JP6598757B2 - 光電変換素子 - Google Patents

光電変換素子 Download PDF

Info

Publication number
JP6598757B2
JP6598757B2 JP2016222232A JP2016222232A JP6598757B2 JP 6598757 B2 JP6598757 B2 JP 6598757B2 JP 2016222232 A JP2016222232 A JP 2016222232A JP 2016222232 A JP2016222232 A JP 2016222232A JP 6598757 B2 JP6598757 B2 JP 6598757B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
connection terminal
conversion element
transparent substrate
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016222232A
Other languages
English (en)
Other versions
JP2018081987A (ja
Inventor
健治 勝亦
圭介 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2016222232A priority Critical patent/JP6598757B2/ja
Priority to US16/348,466 priority patent/US20190311860A1/en
Priority to PCT/JP2017/040823 priority patent/WO2018092739A1/ja
Priority to CN201780062676.5A priority patent/CN109804447A/zh
Priority to EP17871230.3A priority patent/EP3544037A1/en
Publication of JP2018081987A publication Critical patent/JP2018081987A/ja
Application granted granted Critical
Publication of JP6598757B2 publication Critical patent/JP6598757B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2077Sealing arrangements, e.g. to prevent the leakage of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2081Serial interconnection of cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、光電変換素子に関する。
光電変換素子として、安価で、高い光電変換効率が得られることから色素を用いた光電変換素子が注目されており、色素を用いた光電変換素子に関して種々の開発が行われている。
色素を用いた光電変換素子は一般に、透明基板と、透明基板の一面上に設けられる少なくとも1つの光電変換セルとを備えており、光電変換セルは、透明基板上に設けられる電極と、電極に対向する対向基板と、透明基板及び対向基板の間に設けられる環状の封止部と、電極と対向基板との間に設けられる酸化物半導体層と、酸化物半導体層に担持される色素とを備えている。
このような色素を用いた光電変換素子としては、例えば下記特許文献1に記載の色素増感型光電変換素子が知られている。下記特許文献1には、少なくとも1つの光電変換セルの金属基板と透明基板の一面上で光電変換セルの電極に対して絶縁された状態で設けられる透明導電層上の接続端子とを接続する導電部材を備えた色素増感型光電変換素子が開示されている。
特開2016−72418号公報
しかし、上記特許文献1に記載の色素増感型光電変換素子は以下に示す課題を有していた。
すなわち、上記特許文献1に記載の色素増感型光電変換素子は、温度変化の大きい環境下で使用される場合における耐久性の点で改善の余地を有していた。
本発明は上記事情に鑑みてなされたものであり、温度変化の大きい環境下で使用されても優れた耐久性を有する光電変換素子を提供することを目的とする。
まず本発明者らは、上記特許文献1の色素増感型光電変換素子において、上記課題が生じる原因について検討した。その結果、上記特許文献1の色素増感型光電変換素子では、周囲の温度変化に伴って封止部が膨張及び収縮すると、それに伴って、特に、導電部材のうち透明基板と反対側の主面に繰返し応力が加わりやすくなっていることによるのではないかと本発明者らは考えた。そこで、本発明者らはさらに鋭意検討を重ねた結果、以下の発明により上記課題を解決し得ることを見出した。
すなわち、本発明は、透明基板と、前記透明基板の一面上に設けられる少なくとも1つの光電変換セルとを備える光電変換素子であって、前記光電変換セルが、前記透明基板の前記一面上に設けられる電極と、前記電極に対向し、金属基板を有する対向基板と、前記透明基板および前記対向基板の間に設けられる環状の封止部とを有し、前記光電変換素子が、前記透明基板の前記一面側で且つ前記封止部の外側に設けられる接続端子と、前記光電変換セルの前記金属基板、及び、前記接続端子を接続する配線部を有する導電部材と、前記配線部のうち少なくとも前記透明基板と反対側の主面を被覆し、前記配線部の延び方向に沿って延びる被覆部とを有し、前記透明基板の前記一面に直交する方向に前記光電変換素子を見た場合に、前記被覆部の一端が前記封止部の内側に延び、前記被覆部の他端が前記封止部の外側に延びており、前記被覆部の線膨張係数が前記封止部の線膨張係数よりも小さい光電変換素子である。
この光電変換素子によれば、周囲の温度変化に伴って封止部が透明基板の一面に直交する方向に膨張及び収縮すると、それに伴って、特に、導電部材の配線部のうち透明基板と反対側の主面に繰返し応力が加わりやすい。これに対し、本発明の光電変換素子では、導電部材の配線部のうち少なくとも透明基板と反対側の主面は被覆部で被覆されており、この被覆部は封止部の線膨張係数よりも小さい線膨張係数を有している。このため、被覆部は封止部よりも膨張及び収縮が起こりにくい。加えて、透明基板の一面に直交する方向に光電変換素子を見た場合に、被覆部の一端が封止部の内側に延び、被覆部の他端が封止部の外側に延びている。すなわち、被覆部の両端が、透明基板の一面に直交する方向に光電変換素子を見た場合に、温度変化に伴って透明基板の一面に直交する方向の変動が最も起こりやすい封止部の内側及び外側に延びている。別言すると、被覆部の両端が、透明基板の一面に直交する方向に光電変換素子を見た場合に、温度変化に伴って透明基板の一面に直交する方向の変動が封止部に比べて起こりにくい部分まで延びている。このため、封止部が透明基板の一面に直交する方向に膨張及び収縮して配線部のうち少なくとも透明基板と反対側の主面に繰返し応力が加わっても、その応力が被覆部によって十分に緩和される。このため、配線部のうち少なくとも透明基板と反対側の主面に亀裂が生じることが十分に抑制される。よって、本発明の光電変換素子は、温度変化の大きい環境下で使用されても、優れた耐久性を有することが可能となる。
上記光電変換素子においては、前記被覆部が、前記配線部のうち前記金属基板側の一端を超えて延び、前記対向基板の前記金属基板でも固定されていることが好ましい。
この場合、封止部の膨張及び収縮に伴って配線部のうち金属基板側の一端が金属基板から離れる方向に移動することが十分に規制され、配線部のうち金属基板側の一端が金属基板から剥離することが十分に抑制される。
上記光電変換素子においては、前記被覆部が、前記配線部のうち前記接続端子側の他端を超えて延び、前記接続端子と前記透明基板との間に設けられる導電層でも固定されていることが好ましい。
この場合、封止部の膨張及び収縮に伴って配線部のうち接続端子側の他端が接続端子から離れる方向に移動することが十分に規制され、配線部のうち接続端子側の他端が接続端子から剥離することが十分に抑制される。
上記光電変換素子においては、前記被覆部が、前記配線部のうち、前記主面と、前記主面と反対側の面とを連結する側面をも覆って前記金属基板及び前記接続端子に固定されていることが好ましい。
この場合、配線部が金属基板又は接続端子から剥離することが十分に抑制される。
なお、本発明において、「線膨張係数」は、JIS K 7197に示される方法で測定される値をいう。
本発明によれば、温度変化の大きい環境下で使用されても優れた耐久性を有する光電変換素子が提供される。
本発明の光電変換素子の第1実施形態を示す平面図である。 図1のII−II線に沿った切断面端面図である。 図1の光電変換素子における透明導電層のパターンを示す平面図である。 図1の光電変換素子のうち被覆部を取り除いた部分を示す平面図である。 図4の光電変換素子のうち被覆部を取り除いた部分を、封止部を横切る平面で切断した状態を示す断面図である。 図1の光電変換素子の製造方法の途中で得られる構造体を示す平面図である。 本発明の光電変換素子の第2実施形態を示す切断面端面図である。 本発明の光電変換素子の第3実施形態を示す切断面端面図である。
