided on the transparent substrate 11.
  • the number of cracks 91 having a length of 5 ⁇ m or more may be present at a ratio of 20 or more per 100 ⁇ m in the longitudinal direction of the groove 90 in the conductive film 92. Preferably it is.
  • the photoelectric conversion characteristics of the photoelectric conversion element 100 can be further improved.
  • the cracks 91 having a length of 5 ⁇ m or more are preferably present at a ratio of 34 or more per 100 ⁇ m in the length of the groove 90 in the conductive film 92. In this case, the photoelectric conversion characteristics of the photoelectric conversion element can be further improved.
  • the cracks 91 exist in the conductive film 92 at a rate of 200 or less per 100 ⁇ m length along the longitudinal direction of the groove 90.
  • the transparency of the groove 90 is higher than that in the case where the crack 91 is present in the conductive film 92 at a rate exceeding 200 per 100 ⁇ m in length along the longitudinal direction of the groove 90.
  • the crack 91 is more preferably present at a rate of 100 or less per 100 ⁇ m length along the longitudinal direction of the groove 90, and at a rate of 50 or less per 100 ⁇ m length along the longitudinal direction of the groove 90. It is still more preferable that it exists, and it is especially preferable that it exists in the ratio of 40 or less per 100 micrometers in length along the longitudinal direction of the groove
  • the bottom B of the crack 91 may or may not reach the interface S between the transparent substrate 11 and the conductive film 92, but preferably reaches the interface S. In this case, since the conductive path is cut in the length direction of the crack 91, the resistance of the conductive film 92 can be further increased.
  • the maximum thickness of the conductive film 92 is 150 nm or less and the width W of the groove 90 is 200 nm or less.
  • the conductive path in the conductive film 92 is effectively cut by the crack 91, and the insulation between the transparent conductive layers 12 can be effectively ensured.
  • the photoelectric conversion characteristics of the photoelectric conversion element 100 can be effectively improved.
  • the maximum thickness of the conductive film 92 is preferably 100 nm or less, and more preferably 70 nm or less. However, the maximum thickness of the conductive film 92 is preferably 30 nm or more, and more preferably 50 nm or more.
  • the width W of the groove 90 is preferably 40 ⁇ m or more. In this case, the insulating property between the adjacent transparent conductive layers 12 is further improved as compared with the case where the width W of the groove 90 is less than 40 ⁇ m.
  • the width W of the groove 90 is more preferably 60 ⁇ m or more, and further preferably 80 ⁇ m or more.
  • the bottom B of the crack 91 reaches a position farther from the conductive film 92 than the interface S in the transparent substrate 11. In this case, since the conductive path is more reliably cut in the length direction of the crack 91, the resistance of the conductive film 92 can be further increased.
  • connection terminal 16 includes a metal material.
  • the metal material include silver, copper, and indium. You may use these individually or in combination of 2 or more types.
  • connection terminal 16 may be made of the same material as the conductive material 60P or may be made of a different material, but is preferably made of the same material.
  • connection terminal 16 and the conductive material 60P are made of the same material, the adhesion between the connection terminal 16 and the conductive material 60P can be more sufficiently improved. For this reason, the connection reliability in the photoelectric conversion element 100 can be further improved.
  • the oxide semiconductor layer 13 is composed of oxide semiconductor particles.
  • oxide semiconductor particles include titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), zinc oxide (ZnO), tungsten oxide (WO 3 ), niobium oxide (Nb 2 O 5 ), and strontium titanate. (SrTiO 3 ) and tin oxide (SnO 2 ) are exemplified.
  • an inorganic insulating material or an organic insulating material can be used as the insulating material 33.
  • an inorganic insulating material is preferable as the insulating material 33. In this case, since the inorganic insulating material is less likely to deteriorate than the organic insulating material, the durability of the photoelectric conversion element 100 can be further improved.
  • glass frit As the inorganic insulating material, for example, glass frit can be used.
  • thermosetting resin such as polyimide resin or a thermoplastic resin
  • thermoplastic resin a thermosetting resin such as polyimide resin or a thermoplastic resin
  • the material constituting the connecting portion 14 is not particularly limited as long as the back sheet 80 and the transparent conductive layer 12 can be bonded.
  • Examples of the material constituting the connecting portion 14 include glass frit and sealing portion.
  • a resin material similar to the resin material used for 31A can be used.
  • the connection part 14 is a glass frit. Since the glass frit has a higher sealing performance than the resin material, it is possible to effectively suppress intrusion of moisture and the like from the outside of the back sheet 80.
  • the dye examples include a ruthenium complex having a ligand including a bipyridine structure, a terpyridine structure, and the like, a photosensitizing dye such as an organic dye such as porphyrin, eosin, rhodamine, and merocyanine, and an organic substance such as a lead halide perovskite crystal.
  • a photosensitizing dye such as an organic dye such as porphyrin, eosin, rhodamine, and merocyanine
  • an organic substance such as a lead halide perovskite crystal.
  • a ruthenium complex having a ligand containing a bipyridine structure or a terpyridine structure is preferable. In this case, the photoelectric conversion characteristics of the photoelectric conversion element 100 can be further improved.
  • the counter substrate 20 includes the metal substrate 21 and the conductive catalyst layer 22 that is provided on the conductive substrate 15 side of the metal substrate 21 and promotes the reduction reaction on the surface of the counter substrate 20.
  • the metal substrate 21 is made of a corrosion-resistant metal material such as titanium, nickel, platinum, molybdenum, tungsten, aluminum, and stainless steel.
  • the thickness of the metal substrate 21 is appropriately determined according to the size of the photoelectric conversion element 100 and is not particularly limited, but may be, for example, 0.005 to 0.1 mm.
  • the catalyst layer 22 is composed of platinum, a carbon-based material, a conductive polymer, or the like.
  • carbon nanotubes are suitably used as the carbon-based material.
  • the sealing unit 30A includes a first sealing unit 31A and a second sealing unit 32A.
  • Examples of the material constituting the first sealing portion 31A include a modified polyolefin resin containing, for example, an ionomer, an ethylene-vinyl acetic anhydride copolymer, an ethylene-methacrylic acid copolymer, an ethylene-vinyl alcohol copolymer, and ultraviolet curing.
  • a modified polyolefin resin containing, for example, an ionomer, an ethylene-vinyl acetic anhydride copolymer, an ethylene-methacrylic acid copolymer, an ethylene-vinyl alcohol copolymer, and ultraviolet curing.
  • examples thereof include resins and resins such as vinyl alcohol polymers.
  • the thickness of the first sealing portion 31A is usually 20 to 90 ⁇ m, preferably 40 to 80 ⁇ m.
  • the material constituting the second sealing portion 32A is, for example, an ionomer, an ethylene-vinyl acetic anhydride copolymer, an ethylene-methacrylic acid copolymer, an ethylene-vinyl alcohol copolymer, as in the first sealing portion 31A.
  • examples thereof include resins such as modified polyolefin resins, UV curable resins, and vinyl alcohol polymers.
  • the material constituting the second sealing portion 32A may be the same as or different from the material constituting the first sealing portion 31A, but is preferably the same. In this case, since the interface between the second sealing portion 32A and the first sealing portion 31A is eliminated, it is possible to effectively suppress the intrusion of moisture from the outside and the leakage of the electrolyte 40.
  • the thickness of the second sealing portion 32A is usually 20 to 45 ⁇ m, preferably 30 to 40 ⁇ m.
  • the electrolyte 40 includes, for example, a redox couple and an organic solvent.
  • organic solvent acetonitrile, methoxyacetonitrile, methoxypropionitrile, propionitrile, ethylene carbonate, propylene carbonate, diethyl carbonate, ⁇ -butyrolactone, valeronitrile and the like can be used.
  • the redox pair include a redox pair containing a halogen atom such as iodide ion / polyiodide ion (for example, I ⁇ / I 3 ⁇ ), bromide ion / polybromide ion, zinc complex, iron complex, and cobalt complex.
  • the iodide ion / polyiodide ion can be formed by iodine (I 2 ) and a salt (ionic liquid or solid salt) containing iodide (I ⁇ ) as an anion.
  • iodine I 2
  • a salt ionic liquid or solid salt
  • I ⁇ iodide
  • an anion such as LiI or tetrabutylammonium iodide is used.
  • a salt containing iodide (I ⁇ ) may be added.
  • the electrolyte 40 may use an ionic liquid instead of the organic solvent.
  • an ionic liquid for example, a known iodine salt such as a pyridinium salt, an imidazolium salt, or a triazolium salt, and a room temperature molten salt that is in a molten state near room temperature is used.
  • room temperature molten salts examples include 1-hexyl-3-methylimidazolium iodide, 1-ethyl-3-propylimidazolium iodide, 1-ethyl-3-methylimidazolium iodide, 1,2 -Dimethyl-3-propylimidazolium iodide, 1-butyl-3-methylimidazolium iodide, or 1-methyl-3-propylimidazolium iodide is preferably used.
  • the electrolyte 40 may be a mixture of the ionic liquid and the organic solvent instead of the organic solvent.
  • an additive can be added to the electrolyte 40.
  • the additive include LiI, tetrabutylammonium iodide, 4-t-butylpyridine, guanidinium thiocyanate, 1-methylbenzimidazole, 1-butylbenzimidazole and the like.
  • a nano-composite gel electrolyte which is a pseudo-solid electrolyte formed by kneading nanoparticles such as SiO 2 , TiO 2 , carbon nanotubes, etc. into the electrolyte, may be used, and polyvinylidene fluoride may be used.
  • an electrolyte gelled with an organic gelling agent such as a polyethylene oxide derivative or an amino acid derivative may be used.
  • the electrolyte 40 includes a redox pair composed of iodide ions / polyiodide ions (for example, I ⁇ / I 3 ⁇ ), and the concentration of polyiodide ions (for example, I 3 ⁇ ) is 0.010 mol / liter or less. It is preferably 0.005 mol / liter or less, more preferably 0 to 2 ⁇ 10 ⁇ 4 mol / liter or less. In this case, since the concentration of being less than mol / liter carrying electrons is low, the leakage current can be further reduced. For this reason, since an open circuit voltage can be increased more, a photoelectric conversion characteristic can be improved more.
  • Conductive material For example, metal films are used as the conductive materials 60P and 60Q.
  • a metal material constituting the metal film for example, silver or copper can be used.
  • the backsheet 80 is provided on the surface of the stacked body 80A including the weather resistant layer and the metal layer, and the surface of the stacked body 80A on the photoelectric conversion cell 50 side, and bonds the stacked body 80A and the connecting portion 14 together.
  • Adhesive part 80B to be included.
  • the weather-resistant layer may be made of, for example, polyethylene terephthalate or polybutylene terephthalate.
  • the thickness of the weather resistant layer may be, for example, 50 to 300 ⁇ m.
  • the metal layer may be made of a metal material containing aluminum, for example.
  • the metal material is usually composed of aluminum alone, but may be an alloy of aluminum and another metal. Examples of other metals include copper, manganese, zinc, magnesium, lead, and bismuth. Specifically, 1000 series aluminum obtained by adding a trace amount of other metals to 98% or more pure aluminum is desirable. This is because the 1000 series aluminum is cheaper and more workable than other aluminum alloys.
  • the thickness of the metal layer is not particularly limited, but may be, for example, 12 to 30 ⁇ m.
  • the laminated body 80A may further include a resin layer.
  • the material constituting the resin layer include butyl rubber, nitrile rubber, thermoplastic resin, and the like. These can be used alone or in combination of two or more.
  • the resin layer may be formed on the entire surface of the metal layer opposite to the weather-resistant layer, or may be formed only on the peripheral edge.
  • Examples of the material constituting the adhesive portion 80B include butyl rubber, nitrile rubber, thermoplastic resin, and the like. These can be used alone or in combination of two or more.
  • the thickness of the bonding portion 80B is not particularly limited, but may be, for example, 300 to 1000 ⁇ m.
  • the desiccant 95 may be a sheet or a granule.
  • the desiccant 95 only needs to absorb moisture, for example, and examples of the desiccant 95 include silica gel, alumina, and zeolite.
  • FIG. 10 is a plan view showing a first integrated sealing portion forming body for forming the first integrated sealing portion of FIG. 6.
  • a laminate formed by forming a transparent conductive film on one transparent substrate 11 is prepared.
  • sputtering As a method for forming the transparent conductive film, sputtering, vapor deposition, spray pyrolysis (SPD), CVD, or the like is used.
  • a groove 90 is formed in the transparent conductive film, and transparent conductive layers 12A to 12F disposed in an insulating state with the groove 90 interposed therebetween are formed.
  • the four transparent conductive layers 12A to 12D corresponding to the photoelectric conversion cells 50A to 50D are formed to have a rectangular main body portion 12a and a protruding portion 12c.
  • the protruding portion 12c extends not only from the overhanging portion 12d but also from the overhanging portion 12d to the main body portion 12a of the adjacent photoelectric conversion cell 50.
  • the transparent conductive layer 12D includes not only the rectangular main body 12a and the overhanging portion 12d, but also the first current extraction portion 12f and a connection portion 12g that connects the first current extraction portion 12f and the main body portion 12a.
  • the first current extraction portion 12f is formed to be disposed on the opposite side of the transparent conductive layer 12B with respect to the transparent conductive layer 12A.
  • the transparent conductive layer 12E is formed so that the second current extraction portion 12h is formed. At this time, the second current extraction portion 12h is disposed on the opposite side of the transparent conductive layer 12B with respect to the transparent conductive layer 12A, and is disposed adjacent to the first current extraction portion 12f via the groove 90.
  • the groove 90 described above is formed by, for example, a laser scribing method using a fiber laser as a light source.
  • a conductive film 92 is provided on the transparent substrate 11, but cracks 91 are generated in the conductive film 92, and the number of cracks 91 having a length of 5 ⁇ m or more exists at a rate of 15/100 ⁇ m or more.
  • the groove 90 may be rapidly cooled.
  • the reason why the groove 90 is rapidly cooled is as follows. That is, when the groove 90 is formed by irradiating the transparent conductive film with a laser having high energy such as a fiber laser, the irradiated portion of the transparent conductive film becomes high temperature and melts.
  • the temperature of the conductive material gradually decreases and solidifies, and a conductive film 92 that is a thin conductive residue film is formed. Is done. Thereafter, when the conductive film 92 in the groove 90 is rapidly cooled, the thin conductive film 92 is thermally contracted after the formation of the groove 90, thereby generating a crack 91 in the conductive film 92. Since the conductive path between the transparent conductive layers 12 is sufficiently cut by the crack 91, a short circuit between the transparent conductive layers 12 is sufficiently suppressed.
  • the rapid cooling can be realized by spraying compressed air on the groove 90 or immersing the conductive film 92 in the groove 90 in water.
  • the rapid cooling is preferably performed by spraying compressed air because the cooling rate can be easily adjusted.
  • the pressure of the compressed air may be 0.1 to 0.8 MPa, for example.
  • the plurality of transparent conductive layers 12A to 12F are formed on the transparent substrate 11 to obtain the conductive substrate 15.
  • a precursor of the connection terminal 16 composed of the conductive material connection portion 16A and the conductive material non-connection portion 16B is formed on the protruding portion 12c of the transparent conductive layers 12A to 12C.
  • the precursor of the connection terminal 16 is formed so that the conductive material connection portion 16A is provided on the facing portion 12e. Further, the precursor of the connection terminal 16 is also formed on the transparent conductive layer 12E.
  • the precursor of the connection terminal 16 can be formed, for example, by applying a silver paste and drying it.
  • a precursor of the current collecting wiring 17 is formed on the connection portion 12g of the transparent conductive layer 12D.
  • the precursor of the current collecting wiring 17 can be formed, for example, by applying a silver paste and drying it.
  • precursors of external connection terminals 18a and 18b for taking out current to the outside are formed on the first current extraction portion 12f and the second current extraction portion 12h of the transparent conductive layer 12A, respectively.
  • the precursor of the terminal for external connection can be formed, for example, by applying a silver paste and drying it.