以下、本発明の光電変換素子の一実施形態について図1〜図5を参照しながら詳細に説明する。図1は、本発明の光電変換素子の一実施形態を示す平面図、図2は、図1のII−II線に沿った切断面端面図、図3は、図1の光電変換素子における透明導電層のパターンを示す平面図、図4は、図1の光電変換素子のうち被覆部を取り除いた部分を示す平面図、図5は、図4の光電変換素子のうち被覆部を取り除いた部分を、封止部を横切る平面で切断した状態を示す断面図である。
図1及び図2に示すように、光電変換素子100は、受光面11aを有する透明基板11と、透明基板11のうち受光面11aと反対側の一面(以下、「セル設置面」と呼ぶ)11b上に設けられる1つの光電変換セル20とを備えている。
図3に示すように、透明基板11のセル設置面11b上には、透明導電層12が設けられている。透明導電層12は、電極12Aと、光電変換セル20から電流を取り出すための導電性の第1電流取出し部12Bと、光電変換セル20から電流を取り出すための導電性の第2電流取出し部12Dと、電極12A、第1電流取出し部12B及び第2電流取出し部12Dを包囲するように設けられる分離部12Cとを有する。電極12Aと、第1電流取出し部12B及び分離部12Cとは、溝40を介して互いに絶縁された状態で配置されている。電極12Aと第2電流取出し部12Dとは互いに接続されている。分離部12Cと、第1電流取出し部12B及び第2電流取出し部12Dとは溝40を介して互いに絶縁された状態で配置されている。第1電流取出し部12B及び第2電流取出し部12Dも溝40を介して隣り合うように互いに絶縁された状態で配置されている。
図2に示すように、光電変換セル20は、透明基板11のセル設置面11b上に設けられる電極12Aと、電極12Aに対向する対向基板50と、透明基板11及び対向基板50の間に設けられる環状の封止部60と、電極12A上に設けられる酸化物半導体層13と、少なくとも封止部60と電極12Aとの間に設けられ、絶縁材料からなる絶縁層70と、電極12A及び対向基板50の間に配置される電解質80とを備えている。
図2及び図5に示すように、第1電流取出し部12B上には第1外部接続端子15aが設けられており、第1電流取出し部12B上であって第1外部接続端子15aと封止部60との間には接続端子16が第1外部接続端子15aと離間して設けられている。一方、図5に示すように、第2電流取出し部12D上には第2外部接続端子15bが設けられている。また、第2電流取出し部12Dと電極12Aとにまたがるように、電極12A及び第2電流取出し部12Dよりも低い抵抗を有する集電配線17が設けられており、集電配線17の一端(以下、「第1集電配線端」と呼ぶ)17aは、第2電流取出し部12D上であって第2外部接続端子15bと封止部60との間で第2外部接続端子15bと離間した位置に接続され、集電配線17の他端(以下、「第2集電配線端」と呼ぶ)17bは、電極12A上で封止部60の外側の位置に接続されている。
図2に示すように、対向基板50は、基板と電極を兼ねる金属基板51と、金属基板51の電極12A側に設けられて電解質80の還元に寄与する触媒層52とを備えている。
そして、図2及び図4に示すように、光電変換素子100は、少なくとも1本(図4では3本)の配線部91を有する導電部材90を備えており、配線部91は、金属基板51と、透明基板11のセル設置面11b側で且つ封止部60の外側に設けられる接続端子16とを接続している。別言すると、配線部91の一端91cは光電変換セル20の金属基板51に接続され、配線部91の他端91dは、封止部60の外側の接続端子16に接続されている。導電部材90は、金属基板51上で配線部91と交差する本体部92をさらに備えている。
図5に示すように、絶縁層70は、光電変換素子100を透明基板11のセル設置面11bに直交する方向に見た場合に、封止部60の外周縁70cより内側の内側絶縁層70aと、封止部60の外周縁70cより外側の外側絶縁層70bとを有している。内側絶縁層70aは、酸化物半導体層13と接するように設けられている。すなわち、内側絶縁層70aは、溝40から光電変換セル20内への水分の侵入を抑制するため、封止部60の外周縁70cより内側で溝40だけでなく電極12A全体をも覆っている。また、内側絶縁層70bは、溝40と重なる部分では、溝40から光電変換セル20内への水分の侵入をより十分に抑制するため、溝40に入り込んでいる。外側絶縁層70bは、透明導電層12のうち、第1外部接続端子15aと接続端子16との間の接続端子−外部接続端子間領域101、及び、第2外部接続端子15bと第1集電配線端17aとの間の配線−外部接続端子間領域102以外の領域を覆い隠すように設けられている。また、透明基板11のセル設置面11b上で封止部60の外側の領域のうち第1外部接続端子15aと第2外部接続端子15bとの間の外部接続端子間領域103は、絶縁層70の外側絶縁層70bによって覆い隠されている。また、透明基板11のセル設置面11b上で封止部60の外側の領域のうち接続端子16と第1集電配線端17aとの間の配線−接続端子間領域104も絶縁層70の外側絶縁層70bによって覆い隠されている。
また図1及び図2に示すように、光電変換素子100は、導電部材90の配線部91のうち透明基板11と反対側の主面91aを被覆し、配線部91の延び方向に沿って延びる被覆部30を備えている。ここで、透明基板11のセル設置面11bに直交する方向に光電変換素子100を見た場合に、被覆部30の一端30cが封止部60の内側に延び、被覆部30の他端30dは、封止部60の外側に延びている。より具体的に述べると、被覆部30の一端30cが配線部91の一端91cを超えて封止部60の内側に延びており、対向基板50の金属基板51でも固定されている。また、被覆部30の他端30dが、配線部91の他端91dを超えて封止部60の外側に延びており、接続端子16と透明基板11との間に設けられる第1電流取出し部12Bでも固定されている。さらに、被覆部30は、配線部91のうち、主面91aと、主面91aと反対側の面とを連結する側面91bをも覆って金属基板51及び接続端子16に固定されている。そして、被覆部30の線膨張係数は封止部60の線膨張係数よりも小さくなっている。
光電変換素子100によれば、周囲の温度変化に伴って封止部60が透明基板11のセル設置面11bに直交する方向に膨張及び収縮すると、それに伴って、特に、導電部材90の配線部91のうち透明基板11と反対側の主面91aに繰返し応力が加わりやすい。これに対し、光電変換素子100では、導電部材90の配線部91のうち透明基板11と反対側の主面91aは被覆部30で被覆されており、この被覆部30は封止部60の線膨張係数よりも小さい線膨張係数を有している。このため、被覆部30は封止部60よりも膨張及び収縮が起こりにくい。加えて、透明基板11のセル設置面11bに直交する方向に光電変換素子100を見た場合に、被覆部30の一端30cが封止部60の内側に延び、被覆部30の他端30dが封止部60の外側に延びている。すなわち、被覆部30の両端30c、30dが、透明基板11のセル設置面11bに直交する方向に光電変換素子100を見た場合に、温度変化に伴って透明基板11のセル設置面11bに直交する方向の変動が最も起こりやすい封止部60の内側及び外側に延びている。別言すると、被覆部30の両端30c、30dが、透明基板11のセル設置面11bに直交する方向に光電変換素子100を見た場合に、温度変化に伴って透明基板11のセル設置面11bに直交する方向の変動が封止部60に比べて起こりにくい部分まで延びている。このため、封止部60が透明基板11のセル設置面11bに直交する方向に膨張及び収縮して配線部91のうち透明基板11と反対側の主面91aに繰返し応力が加わっても、その応力が被覆部30によって十分に緩和される。このため、配線部91のうち透明基板11と反対側の主面91aに亀裂が生じることが十分に抑制される。よって、光電変換素子100は、温度変化の大きい環境下で使用されても、優れた耐久性を有することが可能となる。
また光電変換素子100においては、被覆部30の一端30cが、配線部91のうち金属基板51側の一端91cを超えて延び、対向基板50の金属基板51でも固定されている。このため、封止部60の膨張及び収縮に伴って配線部91のうち金属基板51側の一端91cが金属基板51から離れる方向に移動することが十分に規制され、配線部91のうち金属基板51側の一端91cが金属基板51から剥離することが十分に抑制される。
さらに、上記光電変換素子100においては、被覆部30の他端30dが、配線部91のうち接続端子16側の他端91dを超えて延び、第1電流取出し部12Bでも固定されている。このため、封止部60の膨張及び収縮に伴って配線部91のうち接続端子16側の他端91dが接続端子16から離れる方向に移動することが十分に規制され、配線部91のうち接続端子16側の他端91dが接続端子16から剥離することが十分に抑制される。
さらにまた、光電変換素子100においては、被覆部30が、配線部91のうち、主面91aと、主面91aと反対側の面とを連結する側面91bをも覆って金属基板51及記接続端子16に固定されている。このため、配線部91が金属基板51又は接続端子16から剥離することが十分に抑制される。
次に、透明基板11、透明導電層12、酸化物半導体層13、第1外部接続端子15a及び第2外部接続端子15b、接続端子16、集電配線17、色素、被覆部30、対向基板50、封止部60、絶縁層70、電解質80並びに導電部材90について詳細に説明する。
<透明基板>
透明基板11を構成する材料は、例えば透明な材料であればよく、このような透明な材料としては、例えばホウケイ酸ガラス、ソーダライムガラス、白板ガラス、石英ガラスなどのガラス、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、および、ポリエーテルスルフォン(PES)などが挙げられる。透明基板11の厚さは、光電変換素子100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば0.05〜10mmの範囲にすればよい。
<透明導電層>
透明導電層12に含まれる材料としては、例えばスズ添加酸化インジウム(ITO)、酸化スズ(SnO)、フッ素添加酸化スズ(FTO)などの導電性金属酸化物が挙げられる。透明導電層12は、単層でも、異なる導電性金属酸化物を含む複数の層の積層体で構成されてもよい。透明導電層12が単層で構成される場合、透明導電層12は、高い耐熱性及び耐薬品性を有することから、FTOを含むことが好ましい。透明導電層12は、ガラスフリットをさらに含んでもよい。透明導電層12の厚さは例えば0.01〜2μmの範囲にすればよい。
<酸化物半導体層>
酸化物半導体層13は、酸化物半導体粒子で構成される。酸化物半導体粒子は、例えば酸化チタン(TiO)、酸化シリコン(SiO)、酸化亜鉛(ZnO)、酸化タングステン(WO)、酸化ニオブ(Nb)、チタン酸ストロンチウム(SrTiO)、酸化スズ(SnO)、酸化インジウム(In)、酸化ジルコニウム(ZrO)、酸化タリウム(Ta)、酸化ランタン(La)、酸化イットリウム(Y)、酸化ホルミウム(Ho)、酸化ビスマス(Bi)、酸化セリウム(CeO)、酸化アルミニウム(Al)又はこれらの2種以上で構成される。
酸化物半導体層13は通常、光を吸収するための吸収層で構成されるが、吸収層と吸収層を透過した光を反射して吸収層に戻す反射層とで構成されてもよい。
酸化物半導体層13の厚さは特に限定されるものではないが、通常は、0.5〜50μmとすればよい。
<第1外部接続端子および第2外部接続端子>
第1外部接続端子15a及び第2外部接続端子15bは金属材料を含む。金属材料としては、例えば銀、銅およびインジウムなどが挙げられる。これらは単独で又は2種以上を組み合せて用いてもよい。第1外部接続端子15a及び第2外部接続端子15bは例えば金属材料のみからなる焼結体で構成される。
<接続端子>
接続端子16は金属材料を含む。接続端子16は第1外部接続端子15a及び第2外部接続端子15bと同一の材料で構成されても異なる材料で構成されてもよいが、同一の材料で構成されることが好ましい。
<集電配線>
集電配線17は金属材料を含む。集電配線17は第1外部接続端子15a及び第2外部接続端子15bと同一の材料で構成されても異なる材料で構成されてもよいが、同一の材料で構成されることが好ましい。
<色素>
色素としては、例えばビピリジン構造、ターピリジン構造などを含む配位子を有するルテニウム錯体、ポルフィリン、エオシン、ローダミン、メロシアニンなどの有機色素などの光増感色素や、ハロゲン化鉛系ペロブスカイト結晶などの有機−無機複合色素などが挙げられる。ハロゲン化鉛系ペロブスカイトとしては、例えばCHNHPbX(X=Cl、Br、I)が用いられる。ここで、色素として光増感色素を用いる場合には、光電変換素子100は色素増感光電変換素子となり、光電変換セル20は色素増感光電変換セルとなる。
上記色素の中でも、ビピリジン構造又はターピリジン構造を含む配位子を有するルテニウム錯体からなる光増感色素が好ましい。この場合、光電変換素子100の光電変換特性をより向上させることができる。
<被覆部>
被覆部30の線膨張係数は、封止部60の線膨張係数よりも小さければ特に限定されるものではない。すなわち、被覆部30の線膨張係数A1と封止部60の線膨張係数A2との比(A1/A2)は1より小さければよい。但し、A1/A2は0.35以下であることが好ましい。この場合、封止部60が膨張及び収縮して配線部91のうち少なくとも透明基板11と反対側の主面91aに繰返し応力が加わっても、その応力が被覆部30によってより十分に緩和される。このため、配線部91のうち少なくとも透明基板11と反対側の主面91aに亀裂が生じることがより十分に抑制される。よって、光電変換素子100は、温度変化の大きい環境下で使用されても、より優れた耐久性を有することが可能となる。但し、A1/A2は0.15以上であることが好ましい。この場合、温度変化の大きい環境下で被覆部30に亀裂が生じることがより十分に抑制される。
被覆部30の線膨張係数は特に制限されるものではないが、通常は150ppm/℃以下であり、好ましくは60ppm/℃以下である。この場合、封止部60が膨張及び収縮して配線部91のうち少なくとも透明基板11と反対側の主面91aに繰返し応力が加わっても、その応力が被覆部30によってより十分に緩和される。このため、配線部91のうち少なくとも透明基板11と反対側の主面91aに亀裂が生じることがより十分に抑制される。よって、光電変換素子100は、温度変化の大きい環境下で使用されても、より優れた耐久性を有することが可能となる。但し、被覆部30の線膨張係数は25ppm/℃以上であることが好ましい。この場合、温度変化の大きい環境下で被覆部30に亀裂が生じることがより十分に抑制される。
被覆部30は、特に限定されるものではない。被覆層30は、透明基板11側に金属材料からなる金属層、又は、樹脂材料(絶縁材料)からなる層を有していればよい。例えば被覆部30は、樹脂材料からなる少なくとも1つの層で構成される。樹脂材料としては、例えばポリイミド樹脂、エポキシ樹脂、ポリウレタン樹脂、ポリエチレンテレフタレート(PET)樹脂などが挙げられる。中でもポリイミド樹脂が好ましい。この場合、より優れた絶縁性を被覆部30に付与することができる。
被覆部30の色は特に限定されるものではないが、黒色であることが好ましい。この場合、より優れた隠蔽性を被覆部30に付与することができたり、熱放射が大きくなって光電変換セル20で発生した熱が放出されやすくなったりする。
被覆部30の厚さは特に限定されないが、30〜300μmであることが好ましい。この場合、被覆部30の耐熱性がより高くなる。
<対向基板>
対向基板50は、上述したように、基板と電極とを兼ねる金属基板51と、触媒層52とを備える。
(金属基板)
金属基板51は、金属で構成されればよいが、この金属は、不動態を形成し得る金属であることが好ましい。この場合、金属基板51が電解質80によって腐食されにくくなるため、光電変換素子100は、より優れた耐久性を有することが可能となる。不動態を形成し得る金属としては、例えばチタン、ニッケル、モリブデン、タングステン、アルミニウム、ステンレス又はこれらの合金等が挙げられる。金属基板51の厚さは、光電変換素子100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば0.005〜0.1mmとすればよい。
(触媒層)
触媒層52は、白金、炭素系材料又は導電性高分子などから構成される。ここで、炭素系材料としては、カーボンブラックやカーボンナノチューブが好適に用いられる。
<封止部>
封止部60を構成する材料としては、例えばアイオノマー、エチレン−ビニル酢酸無水物共重合体、エチレン−メタクリル酸共重合体、エチレン−ビニルアルコール共重合体等を含む変性ポリオレフィン樹脂、紫外線硬化樹脂、及び、ビニルアルコール重合体などの樹脂が挙げられる。これらの樹脂は単独で又は2種以上を組み合わせて用いることができる。
封止部60の厚さは特に限定されないが、通常は10〜50μmであり、好ましくは20〜40μmである。この場合、封止部60の内部への水の侵入をより十分に抑制できる。
<絶縁層>
絶縁層70は絶縁材料で構成されていればよい。このような絶縁材料としては、樹脂や無機絶縁材料が挙げられるが、中でも、無機絶縁材料が好ましい。この場合、絶縁層70は封止部60の外周縁70cより内側で溝40だけでなく電極12A全体をも覆っており、無機材料は樹脂よりも高い封止能を有するため、溝40からの水分の侵入をより十分に抑制できる。このような無機絶縁材料としては、例えばガラスが挙げられる。
絶縁層70を構成する絶縁材料は着色されていることが好ましい。この場合、光電変換素子100を受光面11a側から見た場合、対向基板50が際立って見えることを十分に抑制することが可能となる。このため、良好な外観を実現することができる。また、電極12Aを着色させないで済むため、光電変換素子100の光電変換特性の低下を十分に抑制することができる。着色された絶縁材料としては、例えば着色されたガラス等の無機絶縁材料が用いられる。
絶縁層70が着色される場合、その色は特に限定されるものではなく、目的に応じて種々の色を用いることが可能である。
絶縁層70の厚さは特に限定されるものではないが、通常は10〜30μmであり、好ましくは15〜25μmである。
<電解質>