  • the precursor of the insulating material 33 is formed so as to enter the first groove 90A formed along the edge of the main body 12a.
  • the insulating material 33 can be formed by applying and drying a paste containing an insulating material such as glass frit.
  • the annular connecting portion 14 is surrounded by the transparent conductive layer 12D, the transparent conductive layer 12E, and the transparent conductive layer 12F so as to surround the insulating material 33 in the same manner as the insulating material 33.
  • a precursor is formed.
  • a precursor of the oxide semiconductor layer 13 is formed on the main body portion 12a of each of the transparent conductive layers 12A to 12D.
  • the precursor of the oxide semiconductor layer 13 is obtained by printing and drying an oxide semiconductor layer forming paste for forming the oxide semiconductor layer 13.
  • the oxide semiconductor layer forming paste contains oxide semiconductor particles made of titanium oxide or the like, a resin such as polyethylene glycol or ethyl cellulose, and a solvent such as terpineol.
  • a method for printing the oxide semiconductor layer forming paste for example, a screen printing method, a doctor blade method, a bar coating method, or the like can be used.
  • the precursor of the connection terminal 16, the precursor of the insulating material 33, the precursor of the connecting portion 14, and the precursor of the oxide semiconductor layer 13 are baked together to form the connecting terminal 16, the insulating material 33, and the connecting portion 14. And the oxide semiconductor layer 13 are formed.
  • the firing temperature varies depending on the types of the oxide semiconductor particles and the insulating material 33, but is usually 350 to 600 ° C., and the firing time also varies depending on the types of the oxide semiconductor particles and the insulating material 33. ⁇ 5 hours.
  • the conductive substrate 15 on which the insulating material 33, the connecting portion 14 for fixing the back sheet 80, and the oxide semiconductor layer 13 are formed is obtained.
  • a dye is supported on the oxide semiconductor layer 13.
  • the oxide semiconductor layer 13 is immersed in a solution containing a dye, the dye is adsorbed on the oxide semiconductor layer 13, and then the excess dye is washed away with the solvent component of the solution and dried.
  • the dye may be adsorbed on the oxide semiconductor layer 13.
  • the dye can be supported on the oxide semiconductor layer 13 even after the dye is adsorbed to the oxide semiconductor layer 13 by applying a solution containing the dye to the oxide semiconductor layer 13 and then drying. .
  • the electrolyte 40 is disposed on the oxide semiconductor layer 13.
  • a first integrated sealing portion forming body 131 for forming the first integrated sealing portion 31 is prepared.
  • the first integrated sealing portion forming body 131 prepares one sealing resin film made of the material constituting the first integrated sealing portion 31, and the photoelectric conversion cell 50 is formed on the sealing resin film. It can be obtained by forming a rectangular opening 131a corresponding to the number.
  • the first integrated sealing portion forming body 131 has a structure in which a plurality of first sealing portion forming bodies 131A are integrated.
  • the first integrated sealing portion forming body 131 is adhered onto the conductive substrate 15. At this time, the first integrated sealing portion forming body 131 is bonded so as to overlap the insulating material 33.
  • the first integrated sealing portion forming body 131 can be adhered to the conductive substrate 15 by heating and melting the first integrated sealing portion forming body 131.
  • the first integrated sealing portion forming body 131 is bonded to the conductive substrate 15 so that the main body portion 12a of the transparent conductive layer 12 is disposed inside the first integrated sealing portion forming body 131A.
  • the counter substrate 20 can be obtained by forming a conductive catalyst layer 22 that promotes a reduction reaction on the surface of the counter substrate 20 on the metal substrate 21.
  • the first integrated sealing portion forming body 131 bonded to the counter substrate 20 and the first integrated sealing portion forming body 131 bonded to the conductive substrate 15 are superposed to form a first integrated sealing portion.
  • the formed body 131 is heated and melted while being pressurized.
  • the first integrated sealing portion 31 is formed between the conductive substrate 15 and the counter substrate 20.
  • the formation of the first integrated sealing portion 31 may be performed under atmospheric pressure or under reduced pressure, but is preferably performed under reduced pressure.
  • the second integrated sealing portion 32 has a structure formed by integrating a plurality of first sealing portions 32A.
  • the second integrated sealing portion 32 is obtained by preparing one sealing resin film and forming the rectangular openings 32c corresponding to the number of photoelectric conversion cells 50 in the sealing resin film. Can do.
  • the second integrated sealing portion 32 is bonded to the counter substrate 20 so as to sandwich the edge portion 20 a of the counter substrate 20 together with the first integrated sealing portion 31.
  • the adhesion of the second integrated sealing portion 32 to the counter substrate 20 can be performed by heating and melting the second integrated sealing portion 32.
  • the sealing resin film examples include an ionomer, an ethylene-vinyl acetic anhydride copolymer, an ethylene-methacrylic acid copolymer, an ethylene-vinyl alcohol copolymer, a modified polyolefin resin, an ultraviolet curable resin, and a vinyl.
  • the constituent material of the sealing resin film for forming the second integrated sealing portion 32 has a higher melting point than the constituent material of the sealing resin film for forming the first integrated sealing portion 31. It is preferable. In this case, since the second sealing portion 32A is harder than the first sealing portion 31A, the contact between the opposing substrates 20 of the adjacent photoelectric conversion cells 50 can be effectively prevented. In addition, since the first sealing portion 31A is softer than the second sealing portion 32A, the stress applied to the sealing portion 30A can be effectively relieved.
  • bypass diodes 70A, 70B, and 70C are fixed to the partition portion 32b of the second sealing portion 32. Further, the bypass diode 70D is also fixed on the sealing portion 30A of the photoelectric conversion cell 50D.
  • the conductive material 60Q is fixed to the metal substrate 21 of the counter substrate 20 of the photoelectric conversion cells 50B to 50C so as to pass through the bypass diodes 70A to 70D. Further, between the bypass diodes 70A and 70B, between the bypass diodes 70B and 70C, between the bypass diodes 70C and 70D, the conductive material connecting portion 16A on the transparent conductive layer 12A, and the conductive material connecting portion on the transparent conductive layer 12B. A conductive material 60P is formed so as to connect 16A and the conductive material connecting portion 16A on the transparent conductive layer 12C.
  • the conductive material 60P is fixed to the metal substrate 21 of the counter substrate 20 of the photoelectric conversion cell 50A so as to connect the conductive material connecting portion 16A on the transparent conductive layer 12E and the bypass diode 70A. Further, the transparent conductive layer 12D and the bypass diode 70A are connected by the conductive material 60P.
  • a paste containing a metal material constituting the conductive material 60P is prepared, and this paste is applied from the counter substrate 20 to the conductive material connection portion 16A of the connection terminal 16 of the adjacent photoelectric conversion cell 50. And cure.
  • a paste containing a metal material constituting the conductive material 60Q is prepared, and this paste is applied on each counter substrate 20 so as to connect adjacent bypass diodes, and is cured.
  • the paste it is preferable to use a low-temperature curable paste that can be cured at a temperature of 90 ° C. or lower from the viewpoint of avoiding adverse effects on the pigment.
  • a back sheet 80 is prepared, and the peripheral edge 80a of the back sheet 80 is bonded to the connecting portion 14. At this time, the back sheet 80 is disposed so that the adhesive portion 80B of the back sheet 80 and the sealing portion 30A of the photoelectric conversion cell 50 are separated from each other.
  • the photoelectric conversion element 100 is obtained as described above.
  • connection terminal 16 in order to form the connection terminal 16, the insulating material 33, the connecting portion 14, and the oxide semiconductor layer 13, the precursor of the connecting terminal 16, the precursor of the insulating material 33, and the precursor of the connecting portion 14.
  • the precursor of the oxide semiconductor layer 13 is baked in a lump, but the connection terminal 16, the insulating material 33, the connecting portion 14, and the oxide semiconductor layer 13 are separately fired. May be formed.
  • the present invention is not limited to the above embodiment.
  • the crack 91 is in contact with the edge of the groove 90, that is, the transparent conductive layer 12. It is not always necessary to contact the edge of the groove 90.
  • the conductive film 92 in the groove 90 between the adjacent transparent conductive layers 12 has cracks 91 a and 91 b that intersect with the other crack 91, but the crack that intersects with the other crack 91. 91a and 91b may not exist. That is, the crack 91 may be composed of only the cracks 91 c and 91 d that do not intersect with the other cracks 91.
  • the conductive substrate 15 has the insulating material 33, but it does not have to have the insulating material 33.
  • the sealing portion 30 ⁇ / b> A and the first integrated sealing portion 31 ⁇ / b> A are directly bonded to the transparent substrate 11 and the transparent conductive layer 12.
  • the groove 90 has the second groove 90B, but the second groove 90B may not necessarily be formed.
  • the electrically-conductive material connection part 16A and the electrically-conductive material non-connection part 16B are provided along the sealing part 30A, respectively, these are formed so that it may extend in the direction away from the sealing part 30A. May be. However, in this case, it is preferable that the conductive material connecting portion 16A is disposed at a position closer to the sealing portion 30A than the conductive material non-connecting portion 16B. In this case, the conductive material 60P can be made shorter. Note that the connection terminal 16 is not necessarily provided on the transparent conductive layer 12.
  • the second sealing portion 32A is bonded to the first sealing portion 31A, but the second sealing portion 32A may not be bonded to the first sealing portion 31A.
  • sealing part 30A is comprised by 31 A of 1st sealing parts and 32 A of 2nd sealing parts, 32 A of 2nd sealing parts may be abbreviate
  • the back sheet 80 and the transparent conductive layer 12 are adhere
  • the back sheet 80 and the transparent conductive layer 12 are not necessarily adhere
  • FIG. There is no need to be.
  • connection part 14 and the insulating material 33 are spaced apart, the connection part 14 and the insulating material 33 may be integrated.
  • the photoelectric conversion element 100 includes the back sheet 80, but the photoelectric conversion element 100 does not necessarily have to include the back sheet 80.
  • the photoelectric conversion element 100 has a bypass diode
  • the photoelectric conversion element 100 does not necessarily need to have a bypass diode.
  • the transparent conductive layer 12 is used as the conductive layer.
  • the conductive layer is not necessarily transparent.
  • the substrate that supports the conductive layer is not necessarily transparent.
  • the oxide semiconductor layer 13 is provided on the transparent conductive layer 12, the photoelectric conversion element 100 does not have the back sheet
  • the transparent conductive layer 12 is arrange
  • the counter substrate 20 is configured with a counter electrode.
  • an insulating substrate 201 may be used as the counter substrate 20 instead of the counter electrode as in the photoelectric conversion element 200 shown in FIG.
  • the structure 202 is disposed in the space between the insulating substrate 201, the sealing portion 31, and the conductive substrate 15.
  • the structure 202 is provided on the surface of the conductive substrate 15 on the insulating substrate 201 side.
  • the structure 202 includes the oxide semiconductor layer 13, the porous insulating layer 203, and the counter electrode 220 in this order from the conductive substrate 15 side.
  • An electrolyte 240 is disposed in the space. The electrolyte 240 is impregnated into the oxide semiconductor layer 13 and the porous insulating layer 203.
  • the same electrolyte as the electrolyte 40 can be used.
  • the insulating substrate 201 for example, a glass substrate or a resin film can be used.
  • the counter electrode 220 the same electrode as the counter substrate 20 can be used.
  • the counter electrode 220 may be composed of a single porous layer containing, for example, carbon.
  • the porous insulating layer 203 is mainly for preventing physical contact between the oxide semiconductor layer 13 and the counter electrode 220 and impregnating the electrolyte 240 therein.
  • a porous insulating layer 203 for example, a fired body of an oxide can be used. Note that in the photoelectric conversion element 200 illustrated in FIG.
  • only one structure 202 is provided in the space between the sealing portion 31, the conductive substrate 15, and the insulating substrate 201.
  • a plurality may be provided.
  • the porous insulating layer 203 is provided between the oxide semiconductor layer 13 and the counter electrode 220, but is not provided between the oxide semiconductor layer 13 and the counter electrode 220. You may provide between the electroconductive board
  • Example 1 First, a laminate was prepared by forming a transparent conductive film made of FTO having a thickness of 0.1 ⁇ m on a 5 cm ⁇ 10 cm ⁇ 1 mm transparent substrate made of glass.
  • a laser is irradiated to one linear portion that crosses the center of the transparent conductive film with a fiber laser (product name “50 W pulse oscillation fiber laser”, manufactured by Fujikura Co., Ltd.) to form a groove, and two transparent conductive films are formed. A layer was formed. At this time, the width of the groove was 84 ⁇ m.
  • a fiber laser product name “50 W pulse oscillation fiber laser”, manufactured by Fujikura Co., Ltd.
  • the bottom of the groove was quenched by blowing compressed air having a pressure shown in Table 1 for 10 seconds.
  • Example 1 was a relative value when the resistance value between the two transparent conductive layers in Comparative Example 1 was 1.
  • 10 regions having a length of 100 ⁇ m along the longitudinal direction of the groove were observed with an SEM, and in each region, the number of cracks having a length of 5 ⁇ m or more per 100 ⁇ m length along the longitudinal direction of the groove was determined. The average value of the number of cracks in 10 regions was obtained. The results are shown in Table 1.
  • crossing cracks existed in the grooves between the transparent conductive layers.
  • 10 regions having a length of 100 ⁇ m along the longitudinal direction of the groove were observed with a TEM.
  • a precursor of the oxide semiconductor layer 13 was formed on each of the two transparent conductive layers.
  • the precursor of the oxide semiconductor layer 13 is obtained by printing a titanium oxide nanopaste on a 1 cm ⁇ 1 cm region on the surface of the transparent conductive layer, followed by firing to form an oxide semiconductor layer made of a porous titanium oxide film having a thickness of 10 ⁇ m. Obtained.
  • the laminate obtained in this manner was immersed in a Z907 dye solution to adsorb the Z907 dye on the oxide semiconductor layer.
  • a mixed solvent of t-butanol and acetonitrile was used as the solvent in the dye solution.
  • a glass with a conductive film obtained by sputtering platinum on a glass substrate, and a glass with a conductive film of 5 cm ⁇ 5 cm ⁇ 1 mm was prepared as a counter electrode.
  • this counter electrode was arrange
  • a photoelectric conversion element composed of two dye-sensitized solar cells was obtained.
  • Example 2 After forming the groove in the transparent conductive film, the pressure of compressed air when rapidly cooling is set to the value shown in Table 1, so that cracks of 5 ⁇ m or more existing per 100 ⁇ m length along the longitudinal direction of the groove.
  • a photoelectric conversion element was produced in the same manner as in Example 1 except that the number was set to the value shown in Table 1 and the width of the groove and the maximum thickness of the conductive film were set to values shown in Table 1. It was found that in the photoelectric conversion elements of Examples 2 to 8, there were crossing cracks in the grooves between the transparent conductive layers. In the photoelectric conversion elements of Examples 2 to 8, ten regions having a length of 100 ⁇ m along the longitudinal direction of the groove were observed with a TEM.
  • Comparative Example 1 The value shown in Table 1 is the number of cracks having a length of 5 ⁇ m or more present per 100 ⁇ m length along the longitudinal direction of the groove by not blowing compressed air at the time of rapid cooling after forming the groove in the transparent conductive film.
  • a photoelectric conversion element was produced in the same manner as in Example 1 except that the groove width and the maximum thickness of the conductive film were set to the values shown in Table 1.
  • ten regions having a length of 100 ⁇ m along the longitudinal direction of the groove were observed with a TEM. As a result, in all ten regions, a conductive film ( It was found that there was a crack in the conductive film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