電解質80は、酸化還元対と有機溶媒とを含んでいる。有機溶媒としては、アセトニトリル、メトキシアセトニトリル、メトキシプロピオニトリル、プロピオニトリル、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、γ−ブチロラクトン、バレロニトリル、ピバロニトリルなどを用いることができる。酸化還元対としては、ヨウ化物イオン/ポリヨウ化物イオン(例えばI/I )のほか、臭化物イオン(臭素イオン)/ポリ臭化物イオン、亜鉛錯体、鉄錯体、コバルト錯体などのレドックス対が挙げられる。なお、ヨウ化物イオン/ポリヨウ化物イオンは、ヨウ素(I)と、アニオンとしてのアイオダイド(I)を含む塩(イオン性液体や固体塩)とによって形成することができる。アニオンとしてアイオダイドを有するイオン性液体を用いる場合には、ヨウ素のみ添加すればよく、有機溶媒や、アニオンとしてアイオダイド以外のイオン性液体を用いる場合には、LiIやテトラブチルアンモニウムアイオダイドなどのアニオンとしてアイオダイド(I)を含む塩を添加すればよい。
また電解質80は、有機溶媒に代えて、イオン液体を用いてもよい。イオン液体としては、例えばピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等の既知のヨウ素塩であって、室温付近で溶融状態にある常温溶融塩が用いられる。このような常温溶融塩としては、例えば、1−ヘキシル−3−メチルイミダゾリウムヨーダイド、1−エチル−3−プロピルイミダゾリウムヨーダイド、ジメチルイミダゾリウムヨーダイド、エチルメチルイミダゾリウムヨーダイド、ジメチルプロピルイミダゾリウムヨーダイド、ブチルメチルイミダゾリウムヨーダイド、又は、メチルプロピルイミダゾリウムヨーダイドが好適に用いられる。
また、電解質80は、上記有機溶媒に代えて、上記イオン液体と上記有機溶媒との混合物を用いてもよい。
また電解質80には添加剤を加えることができる。添加剤としては、LiI、I、4−t−ブチルピリジン、グアニジウムチオシアネート、1−メチルベンゾイミダゾール、1−ブチルベンゾイミダゾールなどが挙げられる。
さらに電解質80としては、上記電解質にSiO、TiO、カーボンナノチューブなどのナノ粒子を混練してゲル様となった擬固体電解質であるナノコンポジットゲル電解質を用いてもよく、また、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などの有機系ゲル化剤を用いてゲル化した電解質を用いてもよい。
なお、電解質80は、ヨウ化物イオン/ポリヨウ化物イオン(例えばI/I )からなる酸化還元対を含み、ポリヨウ化物イオンの濃度が0.006mol/リットル以下であることが好ましい。この場合、電子を運ぶポリヨウ化物イオンの濃度が低いため、漏れ電流をより減少させることができる。このため、開放電圧をより増加させることができるため、光電変換特性をより向上させることができる。特に、ポリヨウ化物イオンの濃度は0.005mol/リットル以下であることが好ましく、0〜6×10−6mol/リットルであることがより好ましく、0〜6×10−8mol/リットルであることがさらに好ましい。この場合、光電変換素子100を透明基板11の受光面11a側から見た場合に、電解質80の色を目立たなくすることができる。
<導電部材>
導電部材90は、上述したように、配線部91と本体部92とを有する。導電部材90は金属材料を含む。金属材料としては、例えば銀又は銅などを用いることができる。導電部材90は、金属材料のほか、さらにバインダ樹脂を含んでもよい。バインダ樹脂としては、例えばエポキシ樹脂、ポリエステル樹脂およびアクリル樹脂などが挙げられる。中でも、高温になっても熱膨張しにくく、抵抗の経時的変化をより小さくできることから、エポキシ樹脂やポリエステル樹脂が好ましい。
導電部材90の配線部91の一部、及び、本体部92は、金属基板51に直接接続される第1層と、第1層の上に設けられる第2層とを有する積層体で構成されてもよい。この場合、第1層は、金属材料、バインダ樹脂及びカーボンを含み、第2層は、金属材料及びバインダ樹脂を含み、第1層中のカーボンの含有率が、第2層中のカーボンの含有率よりも大きいことが好ましい。この場合、導電部材90が金属基板51から剥離しにくくなる
次に、光電変換素子100の製造方法について図1及び図3〜図6を参照しながら説明する。図6は、図1の光電変換素子の製造方法の途中で得られる構造体を示す断面図である。
まず1つの透明基板11のセル設置面11b上に透明導電膜を形成してなる積層体を用意する。
透明導電膜の形成方法としては、スパッタ法、蒸着法、スプレー熱分解法又はCVD法などが用いられる。
次に、図3に示すように、透明導電膜に対して溝40を形成し、透明導電層12を形成する。このとき、透明導電層12は、電極12A、第1電流取出し部12B、分離部12C及び第2電流取出し部12Dが形成されるように形成する。
溝40は、例えばYAGレーザ又はCOレーザ等を光源として用いたレーザスクライブ法によって形成することができる。
次に、第1電流取出し部12B上に第1外部接続端子15aの前駆体及び接続端子16の前駆体を互いに離間するように形成する。第1外部接続端子15aの前駆体及び接続端子16の前駆体は、例えば銀ペーストを塗布し乾燥させることで形成することができる。
また、第2電流取出し部12D上には、第2外部接続端子15bの前駆体を形成する。第2外部接続端子15bの前駆体は、例えば銀ペーストを塗布し乾燥させることで形成することができる。
また、電極12Aと第2電流取出し部12Dとにまたがるように集電配線17の前駆体を形成する。このとき、集電配線17の前駆体は、その一端が、第2電流取出し部12D上であって第2外部接続端子15bの前駆体と離間した位置に配置され、他端が、電極12A上の位置に配置されるように形成される。集電配線17の前駆体は、例えば銀ペーストを塗布し乾燥させることで形成することができる。
さらに、透明導電層12のうち、酸化物半導体層13が形成される予定の領域(以下、「半導体層形成予定領域」と呼ぶ)、接続端子−外部接続端子間領域101、及び、配線−外部接続端子間領域102以外の領域を覆い隠すように絶縁層70の前駆体を形成する。このとき、絶縁層70の前駆体は、絶縁層70の前駆体が溝40に入り込むように形成する。絶縁層70の前駆体は、例えば無機絶縁材料を含むペーストを塗布し乾燥させることによって形成することができる。
次に、第1外部接続端子15aの前駆体、第2外部接続端子15bの前駆体、接続端子16の前駆体、集電配線17の前駆体及び絶縁層70の前駆体を一括して焼成し、第1外部接続端子15a、第2外部接続端子15b、接続端子16、集電配線17及び絶縁層70を形成する。
このとき、焼成温度は絶縁材料の種類などにより異なるが、通常は350〜600℃であり、焼成時間も、絶縁材料の種類により異なるが、通常は1〜5時間である。
次に、電極12Aのうち半導体層形成予定領域上に酸化物半導体層13の前駆体を形成する。
酸化物半導体層13の前駆体は、酸化物半導体層13を形成するための酸化物半導体層用ペーストを印刷した後、乾燥することによって得られる。酸化物半導体層用ペーストは、酸化チタンのほか、ポリエチレングリコール、エチルセルロースなどの樹脂及び、テルピネオールなどの溶媒を含む。
酸化物半導体層用ペーストの印刷方法としては、例えばスクリーン印刷法、ドクターブレード法、又はバーコート法などを用いることができる。
次に、酸化物半導体層13の前駆体を焼成し、酸化物半導体層13を形成する。
このとき、焼成温度は酸化物半導体粒子の種類などにより異なるが、通常は350〜600℃であり、焼成時間も、酸化物半導体粒子の種類により異なるが、通常は1〜5時間である。
こうして、図6に示すように、構造体Aが得られる。
次に、封止部60を形成するための封止部形成体を準備する。封止部形成体は、例えば封止部60を構成する材料からなる1枚の封止用樹脂フィルムを用意し、その封止用樹脂フィルムに開口を形成することによって得ることができる。
そして、図5に示すように、この封止部形成体を構造体Aの上に接着させる。このとき、封止部形成体は、絶縁層70と重なるように且つ酸化物半導体層13が内側に配置されるように構造体Aに接着させる。封止部形成体の構造体Aへの接着は、例えば封止部形成体を加熱溶融させることによって行うことができる。
次に、構造体Aの酸化物半導体層13に色素を担持させる。このためには、例えば構造体Aを、色素を含有する色素溶液の中に浸漬させ、その色素を酸化物半導体層13に吸着させた後に上記溶液の溶媒成分で余分な色素を洗い流し、乾燥させればよい。
次に、酸化物半導体層13の上に電解質80を配置する。
一方、対向基板50を用意する。対向基板50は、例えば金属基板51上に導電性の触媒層52を形成することにより得ることができる。
次に、上述した封止部形成体をもう1つ用意する。そして、対向基板50を、封止部形成体の開口を塞ぐように貼り合わせる。
次に、対向基板50に接着した封止部形成体と、電解質80が配置された構造体Aに接着した封止部形成体とを重ね合わせ、封止部形成体を加圧しながら加熱溶融させる。こうして構造体Aの透明基板11と対向基板50との間に封止部60が形成される。封止部60の形成は、大気圧下で行っても減圧下で行ってもよいが、減圧下で行うことが好ましい。
そして、図4に示すように、接続端子16と対向基板50の金属基板51とを導電部材90によって接続する。このとき、導電部材90は、導電部材90を構成する金属材料を含むペーストを用意し、このペーストを、対向基板50の金属基板51と接続端子16とを接続するように塗布し、硬化させる。上記ペーストとしては、酸化物半導体層13に担持される色素への悪影響を避ける観点から、90℃以下の温度で硬化させることが可能な低温硬化型のペーストを用いることが好ましい。