基板と、基板上に設けられ、互いに溝を介して配置された複数の導電層とを有する光電変換素子が開示されている。この光電変換素子は、少なくとも1つの光電変換セルを有する。光電変換セルは、複数の導電層のうちの1つの導電層と、導電層に対向する対向基板と、導電層及び対向基板の間に設けられる酸化物半導体層とを有し、複数の導電層同士間の溝の長手方向に沿って基板上に導電性膜が設けられ、導電性膜において長さ5μm以上の亀裂が、溝の長手方向に沿った長さ100μmあたり15個以上の割合で存在している。

Description

光電変換素子
 本発明は、光電変換素子に関する。
 光電変換素子として、安価で、高い光電変換効率が得られることから色素を用いた光電変換素子が注目されており、色素を用いた光電変換素子に関して種々の開発が行われている。
 色素を用いた光電変換素子は少なくとも1つの光電変換セルを備えており、光電変換セルは一般に、基板上に導電層を設けた導電性基板と、導電層に対向する対向基板と、導電層と対向基板との間に設けられる酸化物半導体層とを備えている(例えば下記特許文献1参照)。
特開2014-192008号公報
 しかし、上述した特許文献1に記載の光電変換素子は、光電変換特性の点で未だ改善の余地を有していた。
 本発明は上記事情に鑑みてなされたものであり、光電変換特性を十分に向上させることができる光電変換素子を提供することを目的とする。
 本発明者は、上記課題を解決するため上記特許文献1記載の光電変換素子について検討した。その結果、光電変換素子に含まれる隣接する2つの光電変換セルの導電層同士間の抵抗値を測定したところ、抵抗値が比較的小さいことが分かった。このことから、本発明者は、隣接する2つの光電変換セルの導電層同士間の溝の底部において、すなわち、溝の長手方向に沿って基板上に導電性物質からなる導電性膜が残存しており、この残存する導電性物質からなる導電性膜が、隣接する2つの光電変換セルの導電層同士間の抵抗値を小さくしているのではないかと考えた。そこで、本発明者はさらに鋭意研究を重ねた結果、隣接する2つの光電変換セルの導電層同士間の溝の底部において、すなわち溝の長手方向に沿って基板上に設けられる導電性膜において、溝の長手方向に沿った特定の長さ当たりに観察される、特定値以上の長さを持つ亀裂の数と光電変換特性との間に相関関係が見られることを突き止め、以下の発明により上記課題を解決し得ることを見出した。
 すなわち、本発明は、基板と、前記基板上に設けられ、互いに溝を介して配置された複数の導電層とを有する光電変換素子であって、少なくとも1つの光電変換セルを有し、前記光電変換セルが、前記複数の導電層のうちの1つの導電層と、前記導電層に対向する対向基板と、前記導電層及び前記対向基板の間に設けられる酸化物半導体層とを有し、前記複数の導電層同士間の前記溝の長手方向に沿って、前記基板上に導電性膜が設けられ、前記導電性膜において、長さ5μm以上の亀裂が、前記溝の長手方向に沿った長さ100μmあたり15個以上の割合で存在している、光電変換素子である。
 本発明の光電変換素子によれば、複数の導電層同士間の溝の底部において、すなわち溝の長手方向に沿って基板上に設けられる導電性膜において、長さ5μm以上の亀裂が、溝の長手方向に沿った長さ100μmあたり15個以上の割合で存在している。このため、この亀裂によって導電性膜における導電パスが十分に切断され、導電層同士間の絶縁性を十分に確保することができる。その結果、光電変換素子の光電変換特性を向上させることができる。
 上記光電変換素子においては、前記導電性膜は導電層と同一の材料で構成されていることが好ましい。
 上記光電変換素子においては、前記導電性膜において長さ5μm以上の亀裂が、前記溝の長手方向に沿った長さ100μmあたり200個以下の割合で存在していることが好ましい。
 この場合、亀裂が溝の長手方向に沿った長さ100μmあたり200個を超える割合で存在している場合に比べて、溝の透明度がより高くなる。
 上記光電変換素子においては、前記導電性膜において長さ5μm以上の亀裂が、前記溝の長手方向に沿った長さ100μmあたり40個以下の割合で存在していることが特に好ましい。
 上記光電変換素子においては、前記導電性膜において長さ5μm以上の亀裂が、前記導電性膜において前記溝の長手方向に沿った長さ100μmあたり34個以上の割合で存在していることが好ましい。
 この場合、光電変換素子の光電変換特性をより向上させることができる。
 上記光電変換素子においては、前記導電性膜において、互いに交差する亀裂が存在していることが好ましい。
 この場合、導電性膜において互いに交差する亀裂が存在することによって、導電性膜における導電パスをより長い距離にわたって切断することが可能となる。このため、光電変換素子の光電変換特性をより十分に向上させることができる。
 上記光電変換素子においては、前記複数の導電層同士間の前記溝が絶縁材料で覆われていることが好ましい。
 この場合、亀裂に絶縁材料が入り込むことで、導電層同士間の絶縁性をより十分に確保することができる。
 上記光電変換素子においては、前記導電性膜の最大厚さが150nm以下であり、前記溝の幅が200nm以下であり、前記亀裂の底部が前記基板と前記導電性膜との界面に達していることが好ましい。
 この場合、亀裂によって導電性膜における導電パスが効果的に切断され、導電層同士間の絶縁性を効果的に確保することができる。その結果、光電変換素子の光電変換特性を効果的に向上させることができる。
 上記光電変換素子において、前記亀裂の底部が、前記基板において前記基板と前記導電性膜との界面よりも前記導電性膜から離れた位置に達していることが好ましい。
 この場合、亀裂の長さ方向において導電パスがより確実に切断されるので、導電性膜の抵抗をより増大させることができる。
 上記光電変換素子においては、前記亀裂が前記導電層に接触していることが好ましい。
 この場合、亀裂が導電層に接触しない場合に比べて、隣り合う導電層同士間の絶縁性がより向上する。
 なお、本発明において、「導電性膜」とは、前記導電層よりも小さい最大厚さを有する層をいう。
 また、本発明において、「亀裂」の数は、複数の導電層同士間の溝の長手方向に沿った長さ100μmの10箇所の領域を走査型電子顕微鏡(Scanning Electron Microscope:SEM)にて観察した場合に観察される亀裂の数の平均値を言うものとする。ここで、観察される線が亀裂であるかどうかは、その線の幅が0.1~2μmであり、且つその線がその周囲よりも明度が低い線であるか、あるいは明度が高い線であるかどうかによって判断することができる。
 さらに、本発明において、「導電性膜の最大厚さ」とは、複数の導電層同士間の溝の長手方向に沿った長さ100μmの10箇所の領域を透過型電子顕微鏡(Transmission Electron Microscope;TEM)にて観察した場合に、その各々の領域で観察される導電性膜の最大厚さの平均値を言うものとする。
 本発明によれば、光電変換特性を十分に向上させることができる光電変換素子が提供される。
本発明の光電変換素子の第1実施形態を示す切断面端面図である。 本発明の光電変換素子の第1実施形態の一部を示す平面図である。 図1の光電変換素子における透明導電層のパターンを示す平面図である。 図3の隣り合う透明導電層同士間の溝の底部を示す部分平面図である。 図4のV-V線に沿った部分切断面端面図である。 図1の第1一体化封止部を示す平面図である。 図1の第2一体化封止部を示す平面図である。 図2のVIII-VIII線に沿った部分切断面端面図である。 絶縁材、バックシートを固定するための連結部及び酸化物半導体層を形成した導電性基板を示す平面図である。 図6の第1一体化封止部を形成するための第1一体化封止部形成体を示す平面図である。 本発明の光電変換素子の第2実施形態を示す部分切断面端面図である。
 以下、本発明の光電変換素子の好適な実施形態について図1~図9を参照しながら詳細に説明する。図1は、本発明の光電変換素子の好適な実施形態を示す切断面端面図、図2は、本発明の光電変換素子の好適な実施形態の一部を示す平面図、図3は、図1の光電変換素子における透明導電層のパターンを示す平面図、図4は、図3の隣り合う透明導電層同士間の溝の底部を示す部分平面図、図5は、図4のV-V線に沿った部分切断面端面図、図6は、図1の第1一体化封止部を示す平面図、図7は、図1の第2一体化封止部を示す平面図、図8は、図2のVIII-VIII線に沿った部分切断面端面図、図9は、絶縁材、バックシートを固定するための連結部及び酸化物半導体層を形成した導電性基板を示す平面図である。
 図1に示すように、光電変換素子100は、透明基板11と、透明基板11上に互いに溝90を介して配置された複数の透明導電層12とを設けてなる導電性基板15を有する。
 光電変換素子100は一つの透明基板11と透明基板11上に形成された複数(本実施形態では4つ)の光電変換セル50を有している。以下、これら複数の光電変換セル50については、説明の便宜上、必要に応じて光電変換セル50A~50Dと呼ぶこととする。光電変換セル50は、複数の透明導電層12のうちの1つの透明導電層12と、透明導電層12に対向する対向基板20と、透明導電層12と対向基板20との間に設けられる酸化物半導体層13とを備えている。本実施形態では、酸化物半導体層13は透明導電層12上に設けられている。導電性基板15及び対向基板20は環状の封止部30Aによって接合され、導電性基板15、対向基板20及び環状の封止部30Aによって形成されるセル空間には電解質40が充填されている。酸化物半導体層13は、環状の封止部30Aの内側に配置され、酸化物半導体層13には色素が担持されている。そして、図2に示すように、複数の光電変換セル50は導電材60Pによって直列に接続されている。また光電変換セル50の対向基板20側にはバックシート80が設けられている(図1参照)。
 対向基板20は対極で構成され、電極としての金属基板21と、金属基板21の導電性基板15側に設けられて触媒反応を促進する触媒層22とを備えている。また隣り合う2つの光電変換セル50において、対向基板20同士は互いに離間している。
 図3に示すように、導電性基板15は、透明基板11と、透明基板11上に設けられ、互いに溝90を介して配置された電極としての複数の透明導電層12A~12Fとを有している。複数の透明導電層12A~12Fのうち透明導電層12A~12Dは、光電変換セル50A~50Dの電極を構成する透明導電層12であり、透明導電層12E,12Fは、光電変換セル50A~50Dの電極を構成しない透明導電層12である。透明導電層12E,12Fは、透明導電層12A~12Dの周囲に設けられている。透明導電層12Eは、封止部30Aに沿って折れ曲がるようにして配置されている。透明導電層12Fは、バックシート80の周縁部80aを固定するための環状の透明導電層12である(図1参照)。
 図3に示すように、透明導電層12A~12Dはいずれも、側縁部12bを有する四角形状の本体部12aと、本体部12aの側縁部12bから側方に突出する突出部12cとを有している。
 図2に示すように、透明導電層12A~12Dのうち光電変換セル50Cの透明導電層12Cの突出部12cは、光電変換セル50A~50Dの配列方向Xに対して側方に張り出す張出し部12dと、張出し部12dから延びて、隣りの光電変換セル50Dの本体部12aに溝90を介して対向する対向部12eとを有している。
 光電変換セル50Bにおいても、透明導電層12Bの突出部12cは、張出し部12dと対向部12eとを有している。また光電変換セル50Aにおいても、透明導電層12Aの突出部12cは、張出し部12dと対向部12eとを有している。
 なお、光電変換セル50Dは、既に光電変換セル50Cと接続されており、他に接続されるべき光電変換セル50が存在しない。このため、光電変換セル50Dにおいて、透明導電層12Dの突出部12cは対向部12eを有していない。すなわち透明導電層12Dの突出部12cは張出し部12dのみで構成される。
 但し、透明導電層12Dは、光電変換素子100で発生した電流を外部に取り出すための第1電流取出し部12fと、第1電流取出し部12fと本体部12aとを接続し、透明導電層12A~12Cの側縁部12bに沿って延びる接続部12gとをさらに有している。第1電流取出し部12fは、光電変換セル50Aの近傍であって透明導電層12Aに対して透明導電層12Bと反対側に配置されている。
 一方、透明導電層12Eも、光電変換素子100で発生した電流を外部に取り出すための第2電流取出し部12hを有しており、第2電流取出し部12hは、光電変換セル50Aの近傍であって透明導電層12Aに対して透明導電層12Bと反対側に配置されている。そして、第1電流取出し部12fおよび第2電流取出し部12hは、光電変換セル50Aの周囲において溝90B(90)を介して隣り合うように配置されている。
 ここで、溝90は、透明導電層12の本体部12aの縁部に沿って形成される第1の溝90Aと、透明導電層12のうち本体部12aを除く部分の縁部に沿って形成され、バックシート80の周縁部80aと交差する第2の溝90Bとで構成されている。
 そして、図4に示すように、隣り合う透明導電層12同士間の溝90の底部において、すなわち、溝90の長手方向に沿って透明基板11上に設けられる導電性膜92において、亀裂91は、溝90の両側の縁部の各々から反対側の溝90の縁部に向かうように延びている。ここで、亀裂91は、溝90の縁部、すなわち透明導電層12に接触している。そして、導電性膜92において長さ5μm以上の亀裂91が、溝90の長手方向に沿った長さ100μmあたり15個以上の割合で存在している。また隣り合う透明導電層12同士間の溝90の底部において、すなわち、溝90の長手方向に沿って透明基板11上に設けられる導電性膜92においては、他の亀裂91と交差しない亀裂91c,91dと、他の亀裂91と交差する亀裂91a,91bとが存在している。なお、図4において、溝90の縁部は直線状になっているが、直線状でなくてもよい。
 図2に示すように、透明導電層12A~12Cの各突出部12cおよび透明導電層12Eの上には、接続端子16が設けられている。各接続端子16は、導電材60Pと接続され、封止部30Aの外側で封止部30Aに沿って延びる導電材接続部16Aと、導電材接続部16Aから封止部30Aの外側で封止部30Aに沿って延びる導電材非接続部16Bとを有する。本実施形態では、透明導電層12A~12Cにおいては、接続端子16のうち少なくとも導電材接続部16Aは、突起部12cの対向部12e上に設けられており、接続される隣りの光電変換セル50の本体部12aに対向している。透明導電層12Eにおいては、接続端子16のうちの導電材接続部16Aは、接続される隣りの光電変換セル50Aの本体部12aに対向している。
 そして、光電変換セル50Cにおける透明導電層12Cの突出部12c上に設けられる接続端子16の導電材接続部16Aと隣りの光電変換セル50Dにおける対向基板20の金属基板21とが導電材60Pを介して接続されている。導電材60Pは、封止部30Aの上を通るように配置されている。同様に、光電変換セル50Bにおける接続端子16の導電材接続部16Aと隣りの光電変換セル50Cにおける対向基板20の金属基板21とは導電材60Pを介して接続され、光電変換セル50Aにおける接続端子16の導電材接続部16Aと隣りの光電変換セル50Bにおける対向基板20の金属基板21とは導電材60Pを介して接続され、透明導電層12E上の接続端子16の導電材接続部16Aと隣りの光電変換セル50Aにおける対向基板20の金属基板21とは導電材60Pを介して接続されている。
 また第1電流取出し部12f、第2電流取出し部12h上にはそれぞれ、外部接続端子18a,18bが設けられている。
 図1に示すように、封止部30Aは、導電性基板15と対向基板20との間に設けられる環状の第1封止部31Aと、第1封止部31Aと重なるように設けられ、第1封止部31Aと共に対向基板20の縁部20aを挟持する第2封止部32Aとを有している。そして、図6に示すように、隣り合う第1封止部31A同士は一体化されて第1一体化封止部31を構成している。別言すると、第1一体化封止部31は、隣り合う2つの対向基板20の間に設けられていない環状の部分(以下、「環状部」と呼ぶ)31aと、隣り合う2つの対向基板20の間に設けられており、環状の部分31aの内側開口31cを仕切る部分(以下、「仕切部」と呼ぶ)31bとで構成されている。また図7に示すように、第2封止部32A同士は、隣り合う対向基板20の間で一体化され、第2一体化封止部32を構成している。第2一体化封止部32は、隣り合う2つの対向基板20の間に設けられていない環状の部分(以下、「環状部」と呼ぶ)32aと、隣り合う2つの対向基板20の間に設けられており、環状の部分32aの内側開口32cを仕切る部分(以下、「仕切部」と呼ぶ)32bとで構成されている。
 また図1に示すように、第1封止部31Aと溝90との間には、隣り合う透明導電層12A~12F同士間の溝90に入り込み且つ隣り合う透明導電層12にまたがるように絶縁材33が設けられている。すなわち、溝90のうち第1封止部31Aに沿った部分は、絶縁材33によって覆われている。
 また、図8に示すように、第2一体化封止部32は、対向基板20のうち導電性基板15と反対側に設けられる本体部32dと、隣り合う対向基板20同士の間に設けられる接着部32eとを有している。第2一体化封止部32は、接着部32eによって第1一体化封止部31に接着されている。
 図1に示すように、導電性基板15の上にはバックシート80が設けられている。バックシート80は、耐候性層と、金属層とを含む積層体80Aと、積層体80Aに対し金属層と反対側に設けられ、連結部14を介して導電性基板15と接着する接着部80Bとを含む。ここで、接着部80Bは、バックシート80を導電性基板15に接着させるためのものであり、図1に示すように、積層体80Aの周縁部に形成されていればよい。但し、接着部80Bは、積層体80Aのうち光電変換セル50側の面全体に設けられていてもよい。バックシート80の周縁部80aは、接着部80Bによって、連結部14を介して透明導電層12のうち透明導電層12D,12E,12Fと接続されている。ここで、接着部80Bは光電変換セル50の封止部30Aと離間している。また連結部14も封止部30Aと離間している。
 また図2に示すように、透明導電層12Dにおいては、本体部12a、接続部12gおよび電流取出し部12fを通るように、透明導電層12Dよりも低い抵抗を有する集電配線17が延びている。この集電配線17は、バックシート80と導電性基板15との連結部14と交差しないように配置されている。別言すると、集電配線17は、連結部14よりも内側に配置されている。
 なお、図2に示すように、各光電変換セル50A~50Dにはそれぞれ、バイパスダイオード70A~70Dが並列に接続されている。具体的には、バイパスダイオード70Aは、光電変換セル50Aと光電変換セル50Bとの間の第2一体化封止部32の仕切部32b上に固定され、バイパスダイオード70Bは、光電変換セル50Bと光電変換セル50Cとの間の第2一体化封止部32の仕切部32b上に固定され、バイパスダイオード70Cは、光電変換セル50Cと光電変換セル50Dとの間の第2一体化封止部32の仕切部32b上に固定されている。バイパスダイオード70Dは、光電変換セル50Dの封止部30A上に固定されている。そして、バイパスダイオード70A~70Dを通るように対向基板20の金属基板21に導電材60Qが固定されている。またバイパスダイオード70A,70B間、バイパスダイオード70B,70C間、バイパスダイオード70C,70D間の導電材60Qからはそれぞれ導電材60Pが分岐し、透明導電層12A上の導電材接続部16A、透明導電層12B上の導電材接続部16A、透明導電層12C上の導電材接続部16Aにそれぞれ接続されている。また光電変換セル50Aの対向基板20の金属基板21にも導電材60Pが固定され、この導電材60Pは、バイパスダイオード70Aと、透明導電層12E上の接続端子16の導電材接続部16Aとを接続している。さらにバイパスダイオード70Dは、導電材60Pを介して透明導電層12Dに接続されている。
 なお、図1に示すように、各光電変換セル50の対向基板20上には、乾燥剤95が設けられている。
 上記光電変換素子100によれば、複数の透明導電層12同士間の溝90の底部において、すなわち、溝90の長手方向に沿って透明基板11上に設けられる導電性膜92において、長さ5μm以上の亀裂91が、溝90の長手方向に沿った長さ100μmあたり15個以上の割合で存在している。このため、この亀裂91によって導電性膜92における導電パスが十分に切断され、透明導電層12同士間の絶縁性を十分に確保することができる。その結果、光電変換素子100の光電変換特性を向上させることができる。
 また光電変換素子100においては、隣り合う透明導電層12同士間の導電性膜92において、亀裂91が、溝90の縁部、すなわち透明導電層12に接触している。このため、亀裂91が、溝90の縁部、すなわち透明導電層12に接触しない場合に比べて、隣り合う透明導電層12同士間の絶縁性がより向上する。
 また光電変換素子100においては、隣り合う透明導電層12同士間の溝90の底部において、他の亀裂91と交差する亀裂91a,91bが存在している。このように、互いに交差する亀裂91が存在することによって、隣り合う透明導電層12同士間の溝90の底部における導電パスをより長い距離にわたって切断することが可能となる。このため、光電変換素子100の光電変換特性をより十分に向上させることができる。
 また光電変換素子100では、溝90のうち第1封止部31Aに沿った部分は、絶縁材33によって覆われている。この場合、溝90に存在する亀裂91に絶縁材料が入り込むことで、透明導電層12同士間の絶縁性をより十分に確保することができる。
 また光電変換素子100では、封止部30Aと絶縁材33とが重なるように配置されている。このため、絶縁材33が封止部30Aと重ならないように配置されている場合に比べて、光電変換素子100の受光面側から見た、発電に寄与する部分の面積をより増加させることができる。このため、開口率をより向上させることができる。
 また光電変換素子100では、第1電流取出し部12fおよび第2電流取出し部12hは、光電変換セル50Aの近傍であって透明導電層12Aに対し透明導電層12Bと反対側に配置され、透明導電層12Aの第1電流取出し部12fおよび透明導電層12Fの第2電流取出し部12hは互いに溝90を介して隣り合うように配置されている。このため、光電変換素子100においては、第1電流取出し部12fおよび第2電流取出し部12hのそれぞれに外部接続端子18a,18bを隣り合うように配置することが可能となる。従って、外部接続端子18a,18bから電流を外部に取り出すためのコネクタの数を1つとすることが可能となる。すなわち、仮に、第1電流取出し部12fが透明導電層12Dに対し透明導電層12Cと反対側に配置されている場合、第1電流取出し部12fおよび第2電流取出し部12hが互いに大きく離れて配置されるため、外部接続端子18a,18bも大きく離れて配置されることになる。この場合、光電変換素子100から電流を取り出すには、外部接続端子18aに接続するコネクタと、外部接続端子18bに接続するコネクタの2つのコネクタが必要になる。しかし、光電変換素子100によれば、外部接続端子18a,18bを隣り合うように配置することが可能となるため、コネクタは1つで済む。このため、光電変換素子100によれば、省スペース化を図ることができる。また、光電変換素子100は、低照度下で使用されると、発電電流が小さい。具体的には、発電電流は2mA以下である。このため、光電変換セル50A~50Dの両端の光電変換セル50A,50Dのうち一端側の光電変換セル50Dの透明導電層12Dの一部を、他端側の光電変換セル50Aの対向基板20の金属基板21に電気的に接続された第2電流取出し部12hの隣りに溝90を介して第1電流取出し部12fとして配置しても、光電変換素子100の光電変換性能の低下を十分に抑制することができる。
 また、光電変換素子100では、光電変換セル50A~50DがX方向に沿って一列に配列されており、光電変換セル50A~50Dの両端の光電変換セル50A,50Dのうち一端側の光電変換セル50Dの透明導電層12Dが、封止部30Aの内側に設けられる本体部12aと、第1電流取出し部12fと、本体部12aと第1電流取出し部12fとを接続する接続部12gとを有する。このため、光電変換セル50A~50Dの一部である光電変換セル50C、50Dを途中で折り返し、光電変換セル50Aと光電変換セル50Dとをそれらが互いに隣り合うように配置する場合に比べて、隣り合う2つの光電変換セル50同士を接続するために光電変換セル50A~50Dの配列方向(図2のX方向)に沿って設けられる接続端子16の設置領域をより短くすることが可能となり、より省スペース化を図ることが可能となる。また、光電変換素子100によれば、当該光電変換素子100が低照度環境下で使用される場合、通常、発電電流が小さいため、光電変換素子100が、本体部12aと第1電流取出し部12fとを接続する接続部12gをさらに有していても、光電変換特性の低下を十分に抑制することができる。
 さらに、光電変換素子100では、集電配線17が、バックシート80と導電性基板15との連結部14と交差しないように配置されている。集電配線17は一般に、多孔質であるため通気性を有しており、水蒸気等のガスが透過可能となっているが、集電配線17が、バックシート80と導電性基板15との連結部14と交差しないように配置されていると、集電配線17を通してバックシート80と導電性基板15との間の空間に外部から水蒸気等が侵入することを防止することができる。その結果、光電変換素子100は優れた耐久性を有することが可能となる。また集電配線17は、透明導電層12Dよりも低い抵抗を有するため、発電電流が大きくなっても、光電変換特性の低下を十分に抑制することができる。
 また、隣り合う2つの光電変換セル50のうち一方の光電変換セル50における対向基板20の金属基板21に接続された導電材60Pは、他方の光電変換セル50における突出部12c上の導電材接続部16Aと接続され、導電材接続部16Aは、突出部12c上で封止部30Aの外側に設けられている。すなわち、隣り合う2つの光電変換セル50同士の接続が封止部30Aの外側で行われる。このため、光電変換素子100によれば、開口率を向上させることが可能となる。
 また光電変換素子100では、光電変換セル50A~50Dのうち隣りの光電変換セル50と接続される光電変換セル50において、突出部12cが、本体部12aから側方に張り出す張出し部12dと、張出し部12dから延びて、隣りの光電変換セル50の本体部12aに対向する対向部12eとを有し、接続端子16のうち少なくとも導電材接続部16Aが対向部12e上に設けられている。
 この場合、接続端子16のうち少なくとも導電材接続部16Aが、隣りの光電変換セル50の本体部12aに対向する対向部12e上に設けられている。このため、接続端子16のうち少なくとも導電材接続部16Aが、隣りの光電変換セル50の本体部12aに対向する対向部12e上に設けられていない場合と異なり、導電材接続部16Aに接続される導電材60Pが、隣りの光電変換セル50の対向基板20の金属基板21を横切ることを十分に防止することが可能となる。その結果、隣り合う光電変換セル50同士間の短絡を十分に防止することが可能となる。
 また光電変換素子100では、導電材接続部16Aおよび導電材非接続部16Bはいずれも封止部30Aに沿って配置されている。このため、導電材接続部16Aおよび導電材非接続部16Bを封止部30Aから遠ざかる方向に沿って配置する場合に比べて、接続端子16のために要するスペースを省くことができる。
 さらに光電変換素子100では、バックシート80の接着部80Bは、光電変換セル50の封止部30Aと離間している。このため、接着部80Bが、低温時において収縮することにより封止部30Aを引っ張って、封止部30Aと導電性基板15又は対向基板20との界面に過大な応力が加わることが十分に抑制される。また、高温時においても、接着部80Bが、膨張することにより封止部30Aを押して、封止部30Aと導電性基板15又は対向基板20との界面に過大な応力を加えることが十分に抑制される。すなわち、高温時でも低温時でも、封止部30Aと導電性基板15又は対向基板20との界面に過大な応力が加わることが十分に抑制される。このため、光電変換素子100は、優れた耐久性を有することが可能となる。
 また光電変換素子100においては、第2封止部32Aが、第1封止部31Aと接着されており、対向基板20の縁部20aが第1封止部31Aと第2封止部32Aとによって挟持されている。このため、対向基板20に対して導電性基板15から離れる方向の応力が作用しても、その剥離が第2封止部32Aによって十分に抑制される。また、第2一体化封止部32の仕切部32bは、隣り合う対向基板20同士間の隙間Sを通って第1封止部31Aに接着されている。このため、隣り合う光電変換セル50の対向基板20同士が接触することが確実に防止される。
 次に、導電性基板15、酸化物半導体層13、絶縁材33、連結部14、色素、対向基板20、封止部30A、電解質40、導電材60P,60Q、バックシート80および乾燥剤95について詳細に説明する。
 (導電性基板)
 導電性基板15は、上述したように、透明基板11と、複数の透明導電層12A~12Fとを有している。
 透明基板11を構成する材料は、例えば透明な材料であればよく、このような透明な材料としては、例えばホウケイ酸ガラス、ソーダライムガラス、白板ガラス、石英ガラスなどのガラス、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、および、ポリエーテルスルフォン(PES)などが挙げられる。透明基板11の厚さは、光電変換素子100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば50~10000μmの範囲にすればよい。
 透明導電層12に含まれる材料としては、例えばスズ添加酸化インジウム(ITO)、酸化スズ(SnO)、フッ素添加酸化スズ(FTO)などの導電性金属酸化物が挙げられる。透明導電層12は、単層でも、異なる導電性金属酸化物を含む複数の層の積層体で構成されてもよい。透明導電層12が単層で構成される場合、透明導電層12は、高い耐熱性及び耐薬品性を有することから、FTOを含むことが好ましい。透明導電層12は、ガラスフリットをさらに含んでもよい。透明導電層12の厚さは例えば0.01~2μmの範囲にすればよい。
 溝90の幅Wは特に制限されるものではないが、400μm以下であることが好ましい(図4参照)。この場合、溝90の幅Wが400μmを超える場合に比べて、余分なスペースをより省くことができる。溝90の幅Wは250μm以下であることが好ましく、220μm以下であることがより好ましく、200μm以下であることがより一層好ましい。
 また溝90の幅Wは、40μm以上であることが好ましい。この場合、溝90の幅Wが40μm未満である場合に比べて、隣り合う透明導電層12同士間の絶縁性がより向上する。溝90の幅Wは60μm以上であることがより好ましく、80μm以上であることが一層好ましい。
 導電性膜92は透明導電層12と同一の材料で構成されている。
 導電性膜92の最大厚さは特に制限されるものではないが、150nm以下であることが好ましい。この場合、導電性膜92の最大厚さが150nmを超える場合に比べて、隣り合う2つの透明導電層12同士間の抵抗が低減され、光電変換素子100の光電変換特性をより向上させることができる。導電性膜92の最大厚さは、100nm以下であることが好ましく、70nm以下であることがより好ましい。但し、導電性膜92の最大厚さは、30nm以上であることが好ましく、50nm以上であることがより好ましい。
 複数の透明導電層12同士間の溝90の長手方向に沿って、長さ5μm以上の亀裂91が、透明基板11上に設けられる導電性膜92において溝90の長手方向に沿った長さ100μmあたり15個以上の割合で存在していればよいが、長さ5μm以上の亀裂91が、導電性膜92において溝90の長手方向に沿った長さ100μmあたり20個以上の割合で存在していることが好ましい。この場合、光電変換素子100の光電変換特性をより向上させることができる。長さ5μm以上の亀裂91は、導電性膜92において溝90の長手方向に沿った長さ100μmあたり34個以上の割合で存在していることが好ましい。この場合、光電変換素子の光電変換特性をより向上させることができる。
 但し、上記亀裂91は導電性膜92において溝90の長手方向に沿った長さ100μmあたり200個以下の割合で存在していることが好ましい。この場合、亀裂91が導電性膜92において溝90の長手方向に沿った長さ100μmあたり200個を超える割合で存在している場合に比べて、溝90の透明度がより高くなる。上記亀裂91は、溝90の長手方向に沿った長さ100μmあたり100個以下の割合で存在していることがより好ましく、溝90の長手方向に沿った長さ100μmあたり50個以下の割合で存在していることがより一層好ましく、溝90の長手方向に沿った長さ100μmあたり40個以下の割合で存在していることが特に好ましい。
 図5に示すように、亀裂91の底部Bは、透明基板11と導電性膜92との界面Sに達していても達していなくてもよいが、界面Sに達していることが好ましい。この場合、亀裂91の長さ方向において導電パスが切断されるので、導電性膜92の抵抗をより増大させることができる。
 光電変換素子100においては、亀裂91の底部Bが界面Sに達している場合に、導電性膜92の最大厚さが150nm以下であり、溝90の幅Wが200nm以下であることが特に好ましい。
 この場合、亀裂91によって導電性膜92における導電パスが効果的に切断され、透明導電層12同士間の絶縁性を効果的に確保することができる。その結果、光電変換素子100の光電変換特性を効果的に向上させることができる。
 ここで、導電性膜92の最大厚さは、100nm以下であることが好ましく、70nm以下であることがより好ましい。但し、導電性膜92の最大厚さは、30nm以上であることが好ましく、50nm以上であることがより好ましい。
 また、溝90の幅Wは、40μm以上であることが好ましい。この場合、溝90の幅Wが40μm未満である場合に比べて、隣り合う透明導電層12同士間の絶縁性がより向上する。溝90の幅Wは60μm以上であることがより好ましく、80μm以上であることが一層好ましい。