最後に、被覆部30を形成する。被覆部30は、導電部材90の配線部91のうち透明基板11と反対側の主面91aを覆い、透明基板11のセル設置面11bに直交する方向に光電変換素子100を見た場合に、被覆部30の一端30cが封止部60の内側に延び、被覆部30の他端30dは、封止部60の外側に延びるように形成する。さらに、被覆部30は、被覆部30の一端30cが配線部91の一端91cを超えて封止部60の内側に延びて対向基板50の金属基板51でも固定され、被覆部30の他端30dが、配線部91の他端91dを超えて封止部60の外側に延びて接続端子16でも固定され、さらに、配線部91の側面91bをも覆って金属基板51及び接続端子16に固定されるように形成する。
以上のようにして光電変換素子100が得られる。
本発明は、上記実施形態に限定されるものではない。例えば上記実施形態では、被覆部30の一端30cが配線部91の一端91cを超えて封止部60の内側に延びており、対向基板50の金属基板51でも固定されているが、被覆部30の一端30cは、配線部91の一端91cを超えて封止部60の内側に延びて対向基板50の金属基板51で固定されていなくてもよい。すなわち、被覆部30の一端30cは、配線部91の一端91cを超えていてもよいが、金属基板51で固定されていなくてもよいし、図7に示す光電変換素子200のように、導電部材90の一端91cを超えず且つ金属基板51で固定されていなくてもよい。被覆部30の一端30cが配線部91の一端91cを超えない場合であって透明基板11のセル設置面11bに直交する方向に光電変換素子100を見た場合に、封止部60の内側にある被覆部30の長さは特に制限されるものではないが、配線部91のうち封止部60の内側にある部分の長さの50%以上であることが好ましく、80%以上であることがより好ましい。
また、上記実施形態では、被覆部30の他端30dが、配線部91の他端91dを超えて封止部60の外側に延びており、第1電流取出し部12Bでも固定されているが、被覆部30の他端30dは、配線部91の他端91dを超えて封止部60の外側に延びて第1電流取出し部12Bで固定されていなくてもよい。すなわち、被覆部30の他端30dは、配線部91の他端91dを超えていてもよいが、第1電流取出し部12Bで固定されていなくてもよいし、図8に示す光電変換素子300のように、配線部91の他端91dを超えず且つ第1電流取出し部12Bで固定されていなくてもよい。被覆部30の他端30dが配線部91の他端91dを超えない場合であって透明基板11のセル設置面11bに直交する方向に光電変換素子100を見た場合に、封止部60の外側にある被覆部30の長さは特に制限されるものではないが、配線部91のうち封止部60の外側にある部分の長さの50%以上であることが好ましく、80%以上であることがより好ましい。
さらに、上記実施形態では、被覆部30が配線部91の側面91bをも覆って金属基板51及び接続端子16に固定されているが、被覆部30は導電部材90の側面91bを覆っていなくてもよい。
また、上記実施形態では、透明基板11上において、光電変換セル20はこれを覆って保護する保護層で覆われていないが、光電変換セル20は保護層で覆われてもよい。例えば透明基板11の透明導電層形成面11bに直交する方向に見た場合に、透明基板11上の領域のうち第1外部接続端子15a、第2外部接続端子15b、接続端子−外部接続端子間領域101及び配線−外部接続端子間領域102以外の領域の全面が保護層で覆われてもよい。この場合、保護層の一部を被覆部30として機能させることができる。
さらに、上記実施形態では、絶縁層70が封止部60の外周縁より内側で電極12Aの全部を覆っているが、絶縁層70が封止部60の外周縁より内側で電極12Aの一部のみを覆っていてもよい。また、上記実施形態では、絶縁層70は、内側絶縁層70aと外側絶縁層70bとで構成されているが、絶縁層70は内側絶縁層70aのみで構成されてもよい。
さらに上記実施形態では、光電変換素子100が絶縁層70を有しているが、絶縁層70を有していなくてもよい。
また上記実施形態では、光電変換素子100が集電配線17を有しているが、本発明の光電変換素子は、必ずしも集電配線17を有していなくてもよい。
さらに上記実施形態では、分離部12Cが透明基板11上に、電極12A及び第2電流取出し部12Dを包囲するように設けられているが、分離部12Cが透明基板11上に設けられていなくてもよい。
さらに上記実施形態では、透明基板11上に1つの光電変換セル20のみが設けられているが、光電変換素子100では、透明基板11上に複数の光電変換セル20が設けられてもよい。この場合、複数の光電変換セル20は直列に接続されてもよいし、並列に接続されてもよい。複数の光電変換セル20が直列に接続される場合、第1電流取出し部12Bは、複数の光電変換セル20のうちの一端側の光電変換セル20の対向基板50に接続され、第2電流取出し部12Dは、他端側の光電変換セル20の電極12Aに接続される。また、複数の光電変換セル20が並列に接続される場合、第1電流取出し部12Bは、複数の光電変換セル20のうちの全ての光電変換セル20の対向基板50に接続され、第2電流取出し部12Dは、複数の光電変換セル20のうちの全ての光電変換セル20の電極12Aに接続される。
以下、本発明の内容を、実施例を挙げてより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
(実施例1)
まず無アルカリガラスからなり、112mm×56mmの寸法を有する厚さ2.2mmの透明基板11のセル設置面11bの上に、厚さ0.7μmのFTOからなる透明導電膜を形成してなる積層体を準備した。次に、YAGレーザによって透明導電膜に溝40を形成し、透明導電層12を形成した。このとき、透明導電層12は、電極12A、第1電流取出し部12B、及び第2電流取出し部12Dが形成されるように形成した。このとき、溝40の幅は0.1mmとした。また電極12Aは、54.4mm×104.5mmの四角形状となるように形成し、第2電流取出し部12Dは、電極12Aの一辺から延出し、四角形状となるように形成した。第2電流取出し部12Dの延出方向の長さは4.3mmとし、第2電流取出し部12Dの幅は27.2mmとした。
また、第1電流取出し部12Bは、27.2mm×4.3mmの寸法となるように形成した。
次に、第1電流取出し部12B上に第1外部接続端子15aの前駆体及び接続端子16の前駆体を矩形状に且つ互いに離間するように形成した。このとき、第1外部接続端子15aの前駆体は8mm×1.8mmの寸法、接続端子16の前駆体は、8mm×0.3mmの寸法となるように形成した。また、第2電流取出し部12D上には、第2外部接続端子15bの前駆体を矩形状に形成した。このとき、第2外部接続端子15bの前駆体は8mm×1.8mmの寸法となるように形成した。
また、第2電流取出し部12Dと電極12Aとにまたがるように集電配線17を形成した。このとき、集電配線17の前駆体は、その一端が、第2電流取出し部12D上であって第2外部接続端子15bの前駆体と離間した位置に配置され、他端が、電極12A上の位置に配置されるように形成した。また、集電配線17の前駆体は、L字状で且つ幅0.3mm×長さ21.6mmの寸法を有する部分と幅0.3mm×長さ105.1mmの寸法を有する部分とを有するように形成した。
なお、接続端子16の前駆体、第1外部接続端子15aの前駆体、第2外部接続端子15bの前駆体及び集電配線17の前駆体はいずれも、銀ペーストを塗布し乾燥させることで形成した。
次に、透明導電層12のうち、半導体層形成予定領域、接続端子−外部接続端子間領域101、及び、配線−外部接続端子間領域102以外の領域を覆い隠すように絶縁層70の前駆体を形成した。このとき、絶縁層70の前駆体は、溝40に入り込むように形成した。絶縁層70の前駆体は、ガラスフリット(商品名「PLFOC−837B」、奥野製薬工業株式会社製)を含むペーストを塗布し乾燥させることによって形成した。
次に、第1外部接続端子15aの前駆体、第2外部接続端子15bの前駆体、接続端子16の前駆体、集電配線17の前駆体及び絶縁層70の前駆体を一括して焼成し、第1外部接続端子15a、第2外部接続端子15b、接続端子16、集電配線17および絶縁層70を形成した。このとき、焼成温度は500℃とし、焼成時間は1時間とした。また、このとき、第1外部接続端子15aと接続端子16との間の間隔Lは0.5mmであった。また、第2外部接続端子15bと第1集電配線端17aとの間の間隔L´は0.5mmであった。
さらに、電極12Aのうち半導体層形成予定領域上に酸化物半導体層13の前駆体を形成した。このとき、酸化物半導体層13の前駆体は、酸化チタンを含むペーストを、スクリーン印刷により絶縁層70の内側に充填されるように塗布し、150℃で10分間乾燥させることにより得た。
次に、酸化物半導体層13の前駆体を焼成し、酸化物半導体層13を形成した。このとき、焼成温度は500℃とし、焼成時間は1時間とした。こうして構造体Aを得た。
次に、封止部を形成するための封止部形成体を準備した。封止部形成体は、51.2mm×106.1mm×35μmの無水マレイン酸変性ポリエチレン(商品名「バイネル」、デュポン社製、線膨張係数:180ppm/℃)からなる1枚の封止用樹脂フィルムを用意し、その封止用樹脂フィルムに、47.2mm×102.1mmの1つの四角形状の開口を形成することによって得た。