 亀裂91の底部Bは、透明基板11において界面Sよりも導電性膜92から離れた位置に達していることが好ましい。この場合、亀裂91の長さ方向において導電パスがより確実に切断されるので、導電性膜92の抵抗をより増大させることができる。
 接続端子16は、金属材料を含む。金属材料としては、例えば銀、銅およびインジウムなどが挙げられる。これらは単独で又は2種以上を組み合せて用いてもよい。
 また接続端子16は、導電材60Pと同一の材料で構成されていても異なる材料で構成されていてもよいが、同一の材料で構成されていることが好ましい。
 この場合、接続端子16および導電材60Pが同一の材料で構成されているため、接続端子16と導電材60Pとの密着性をより十分に向上させることができる。このため、光電変換素子100における接続信頼性をより向上させることが可能となる。
 (酸化物半導体層)
 酸化物半導体層13は、酸化物半導体粒子で構成される。このような酸化物半導体粒子としては、例えば酸化チタン(TiO)、酸化シリコン(SiO)、酸化亜鉛(ZnO)、酸化タングステン(WO)、酸化ニオブ(Nb)、チタン酸ストロンチウム(SrTiO)、酸化スズ(SnO)が挙げられる。
 (絶縁材)
 絶縁材33としては、無機絶縁材料又は有機絶縁材料を用いることができる。これらのうち無機絶縁材料が絶縁材33として好ましい。この場合、無機絶縁材料は有機絶縁材料に比べて劣化しにくいため、光電変換素子100の耐久性をより向上させることができる。
 無機絶縁材料としては、例えばガラスフリットなどを用いることができる。
 有機絶縁材料としては、例えばポリイミド樹脂などの熱硬化性樹脂又は熱可塑性樹脂を用いることができる。
 (連結部)
 連結部14を構成する材料は、バックシート80と透明導電層12とを接着させることができるものであれば特に制限されず、連結部14を構成する材料としては、例えばガラスフリット、封止部31Aに用いられる樹脂材料と同様の樹脂材料などを用いることができる。中でも、連結部14は、ガラスフリットであることが好ましい。ガラスフリットは樹脂材料に比べて高い封止性能を有するため、バックシート80の外側からの水分等の侵入を効果的に抑制することができる。
 (色素)
 色素としては、例えばビピリジン構造、ターピリジン構造などを含む配位子を有するルテニウム錯体や、ポルフィリン、エオシン、ローダミン、メロシアニンなどの有機色素などの光増感色素や、ハロゲン化鉛系ペロブスカイト結晶などの有機-無機複合色素などが挙げられる。ハロゲン化鉛系ペロブスカイト結晶としては、例えばCHNHPbX(X=Cl、Br、I)が用いられる。上記色素の中でも、ビピリジン構造又はターピリジン構造を含む配位子を有するルテニウム錯体が好ましい。この場合、光電変換素子100の光電変換特性をより向上させることができる。なお、色素として、光増感色素を用いる場合には、光電変換素子100は色素増感光電変換素子となる。
 (対向基板)
 対向基板20は、上述したように、金属基板21と、金属基板21のうち導電性基板15側に設けられて対向基板20の表面における還元反応を促進する導電性の触媒層22とを備える。
 金属基板21は、例えばチタン、ニッケル、白金、モリブデン、タングステン、アルミニウム、ステンレス等の耐食性の金属材料で構成される。金属基板21の厚さは、光電変換素子100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば0.005~0.1mmとすればよい。
 触媒層22は、白金、炭素系材料又は導電性高分子などから構成される。ここで、炭素系材料としては、カーボンナノチューブが好適に用いられる。
 (封止部)
 封止部30Aは、第1封止部31Aと、第2封止部32Aとで構成される。
 第1封止部31Aを構成する材料としては、例えばアイオノマー、エチレン-ビニル酢酸無水物共重合体、エチレン-メタクリル酸共重合体、エチレン-ビニルアルコール共重合体等を含む変性ポリオレフィン樹脂、紫外線硬化樹脂、及び、ビニルアルコール重合体などの樹脂が挙げられる。
 第1封止部31Aの厚さは通常、20~90μmであり、好ましくは40~80μmである。
 第2封止部32Aを構成する材料としては、第1封止部31Aと同様、例えばアイオノマー、エチレン-ビニル酢酸無水物共重合体、エチレン-メタクリル酸共重合体、エチレン-ビニルアルコール共重合体等を含む変性ポリオレフィン樹脂、紫外線硬化樹脂、及び、ビニルアルコール重合体などの樹脂が挙げられる。第2封止部32Aを構成する材料は、第1封止部31Aを構成する材料と同一であっても異なってもよいが、同一であることが好ましい。この場合、第2封止部32Aと第1封止部31Aとの界面がなくなるため、外部からの水分の侵入や電解質40の漏洩を効果的に抑制することができる。
 第2封止部32Aの厚さは通常、20~45μmであり、好ましくは30~40μmである。
 (電解質)
 電解質40は、例えば酸化還元対と有機溶媒とを含んでいる。有機溶媒としては、アセトニトリル、メトキシアセトニトリル、メトキシプロピオニトリル、プロピオニトリル、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、γ-ブチロラクトン、バレロニトリルなどを用いることができる。酸化還元対としては、例えばヨウ化物イオン/ポリヨウ化物イオン(例えばI/I )、臭化物イオン/ポリ臭化物イオンなどのハロゲン原子を含む酸化還元対のほか、亜鉛錯体、鉄錯体、コバルト錯体などのレドックス対が挙げられる。なお、ヨウ化物イオン/ポリヨウ化物イオンは、ヨウ素(I)と、アニオンとしてのアイオダイド(I)を含む塩(イオン性液体や固体塩)とによって形成することができる。アニオンとしてアイオダイドを有するイオン性液体を用いる場合には、ヨウ素のみ添加すればよく、有機溶媒や、アニオンとしてアイオダイド以外のイオン性液体を用いる場合には、LiIやテトラブチルアンモニウムアイオダイドなどのアニオンとしてアイオダイド(I)を含む塩を添加すればよい。
 また電解質40は、有機溶媒に代えて、イオン液体を用いてもよい。イオン液体としては、例えばピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等の既知のヨウ素塩であって、室温付近で溶融状態にある常温溶融塩が用いられる。このような常温溶融塩としては、例えば、1-ヘキシル-3-メチルイミダゾリウムヨーダイド、1-エチル-3-プロピルイミダゾリウムヨーダイド、1-エチル-3-メチルイミダゾリウムヨーダイド、1,2-ジメチル-3-プロピルイミダゾリウムヨーダイド、1-ブチル-3-メチルイミダゾリウムヨーダイド、又は、1-メチル-3-プロピルイミダゾリウムヨーダイドが好適に用いられる。
 また、電解質40は、上記有機溶媒に代えて、上記イオン液体と上記有機溶媒との混合物を用いてもよい。
 また電解質40には添加剤を加えることができる。添加剤としては、LiI、テトラブチルアンモニウムアイオダイド、4-t-ブチルピリジン、グアニジウムチオシアネート、1-メチルベンゾイミダゾール、1-ブチルベンゾイミダゾールなどが挙げられる。
 さらに電解質40としては、上記電解質にSiO、TiO、カーボンナノチューブなどのナノ粒子を混練してゲル様となった擬固体電解質であるナノコンポジットゲル電解質を用いてもよく、また、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などの有機系ゲル化剤を用いてゲル化した電解質を用いてもよい。
 なお、電解質40は、ヨウ化物イオン/ポリヨウ化物イオン(例えばI/I )からなる酸化還元対を含み、ポリヨウ化物イオン(例えばI )の濃度が0.010mol/リットル以下であることが好ましく、0.005mol/リットル以下であることがより好ましく、0~2×10-4mol/リットル以下であることがさらにより好ましい。この場合、電子を運ぶmol/リットル以下であることがの濃度が低いため、漏れ電流をより減少させることができる。このため、開放電圧をより増加させることができるため、光電変換特性をより向上させることができる。
 (導電材)
 導電材60P,60Qとしては、例えば金属膜が用いられる。金属膜を構成する金属材料としては、例えば銀又は銅などを用いることができる。
 (バックシート)
 バックシート80は、上述したように、耐候性層と、金属層とを含む積層体80Aと、積層体80Aの光電変換セル50側の面に設けられ、積層体80Aと連結部14とを接着する接着部80Bとを含む。
 耐候性層は、例えばポリエチレンテレフタレート又はポリブチレンテレフタレートで構成されていればよい。
 耐候性層の厚さは、例えば50~300μmであればよい。
 金属層は、例えばアルミニウムを含む金属材料で構成されていればよい。金属材料は通常、アルミニウム単体で構成されるが、アルミニウムと他の金属との合金であってもよい。他の金属としては、例えば銅、マンガン、亜鉛、マグネシウム、鉛、及び、ビスマスが挙げられる。具体的には、98%以上の純アルミニウムにその他の金属が微量添加された1000系アルミニウムが望ましい。これは、この1000系アルミニウムが、他のアルミニウム合金と比較して、安価で、加工性に優れているためである。
 金属層の厚さは特に制限されるものではないが、例えば12~30μmであればよい。
 積層体80Aは、さらに樹脂層を含んでいてもよい。樹脂層を構成する材料としては、例えばブチルゴム、ニトリルゴム、熱可塑性樹脂などが挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。樹脂層は、金属層のうち耐候性層と反対側の表面全体に形成されていてもよいし、周縁部にのみ形成されていてもよい。
 接着部80Bを構成する材料としては、例えばブチルゴム、ニトリルゴム、熱可塑性樹脂などが挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。接着部80Bの厚さは特に制限されるものではないが、例えば300~1000μmであればよい。
 (乾燥剤)
 乾燥剤95は、シート状であっても、粒状であってもよい。乾燥剤95は、例えば水分を吸収するものであればよく、乾燥剤95としては、例えばシリカゲル、アルミナ、ゼオライトなどが挙げられる。
 次に、光電変換素子100の製造方法について図3、図9および図10を参照しながら説明する。図10は、図6の第1一体化封止部を形成するための第1一体化封止部形成体を示す平面図である。
 まず1つの透明基板11の上に透明導電膜を形成してなる積層体を用意する。
 透明導電膜の形成方法としては、スパッタ法、蒸着法、スプレー熱分解法(SPD)又はCVD法などが用いられる。
 次に、図3に示すように、透明導電膜に対して溝90を形成し、互いに溝90を介在させて絶縁状態で配置される透明導電層12A~12Fを形成する。具体的には、光電変換セル50A~50Dに対応する4つの透明導電層12A~12Dは、四角形状の本体部12a及び突出部12cを有するように形成する。このとき、光電変換セル50A~50Cに対応する透明導電層12A~12Cについては、突出部12cが張出し部12dのみならず、張出し部12dから延びて、隣りの光電変換セル50の本体部12aに対向する対向部12eをも有するように形成する。また透明導電層12Dについては、四角形状の本体部12a及び張出し部12dのみならず、第1電流取出し部12fと、第1電流取出し部12fと本体部12aとを接続する接続部12gとを有するように形成する。このとき、第1電流取出し部12fは、透明導電層12Aに対し、透明導電層12Bと反対側に配置されるように形成する。さらに、透明導電層12Eは、第2電流取出し部12hが形成されるように形成する。このとき、第2電流取出し部12hは、透明導電層12Aに対し、透明導電層12Bと反対側に配置され、且つ、第1電流取出し部12fの隣りに溝90を介して配置されるように形成する。
 上述した溝90は、例えばファイバレーザを光源として用いたレーザスクライブ法によって形成する。
 溝90においては透明基板11上に導電性膜92が設けられているが、導電性膜92に亀裂91を発生させて長さ5μm以上の亀裂91の数が15個/100μm以上の割合で存在するようにするためには、溝90を形成した後、溝90の部分を急冷すればよい。溝90の部分を急冷するのは以下の理由によるものである。すなわち、透明導電膜にファイバレーザのような高エネルギーをもつレーザを照射することによって溝90を形成する場合、透明導電膜の照射部位が高温になって溶融する。このとき、照射部位において溶融した導電性物質が溝90において透明基板11上に残ると、徐々に導電性物質の温度が低下して固化し、薄い導電性残渣膜である導電性膜92が形成される。その後、溝90における導電性膜92を急冷すると、溝90を形成した後、薄い導電性膜92が熱収縮することにより導電性膜92に亀裂91が発生する。この亀裂91により、透明導電層12同士間の導電パスが十分に切断されるため、透明導電層12同士間の短絡が十分に抑制されることとなる。
 急冷は、具体的には溝90に圧縮空気を吹き付けたり、溝90における導電性膜92を水に浸漬させたりすることなどによって実現することができる。
 ここで、急冷は、冷却速度の調整が容易であることから、圧縮空気の吹付けによって行うことが好ましい。この場合、圧縮空気の圧力は例えば0.1~0.8MPaとすればよい。
 こうして、透明基板11の上に複数の透明導電層12A~12Fを形成し、導電性基板15を得る。
 次に、透明導電層12A~12Cのうちの突出部12c上に、導電材接続部16Aと導電材非接続部16Bとで構成される接続端子16の前駆体を形成する。具体的には、接続端子16の前駆体は、導電材接続部16Aが対向部12e上に設けられるように形成する。また透明導電層12Eにも接続端子16の前駆体を形成する。接続端子16の前駆体は、例えば銀ペーストを塗布し乾燥させることで形成することができる。
 さらに、透明導電層12Dの接続部12gの上には集電配線17の前駆体を形成する。集電配線17の前駆体は、例えば銀ペーストを塗布し乾燥させることで形成することができる。
 また、透明導電層12Aの第1電流取出し部12f,第2電流取出し部12h上にはそれぞれ外部に電流を取り出すための外部接続用端子18a,18bの前駆体を形成する。外部接続用端子の前駆体は、例えば銀ペーストを塗布し乾燥させることで形成することができる。
 さらに、本体部12aの縁部に沿って形成される第1の溝90Aに入り込むように、絶縁材33の前駆体を形成する。絶縁材33は、例えばガラスフリットなどの絶縁材を含むペーストを塗布し乾燥させることによって形成することができる。
 またバックシート80を固定するために、絶縁材33と同様にして、絶縁材33を囲むように且つ透明導電層12D、透明導電層12E、透明導電層12Fを通るように環状の連結部14の前駆体を形成する。
 さらに透明導電層12A~12Dの各々の本体部12aの上に、酸化物半導体層13の前駆体を形成する。
 酸化物半導体層13の前駆体は、酸化物半導体層13を形成するための酸化物半導体層形成用ペーストを印刷した後、乾燥することによって得られる。酸化物半導体層形成用ペーストは、酸化チタンなどからなる酸化物半導体粒子のほか、ポリエチレングリコール、エチルセルロースなどの樹脂及び、テルピネオールなどの溶媒を含む。
 酸化物半導体層形成用ペーストの印刷方法としては、例えばスクリーン印刷法、ドクターブレード法、又はバーコート法などを用いることができる。
 最後に、接続端子16の前駆体、絶縁材33の前駆体、連結部14の前駆体、酸化物半導体層13の前駆体を一括して焼成し、接続端子16、絶縁材33、連結部14、および酸化物半導体層13を形成する。
 このとき、焼成温度は酸化物半導体粒子や絶縁材33の種類により異なるが、通常は350~600℃であり、焼成時間も、酸化物半導体粒子や絶縁材33の種類により異なるが、通常は1~5時間である。
 こうして、図9に示すように、絶縁材33、バックシート80を固定するための連結部14及び酸化物半導体層13が形成された導電性基板15が得られる。
 次に、酸化物半導体層13に色素を担持させる。このためには、酸化物半導体層13を、色素を含有する溶液の中に浸漬させ、その色素を酸化物半導体層13に吸着させた後に上記溶液の溶媒成分で余分な色素を洗い流し、乾燥させることで、色素を酸化物半導体層13に吸着させればよい。但し、色素を含有する溶液を酸化物半導体層13に塗布した後、乾燥させることによって色素を酸化物半導体層13に吸着させても、色素を酸化物半導体層13に担持させることが可能である。
 次に、酸化物半導体層13の上に電解質40を配置する。
 次に、図10に示すように、第1一体化封止部31を形成するための第1一体化封止部形成体131を準備する。第1一体化封止部形成体131は、第1一体化封止部31を構成する材料からなる1枚の封止用樹脂フィルムを用意し、その封止用樹脂フィルムに光電変換セル50の数に応じた四角形状の開口131aを形成することによって得ることができる。第1一体化封止部形成体131は、複数の第1封止部形成体131Aを一体化させてなる構造を有する。
 そして、この第1一体化封止部形成体131を、導電性基板15の上に接着させる。このとき、第1一体化封止部形成体131は、絶縁材33と重なるように接着する。第1一体化封止部形成体131の導電性基板15への接着は、第1一体化封止部形成体131を加熱溶融させることによって行うことができる。また第1一体化封止部形成体131は、透明導電層12の本体部12aが第1一体化封止部形成体131Aの内側に配置されるように導電性基板15に接着する。
 一方、光電変換セル50の数と同数の対向基板20を用意する。
 対向基板20は、金属基板21上に、対向基板20の表面における還元反応を促進する導電性の触媒層22を形成することにより得ることができる。
 次に、上述した第1一体化封止部形成体131をもう1つ用意する。そして、複数の対向基板20の各々を、第1一体化封止部形成体131の各開口131aを塞ぐように貼り合わせる。
 次に、対向基板20に接着した第1一体化封止部形成体131と、導電性基板15に接着した第1一体化封止部形成体131とを重ね合わせ、第1一体化封止部形成体131を加圧しながら加熱溶融させる。こうして導電性基板15と対向基板20との間に第1一体化封止部31が形成される。第1一体化封止部31の形成は、大気圧下で行っても減圧下で行ってもよいが、減圧下で行うことが好ましい。
 次に、第2一体化封止部32を準備する(図7参照)。第2一体化封止部32は、複数の第1封止部32Aを一体化させてなる構造を有する。第2一体化封止部32は、1枚の封止用樹脂フィルムを用意し、その封止用樹脂フィルムに光電変換セル50の数に応じた四角形状の開口32cを形成することによって得ることができる。第2一体化封止部32は、第1一体化封止部31と共に対向基板20の縁部20aを挟むように対向基板20に貼り合わせる。第2一体化封止部32の対向基板20への接着は、第2一体化封止部32を加熱溶融させることによって行うことができる。
 封止用樹脂フィルムとしては、例えばアイオノマー、エチレン-ビニル酢酸無水物共重合体、エチレン-メタクリル酸共重合体、エチレン-ビニルアルコール共重合体等を含む変性ポリオレフィン樹脂、紫外線硬化樹脂、及び、ビニルアルコール重合体などの樹脂が挙げられる。第2一体化封止部32の形成のための封止用樹脂フィルムの構成材料は、第1一体化封止部31の形成のための封止用樹脂フィルムの構成材料よりも高い融点を有することが好ましい。この場合、第2封止部32Aは、第1封止部31Aよりも硬くなるため、隣り合う光電変換セル50の対向基板20同士の接触を効果的に防止することができる。また第1封止部31Aは第2封止部32Aよりも軟らかくなるため、封止部30Aに加わる応力を効果的に緩和することができる。
 次に、第2封止部32の仕切部32bにバイパスダイオード70A,70B,70Cを固定する。また光電変換セル50Dの封止部30A上にもバイパスダイオード70Dを固定する。
 そして、バイパスダイオード70A~70Dを通るように導電材60Qを光電変換セル50B~50Cの対向基板20の金属基板21に固定する。さらにバイパスダイオード70A,70B間、バイパスダイオード70B,70C間、バイパスダイオード70C,70D間の各導電材60Qと、透明導電層12A上の導電材接続部16A、透明導電層12B上の導電材接続部16A、透明導電層12C上の導電材接続部16Aとをそれぞれ接続するように導電材60Pを形成する。また、透明導電層12E上の導電材接続部16Aとバイパスダイオード70Aとを接続するように光電変換セル50Aの対向基板20の金属基板21に導電材60Pを固定する。さらに、透明導電層12Dとバイパスダイオード70Aとを導電材60Pによって接続する。
 このとき、導電材60Pは、導電材60Pを構成する金属材料を含むペーストを用意し、このペーストを、対向基板20から、隣りの光電変換セル50の接続端子16の導電材接続部16Aにわたって塗布し、硬化させる。導電材60Qは、導電材60Qを構成する金属材料を含むペーストを用意し、このペーストを、各対向基板20上に隣り合うバイパスダイオードを結ぶように塗布し、硬化させる。このとき、上記ペーストとしては、色素への悪影響を避ける観点から、90℃以下の温度で硬化させることが可能な低温硬化型のペーストを用いることが好ましい。
 最後に、バックシート80を用意し、このバックシート80の周縁部80aを連結部14に接着させる。このとき、バックシート80の接着部80Bと光電変換セル50の封止部30Aとが離間するようにバックシート80を配置する。
 以上のようにして光電変換素子100が得られる。
 なお、上述した説明では、接続端子16、絶縁材33、連結部14、および酸化物半導体層13を形成するために、接続端子16の前駆体、絶縁材33の前駆体、連結部14の前駆体、酸化物半導体層13の前駆体を一括して焼成する方法を用いているが、接続端子16、絶縁材33、連結部14、および酸化物半導体層13はそれぞれ別々に前駆体を焼成して形成してもよい。
 本発明は、上記実施形態に限定されるものではない。例えば上記実施形態では、隣り合う透明導電層12同士間の溝90における導電性膜92において、亀裂91が、溝90の縁部、すなわち透明導電層12に接触しているが、亀裂91は、必ずしも溝90の縁部に接触していなくてもよい。
 また上記実施形態では、隣り合う透明導電層12同士間の溝90における導電性膜92において、他の亀裂91と交差する亀裂91a,91bが存在しているが、他の亀裂91と交差する亀裂91a,91bは存在していなくてもよい。すなわち、亀裂91は、他の亀裂91と交差しない亀裂91c,91dのみで構成されていてもよい。
 また上記実施形態では、導電性基板15が絶縁材33を有しているが、絶縁材33を有していなくてもよい。この場合、封止部30Aおよび第1一体化封止部31Aは、透明基板11及び透明導電層12に直接接合されることになる。
 また上記実施形態では、溝90が第2の溝90Bを有しているが、第2の溝90Bは必ずしも形成されていなくてもよい。
 また上記実施形態では、導電材接続部16Aおよび導電材非接続部16Bはそれぞれ封止部30Aに沿って設けられているが、これらは、封止部30Aから遠ざかる方向に延びるように形成されていてもよい。但し、この場合、導電材接続部16Aが導電材非接続部16Bよりも封止部30Aに近い位置に配置されていることが好ましい。この場合、導電材60Pをより短くすることができる。なお、接続端子16は必ずしも透明導電層12上に設けられていなくてもよい。
 また上記実施形態では、第2封止部32Aが第1封止部31Aに接着されているが、第2封止部32Aは第1封止部31Aに接着されていなくてもよい。
 さらに上記実施形態では、封止部30Aが第1封止部31Aと第2封止部32Aとで構成されているが、第2封止部32Aは省略されてもよい。
 また上記実施形態では、バックシート80と透明導電層12とが、連結部14を介して接着されているが、バックシート80と透明導電層12とは、必ずしも連結部14を介して接着されている必要はない。
 さらにまた上記実施形態では、連結部14と絶縁材33とが離間しているが、連結部14と絶縁材33とは一体化されていてもよい。
 また上記実施形態では、光電変換素子100がバックシート80を有しているが、光電変換素子100は必ずしもバックシート80を有していなくてもよい。
 さらに上記実施形態では、光電変換素子100がバイパスダイオードを有しているが、光電変換素子100は必ずしもバイパスダイオードを有していなくてもよい。
 また上記実施形態では、導電層として透明導電層12が用いられているが、対向基板20が透明である場合には、導電層は必ずしも透明でなくてもよい。この場合、導電層を支持する基板も必ずしも透明である必要はない。
 さらに上記実施形態では、酸化物半導体層13が透明導電層12上に設けられているが、光電変換素子100がバックシート80を有しておらず、対向基板20が透明であり且つ導電性を有する場合には、酸化物半導体層13は対向基板20側に設けられてもよい。
 さらに上記実施形態では、光電変換素子100が複数の光電変換セル50を有しているが、1つの光電変換セル50の透明導電層12に対し溝90を介して透明導電層12が配置されているならば、1つの光電変換セル50のみを有していてもよい。
 また上記実施形態では、対向基板20が対極で構成されているが、図11に示す光電変換素子200のように、対向基板20として、対極に代えて、絶縁性基板201を用いてもよい。この場合、絶縁性基板201と封止部31と導電性基板15との間の空間には構造体202が配置される。構造体202は、導電性基板15のうち絶縁性基板201側の面上に設けられている。構造体202は、導電性基板15側から順に、酸化物半導体層13、多孔質絶縁層203及び対極220で構成される。また上記空間には電解質240が配置されている。電解質240は、酸化物半導体層13及び多孔質絶縁層203の内部にまで含浸されている。電解質240としては、電解質40と同様のものを用いることができる。ここで、絶縁性基板201としては、例えばガラス基板又は樹脂フィルムなどを用いることができる。また対極220としては、対向基板20と同様のものを用いることができる。あるいは、対極220は、例えばカーボン等を含む多孔質の単一の層で構成されてもよい。多孔質絶縁層203は、主として、酸化物半導体層13と対極220との物理的接触を防ぎ、電解質240を内部に含浸させるためのものである。このような多孔質絶縁層203としては、例えば酸化物の焼成体を用いることができる。なお、図11に示す光電変換素子200においては、封止部31と導電性基板15と絶縁性基板201との間の空間に構造体202が1つのみ設けられているが、構造体202は複数設けられていてもよい。また、多孔質絶縁層203は、酸化物半導体層13と対極220との間に設けられているが、酸化物半導体層13と対極220との間に設けず、多孔質酸化物半導体層13を囲むように、導電性基板15と対極220の間に設けてもよい。この構成でも、酸化物半導体層13と対極220との物理的接触を防ぐことができる。
 以下、本発明の内容を、実施例を挙げてより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
 (実施例1)
 まずガラスからなる5cm×10cm×1mmの透明基板の上に、厚さ0.1μmのFTOからなる透明導電膜を形成してなる積層体を準備した。
 次に、ファイバレーザ(製品名「50Wパルス発振ファイバレーザ」、株式会社フジクラ製)によって透明導電膜の中央を横切る1本の線状部位にレーザを照射して溝を形成し、2つの透明導電層を形成した。このとき、溝の幅は84μmとした。
 溝を形成した後、溝に対し、表1に示す圧力の圧縮空気を10秒間吹き付けることによって溝の底部を急冷処理した。
 そして、2つの透明導電層間の抵抗値をテスターにて測定した。結果を表1に示す。但し、表1において、実施例1の抵抗値は、比較例1における2つの透明導電層間の抵抗値を1としたときの相対値とした。また溝の長手方向に沿った長さ100μmの10箇所の領域をSEMにて観察し、各領域において、溝の長手方向に沿った長さ100μmあたりに存在する長さ5μm以上の亀裂の数を数え、10箇所の領域における亀裂の数の平均値を求めた。結果を表1に示す。また透明導電層同士間の溝には交差する亀裂が存在していた。さらに、溝の長手方向に沿った長さ100μmの10箇所の領域をTEMにて観察した。その結果、10箇所のすべての領域において透明基板の上に導電性膜(導電性残渣)が設けられており、この導電性膜に亀裂が存在していることが分かった。さらに、各領域において導電性膜の最大厚さを求め、その平均値を求めた。結果を表1に示す。さらに、10箇所のすべての領域において導電性膜及び透明基板の断面をTEMで観察したところ、導電性膜に存在している亀裂はすべて、透明基板と導電性膜との界面に達していた。
 次に、2つの透明導電層の各々の上に、酸化物半導体層13の前駆体を形成した。酸化物半導体層13の前駆体は、透明導電層の表面における1cm×1cmの領域に酸化チタンナノペーストを印刷した後、焼成することにより厚さ10μmの酸化チタン多孔質膜からなる酸化物半導体層を得た。
 こうして得られた積層体をZ907色素溶液中に浸漬することにより、酸化物半導体層にZ907色素を吸着させた。このとき、色素溶液中の溶媒としては、t-ブタノールとアセトニトリルとの混合溶媒を用いた。そして、2つの透明導電層の各々の上に形成した酸化物半導体層が包囲されるように、無水マレイン酸変性ポリエチレン(商品名:バイネル、デュポン社製)からなる厚さ50μmの環状の封止部を配置した。
 次に、酸化物半導体層上に電解質を塗布した。
 一方、白金をガラス基板上にスパッタしてなる導電膜付きガラスであって5cm×5cm×1mmの導電膜付きガラスを対極として用意した。
 そして、この対極を、酸化物半導体層に対向するように配置し、封止部を加熱して溶融させることにより透明導電層と対極とを接続させた。こうして2つの色素増感太陽電池セルからなる光電変換素子を得た。
 (実施例2~8)
 透明導電膜に溝を形成した後、急冷する時の圧縮空気の圧力を表1に示す値とすることにより、溝の長手方向に沿った長さ100μmあたりに存在する長さ5μm以上の亀裂の数を表1に示す値とし、溝の幅及び導電性膜の最大厚さを表1に示す値としたこと以外は実施例1と同様にして光電変換素子を作製した。なお、実施例2~8の光電変換素子では、透明導電層同士間の溝には交差する亀裂が存在していることが分かった。また、実施例2~8の光電変換素子では、溝の長手方向に沿った長さ100μmの10箇所の領域をTEMにて観察した結果、10箇所のすべての領域において透明基板の上に導電性膜(導電性残渣)が設けられており、この導電性膜に亀裂が存在していることが分かった。また、導電性膜には交差する亀裂が存在していることも分かった。さらに、溝の長手方向に沿った長さ100μmの10箇所のすべての領域において導電性膜及び透明基板の断面をTEMで観察したところ、導電性膜に存在している亀裂はすべて、透明基板と導電性膜との界面に達していることも分かった。さらに、実施例2~8の光電変換素子を製造する際に、2つの透明導電層間の抵抗値を実施例1と同様にして測定し、比較例1における2つの透明導電層間の抵抗値を1としたときの相対値を算出した。結果を表1に示す。
 (比較例1)
 透明導電膜に溝を形成した後、急冷する時の圧縮空気を吹きかけないことにより、溝の長手方向に沿った長さ100μmあたりに存在する長さ5μm以上の亀裂の数を表1に示す値とし、溝の幅及び導電性膜の最大厚さを表1に示す値としたこと以外は実施例1と同様にして光電変換素子を作製した。なお、比較例1の光電変換素子では、溝の長手方向に沿った長さ100μmの10箇所の領域をTEMにて観察した結果、10箇所のすべての領域において透明基板の上に導電性膜(導電性残渣)が設けられており、この導電性膜に亀裂が存在していることが分かった。また、導電性膜には交差する亀裂が存在していないことも分かった。さらに、溝の長手方向に沿った長さ100μmの10箇所のすべての領域において導電性膜及び透明基板の断面をTEMで観察したところ、導電性膜に存在している亀裂はすべて、透明基板と導電性膜との界面に達していることも分かった。さらに、比較例1の光電変換素子を製造する際に、2つの透明導電層間の抵抗値を実施例1と同様にして測定し、比較例1における2つの透明導電層間の抵抗値を1としたときの相対値を算出した。結果を表1に示す。
 (比較例2及び3)
 透明導電膜に溝を形成した後、急冷する時の圧縮空気の圧力を表1に示す値とすることにより、溝の長手方向に沿った長さ100μmあたりに存在する長さ5μm以上の亀裂の数を表1に示す値とし、溝の幅及び導電性膜の最大厚さを表1に示す値としたこと以外は実施例1と同様にして光電変換素子を作製した。なお、比較例2及び3の光電変換素子では、溝の長手方向に沿った長さ100μmの10箇所の領域をTEMにて観察した結果、10箇所のすべての領域において透明基板の上に導電性膜(導電性残渣)が設けられており、この導電性膜に亀裂が存在していることが分かった。また、導電性膜には交差する亀裂が存在していないことも分かった。さらに、溝の長手方向に沿った長さ100μmの10箇所のすべての領域において導電性膜及び透明基板の断面をTEMで観察したところ、導電性膜に存在している亀裂はすべて、透明基板と導電性膜との界面に達していることも分かった。さらに、比較例2及び3の光電変換素子を製造する際に、2つの透明導電層間の抵抗値を実施例1と同様にして測定し、比較例1における2つの透明導電層間の抵抗値を1としたときの相対値を算出した。結果を表1に示す。
 こうして得られた実施例1~8及び比較例1~3の2つの色素増感太陽電池セルを直列接続し、白色LEDを光源として用い、1000ルクスの照度下でIV測定を行い、光電変換効率ηを求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~8の光電変換素子では、比較例1~3の光電変換素子に比べ、2つの透明導電層同士間の抵抗値が顕著に大きくなっており、光電変換効率もより大きくなっていることが分かった。
 以上の結果から、本発明の光電変換素子によれば、光電変換特性を十分に向上させることができることが確認された。
 11…透明基板(基板)
 12…透明導電層(導電層)
 13…酸化物半導体層
 15…導電性基板
 20…対向基板
 50、50A~50D…光電変換セル
 90…溝
 91…亀裂
 92…導電性膜
 100,200…光電変換素子
 B…亀裂の底部
 W…溝の幅