そして、この封止部形成体を構造体A上に重ね合わせた後、封止部形成体を加熱溶融させることによって構造体A上の絶縁層70に接着させた。このとき、封止部形成体は、絶縁層70と重なるように且つ酸化物半導体層13と接続端子16及び集電配線17との間に配置されるように構造体Aに接着させた。
次に、上記のようにして得られた構造体Aを、Z907からなる光増感色素を0.2mM含み、溶媒を、アセトニトリルとtertブタノールとを1:1の体積比で混合してなる混合溶媒とした色素溶液中に一昼夜浸漬させた後、取り出して乾燥させ、酸化物半導体層13に光増感色素を担持させた。
次に、ジメチルプロピルイミダゾリウムヨーダイドおよび3−メトキシプロピオニトリルの混合物に、I、メチルベンゾイミダゾール、ブチルベンゾイミダゾール、グアニジウムチオシアネート及びt−ブチルピリジンを加えて得られる電解質80を用意した。そして、酸化物半導体層13の上に、上記電解質80を滴下して塗布し、電解質80を配置した。
次に、1枚の対向基板50を用意した。対向基板50は、51.2mm×106.1mm×40μmのチタン箔の上にスパッタリング法によって厚さ5nmの白金からなる触媒層を形成することによって用意した。また、上記封止部形成体をもう1つ準備した。そして、対向基板50を、封止部形成体の開口を塞ぐように貼り合わせた。
そして、対向基板50に接着した封止部形成体と、電解質80が配置された構造体に接着した封止部形成体とを減圧下で重ね合わせ、封止部形成体を加圧しながら加熱溶融させた。こうして構造体と対向基板50との間に封止部を形成した。このとき、封止部60の厚さは40μmであり、封止部60の幅は2mmであった。
次に、接続端子16と対向基板50の金属基板51とを以下のようにして導電部材90によって接続した。
すなわち、まず銀粒子(平均粒径:3.5μm)、カーボン(平均粒径:500nm)、ポリエステル系樹脂をジエチレングリコールモノエチルエーテルアセテートからなる溶媒中に分散させ、第1導電性ペーストを作製した。このとき、銀粒子、カーボン、ポリエステル系樹脂および溶媒は、70:1:10:19の質量比で混合した。
一方、銀粒子(平均粒径:2μm)及びポリエステル系樹脂を酢酸エチレングリコールモノブチルエーテルからなる溶媒中に分散させ、第2導電性ペーストを作製した。このとき、銀粒子、ポリエステル系樹脂および溶媒は、65:10:25の質量比で混合した。
そして、金属基板21の上に上記第1導電性ペーストを塗布して本体部92の前駆体の一部、及び、配線部92の前駆体の一部を形成した。その後、上記第2導電性ペーストを、本体部92の前駆体の一部、及び、配線部91の前駆体の一部の上に塗布するとともに、第1電流取出し部12B上の接続端子16と配線部91の前駆体の一部とを接続するように塗布した。こうして導電部材の前駆体を形成した。そして、この導電部材90の前駆体を85℃で12時間加熱して硬化させることによって、導電部材90を形成した。こうして、本体部92と3本の配線部91とからなる導電部材90を形成した。このとき、3本の配線部91はいずれも、30μmの厚さを有するように且つ透明基板11のセル設置面11bに直交する方向に見た場合に2mm×6mmの寸法を有するように形成した。すなわち、配線部91は、透明基板11のセル設置面11bに直交する方向に見た場合に、6mmの長さを有するように形成した。このとき、配線部91のうち金属基板51上の部分の長さが5mmとなるようにした。また、本体部92は、配線部91の一端91cと一体化した状態で41.2mm×4.5mm×厚さ60μmの寸法を有するように形成した。
次に、ポリイミド樹脂からなる厚さ50μmのポリイミドテープ(商品名「テサテープ67350」、テサテープ社製、線膨張係数:30ppm/℃)を貼り付けることにより被覆部30を形成した。このとき、被覆部30は、配線部91のうち透明基板11と反対側の主面91aを覆い、透明基板11のセル設置面11bに直交する方向に光電変換素子を見た場合に、被覆部30の一端30cが封止部60の内側に延び、被覆部30の他端30dが封止部60よりも1mmだけ外側に延び、さらに、配線部91の側面91bをも覆って金属基板51及び接続端子16に固定されるように形成した。このとき、被覆部30のうち封止部60より内側にある部分の長さxを、封止部60より内側方向を正としてx=1.5mmとした。ここで、xは、配線部91を被覆する被覆部30の被覆状態の目安となるものである。こうして被覆部30を得た。以上のようにして光電変換素子を得た。
(実施例2及び比較例1〜2)
被覆部30のうち封止部60より内側にある部分の長さxを表1に示す通りとしたこと以外は実施例1と同様にして光電変換素子を作製した。
(実施例3)
透明基板11のセル設置面11bに直交する方向に見た場合に、透明基板11上の領域のうち、第1外部接続端子15a及び第2外部接続端子15b以外の領域の全面を覆うように保護層を形成し、保護層の一部を被覆部としたこと以外は実施例1と同様にして光電変換素子を作製した。
(実施例4〜5及び比較例3〜4)
被覆部30のうち封止部60より内側にある部分の長さx(mm)を表1に示す通りとし、封止部60を構成する封止部材料の種類、封止部材料の線膨張係数A2、被覆部30を構成する被覆部材料(保護層材料)の種類、被覆部材料(保護層材料)の線膨張係数A1、及び、封止部材料の線膨張係数A2に対する被覆部材料(保護層材料)の線膨張係数A1の比(A1/A2)を表1に示す通りとしたこと以外は実施例1と同様にして光電変換素子を作製した。
(実施例6)
透明基板11のセル設置面11bに直交する方向に見た場合に、透明基板11上の領域のうち、第1外部接続端子15a及び第2外部接続端子15b以外の領域の全面を覆うように保護層を形成し、保護層の一部を被覆部としたこと以外は実施例4と同様にして光電変換素子を作製した。
(実施例7〜8及び比較例5〜6)
被覆部30のうち封止部60より内側にある部分の長さxを表1に示す通りとし、封止部60を構成する封止部材料の種類、封止部材料の線膨張係数A2、被覆部を構成する被覆部材料(保護層材料)の種類、被覆部材料(保護層材料)の線膨張係数A1、及び、封止部材料の線膨張係数A2に対する被覆部材料(保護層材料)の線膨張係数A1の比(A1/A2)を表1に示す通りとしたこと以外は実施例1と同様にして光電変換素子を作製した。
(実施例9)
透明基板11のセル設置面11bに直交する方向に見た場合に、透明基板11上の領域のうち、第1外部接続端子15a及び第2外部接続端子15b以外の領域の全面を覆うように保護層を形成し、保護層の一部を被覆部としたこと以外は実施例7と同様にして光電変換素子を作製した。
(実施例10〜11及び比較例7〜8)
被覆部30のうち封止部60より内側にある部分の長さxを表1に示す通りとし、封止部60を構成する封止部材料の種類、封止部材料の線膨張係数A2、被覆部を構成する被覆部材料(保護層材料)の種類、被覆部材料(保護層材料)の線膨張係数A1、及び、封止部材料の線膨張係数A2に対する被覆部材料(保護層材料)の線膨張係数A1の比(A1/A2)を表1に示す通りとしたこと以外は実施例1と同様にして光電変換素子を作製した。
(実施例12)
透明基板11のセル設置面11bに直交する方向に見た場合に、透明基板11上の領域のうち、第1外部接続端子15a及び第2外部接続端子15b以外の領域の全面を覆うように保護層を形成し、保護層の一部を被覆部としたこと以外は実施例10と同様にして光電変換素子を作製した。
(比較例9〜13)
被覆部30のうち封止部30より内側にある部分の長さxを表1に示す通りとし、封止部60を構成する封止部材料の種類、封止部材料の線膨張係数A2、被覆部を構成する被覆部材料(保護層材料)の種類、被覆部材料(保護層材料)の線膨張係数A1、及び、封止部材料の線膨張係数A2に対する被覆部材料(保護層材料)の線膨張係数A1の比(A1/A2)を表1に示す通りとしたこと以外は実施例1と同様にして光電変換素子を作製した。
(比較例14)
透明基板11のセル設置面11bに直交する方向に見た場合に、透明基板11上の領域のうち、第1外部接続端子15a及び第2外部接続端子15b以外の領域の全面を覆うように保護層を形成し、保護層の一部を被覆部としたこと以外は比較例9と同様にして光電変換素子を作製した。
[特性評価]
上記のようにして得られた実施例1〜12及び比較例1〜14の光電変換素子をそれぞれ120個ずつ用意した。そして、これらの光電変換素子について、JIS C 8938に準じたヒートサイクル試験を行い、その後の変換効率(%)を、白色LEDから200ルクスの光を照射して測定した。測定は、測定器の2端子を、光電変換素子の第1外部接続端子15a及び第2外部接続端子15bに接続して行った。そして、変換効率が0%であり、発電が行われなくなっていたものを故障していると判断し、故障数(個)を測定した。結果を表1に示す。
Figure 0006598757
表1に示す結果より、実施例1〜12の光電変換素子では、比較例1〜14の光電変換素子に比べ、故障数が少なかった。
以上の結果より、本発明の光電変換素子によれば、温度変化の大きい環境下で使用されても優れた耐久性を有することが確認された。
11…透明基板
11b…セル設置面(一面)
12A…電極
16…接続端子
20…光電変換セル
30…被覆部
30c…被覆部の一端
30d…被覆部の他端
50…対向基板
60…封止部
90…導電部材
91…配線部
91a…配線部のうち透明基板と反対側の主面
91b…主面と対向基板及び被接続部とを連結する側面
91c…配線部の一端
91d…配線部の他端
100,200,300…光電変換素子

Claims (4)

  1. 透明基板と、
    前記透明基板の一面上に設けられる少なくとも1つの光電変換セルとを備える光電変換素子であって、
    前記光電変換セルが、
    前記透明基板の前記一面上に設けられる電極と、
    前記電極に対向し、金属基板を有する対向基板と、
    前記透明基板および前記対向基板の間に設けられる環状の封止部とを有し、
    前記光電変換素子が、
    前記透明基板の前記一面側で且つ前記封止部の外側に設けられる接続端子と、
    前記光電変換セルの前記金属基板、及び、前記接続端子を接続する配線部を有する導電部材と、
    前記配線部のうち少なくとも前記透明基板と反対側の主面を被覆し、前記配線部の延び方向に沿って延びる被覆部とを有し、
    前記透明基板の前記一面に直交する方向に前記光電変換素子を見た場合に、前記被覆部の一端が前記封止部の内側に延び、前記被覆部の他端が前記封止部の外側に延びており、
    前記被覆部の線膨張係数が前記封止部の線膨張係数よりも小さい、光電変換素子。
  2. 前記被覆部の前記一端が、前記配線部のうち前記金属基板側の一端を超えて延び、前記対向基板の前記金属基板でも固定されている、請求項1に記載の光電変換素子。
  3. 前記被覆部の前記他端が、前記配線部のうち前記接続端子側の他端を超えて延び、前記接続端子と前記透明基板との間に設けられる導電層でも固定されている、請求項1又は2に記載の光電変換素子。
  4. 前記被覆部が、前記配線部のうち、前記主面と、前記主面と反対側の面とを連結する側面をも覆って前記金属基板及び前記接続端子に固定されている、請求項1〜3のいずれか一項に記載の光電変換素子。
JP2016222232A 2016-11-15 2016-11-15 光電変換素子 Active JP6598757B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016222232A JP6598757B2 (ja) 2016-11-15 2016-11-15 光電変換素子
US16/348,466 US20190311860A1 (en) 2016-11-15 2017-11-13 Photoelectric conversion element
PCT/JP2017/040823 WO2018092739A1 (ja) 2016-11-15 2017-11-13 光電変換素子
CN201780062676.5A CN109804447A (zh) 2016-11-15 2017-11-13 光电转换元件
EP17871230.3A EP3544037A1 (en) 2016-11-15 2017-11-13 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016222232A JP6598757B2 (ja) 2016-11-15 2016-11-15 光電変換素子