Claims (10)

  1.  基板と、前記基板上に設けられ、互いに溝を介して配置された複数の導電層とを有する光電変換素子であって、
     少なくとも1つの光電変換セルを有し、
     前記光電変換セルが、
     前記複数の導電層のうちの1つの導電層と、
     前記導電層に対向する対向基板と、
     前記導電層及び前記対向基板の間に設けられる酸化物半導体層とを有し、
     前記複数の導電層同士間の前記溝の長手方向に沿って前記基板上に導電性膜が設けられ、前記導電性膜において長さ5μm以上の亀裂が、前記溝の長手方向に沿った長さ100μmあたり15個以上の割合で存在している、光電変換素子。
  2.  前記導電性膜が前記導電層と同一の材料で構成されている、請求項1に記載の光電変換素子。
  3.  前記導電性膜において長さ5μm以上の亀裂が、前記溝の長手方向に沿った長さ100μmあたり200個以下の割合で存在している、請求項1又は2に記載の光電変換素子。
  4.  前記導電性膜において長さ5μm以上の亀裂が、前記溝の長手方向に沿った長さ100μmあたり40個以下の割合で存在している、請求項3に記載の光電変換素子。
  5.  前記導電性膜において長さ5μm以上の亀裂が、前記溝の長手方向に沿った長さ100μmあたり34個以上の割合で存在している、請求項1~4のいずれか一項に記載の光電変換素子。
  6.  前記導電性膜において、互いに交差する亀裂が存在している、請求項1~5のいずれか一項に記載の光電変換素子。
  7.  前記複数の導電層同士間の前記溝が絶縁材料で覆われている、請求項1~6のいずれか一項に記載の光電変換素子。
  8.  前記導電性膜の最大厚さが150nm以下であり、
     前記溝の幅が200nm以下であり、
     前記亀裂の底部が前記基板と前記導電性膜との界面に達している、請求項1~7のいずれか一項に記載の光電変換素子。
  9.  前記亀裂の底部が、前記基板において前記基板と前記導電性膜との界面よりも前記導電性膜から離れた位置に達している、請求項1~7のいずれか一項に記載の光電変換素子。
  10.  前記亀裂が前記導電層に接触している、請求項1~9のいずれか一項に記載の光電変換素子。
PCT/JP2016/072898 2015-08-06 2016-08-04 光電変換素子 WO2017022817A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/750,798 US20180233295A1 (en) 2015-08-06 2016-08-04 Photoelectric conversion element
CN201680026210.5A CN107615425B (zh) 2015-08-06 2016-08-04 光电转换元件
JP2016560017A JP6076573B1 (ja) 2015-08-06 2016-08-04 光電変換素子
EP16833096.7A EP3333863A4 (en) 2015-08-06 2016-08-04 PHOTOELECTRIC CONVERSION ELEMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-155565 2015-08-06
JP2015155565 2015-08-06