Publications (2)

Publication Number Publication Date
JP2018081987A JP2018081987A (ja) 2018-05-24
JP6598757B2 true JP6598757B2 (ja) 2019-10-30

Family

ID=62146475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016222232A Active JP6598757B2 (ja) 2016-11-15 2016-11-15 光電変換素子

Country Status (5)

Country Link
US (1) US20190311860A1 (ja)
EP (1) EP3544037A1 (ja)
JP (1) JP6598757B2 (ja)
CN (1) CN109804447A (ja)
WO (1) WO2018092739A1 (ja)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108467A (ja) * 2003-09-26 2005-04-21 Mitsui Chemicals Inc 透明導電性シートおよびそれを用いた光増感太陽電池。
JP5412136B2 (ja) * 2009-02-24 2014-02-12 株式会社フジクラ 光電変換素子
JP5398449B2 (ja) * 2009-09-25 2014-01-29 株式会社フジクラ 色素増感型光電変換素子
WO2012023260A1 (ja) * 2010-08-20 2012-02-23 三洋電機株式会社 光電変換装置およびその製造方法
JP4793954B1 (ja) * 2010-10-06 2011-10-12 株式会社フジクラ 色素増感太陽電池
US20120204924A1 (en) * 2011-02-15 2012-08-16 Nowlan Michael J Photovoltaic module and method
JPWO2012173110A1 (ja) * 2011-06-16 2015-02-23 凸版印刷株式会社 色素増感太陽電池および色素増感太陽電池の作成方法
WO2013031933A1 (ja) * 2011-08-31 2013-03-07 株式会社フジクラ 光電変換素子
JP2013211103A (ja) * 2012-03-30 2013-10-10 Fujikura Ltd 作用極の製造方法および作用極並びに色素増感太陽電池の製造方法および色素増感太陽電池
CN104380407B (zh) * 2012-09-01 2017-09-05 株式会社藤仓 低照度用色素增感太阳电池元件
JP5969865B2 (ja) * 2012-09-05 2016-08-17 株式会社フジクラ 色素増感太陽電池モジュール
JP6284138B2 (ja) * 2012-11-02 2018-02-28 島根県 色素増感太陽電池セルおよびその製造方法
JP5802817B1 (ja) 2014-09-30 2015-11-04 株式会社フジクラ 色素増感型光電変換素子

Also Published As

Publication number Publication date
CN109804447A (zh) 2019-05-24
US20190311860A1 (en) 2019-10-10
WO2018092739A1 (ja) 2018-05-24
EP3544037A1 (en) 2019-09-25
JP2018081987A (ja) 2018-05-24

Similar Documents

Publication Publication Date Title
US10096431B2 (en) Dye-sensitized solar cell element for low illuminance
JP5802817B1 (ja) 色素増感型光電変換素子
JP5451920B1 (ja) 色素増感太陽電池素子
WO2018092741A1 (ja) 光電変換素子
WO2015115607A1 (ja) 光電変換素子
US10395847B2 (en) Photoelectric conversion element
JP5680996B2 (ja) 色素増感太陽電池モジュール及びその製造方法
JP6573497B2 (ja) 光電変換素子
JP6598757B2 (ja) 光電変換素子
JP2018081988A (ja) 光電変換素子
JP6694371B2 (ja) 光電変換素子
EP3223288B1 (en) Dye-sensitized photoelectric conversion element
JP6722769B2 (ja) 光電変換素子
JP5380619B1 (ja) 色素増感太陽電池素子
JP2021044525A (ja) 光電変換素子
JP6718322B2 (ja) 光電変換素子
JP2021150345A (ja) 光電変換素子及びその製造方法
JP6539081B2 (ja) 光電変換素子
JP5945012B2 (ja) 色素増感太陽電池素子
JP2014053111A (ja) 色素増感太陽電池モジュール
JP2019195019A (ja) 光電変換素子
JP2017028095A (ja) 光電変換素子
JP2017034197A (ja) 光電変換素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190610

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190717

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191001

R151 Written notification of patent or utility model registration

Ref document number: 6598757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250