Publications (1)

Publication Number Publication Date
WO2017022817A1 true WO2017022817A1 (ja) 2017-02-09

Family

ID=57943476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072898 WO2017022817A1 (ja) 2015-08-06 2016-08-04 光電変換素子

Country Status (5)

Country Link
US (1) US20180233295A1 (ja)
EP (1) EP3333863A4 (ja)
JP (1) JP6076573B1 (ja)
CN (1) CN107615425B (ja)
WO (1) WO2017022817A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111538190B (zh) * 2020-05-19 2022-04-26 Tcl华星光电技术有限公司 一种彩膜基板及液晶显示器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134298A (ja) * 2002-10-11 2004-04-30 Toyota Central Res & Dev Lab Inc 色素増感型太陽電池の製造方法及び色素増感型太陽電池
JP2006032110A (ja) * 2004-07-15 2006-02-02 Hitachi Maxell Ltd 光電変換素子モジュール
JP2010021137A (ja) * 2008-06-10 2010-01-28 Sumitomo Metal Mining Co Ltd 透明導電層のパターニング方法とエッチングペースト、及びパターン透明導電フィルム並びにそれを用いたフレキシブル機能性素子
JP2012009374A (ja) * 2010-06-28 2012-01-12 Sharp Corp 色素増感太陽電池およびその製造方法、並びに色素増感太陽電池モジュール
JP2013120842A (ja) * 2011-12-07 2013-06-17 Mitsubishi Heavy Ind Ltd 光電変換装置の検査方法及び検査装置
JP2014130807A (ja) * 2012-11-27 2014-07-10 Fujikura Ltd 色素増感太陽電池モジュール

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1023353B (it) * 1976-05-19 1978-05-10 Cavalli Alfredo Macchina per uso domestico per la preparazione e l estrusione di paste alimentari fresche
FR2426335A1 (fr) * 1978-05-19 1979-12-14 Radiotechnique Compelec Dispositif semi-conducteur monolithique comportant une pluralite de cellules photosensibles
US4697041A (en) * 1985-02-15 1987-09-29 Teijin Limited Integrated solar cells
US7235736B1 (en) * 2006-03-18 2007-06-26 Solyndra, Inc. Monolithic integration of cylindrical solar cells
TWI438915B (zh) * 2008-02-21 2014-05-21 Sanyo Electric Co 太陽能電池模組
JP5346932B2 (ja) * 2008-05-30 2013-11-20 株式会社フジクラ 光電変換素子モジュール、及び、光電変換素子モジュールの製造方法
JP5473885B2 (ja) * 2010-02-08 2014-04-16 富士フイルム株式会社 絶縁層付金属基板およびその製造方法、半導体装置およびその製造方法ならびに太陽電池およびその製造方法
CN104541350B (zh) * 2012-08-24 2019-03-05 积水化学工业株式会社 电气模块的制造方法以及电气模块
US10096431B2 (en) * 2012-09-01 2018-10-09 Fujikura Ltd. Dye-sensitized solar cell element for low illuminance
JP5412593B1 (ja) * 2013-03-27 2014-02-12 株式会社フジクラ 色素増感太陽電池素子
JP6285673B2 (ja) * 2013-09-12 2018-02-28 株式会社フジクラ 色素増感太陽電池素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134298A (ja) * 2002-10-11 2004-04-30 Toyota Central Res & Dev Lab Inc 色素増感型太陽電池の製造方法及び色素増感型太陽電池
JP2006032110A (ja) * 2004-07-15 2006-02-02 Hitachi Maxell Ltd 光電変換素子モジュール
JP2010021137A (ja) * 2008-06-10 2010-01-28 Sumitomo Metal Mining Co Ltd 透明導電層のパターニング方法とエッチングペースト、及びパターン透明導電フィルム並びにそれを用いたフレキシブル機能性素子
JP2012009374A (ja) * 2010-06-28 2012-01-12 Sharp Corp 色素増感太陽電池およびその製造方法、並びに色素増感太陽電池モジュール
JP2013120842A (ja) * 2011-12-07 2013-06-17 Mitsubishi Heavy Ind Ltd 光電変換装置の検査方法及び検査装置
JP2014130807A (ja) * 2012-11-27 2014-07-10 Fujikura Ltd 色素増感太陽電池モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3333863A4 *

Also Published As

Publication number Publication date
CN107615425B (zh) 2019-12-17
EP3333863A4 (en) 2019-03-20
CN107615425A (zh) 2018-01-19
EP3333863A1 (en) 2018-06-13
JPWO2017022817A1 (ja) 2017-08-03
JP6076573B1 (ja) 2017-02-08
US20180233295A1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
US10096431B2 (en) Dye-sensitized solar cell element for low illuminance
WO2016052452A1 (ja) 色素増感型光電変換素子
JP5451920B1 (ja) 色素増感太陽電池素子
US9947483B2 (en) Dye-sensitized solar cell element
JP6122156B2 (ja) 光電変換素子
JP5377786B1 (ja) 色素増感太陽電池素子
JP6076573B1 (ja) 光電変換素子
JP6143911B2 (ja) 低照度用色素増感太陽電池素子
WO2017086424A1 (ja) 光電変換素子
JP5444488B1 (ja) 色素増感太陽電池素子
JP5412593B1 (ja) 色素増感太陽電池素子
JP5456118B2 (ja) 色素増感太陽電池素子
WO2014122859A1 (ja) 色素増感太陽電池素子
JP5382827B1 (ja) 色素増感太陽電池モジュール
JP5380619B1 (ja) 色素増感太陽電池素子
WO2014162640A1 (ja) 色素増感太陽電池素子
JP6598757B2 (ja) 光電変換素子
JP5945012B2 (ja) 色素増感太陽電池素子
JP5456119B2 (ja) 色素増感太陽電池モジュール
JP5377780B1 (ja) 色素増感太陽電池素子
JP2016181568A (ja) 光電変換素子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016560017

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16833096

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15750798

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE