WO2017022709A1 - Fracture detection device - Google Patents

Fracture detection device Download PDF

Info

Publication number
WO2017022709A1
WO2017022709A1 PCT/JP2016/072512 JP2016072512W WO2017022709A1 WO 2017022709 A1 WO2017022709 A1 WO 2017022709A1 JP 2016072512 W JP2016072512 W JP 2016072512W WO 2017022709 A1 WO2017022709 A1 WO 2017022709A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
rope
fluctuation
sensor
detection unit
Prior art date
Application number
PCT/JP2016/072512
Other languages
French (fr)
Japanese (ja)
Inventor
純一 饗場
太陽 文屋
博行 村上
大輔 中澤
大樹 福井
政彦 肥田
Original Assignee
三菱電機ビルテクノサービス株式会社
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機ビルテクノサービス株式会社, 三菱電機株式会社 filed Critical 三菱電機ビルテクノサービス株式会社
Priority to JP2017533053A priority Critical patent/JP6436238B2/en
Priority to DE112016003550.0T priority patent/DE112016003550T5/en
Priority to KR1020187001289A priority patent/KR102028293B1/en
Priority to CN201680044980.2A priority patent/CN107922153B/en
Publication of WO2017022709A1 publication Critical patent/WO2017022709A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/12Checking, lubricating, or cleaning means for ropes, cables or guides
    • B66B7/1207Checking means
    • B66B7/1215Checking means specially adapted for ropes or cables

Definitions

  • This invention relates to a break detection device.
  • an elevator car is suspended from a hoistway by a main rope.
  • the main rope is wound around a pulley such as a driving sheave of the hoist.
  • the main rope gradually deteriorates due to repeated bending deformation.
  • the strands constituting the main rope break.
  • the strand in which the strands are twisted may break.
  • the breakage of the strands or the breakage of the strand also occurs when a foreign object is caught between the main rope and the pulley.
  • the broken wire or strand protrudes from the surface of the main rope. For this reason, if the elevator is operated in a state where the strands or strands are broken, the broken strands or strands may come into contact with the equipment provided in the hoistway.
  • Patent Documents 1 and 2 describe an elevator apparatus.
  • a rope guide is provided on the driving sheave of the hoisting machine. Further, the vibration of the rope guide is detected by a sensor. Based on the vibration detected by the sensor, it is detected that the strand or the strand is broken.
  • a sensor for detecting a rope abnormality is provided in the vicinity of the driving sheave.
  • the sensor includes a detection member that is displaced by contact with a broken strand or strand.
  • the range through which the main rope passes (contacts) is predetermined for each pulley. For example, a certain range of the main rope passes through the drive sheave. The portion that passes through the drive sheave does not necessarily pass through the suspended suspension wheel. For this reason, if it is going to detect the break of a strand or the break of a strand using the sensor described in patent documents 1 or 2, it is necessary to attach a sensor near the plurality of pulleys around which the main rope was wound. For example, when a sensor is mounted in the vicinity of a suspension car of a counterweight, a signal line must be laid between the counterweight and the control device.
  • the break detection device includes a first sensor whose output signal fluctuates when vibration generated in the rope reaches the first position of the rope, and when vibration generated in the rope reaches the second position of the rope. Based on the second sensor whose output signal fluctuates, the output signal from the first sensor, and the output signal from the second sensor, the vibration generated in the rope reaches the second position after reaching the first position.
  • a break detection device includes a sensor in which an output signal varies when vibration generated in a main rope of an elevator reaches the first position of the main rope, and a variation detection unit that detects variation in the output signal from the sensor. And a variation determination unit that determines whether or not the variation detected by the variation detection unit exceeds a threshold, and the sensor detects the maximum variation when the variation determination unit determines that the variation exceeds the threshold.
  • a car position detection unit for detecting a car position at the time, and a break determination unit for determining whether or not a break portion exists in the main rope based on a plurality of car positions detected by the car position detection unit. .
  • the break detection device can detect a break position of a strand or a strand with a simple configuration.
  • the occurrence of breakage of the strands or strands can be detected with a simple configuration.
  • FIG. It is a figure for demonstrating the function of the fracture
  • FIG. 1 is a diagram schematically illustrating the configuration of an elevator apparatus. First, the configuration of the elevator apparatus will be described with reference to FIG.
  • the car 1 moves up and down the hoistway 2.
  • the hoistway 2 is, for example, a space formed in a building and extending vertically.
  • the counterweight 3 moves up and down the hoistway 2.
  • the car 1 and the counterweight 3 are suspended from the hoistway 2 by the main rope 4.
  • the roping method for suspending the car 1 and the counterweight 3 is not limited to the example shown in FIG.
  • the car 1 and the counterweight 3 may be suspended from the hoistway 2 by 1: 1 roping.
  • an example in which the car 1 and the counterweight 3 are suspended by 2: 1 roping will be specifically described.
  • One end of the main rope 4 is supported by the fixed body of the hoistway 2.
  • one end of the main rope 4 is supported by a fixed body provided at the top of the hoistway 2.
  • the main rope 4 extends downward from one end.
  • the main rope 4 is wound around the suspension wheel 5, the suspension vehicle 6, the return wheel 7, the driving sheave 8, the return wheel 9, and the suspension wheel 10 sequentially from one end side.
  • the main rope 4 extends upward from the suspension wheel 10.
  • the other end of the main rope 4 is supported by the fixed body of the hoistway 2.
  • the other end of the main rope 4 is supported by a fixed body provided at the top of the hoistway 2.
  • one end of the main rope 4 that is close to the car 1 is referred to as a car-side terminal.
  • the other end close to the counterweight 3 is called a weight side terminal.
  • the hanging car 5 and the hanging car 6 are provided in the car 1.
  • the suspension vehicle 5 and the suspension vehicle 6 are installed, for example, in a rotatable state at the lower part of the car floor.
  • the return wheel 7 and the return wheel 9 are installed in a rotatable state at the top of the hoistway 2, for example.
  • the driving sheave 8 is provided in the hoisting machine 11.
  • the hoisting machine 11 is provided in the pit of the hoistway 2, for example.
  • the suspension vehicle 10 is provided on the counterweight 3.
  • the suspension vehicle 10 is installed in a rotatable state on an upper portion of a frame that supports a weight, for example.
  • the arrangement of the pulley around which the main rope 4 is wound is not limited to the example shown in FIG.
  • the drive sheave 8 may be disposed in the top of the hoistway 2 or in a machine room (not shown) above the hoistway 2.
  • ⁇ Weighing device 12 detects the load of car 1.
  • the scale device 12 detects the load of the car 1 based on, for example, the load applied to the car side terminal of the main rope 4.
  • the scale device 12 outputs a scale signal corresponding to the detected load.
  • the scale signal output from the scale device 12 is input to the control device 13.
  • Accelerometer 14 detects the acceleration of the car 1.
  • the car 1 is guided by a guide rail (not shown) and moves in the vertical direction. For this reason, the accelerometer 14 detects the vertical acceleration of the car 1.
  • the accelerometer 14 is provided in the car 1, for example.
  • the accelerometer 14 outputs an acceleration signal corresponding to the detected acceleration.
  • the acceleration signal output from the accelerometer 14 is input to the control device 13.
  • the hoisting machine 11 has a function of detecting torque.
  • the hoisting machine 11 outputs a torque signal corresponding to the detected torque.
  • the torque signal output from the hoisting machine 11 is input to the control device 13.
  • the governor 15 operates the emergency stop (not shown) to stop the car 1 when the descending speed of the car 1 exceeds the reference speed.
  • the governor 15 includes a governor rope 16, a governor sheave 17, and an encoder 18, for example.
  • the speed control rope 16 is wound around the speed control sheave 17 and moves in conjunction with the car 1.
  • the encoder 18 outputs a rotation signal corresponding to the rotation direction and rotation angle of the governing sheave 17.
  • the rotation signal output from the encoder 18 is input to the control device 13.
  • FIG. 2 is a perspective view showing the return wheel 9.
  • FIG. 3 is a view showing a cross section of the return wheel 9.
  • a stopper 19 is provided on a member that supports the return wheel 9. The stopper 19 prevents the main rope 4 from coming off the groove of the return wheel 9. For example, the stopper 19 faces the portion of the main rope 4 wound around the groove of the return wheel 9 with a slight gap. If there is no abnormality in the main rope 4, the main rope 4 does not contact the stopper 19.
  • FIG. 2 and 3 show a state in which the strands constituting the main rope 4 or the strands in which the strands are twisted are broken.
  • the portion of the main rope 4 where the strands or strands are broken is referred to as a broken portion 4a.
  • rupture part 4a protrudes from the surface of the main rope 4 as shown in FIG.2 and FIG.3. For this reason, when the car 1 moves, the breaking portion 4 a comes into contact with the stopper 19 when passing through the return wheel 9.
  • the suspension wheel 5 the suspension vehicle 6, the return wheel 7, the driving sheave 8, and the suspension wheel 10 are also provided with a detent having the same function as the detent 19.
  • FIG. 4 to 6 are views for explaining a state in which the fracture portion 4a of the main rope 4 moves.
  • FIG. 4 shows a state where the car 1 is stopped at the lowest floor landing.
  • FIG. 4 shows an example in which a broken portion 4 a exists between portions of the main rope 4 wound around the suspension vehicle 5 from the car-side terminal. In a state where the car 1 is stopped at the landing on the lowermost floor, the breaking portion 4a exists in the vicinity of the suspension wheel 5.
  • FIG. 6 shows a state where the car 1 is stopped at the landing on the top floor.
  • FIG. 6 shows an example in which a broken portion 4 a exists in a portion of the main rope 4 disposed between the return wheel 7 and the drive sheave 8.
  • the broken portion 4 a exists in the vicinity of the return wheel 7. That is, when the car 1 moves from the lowest floor landing to the top floor landing, the breaking portion 4a sequentially passes through the suspension car 5, the suspension car 6, and the return wheel 7. Even if the car 1 moves from the lowest floor landing to the top floor landing, the breaking portion 4a does not pass through the driving sheave 8, the return wheel 9, and the suspension wheel 10.
  • FIG. 5 shows a state where the car 1 is moving from the lowest floor to the top floor. Specifically, FIG. 5 shows a state when the fractured portion 4 a is passing through the suspension wheel 5. The breaking portion 4 a contacts the stopper when passing through the suspension wheel 5.
  • FIG. 7 and 8 are diagrams showing sensor signal output. 7 and 8, (a) shows the position of the car 1 when the car 1 travels between the positions P from the lowest floor.
  • the waveform shown in FIG. 7 and FIG. 8A is acquired based on, for example, a rotation signal from the encoder 18.
  • FIG. 7 and 8 shows the loading load of the car 1.
  • the waveform shown in FIG. 7 and FIG. 8B is a waveform of a scale signal output from, for example, the scale device 12 when the load of the car 1 is w.
  • C) of FIG.7 and FIG.8 shows the torque of the winding machine 11.
  • FIG. 7 and FIG. 8C are output from the hoisting machine 11 when the maximum torque when the car 1 moves from the lowest floor to the position P is T q1 and the minimum torque is ⁇ T q2. It is the waveform of the torque signal made.
  • FIG. 7 and FIG. 8D show the vertical acceleration of the car 1.
  • the waveforms shown in FIG. 7 and FIG. 8D show the acceleration signal output from the accelerometer 14 when the car 1 moves from the lowest floor to the position P with the maximum acceleration a 1 and the maximum deceleration a 2 . It is a waveform.
  • FIG. 7 shows an example of a waveform when the main rope 4 does not have the fracture portion 4a.
  • FIG. 8 there are breaks 4a in the main ropes 4 shows an example of the waveform as it passes through the pulley is broken portion 4a when the car 1 moves between the positions P 2 from the position P 1.
  • the breaking part 4a contacts the stopper when passing through the pulley. Thereby, when the fracture
  • FIG. When the car side terminal of the main rope 4 is displaced, the scale signal output from the scale device 12 is affected. For this reason, when vibration occurs in the main rope 4, the scale signal from the scale device 12 varies.
  • the torque signal output from the hoisting machine 11 is affected. For this reason, when vibration occurs in the main rope 4, the torque signal from the hoisting machine 11 varies. Further, when the portion of the main rope 4 wound around the suspension vehicle 5 or the portion wound around the suspension vehicle 6 is displaced, the acceleration signal output from the accelerometer 14 is affected. For this reason, when vibration occurs in the main rope 4, the acceleration signal from the accelerometer 14 varies.
  • FIG. 9 is an enlarged view of a main part of FIG.
  • FIG. 9B is an enlarged view of the waveform from time t 1 to time t 2 in FIG. 8B.
  • (C) in FIG. 9 is an enlarged view of a waveform from time t 1 to time t 2 of FIG. 8 (c).
  • FIG. 9 shows an example in which the rupture portion 4a exists between the portions of the main rope 4 wound around the drive sheave 8 from the car side terminal when the rupture portion 4a comes into contact with the stopper. Further, FIG. 9 shows that the length of the main rope 4 from the car-side end to the breaking portion 4a when the breaking portion 4a comes into contact with the stopper is from the portion wound around the driving sheave 8 to the breaking portion 4a. An example shorter than the length of the main rope 4 is shown.
  • rupture part 4a contacts a come-off stop propagates toward the cage
  • the length of the main rope 4 from the car-side end to the breaking portion 4a is shorter than the length of the main rope 4 from the portion wound around the drive sheave 8 to the breaking portion 4a. For this reason, the fluctuation component of the scale signal due to the vibration appears earlier than the fluctuation component of the torque signal.
  • FIG. 9 shows an example in which the fluctuation due to the vibration appears in the torque signal after the time ⁇ t has elapsed since the fluctuation signal appears in the scale signal.
  • FIG. 10 is a diagram showing a configuration example of the breakage detection apparatus according to Embodiment 1 of the present invention.
  • FIG. 11 is a diagram for explaining the function of the breakage detection apparatus shown in FIG.
  • FIG. 11A shows a state in which the main rope 4 shown in FIG. 1 is extended in a straight line.
  • FIGS. 11B to 11D show the positions of the pulleys with respect to the main rope 4.
  • a pulley indicated by a double circle is a fixed pulley.
  • a pulley indicated by a normal circle is a moving pulley.
  • FIG. 11B shows the position of each pulley when the car 1 is stopped at the landing on the lowest floor.
  • FIG. 11C shows the position of each pulley when the car 1 is stopped at the landing on the top floor.
  • a black circle shows the position of each pulley when the cage
  • FIG. 11 shows the position of each pulley when the fracture
  • FIG. The breaking portion 4 a contacts the stopper when passing through the suspension wheel 5.
  • the main rope 4 is vibrated. The vibration generated in the main rope 4 propagates from the generation position toward the car side terminal and the weight side terminal of the main rope 4.
  • the control device 13 includes, for example, a fluctuation detection unit 20, a time detection unit 21, a position detection unit 22, a distance calculation unit 23, a fluctuation determination unit 24, a car position detection unit 25, a break determination unit 26, an operation control unit 27, and a notification unit 28. Is provided.
  • FIG. 12 is a flowchart showing an operation example of the breakage detection apparatus according to Embodiment 1 of the present invention.
  • the fluctuation detection unit 20 detects a fluctuation of the sensor signal (S101).
  • S101 sensor signal
  • the fluctuation detection unit 20 detects a fluctuation of the scale signal.
  • variation detection part 20 detects the fluctuation
  • FIG. 13 is a diagram for explaining an example of the function of the fluctuation detection unit 20.
  • the fluctuation detector 20 calculates, for example, a differential value u of the scale signal. Thereby, the high frequency component of the scale signal is extracted. Next, the fluctuation detecting unit 20 calculates a square integral value of the calculated differential value u. Thereby, the extracted high frequency component is amplified. The fluctuation detection unit 20 performs the same process on the torque signal. The fluctuation detection unit 20 calculates, for example, a square integral value of the differential value u of the torque signal.
  • the method for detecting the fluctuation of the sensor signal is not limited to the above example.
  • the fluctuation detection unit 20 may detect fluctuations in the sensor signal by other methods.
  • the time detection unit 21 detects the time ⁇ t described with reference to FIG. 9 (S102). In the example shown in the present embodiment, the time detector 21 detects the time ⁇ t based on the scale signal and the torque signal.
  • the scale signal fluctuates when the vibration generated in the main rope 4 reaches the support position (first position) of the car-side terminal of the main rope 4.
  • the torque signal fluctuates when the vibration generated in the main rope 4 reaches a position (second position) where the main rope 4 is wound around the drive sheave 8.
  • the vibration generated in the main rope 4 is at the first position for the time ⁇ t. This corresponds to the time taken from reaching the second position.
  • the time detection unit 21 detects, for example, a difference between the time when the change occurs in the scale signal and the time when the change occurs in the torque signal as the time ⁇ t.
  • the time detection unit 21 detects the time ⁇ t based on the change in the scale signal detected by the change detection unit 20 and the change in the torque signal.
  • the position detection unit 22 detects the position of the broken portion 4a of the main rope 4 (S103).
  • the position detection unit 22 detects the position of the breaking portion 4a based on the distance between the first position and the second position on the main rope 4 and the time ⁇ t detected by the time detection unit 21.
  • the time ⁇ t can be obtained by the following equation.
  • X 1 is a distance in the main ropes 4 to the first position from the generation position of the vibration.
  • X 1 is a length of the main ropes 4 to the supporting position of the breaking portion 4a Karakago terminal.
  • X 2 is a distance in the main ropes 4 to the second position from the generation position of the vibration.
  • X 2 is the length of the main ropes 4 from the broken part 4a to wound around a position on the drive sheave 8.
  • X 1 and X 2 are distances on the main rope 4 when vibration occurs in the main rope 4, that is, when the fracture portion 4 a comes into contact with the stopper.
  • v is the speed of vibration propagating through the main rope 4.
  • L is the distance on the main rope 4 from the first position to the second position.
  • L X 1 + X 2 .
  • the distance on the main rope 4 is expressed as “rope distance”.
  • the speed v is known. Therefore, if the time ⁇ t and the rope distance L are known, the vibration generation position, that is, the position of the fracture portion 4a can be specified.
  • the first position is a support position of the car-side terminal of the main rope 4.
  • the second position is a position where the main rope 4 is wound around the driving sheave 8.
  • the main rope 4 is wound around a suspension wheel 5 and a suspension wheel 6 which are moving pulleys.
  • the rope distance L changes according to the position (height) of the suspension vehicle 5 and the suspension vehicle 6, that is, the position (height) of the car 1.
  • the distance calculation unit 23 calculates the rope distance L based on the positions of the suspension vehicle 5 and the suspension vehicle 6, that is, the position of the car 1.
  • the distance calculation unit 23 calculates the position of the car 1 based on, for example, a rotation signal from the encoder 18.
  • the position detector 22 calculates the rope distance X 1 based on the rope distance L calculated by the distance calculator 23 and the time ⁇ t detected by the time detector 21.
  • the rope distance L may be constant depending on the sensor signal employed. In such a case, it is not necessary to provide the distance calculation unit 23 in the control device 13.
  • the position of the break portion 4a can be detected with a simple configuration.
  • FIG. 14 is a flowchart showing another operation example of the breakage detection apparatus. For example, the operation flow shown in FIG. 14 is performed in parallel with the operation flow shown in FIG.
  • the fluctuation detection unit 20 detects fluctuations in the sensor signal.
  • the fluctuation detection unit 20 calculates, for example, a square integral value of the differential value u of the scale signal.
  • variation detection part 20 calculates the square integral value of the differential value u of a torque signal, for example.
  • the fluctuation determination unit 24 determines whether or not the fluctuation detected by the fluctuation detection unit 20 exceeds a threshold value (S112).
  • a threshold for comparison with the fluctuation detected by the fluctuation detector 20 is stored in the control device 13 in advance. If the fluctuation detected by the fluctuation detector 20 exceeds the threshold and is not determined by the fluctuation determiner 24, the operation controller 27 continues normal operation (S116).
  • the car position detection unit 25 detects the car position when the sensor detects the maximum fluctuation under a certain condition. Is detected (S113).
  • the break determination unit 26 determines whether or not the break portion 4a exists in the main rope 4 (S114).
  • the break determination unit 26 performs the above determination based on a plurality of car positions detected by the car position detection unit 25.
  • the operation control unit 27 continues the normal operation (S116).
  • the break determination unit 26 determines, for example, that the break portion 4a exists in the main rope 4 when a plurality of car positions detected by the car position detection unit 25 are within a certain range (reference range) ( Yes in S114).
  • the reference range is set to a range in which the car position can be regarded as the same position, for example.
  • the operation control unit 27 stops the car 1 at the nearest floor (S115).
  • the operation control unit 27 may perform other emergency operations.
  • the reporting part 28 will report to the exterior (S115). For example, the reporting unit 28 reports to the elevator maintenance company information indicating that the broken portion 4a exists in the main rope 4 and information on the position of the broken portion 4a detected by the position detecting unit 22.
  • FIG. 15 is a diagram for explaining an example of the break determination function of the control device 13.
  • the car position detection unit 25 detects the car position when the maximum value is detected among the values u 2 obtained by squaring the differential value u of the sensor signal, for example.
  • the car position detection unit 25 performs the above detection based on the value u 2 calculated by the fluctuation detection unit 20 and the rotation signal input from the encoder 18. Also, car position detection unit 25, the square integral value of the differential value u of the sensor signal is determined by a variation determination unit 24 exceeds the threshold value, the controller your location or value u 2 becomes maximum at the time 13 is stored.
  • the change determination unit 24 determines that the square integral value of the differential value u of the sensor signal exceeds the threshold value, the sensor is at its maximum between the last stop of the car 1 at the reference floor and the point The position of the car when the change (value u 2 ) is detected is newly stored in the control device 13.
  • the break determination unit 26 determines whether or not the break portion 4 a has occurred in the main rope 4 based on the car position stored in the control device 13. The break determination unit 26 determines, for example, that the break portion 4a exists in the main rope 4 if a certain number or more of the car positions stored in the control device 13 are within the reference range. Conditions for determining the presence of the fracture portion 4a are set as appropriate.
  • the break detection device has the above-described configuration, it can be detected with a simple configuration that the break portion 4a has occurred in the main rope 4.
  • the fluctuation detection unit 20 does not calculate the square integral value of the differential value u of the sensor signal while the car 1 is stopped.
  • the time detection unit 21 performs processing necessary for time detection only when the car 1 is moving. With this configuration, the load on the control device 13 can be reduced.
  • Embodiment 2 FIG. In the first embodiment, the example in which the fluctuation detection unit 20 calculates the square integral value of the differential value u of the sensor signal has been described. In the present embodiment, an example will be described in which the fluctuation detection unit 20 detects the fluctuation of the sensor signal by another method.
  • FIG. 16 is a diagram for explaining an example of the function of the fluctuation detection unit 20.
  • FIG. 17 is a diagram for explaining an example of the break determination function of the control device 13.
  • the configuration and function of the break detection device not disclosed in the present embodiment are the same as the configuration and function disclosed in the first embodiment.
  • the hoisting machine 11 in the present embodiment includes an encoder 29 as shown in FIG.
  • the encoder 29 outputs a rotation signal corresponding to the rotation direction and rotation angle of the drive sheave 8.
  • the rotation signal output from the encoder 29 is input to the control device 13.
  • the fluctuation detection unit 20 calculates the vertical acceleration of the car 1 based on the rotation signal output from the encoder 29 of the hoisting machine 11.
  • the fluctuation detection unit 20 may perform the above calculation using an equation of motion expressing the rigidity of the main rope 4 and the dynamic characteristics of the elevator.
  • the fluctuation detection unit 20 detects the fluctuation of the acceleration signal output from the accelerometer 14 by comparing the acceleration calculated using the rotation signal output from the encoder 29 with the acceleration signal from the accelerometer 14.
  • the hoisting machine 11 includes an electric motor for driving the driving sheave 8.
  • the electric motor is controlled so as to cancel out speed fluctuations. Due to the effect of such speed control, the fluctuation component appearing in the rotation signal from the encoder 29 becomes smaller than the fluctuation component appearing in the acceleration signal from the accelerometer 14. As shown in FIG. 16, the fluctuation of the acceleration signal output from the accelerometer 14 is detected by obtaining the difference e between the acceleration calculated using the rotation signal output from the encoder 29 and the acceleration signal from the accelerometer 14. be able to.
  • the fluctuation detecting unit 20 calculates the vertical acceleration of the car 1 using the scale signal from the scale device 12.
  • the fluctuation detection unit 20 detects the fluctuation of the scale signal output from the scale device 12 by comparing the acceleration calculated using the rotation signal output from the encoder 29 and the acceleration calculated using the scale signal. Due to the effect of speed control by the hoisting machine 11, the fluctuation component appearing in the rotation signal from the encoder 29 is smaller than the fluctuation component appearing in the scale signal from the scale device 12. By obtaining a difference e between the acceleration calculated using the rotation signal output from the encoder 29 and the acceleration calculated using the scale signal, the fluctuation of the scale signal output from the scale device 12 can be detected.
  • the time detection unit 21 detects the time ⁇ t based on the acceleration signal from the accelerometer 14 and the scale signal from the scale device 12.
  • the scale signal fluctuates when the vibration generated in the main rope 4 reaches the support position (first position) of the car-side terminal of the main rope 4.
  • the acceleration signal fluctuates when the vibration generated in the main rope 4 reaches a position (second position) where the main rope 4 is wound around the suspension vehicle 5 or the suspension vehicle 6.
  • the time detection unit 21 detects, for example, the difference between the time when the acceleration signal fluctuates and the time when the fluctuation signal fluctuates as the time ⁇ t.
  • the time detection unit 21 detects the time ⁇ t based on the change in the acceleration signal detected by the change detection unit 20 and the change in the scale signal.
  • the distance calculation unit 23 calculates the rope distance between the first position and the second position.
  • the position detection unit 22 detects the position of the breaking portion 4 a based on the rope distance L calculated by the distance calculation unit 23 and the time ⁇ t detected by the time detection unit 21.
  • the rope distance L may be constant depending on the sensor signal employed. In such a case, it is not necessary to provide the distance calculation unit 23 in the control device 13.
  • the position of the break portion 4a can be detected with a simple configuration. This is particularly effective in a 2: 1 roping type elevator apparatus in which a large number of pulleys are used.
  • the car position detection unit 25 detects the car position when the maximum value among the differences e is detected.
  • the car position detection unit 25 performs the above detection based on the difference e calculated by the variation detection unit 20 and the rotation signal input from the encoder 18.
  • the car position detection unit 25 causes the control device 13 to store the car position at which the difference e is maximum.
  • the fluctuation detection by the fluctuation detection unit 20 and the car position detection by the car position detection unit 25 are initialized.
  • the difference e exceeds the threshold
  • the change is determined by the change determination unit 24
  • the sensor detects the maximum change (difference e) between the time when the car 1 was last stopped on the reference floor and until that time.
  • the car position is newly stored in the control device 13.
  • the break determination unit 26 determines whether or not the break portion 4 a has occurred in the main rope 4 based on the car position stored in the control device 13. The break determination unit 26 determines, for example, that the break portion 4a exists in the main rope 4 if a certain number or more of the car positions stored in the control device 13 are within the reference range. Conditions for determining the presence of the fracture portion 4a are set as appropriate.
  • the subsequent sensor signal fluctuation detection is performed only in the peripheral section including the car position stored in the control device 13. May be.
  • Embodiment 3 FIG. In Embodiment 1 and 2, the example which determines the presence or absence of the fracture
  • an example of an emergency operation performed after the presence of the fracture portion 4a is detected will be described.
  • the control device 13 performs a diagnostic operation for reconfirming that the broken portion 4a exists in the main rope 4 on the condition that the inside of the car 1 is unmanned.
  • FIG. 18 is a flowchart showing an operation example of the breakage detection apparatus according to Embodiment 3 of the present invention.
  • the processes in S101 and S112 to S116 in FIG. 18 are the same as the processes disclosed in the first or second embodiment. For this reason, detailed description is omitted as appropriate.
  • the fluctuation detection unit 20 detects a fluctuation of the sensor signal (S101).
  • the fluctuation determination unit 24 determines whether or not the fluctuation detected by the fluctuation detection unit 20 exceeds a threshold value (S112). If the fluctuation detected by the fluctuation detector 20 exceeds the threshold and is not determined by the fluctuation determiner 24, the operation controller 27 continues normal operation (S116).
  • the car position detection unit 25 detects the car position when the sensor detects the maximum fluctuation under a certain condition. Is detected (S113).
  • the break determination unit 26 determines whether or not the break portion 4a exists in the main rope 4 (S114).
  • the break determination unit 26 performs the above determination based on, for example, a plurality of car positions detected by the car position detection unit 25.
  • the operation control unit 27 continues the normal operation (S116). For example, when the plurality of car positions detected by the car position detection unit 25 are within the reference range, the break determination unit 26 determines that the main rope 4 has the break part 4a (Yes in S114). .
  • the operation control unit 27 stops the car 1 at the nearest floor.
  • the operation control unit 27 opens the door when the car 1 is stopped at the nearest floor.
  • the operation control unit 27 makes an announcement to prompt passengers in the car 1 to get off the car 1 (S127).
  • the operation control unit 27 determines whether or not the car 1 is unattended (S128). For example, the operation control unit 27 performs the determination of S128 based on a scale signal from the scale device 12. The operation control unit 27 may make the above determination based on a signal from another device. For example, a camera is installed in the car 1. The operation control unit 27 may determine whether or not the car 1 is unattended based on the image signal from the camera. If it is not possible to determine that the interior of the car 1 is unattended, the operation control unit 27 makes an announcement for prompting the passenger to exit the car 1 (S127).
  • the operation control unit 27 determines that the car 1 is unmanned (Yes in S128). When it is determined that the car 1 is unattended, the operation control unit 27 closes the door and performs a diagnostic operation (S129). In the diagnostic operation, for example, the car 1 is run and reciprocated once between the lowest floor and the highest floor. In the diagnostic operation, the car 1 may reciprocate a plurality of times from the lowest floor to the highest floor.
  • the break determination unit 26 determines whether or not the break portion 4a exists in the main rope 4 (S1210). If the break determination unit 26 does not determine that the broken portion 4a exists in the main rope 4 (No in S1210), the operation control unit 27 ends the diagnostic operation and returns to the normal operation (S1211).
  • the break determining unit 26 determines that the main rope 4 has the broken part 4a (Yes in S1210). .
  • the operation control unit 27 stops the car 1 at the nearest floor.
  • the reporting part 28 will report to the exterior (S115). For example, the reporting unit 28 reports to the elevator maintenance company information indicating that the broken portion 4a exists in the main rope 4 and information on the position of the broken portion 4a detected by the position detecting unit 22.
  • the detection accuracy of the break portion 4a generated in the main rope 4 can be improved.
  • the fluctuation of the sensor signal also occurs when a passenger in the car 1 moves.
  • the diagnostic operation for reconfirming the existence of the breakage portion 4a is performed in an unmanned state in the car 1, it is possible to prevent erroneous detection due to passenger movement.
  • the round trip of the car 1 performed in the diagnostic operation is not limited between the lowest floor and the highest floor.
  • the position of the breaking portion 4a whose presence is detected in S114 may be specified by the position detection unit 22, and the car 1 may be reciprocated so that the pulley passes through the specified position.
  • the car 1 may be reciprocated only between specific floors where the pulley passes through the breaking portion 4a. With such a configuration, the time required for the diagnostic operation can be shortened.
  • the scale device 12, the torque detection function of the hoisting machine 11, and the accelerometer 14 are exemplified as sensors whose output signals fluctuate due to vibration generated in the main rope 4.
  • the sensor is not limited to these.
  • a device similar to the scale device 12 may be installed at the weight side terminal of the main rope 4.
  • the main rope 4 of the elevator is exemplified as a rope for detecting the position of the fractured portion and its occurrence.
  • the rope is not limited to this. For example, you may detect the break of the other rope currently used by the elevator with the break detection apparatus of the said structure. Moreover, you may implement the break detection of the rope used except the elevator by the break detection apparatus of the said structure.
  • FIG. 19 is a diagram illustrating a hardware configuration of the control device 13.
  • the control device 13 includes a circuit including, for example, an input / output interface 30, a processor 31, and a memory 32 as hardware resources.
  • the control device 13 implements the functions of the units 20 to 28 by executing the program stored in the memory 32 by the processor 31. Some or all of the functions of the units 20 to 28 may be realized by hardware.
  • the functions of the units 20 to 28 may be realized by executing a program on a computer on the cloud.
  • the results obtained by the units 20 to 28 are transmitted to the control device 13 through a network and communication.
  • the control device 13 may perform a necessary operation based on the received information.
  • the break detection device according to the present invention can be applied to a device using a rope.

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)

Abstract

This fracture detection device is provided with a first sensor, second sensor, time detection unit (21), and position detection unit (22). On the basis of an output signal from the first sensor and an output signal from the second sensor, the time detection unit (21) detects a period of time from a time when vibration generated in a rope reached a first position to a time when the vibration reached a second position. On the basis of the rope distance between the first position and the second position, and the period of time detected by means of the time detection unit (21), the position detection unit (22) detects the position of a fractured part of the rope.

Description

破断検出装置Break detection device
 この発明は破断検出装置に関する。 This invention relates to a break detection device.
 エレベーター装置には種々のロープが使用される。例えば、エレベーターのかごは、主ロープによって昇降路に吊り下げられる。主ロープは、巻上機の駆動綱車といった滑車に巻き掛けられる。主ロープは、繰り返しの曲げ変形を受けることによって次第に劣化する。主ロープが劣化すると、主ロープを構成する素線が破断する。素線が縒り合わされたストランドが破断することもある。また、素線の破断或いはストランドの破断は、主ロープと滑車との間に異物が噛み込まれることによっても発生する。 ¡Various ropes are used for the elevator system. For example, an elevator car is suspended from a hoistway by a main rope. The main rope is wound around a pulley such as a driving sheave of the hoist. The main rope gradually deteriorates due to repeated bending deformation. When the main rope deteriorates, the strands constituting the main rope break. The strand in which the strands are twisted may break. Moreover, the breakage of the strands or the breakage of the strand also occurs when a foreign object is caught between the main rope and the pulley.
 破断した素線或いはストランドは、主ロープの表面から突出する。このため、素線或いはストランドが破断した状態でエレベーターの運転が行われると、破断した素線或いはストランドが昇降路に設けられた機器に接触する恐れがある。 The broken wire or strand protrudes from the surface of the main rope. For this reason, if the elevator is operated in a state where the strands or strands are broken, the broken strands or strands may come into contact with the equipment provided in the hoistway.
 特許文献1及び2に、エレベーター装置が記載されている。特許文献1に記載されたエレベーター装置では、巻上機の駆動綱車にロープガイドが設けられる。また、ロープガイドの振動がセンサによって検出される。センサが検出した振動に基づいて、素線或いはストランドが破断したことが検出される。 Patent Documents 1 and 2 describe an elevator apparatus. In the elevator apparatus described in Patent Document 1, a rope guide is provided on the driving sheave of the hoisting machine. Further, the vibration of the rope guide is detected by a sensor. Based on the vibration detected by the sensor, it is detected that the strand or the strand is broken.
 特許文献2に記載されたエレベーター装置では、駆動綱車の近傍にロープの異常を検出するためのセンサが設けられる。センサは、破断した素線或いはストランドに接触することによって変位する検出用の部材を備える。 In the elevator apparatus described in Patent Document 2, a sensor for detecting a rope abnormality is provided in the vicinity of the driving sheave. The sensor includes a detection member that is displaced by contact with a broken strand or strand.
日本特許第5203339号公報Japanese Patent No. 5203339 日本特許第4896692号公報Japanese Patent No. 4,896,692
 エレベーター装置では、各滑車に対し、主ロープが通過(接触)する範囲が予め決まっている。例えば、主ロープのうち、ある範囲の部分が駆動綱車を通過する。駆動綱車を通過する部分がつり合いおもりの吊り車を通過するとは限らない。このため、特許文献1或いは2に記載されたセンサを用いて素線の破断或いはストランドの破断を検出しようとすると、主ロープが巻き掛けられた複数の滑車の近傍にセンサを取り付ける必要がある。例えば、つり合いおもりの吊り車の近傍にセンサを取り付ける場合は、つり合いおもりから制御装置の間に信号線を敷設しなければならない。多数のセンサが必要になるとともに各センサから信号線を引き出さなければならず、構成が複雑になるといった問題があった。特に、多数の滑車が使用される2:1ローピング方式のエレベーター装置では、上記問題が顕著になる。 In the elevator apparatus, the range through which the main rope passes (contacts) is predetermined for each pulley. For example, a certain range of the main rope passes through the drive sheave. The portion that passes through the drive sheave does not necessarily pass through the suspended suspension wheel. For this reason, if it is going to detect the break of a strand or the break of a strand using the sensor described in patent documents 1 or 2, it is necessary to attach a sensor near the plurality of pulleys around which the main rope was wound. For example, when a sensor is mounted in the vicinity of a suspension car of a counterweight, a signal line must be laid between the counterweight and the control device. There is a problem that a large number of sensors are required and a signal line has to be drawn from each sensor, resulting in a complicated configuration. In particular, in the 2: 1 roping type elevator apparatus in which a large number of pulleys are used, the above problem becomes significant.
 この発明は、上述のような課題を解決するためになされた。この発明の目的は、簡単な構成によって素線或いはストランドの破断位置を検出できる破断検知装置を提供することである。また、この発明の他の目的は、簡単な構成によって素線或いはストランドの破断の発生を検出できる破断検知装置を提供することである。 This invention has been made to solve the above-described problems. An object of the present invention is to provide a break detection device capable of detecting the break position of a strand or a strand with a simple configuration. Another object of the present invention is to provide a break detection device capable of detecting the occurrence of breakage of a strand or a strand with a simple configuration.
 この発明に係る破断検知装置は、ロープに発生した振動がロープの第1位置に到達した際に出力信号が変動する第1センサと、ロープに発生した振動がロープの第2位置に到達した際に出力信号が変動する第2センサと、第1センサからの出力信号と第2センサからの出力信号とに基づいて、ロープに発生した振動が第1位置に到達してから第2位置に到達するまでの時間を検出する時間検出部と、第1位置及び第2位置のロープ距離と時間検出部によって検出された時間とに基づいて、ロープの破断部の位置を検出する位置検出部と、を備える。 The break detection device according to the present invention includes a first sensor whose output signal fluctuates when vibration generated in the rope reaches the first position of the rope, and when vibration generated in the rope reaches the second position of the rope. Based on the second sensor whose output signal fluctuates, the output signal from the first sensor, and the output signal from the second sensor, the vibration generated in the rope reaches the second position after reaching the first position. A time detection unit for detecting a time until the detection, a position detection unit for detecting the position of the broken portion of the rope based on the rope distances of the first position and the second position and the time detected by the time detection unit, Is provided.
 この発明に係る破断検知装置は、エレベーターの主ロープに発生した振動が主ロープの第1位置に到達した際に出力信号が変動するセンサと、センサからの出力信号の変動を検出する変動検出部と、変動検出部によって検出された変動が閾値を超えるか否かを判定する変動判定部と、変動が閾値を超えると変動判定部によって判定された場合に、最大となる変動をセンサが検出した時のかご位置を検出するかご位置検出部と、かご位置検出部によって検出された複数のかご位置に基づいて、主ロープに破断部が存在するか否かを判定する破断判定部と、を備える。 A break detection device according to the present invention includes a sensor in which an output signal varies when vibration generated in a main rope of an elevator reaches the first position of the main rope, and a variation detection unit that detects variation in the output signal from the sensor. And a variation determination unit that determines whether or not the variation detected by the variation detection unit exceeds a threshold, and the sensor detects the maximum variation when the variation determination unit determines that the variation exceeds the threshold. A car position detection unit for detecting a car position at the time, and a break determination unit for determining whether or not a break portion exists in the main rope based on a plurality of car positions detected by the car position detection unit. .
 この発明に係る破断検知装置であれば、簡単な構成によって素線或いはストランドの破断位置を検出できる。また、簡単な構成によって素線或いはストランドの破断の発生を検出できる。 The break detection device according to the present invention can detect a break position of a strand or a strand with a simple configuration. In addition, the occurrence of breakage of the strands or strands can be detected with a simple configuration.
エレベーター装置の構成を模式的に示す図である。It is a figure which shows the structure of an elevator apparatus typically. 返し車を示す斜視図である。It is a perspective view which shows a return wheel. 返し車の断面を示す図である。It is a figure which shows the cross section of a return wheel. 主ロープの破断部が移動する様子を説明するための図である。It is a figure for demonstrating a mode that the fracture | rupture part of a main rope moves. 主ロープの破断部が移動する様子を説明するための図である。It is a figure for demonstrating a mode that the fracture | rupture part of a main rope moves. 主ロープの破断部が移動する様子を説明するための図である。It is a figure for demonstrating a mode that the fracture | rupture part of a main rope moves. センサ信号の出力を示す図である。It is a figure which shows the output of a sensor signal. センサ信号の出力を示す図である。It is a figure which shows the output of a sensor signal. 図8の要部を拡大した図である。It is the figure which expanded the principal part of FIG. この発明の実施の形態1における破断検出装置の構成例を示す図である。It is a figure which shows the structural example of the fracture | rupture detection apparatus in Embodiment 1 of this invention. 図10に示す破断検出装置の機能を説明するための図である。It is a figure for demonstrating the function of the fracture | rupture detection apparatus shown in FIG. この発明の実施の形態1における破断検出装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the fracture | rupture detection apparatus in Embodiment 1 of this invention. 変動検出部の機能の一例を説明するための図である。It is a figure for demonstrating an example of the function of a fluctuation | variation detection part. 破断検出装置の他の動作例を示すフローチャートである。It is a flowchart which shows the other operation example of a fracture | rupture detection apparatus. 制御装置の破断判定機能の一例を説明するための図である。It is a figure for demonstrating an example of the fracture determination function of a control apparatus. 変動検出部の機能を説明するための図である。It is a figure for demonstrating the function of a fluctuation | variation detection part. 制御装置の破断判定機能の一例を説明するための図である。It is a figure for demonstrating an example of the fracture determination function of a control apparatus. この発明の実施の形態3における破断検出装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the fracture | rupture detection apparatus in Embodiment 3 of this invention. 制御装置のハードウェア構成を示す図である。It is a figure which shows the hardware constitutions of a control apparatus.
 添付の図面を参照し、本発明を説明する。重複する説明は、適宜簡略化或いは省略する。各図において、同一の符号は同一の部分又は相当する部分を示す。 The present invention will be described with reference to the accompanying drawings. The overlapping description will be simplified or omitted as appropriate. In each figure, the same reference numerals indicate the same or corresponding parts.
実施の形態1.
 図1は、エレベーター装置の構成を模式的に示す図である。先ず、図1を参照し、エレベーター装置の構成について説明する。
Embodiment 1 FIG.
FIG. 1 is a diagram schematically illustrating the configuration of an elevator apparatus. First, the configuration of the elevator apparatus will be described with reference to FIG.
 かご1は、昇降路2を上下に移動する。昇降路2は、例えば建物内に形成された上下に延びる空間である。つり合いおもり3は、昇降路2を上下に移動する。かご1及びつり合いおもり3は、主ロープ4によって昇降路2に吊り下げられる。かご1及びつり合いおもり3を吊り下げるためのローピングの方式は、図1に示す例に限定されない。例えば、かご1及びつり合いおもり3を1:1ローピングで昇降路2に吊り下げても良い。以下においては、かご1及びつり合いおもり3を2:1ローピングで吊り下げる例について具体的に説明する。 The car 1 moves up and down the hoistway 2. The hoistway 2 is, for example, a space formed in a building and extending vertically. The counterweight 3 moves up and down the hoistway 2. The car 1 and the counterweight 3 are suspended from the hoistway 2 by the main rope 4. The roping method for suspending the car 1 and the counterweight 3 is not limited to the example shown in FIG. For example, the car 1 and the counterweight 3 may be suspended from the hoistway 2 by 1: 1 roping. Hereinafter, an example in which the car 1 and the counterweight 3 are suspended by 2: 1 roping will be specifically described.
 主ロープ4は、一方の端部が昇降路2の固定体に支持される。例えば、主ロープ4の一方の端部は、昇降路2の頂部に設けられた固定体に支持される。主ロープ4は、一方の端部から下方に延びる。主ロープ4は、一方の端部側から吊り車5、吊り車6、返し車7、駆動綱車8、返し車9及び吊り車10に順次巻き掛けられる。主ロープ4は、吊り車10から上方に延びる。主ロープ4は、他方の端部が昇降路2の固定体に支持される。例えば、主ロープ4の他方の端部は、昇降路2の頂部に設けられた固定体に支持される。 One end of the main rope 4 is supported by the fixed body of the hoistway 2. For example, one end of the main rope 4 is supported by a fixed body provided at the top of the hoistway 2. The main rope 4 extends downward from one end. The main rope 4 is wound around the suspension wheel 5, the suspension vehicle 6, the return wheel 7, the driving sheave 8, the return wheel 9, and the suspension wheel 10 sequentially from one end side. The main rope 4 extends upward from the suspension wheel 10. The other end of the main rope 4 is supported by the fixed body of the hoistway 2. For example, the other end of the main rope 4 is supported by a fixed body provided at the top of the hoistway 2.
 以下の説明では、主ロープ4の端部のうち、かご1に近い上記一方の端部のことをかご側端末という。また、つり合いおもり3に近い上記他方の端部のことをおもり側端末という。 In the following description, one end of the main rope 4 that is close to the car 1 is referred to as a car-side terminal. The other end close to the counterweight 3 is called a weight side terminal.
 吊り車5及び吊り車6は、かご1に備えられる。吊り車5及び吊り車6は、例えばかご床の下部に回転可能な状態で設置される。返し車7及び返し車9は、例えば昇降路2の頂部に回転可能な状態で設置される。駆動綱車8は、巻上機11に備えられる。巻上機11は、例えば昇降路2のピットに設けられる。吊り車10は、つり合いおもり3に備えられる。吊り車10は、例えばおもりを支持する枠の上部に回転可能な状態で設置される。 The hanging car 5 and the hanging car 6 are provided in the car 1. The suspension vehicle 5 and the suspension vehicle 6 are installed, for example, in a rotatable state at the lower part of the car floor. The return wheel 7 and the return wheel 9 are installed in a rotatable state at the top of the hoistway 2, for example. The driving sheave 8 is provided in the hoisting machine 11. The hoisting machine 11 is provided in the pit of the hoistway 2, for example. The suspension vehicle 10 is provided on the counterweight 3. The suspension vehicle 10 is installed in a rotatable state on an upper portion of a frame that supports a weight, for example.
 主ロープ4が巻き掛けられる滑車の配置は、図1に示す例に限定されない。例えば、駆動綱車8は、昇降路2の頂部又は昇降路2の上方の機械室(図示せず)に配置されても良い。 The arrangement of the pulley around which the main rope 4 is wound is not limited to the example shown in FIG. For example, the drive sheave 8 may be disposed in the top of the hoistway 2 or in a machine room (not shown) above the hoistway 2.
 秤装置12は、かご1の積載荷重を検出する。秤装置12は、例えば主ロープ4のかご側端末に掛かる荷重に基づいて、かご1の積載荷重を検出する。秤装置12は、検出した荷重に応じた秤信号を出力する。秤装置12から出力された秤信号は、制御装置13に入力される。 秤 Weighing device 12 detects the load of car 1. The scale device 12 detects the load of the car 1 based on, for example, the load applied to the car side terminal of the main rope 4. The scale device 12 outputs a scale signal corresponding to the detected load. The scale signal output from the scale device 12 is input to the control device 13.
 加速度計14は、かご1の加速度を検出する。かご1は、ガイドレール(図示せず)に案内されて鉛直方向に移動する。このため、加速度計14は、かご1の鉛直方向の加速度を検出する。加速度計14は、例えばかご1に設けられる。加速度計14は、検出した加速度に応じた加速度信号を出力する。加速度計14から出力された加速度信号は、制御装置13に入力される。 Accelerometer 14 detects the acceleration of the car 1. The car 1 is guided by a guide rail (not shown) and moves in the vertical direction. For this reason, the accelerometer 14 detects the vertical acceleration of the car 1. The accelerometer 14 is provided in the car 1, for example. The accelerometer 14 outputs an acceleration signal corresponding to the detected acceleration. The acceleration signal output from the accelerometer 14 is input to the control device 13.
 巻上機11は、トルクを検出する機能を有する。巻上機11は、検出したトルクに応じたトルク信号を出力する。巻上機11から出力されたトルク信号は、制御装置13に入力される。 The hoisting machine 11 has a function of detecting torque. The hoisting machine 11 outputs a torque signal corresponding to the detected torque. The torque signal output from the hoisting machine 11 is input to the control device 13.
 調速機15は、かご1の下降速度が基準速度を超えると、非常止め(図示せず)を動作させてかご1を停止させる。調速機15は、例えば調速ロープ16、調速綱車17及びエンコーダ18を備える。調速ロープ16は、調速綱車17に巻き掛けられ、かご1に連動して移動する。調速ロープ16が移動すると、調速綱車17が回転する。エンコーダ18は、調速綱車17の回転方向及び回転角度に応じた回転信号を出力する。エンコーダ18から出力された回転信号は、制御装置13に入力される。 The governor 15 operates the emergency stop (not shown) to stop the car 1 when the descending speed of the car 1 exceeds the reference speed. The governor 15 includes a governor rope 16, a governor sheave 17, and an encoder 18, for example. The speed control rope 16 is wound around the speed control sheave 17 and moves in conjunction with the car 1. When the speed control rope 16 moves, the speed control sheave 17 rotates. The encoder 18 outputs a rotation signal corresponding to the rotation direction and rotation angle of the governing sheave 17. The rotation signal output from the encoder 18 is input to the control device 13.
 図2は、返し車9を示す斜視図である。図3は、返し車9の断面を示す図である。返し車9を支持する部材に外れ止め19が設けられる。外れ止め19は、返し車9の溝から主ロープ4が外れることを防止する。外れ止め19は、例えば、主ロープ4のうち返し車9の溝に巻き掛けられた部分に僅かな間隙を有して対向する。主ロープ4に異常が発生していなければ、主ロープ4は、外れ止め19に接触しない。 FIG. 2 is a perspective view showing the return wheel 9. FIG. 3 is a view showing a cross section of the return wheel 9. A stopper 19 is provided on a member that supports the return wheel 9. The stopper 19 prevents the main rope 4 from coming off the groove of the return wheel 9. For example, the stopper 19 faces the portion of the main rope 4 wound around the groove of the return wheel 9 with a slight gap. If there is no abnormality in the main rope 4, the main rope 4 does not contact the stopper 19.
 図2及び図3は、主ロープ4を構成する素線或いは素線が縒り合されたストランドが破断した状態を示す。以下の説明では、主ロープ4のうち素線或いはストランドが破断した部分を破断部4aと表記する。破断部4aは、図2及び図3に示すように主ロープ4の表面から突出する。このため、かご1が移動すると、破断部4aは返し車9を通過する際に外れ止め19に接触する。 2 and 3 show a state in which the strands constituting the main rope 4 or the strands in which the strands are twisted are broken. In the following description, the portion of the main rope 4 where the strands or strands are broken is referred to as a broken portion 4a. The fracture | rupture part 4a protrudes from the surface of the main rope 4 as shown in FIG.2 and FIG.3. For this reason, when the car 1 moves, the breaking portion 4 a comes into contact with the stopper 19 when passing through the return wheel 9.
 図2及び図3は、主ロープ4が巻き掛けられた滑車の一例として返し車9を示す。吊り車5、吊り車6、返し車7、駆動綱車8及び吊り車10に対しても、外れ止め19と同様の機能を有する外れ止めが設けられる。 2 and 3 show a return wheel 9 as an example of a pulley around which the main rope 4 is wound. The suspension wheel 5, the suspension vehicle 6, the return wheel 7, the driving sheave 8, and the suspension wheel 10 are also provided with a detent having the same function as the detent 19.
 図4から図6は、主ロープ4の破断部4aが移動する様子を説明するための図である。図4は、かご1が最下階の乗場に停止している状態を示す。図4は、主ロープ4のうちかご側端末から吊り車5に巻き掛けられた部分の間に破断部4aが存在する例を示す。かご1が最下階の乗場に停止している状態では、破断部4aは吊り車5の近傍に存在する。 4 to 6 are views for explaining a state in which the fracture portion 4a of the main rope 4 moves. FIG. 4 shows a state where the car 1 is stopped at the lowest floor landing. FIG. 4 shows an example in which a broken portion 4 a exists between portions of the main rope 4 wound around the suspension vehicle 5 from the car-side terminal. In a state where the car 1 is stopped at the landing on the lowermost floor, the breaking portion 4a exists in the vicinity of the suspension wheel 5.
 図6は、かご1が最上階の乗場に停止している状態を示す。図6は、主ロープ4のうち返し車7から駆動綱車8の間に配置された部分に破断部4aが存在する例を示す。かご1が最上階の乗場に停止している状態では、破断部4aは返し車7の近傍に存在する。即ち、かご1が最下階の乗場から最上階の乗場に移動すると、破断部4aは、吊り車5、吊り車6及び返し車7を順次通過する。かご1が最下階の乗場から最上階の乗場に移動しても、破断部4aは、駆動綱車8、返し車9及び吊り車10を通過しない。 FIG. 6 shows a state where the car 1 is stopped at the landing on the top floor. FIG. 6 shows an example in which a broken portion 4 a exists in a portion of the main rope 4 disposed between the return wheel 7 and the drive sheave 8. In a state where the car 1 is stopped at the landing on the top floor, the broken portion 4 a exists in the vicinity of the return wheel 7. That is, when the car 1 moves from the lowest floor landing to the top floor landing, the breaking portion 4a sequentially passes through the suspension car 5, the suspension car 6, and the return wheel 7. Even if the car 1 moves from the lowest floor landing to the top floor landing, the breaking portion 4a does not pass through the driving sheave 8, the return wheel 9, and the suspension wheel 10.
 図5は、かご1が最下階の乗場から最上階の乗場に移動する途中の状態を示す。具体的に、図5は、破断部4aが吊り車5を通過している時の状態を示す。破断部4aは、吊り車5を通過する際に外れ止めに接触する。 FIG. 5 shows a state where the car 1 is moving from the lowest floor to the top floor. Specifically, FIG. 5 shows a state when the fractured portion 4 a is passing through the suspension wheel 5. The breaking portion 4 a contacts the stopper when passing through the suspension wheel 5.
 図7及び図8は、センサ信号の出力を示す図である。図7及び図8において、(a)はかご1が最下階から位置Pの間を走行した時のかご1の位置を示す。図7及び図8の(a)に示す波形は、例えばエンコーダ18からの回転信号に基づいて取得される。 7 and 8 are diagrams showing sensor signal output. 7 and 8, (a) shows the position of the car 1 when the car 1 travels between the positions P from the lowest floor. The waveform shown in FIG. 7 and FIG. 8A is acquired based on, for example, a rotation signal from the encoder 18.
 図7及び図8において、(b)はかご1の積載荷重を示す。図7及び図8の(b)に示す波形は、かご1の積載荷重がwの時に例えば秤装置12から出力された秤信号の波形である。図7及び図8の(c)は、巻上機11のトルクを示す。図7及び図8の(c)に示す波形は、かご1が最下階から位置Pの間を移動する際の最大トルクがTq1、最小トルクが-Tq2の時に巻上機11から出力されたトルク信号の波形である。図7及び図8の(d)は、かご1の鉛直方向の加速度を示す。図7及び図8の(d)に示す波形は、かご1が最大加速度a、最大減速度aで最下階から位置Pの間を移動する時に加速度計14から出力された加速度信号の波形である。 7 and 8, (b) shows the loading load of the car 1. The waveform shown in FIG. 7 and FIG. 8B is a waveform of a scale signal output from, for example, the scale device 12 when the load of the car 1 is w. (C) of FIG.7 and FIG.8 shows the torque of the winding machine 11. FIG. The waveforms shown in FIG. 7 and FIG. 8C are output from the hoisting machine 11 when the maximum torque when the car 1 moves from the lowest floor to the position P is T q1 and the minimum torque is −T q2. It is the waveform of the torque signal made. FIG. 7 and FIG. 8D show the vertical acceleration of the car 1. The waveforms shown in FIG. 7 and FIG. 8D show the acceleration signal output from the accelerometer 14 when the car 1 moves from the lowest floor to the position P with the maximum acceleration a 1 and the maximum deceleration a 2 . It is a waveform.
 図7は、主ロープ4に破断部4aが存在していない時の波形の例を示す。図8は、主ロープ4に破断部4aが存在し、かご1が位置Pから位置Pの間を移動する時に破断部4aがある滑車を通過する時の波形の例を示す。破断部4aは、滑車を通過する際に外れ止めに接触する。これにより、破断部4aが滑車を通過する際に主ロープ4に振動が発生する。主ロープ4のかご側端末が変位すると、秤装置12から出力される秤信号が影響を受ける。このため、主ロープ4に振動が発生すると、秤装置12からの秤信号に変動が生じる。 FIG. 7 shows an example of a waveform when the main rope 4 does not have the fracture portion 4a. 8, there are breaks 4a in the main ropes 4 shows an example of the waveform as it passes through the pulley is broken portion 4a when the car 1 moves between the positions P 2 from the position P 1. The breaking part 4a contacts the stopper when passing through the pulley. Thereby, when the fracture | rupture part 4a passes a pulley, a vibration generate | occur | produces in the main rope 4. FIG. When the car side terminal of the main rope 4 is displaced, the scale signal output from the scale device 12 is affected. For this reason, when vibration occurs in the main rope 4, the scale signal from the scale device 12 varies.
 同様に、主ロープ4のうち駆動綱車8に巻き掛けられた部分が変位すると、巻上機11から出力されるトルク信号が影響を受ける。このため、主ロープ4に振動が発生すると、巻上機11からのトルク信号に変動が生じる。また、主ロープ4のうち吊り車5に巻き掛けられた部分或いは吊り車6に巻き掛けられた部分が変位すると、加速度計14から出力される加速度信号が影響を受ける。このため、主ロープ4に振動が発生すると、加速度計14からの加速度信号に変動が生じる。 Similarly, when the portion of the main rope 4 wound around the driving sheave 8 is displaced, the torque signal output from the hoisting machine 11 is affected. For this reason, when vibration occurs in the main rope 4, the torque signal from the hoisting machine 11 varies. Further, when the portion of the main rope 4 wound around the suspension vehicle 5 or the portion wound around the suspension vehicle 6 is displaced, the acceleration signal output from the accelerometer 14 is affected. For this reason, when vibration occurs in the main rope 4, the acceleration signal from the accelerometer 14 varies.
 図9は、図8の要部を拡大した図である。図9の(b)は、図8(b)のうち時刻tから時刻tまでの波形を拡大した図である。図9の(c)は、図8(c)のうち時刻tから時刻tまでの波形を拡大した図である。図9は、破断部4aが外れ止めに接触した際に、主ロープ4のうちかご側端末から駆動綱車8に巻き掛けられた部分の間に破断部4aが存在する例を示す。また、図9は、破断部4aが外れ止めに接触した際に、かご側端末から破断部4aまでの主ロープ4の長さが駆動綱車8に巻き掛けられた部分から破断部4aまでの主ロープ4の長さより短い例を示す。 FIG. 9 is an enlarged view of a main part of FIG. FIG. 9B is an enlarged view of the waveform from time t 1 to time t 2 in FIG. 8B. (C) in FIG. 9 is an enlarged view of a waveform from time t 1 to time t 2 of FIG. 8 (c). FIG. 9 shows an example in which the rupture portion 4a exists between the portions of the main rope 4 wound around the drive sheave 8 from the car side terminal when the rupture portion 4a comes into contact with the stopper. Further, FIG. 9 shows that the length of the main rope 4 from the car-side end to the breaking portion 4a when the breaking portion 4a comes into contact with the stopper is from the portion wound around the driving sheave 8 to the breaking portion 4a. An example shorter than the length of the main rope 4 is shown.
 破断部4aが外れ止めに接触することによって主ロープ4に発生した振動は、破断部4aから主ロープ4のかご側端末及びおもり側端末に向かって伝播する。図9に示す例では、かご側端末から破断部4aまでの主ロープ4の長さが駆動綱車8に巻き掛けられた部分から破断部4aまでの主ロープ4の長さより短い。このため、上記振動に起因する秤信号の変動成分はトルク信号の変動成分より早く現れる。図9は、上記振動に起因する変動が秤信号に現れてから時間Δtが経過した後にトルク信号に現れる例を示す。 The vibration which generate | occur | produced in the main rope 4 when the fracture | rupture part 4a contacts a come-off stop propagates toward the cage | basket | car side terminal and weight side terminal of the main rope 4 from the fracture | rupture part 4a. In the example shown in FIG. 9, the length of the main rope 4 from the car-side end to the breaking portion 4a is shorter than the length of the main rope 4 from the portion wound around the drive sheave 8 to the breaking portion 4a. For this reason, the fluctuation component of the scale signal due to the vibration appears earlier than the fluctuation component of the torque signal. FIG. 9 shows an example in which the fluctuation due to the vibration appears in the torque signal after the time Δt has elapsed since the fluctuation signal appears in the scale signal.
 図10は、この発明の実施の形態1における破断検出装置の構成例を示す図である。図11は、図10に示す破断検出装置の機能を説明するための図である。図11の(a)は、図1に示す主ロープ4を一直線状に延ばした状態を示す。図11の(b)から(d)は、主ロープ4に対する各滑車の位置を示す。図11の(b)から(d)において、二重丸で示す滑車は定滑車である。通常の丸で示す滑車は動滑車である。 FIG. 10 is a diagram showing a configuration example of the breakage detection apparatus according to Embodiment 1 of the present invention. FIG. 11 is a diagram for explaining the function of the breakage detection apparatus shown in FIG. FIG. 11A shows a state in which the main rope 4 shown in FIG. 1 is extended in a straight line. FIGS. 11B to 11D show the positions of the pulleys with respect to the main rope 4. In (b) to (d) of FIG. 11, a pulley indicated by a double circle is a fixed pulley. A pulley indicated by a normal circle is a moving pulley.
 具体的に、図11(b)は、かご1が最下階の乗場に停止している時の各滑車の位置を示す。図11(c)は、かご1が最上階の乗場に停止している時の各滑車の位置を示す。図11(c)において、黒丸はかご1が最下階に停止している時の各滑車の位置を示す。かご1が最下階の乗場から最上階の乗場に移動すると、各滑車は、主ロープ4に対し、黒丸から黒丸を始点とする矢印の長さの距離だけ矢印の向きに移動する。 Specifically, FIG. 11B shows the position of each pulley when the car 1 is stopped at the landing on the lowest floor. FIG. 11C shows the position of each pulley when the car 1 is stopped at the landing on the top floor. In FIG.11 (c), a black circle shows the position of each pulley when the cage | basket | car 1 has stopped on the lowest floor. When the car 1 moves from the lowermost landing to the uppermost landing, each pulley moves in the direction of the arrow with respect to the main rope 4 by the distance of the length of the arrow starting from the black circle to the black circle.
 図11の(d)は、主ロープ4の破断部4aが吊り車5を通過する時の各滑車の位置を示す。破断部4aは、吊り車5を通過する際に外れ止めに接触する。破断部4aが外れ止めに接触すると、主ロープ4に振動が発生する。主ロープ4に発生した振動は、その発生位置から主ロープ4のかご側端末及びおもり側端末に向かって伝播する。 (D) of FIG. 11 shows the position of each pulley when the fracture | rupture part 4a of the main rope 4 passes the suspension vehicle 5. FIG. The breaking portion 4 a contacts the stopper when passing through the suspension wheel 5. When the broken portion 4a comes into contact with the stopper, the main rope 4 is vibrated. The vibration generated in the main rope 4 propagates from the generation position toward the car side terminal and the weight side terminal of the main rope 4.
 制御装置13は、例えば変動検出部20、時間検出部21、位置検出部22、距離演算部23、変動判定部24、かご位置検出部25、破断判定部26、動作制御部27及び通報部28を備える。 The control device 13 includes, for example, a fluctuation detection unit 20, a time detection unit 21, a position detection unit 22, a distance calculation unit 23, a fluctuation determination unit 24, a car position detection unit 25, a break determination unit 26, an operation control unit 27, and a notification unit 28. Is provided.
 以下に、図10から図15も参照し、本実施の形態における破断検出装置の機能及び動作について具体的に説明する。図12は、この発明の実施の形態1における破断検出装置の動作例を示すフローチャートである。 Hereinafter, the function and operation of the breakage detection apparatus according to the present embodiment will be specifically described with reference to FIGS. FIG. 12 is a flowchart showing an operation example of the breakage detection apparatus according to Embodiment 1 of the present invention.
 変動検出部20は、センサ信号の変動を検出する(S101)。本実施の形態では、秤信号及びトルク信号をセンサ信号として採用する例について説明する。即ち、変動検出部20は、秤信号の変動を検出する。また、変動検出部20は、トルク信号の変動を検出する。図13は、変動検出部20の機能の一例を説明するための図である。 The fluctuation detection unit 20 detects a fluctuation of the sensor signal (S101). In this embodiment, an example in which a scale signal and a torque signal are employed as sensor signals will be described. That is, the fluctuation detection unit 20 detects a fluctuation of the scale signal. Moreover, the fluctuation | variation detection part 20 detects the fluctuation | variation of a torque signal. FIG. 13 is a diagram for explaining an example of the function of the fluctuation detection unit 20.
 変動検出部20は、例えば秤信号の微分値uを計算する。これにより、秤信号の高周波成分が抽出される。次に、変動検出部20は、計算した微分値uの2乗積分値を計算する。これにより、抽出した高周波成分が増幅される。変動検出部20は、トルク信号に対しても同様の処理を行う。変動検出部20は、例えばトルク信号の微分値uの2乗積分値を計算する。センサ信号の変動を検出する方法は、上記例に限定されない。変動検出部20は、他の方法によってセンサ信号の変動を検出しても良い。 The fluctuation detector 20 calculates, for example, a differential value u of the scale signal. Thereby, the high frequency component of the scale signal is extracted. Next, the fluctuation detecting unit 20 calculates a square integral value of the calculated differential value u. Thereby, the extracted high frequency component is amplified. The fluctuation detection unit 20 performs the same process on the torque signal. The fluctuation detection unit 20 calculates, for example, a square integral value of the differential value u of the torque signal. The method for detecting the fluctuation of the sensor signal is not limited to the above example. The fluctuation detection unit 20 may detect fluctuations in the sensor signal by other methods.
 時間検出部21は、図9を用いて説明した上記時間Δtを検出する(S102)。本実施の形態に示す例では、時間検出部21は、秤信号とトルク信号とに基づいて時間Δtの検出を行う。秤信号は、主ロープ4に発生した振動が主ロープ4のかご側端末の支持位置(第1位置)に到達した際に変動する。トルク信号は、主ロープ4に発生した振動が主ロープ4が駆動綱車8に巻き掛けられている位置(第2位置)に到達した際に変動する。破断部4aから第1位置までの主ロープ4の長さが破断部4aから第2位置までの主ロープ4の長さより短い場合、時間Δtは、主ロープ4に発生した振動が第1位置に到達してから第2位置に到達するまでに掛かる時間に相当する。 The time detection unit 21 detects the time Δt described with reference to FIG. 9 (S102). In the example shown in the present embodiment, the time detector 21 detects the time Δt based on the scale signal and the torque signal. The scale signal fluctuates when the vibration generated in the main rope 4 reaches the support position (first position) of the car-side terminal of the main rope 4. The torque signal fluctuates when the vibration generated in the main rope 4 reaches a position (second position) where the main rope 4 is wound around the drive sheave 8. When the length of the main rope 4 from the breaking portion 4a to the first position is shorter than the length of the main rope 4 from the breaking portion 4a to the second position, the vibration generated in the main rope 4 is at the first position for the time Δt. This corresponds to the time taken from reaching the second position.
 時間検出部21は、例えば、秤信号に変動が発生した時刻とトルク信号に変動が発生した時刻との差を上記時間Δtとして検出する。時間検出部21は、変動検出部20によって検出された秤信号の変動とトルク信号の変動とに基づいて時間Δtの検出を行う。 The time detection unit 21 detects, for example, a difference between the time when the change occurs in the scale signal and the time when the change occurs in the torque signal as the time Δt. The time detection unit 21 detects the time Δt based on the change in the scale signal detected by the change detection unit 20 and the change in the torque signal.
 位置検出部22は、主ロープ4の破断部4aの位置を検出する(S103)。位置検出部22は、第1位置及び第2位置の主ロープ4上の距離と時間検出部21によって検出された時間Δtとに基づいて、破断部4aの位置検出を行う。例えば、時間Δtは、次式で求めることができる。 The position detection unit 22 detects the position of the broken portion 4a of the main rope 4 (S103). The position detection unit 22 detects the position of the breaking portion 4a based on the distance between the first position and the second position on the main rope 4 and the time Δt detected by the time detection unit 21. For example, the time Δt can be obtained by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、Xは振動の発生位置から第1位置までの主ロープ4上の距離である。本実施の形態に示す例では、Xは、破断部4aからかご側端末の支持位置までの主ロープ4の長さである。Xは振動の発生位置から第2位置までの主ロープ4上の距離である。本実施の形態に示す例では、Xは、破断部4aから駆動綱車8に巻き掛けられた位置までの主ロープ4の長さである。なお、X及びXは、主ロープ4に振動が発生した時、即ち破断部4aが外れ止めに接触した時の主ロープ4上の距離である。vは主ロープ4を伝播する振動の速度である。Lは第1位置から第2位置までの主ロープ4上の距離である。L=X+Xである。以下の説明では、主ロープ4上の距離のことを「ロープ距離」と表記する。 Wherein, X 1 is a distance in the main ropes 4 to the first position from the generation position of the vibration. In the example described in this embodiment, X 1 is a length of the main ropes 4 to the supporting position of the breaking portion 4a Karakago terminal. X 2 is a distance in the main ropes 4 to the second position from the generation position of the vibration. In the example shown in this embodiment, X 2 is the length of the main ropes 4 from the broken part 4a to wound around a position on the drive sheave 8. X 1 and X 2 are distances on the main rope 4 when vibration occurs in the main rope 4, that is, when the fracture portion 4 a comes into contact with the stopper. v is the speed of vibration propagating through the main rope 4. L is the distance on the main rope 4 from the first position to the second position. L = X 1 + X 2 . In the following description, the distance on the main rope 4 is expressed as “rope distance”.
 式(1)を変形することにより、次式を得ることができる。 The following equation can be obtained by modifying equation (1).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 速度vは既知である。したがって、時間Δt及びロープ距離Lが分かれば、振動の発生位置、即ち破断部4aの位置を特定することができる。 The speed v is known. Therefore, if the time Δt and the rope distance L are known, the vibration generation position, that is, the position of the fracture portion 4a can be specified.
 本実施の形態1に示す例では、第1位置は主ロープ4のかご側端末の支持位置である。第2位置は、主ロープ4が駆動綱車8に巻き掛けられた位置である。主ロープ4は、動滑車である吊り車5及び吊り車6に巻き掛けられる。このため、ロープ距離Lは、吊り車5及び吊り車6の位置(高さ)、即ちかご1の位置(高さ)に応じて変化する。距離演算部23は、吊り車5及び吊り車6の位置、即ちかご1の位置に基づいてロープ距離Lを演算する。距離演算部23は、例えばエンコーダ18からの回転信号に基づいてかご1の位置を演算する。位置検出部22は、距離演算部23によって演算されたロープ距離Lと時間検出部21によって検出された時間Δtとに基づいてロープ距離Xを演算する。なお、採用するセンサ信号によってはロープ距離Lが一定の場合がある。かかる場合は、制御装置13に距離演算部23を備える必要はない。 In the example shown in the first embodiment, the first position is a support position of the car-side terminal of the main rope 4. The second position is a position where the main rope 4 is wound around the driving sheave 8. The main rope 4 is wound around a suspension wheel 5 and a suspension wheel 6 which are moving pulleys. For this reason, the rope distance L changes according to the position (height) of the suspension vehicle 5 and the suspension vehicle 6, that is, the position (height) of the car 1. The distance calculation unit 23 calculates the rope distance L based on the positions of the suspension vehicle 5 and the suspension vehicle 6, that is, the position of the car 1. The distance calculation unit 23 calculates the position of the car 1 based on, for example, a rotation signal from the encoder 18. The position detector 22 calculates the rope distance X 1 based on the rope distance L calculated by the distance calculator 23 and the time Δt detected by the time detector 21. Note that the rope distance L may be constant depending on the sensor signal employed. In such a case, it is not necessary to provide the distance calculation unit 23 in the control device 13.
 上記構成を有する破断検出装置であれば、簡単な構成によって破断部4aの位置を検出できる。従来のように、破断部4aの位置を特定するために滑車或いは滑車の近傍に多数のセンサを設置する必要はない。多数の滑車が使用される2:1ローピング方式のエレベーター装置では、特に有効である。 If the break detection device has the above configuration, the position of the break portion 4a can be detected with a simple configuration. As in the prior art, it is not necessary to install a large number of sensors in the pulley or in the vicinity of the pulley in order to specify the position of the fracture portion 4a. This is particularly effective in a 2: 1 roping type elevator apparatus in which a large number of pulleys are used.
 図14は、破断検出装置の他の動作例を示すフローチャートである。例えば、図14に示す動作フローは、図12に示す動作フローと並行して行われる。 FIG. 14 is a flowchart showing another operation example of the breakage detection apparatus. For example, the operation flow shown in FIG. 14 is performed in parallel with the operation flow shown in FIG.
 図12のS101で説明したように、変動検出部20は、センサ信号の変動を検出する。変動検出部20は、例えば秤信号の微分値uの2乗積分値を計算する。また、変動検出部20は、例えばトルク信号の微分値uの2乗積分値を計算する。 As described in S101 of FIG. 12, the fluctuation detection unit 20 detects fluctuations in the sensor signal. The fluctuation detection unit 20 calculates, for example, a square integral value of the differential value u of the scale signal. Moreover, the fluctuation | variation detection part 20 calculates the square integral value of the differential value u of a torque signal, for example.
 変動判定部24は、変動検出部20によって検出された変動が閾値を超えるか否かを判定する(S112)。変動検出部20によって検出された変動と比較するための閾値は制御装置13に予め記憶される。変動検出部20によって検出された変動が閾値を超えると変動判定部24によって判定されない場合、動作制御部27は、通常運転を継続する(S116)。変動検出部20によって検出された変動が閾値を超えると変動判定部24によって判定されると、かご位置検出部25は、一定の条件の下で最大となる変動をセンサが検出した時のかご位置を検出する(S113)。 The fluctuation determination unit 24 determines whether or not the fluctuation detected by the fluctuation detection unit 20 exceeds a threshold value (S112). A threshold for comparison with the fluctuation detected by the fluctuation detector 20 is stored in the control device 13 in advance. If the fluctuation detected by the fluctuation detector 20 exceeds the threshold and is not determined by the fluctuation determiner 24, the operation controller 27 continues normal operation (S116). When the fluctuation detection unit 24 determines that the fluctuation detected by the fluctuation detection unit 20 exceeds the threshold, the car position detection unit 25 detects the car position when the sensor detects the maximum fluctuation under a certain condition. Is detected (S113).
 破断判定部26は、主ロープ4に破断部4aが存在するか否かを判定する(S114)。破断判定部26は、かご位置検出部25によって検出された複数のかご位置に基づいて上記判定を行う。主ロープ4に破断部4aが存在することが破断判定部26によって判定されない場合、動作制御部27は、通常運転を継続する(S116)。破断判定部26は、例えば、かご位置検出部25によって検出された複数のかご位置がある範囲(基準範囲)に入っている場合に、主ロープ4に破断部4aが存在することを判定する(S114のYes)。基準範囲は、例えば、かご位置が同一位置とみなすことができる範囲に設定される。 The break determination unit 26 determines whether or not the break portion 4a exists in the main rope 4 (S114). The break determination unit 26 performs the above determination based on a plurality of car positions detected by the car position detection unit 25. When the break determination unit 26 does not determine that the main rope 4 has the broken portion 4a, the operation control unit 27 continues the normal operation (S116). The break determination unit 26 determines, for example, that the break portion 4a exists in the main rope 4 when a plurality of car positions detected by the car position detection unit 25 are within a certain range (reference range) ( Yes in S114). The reference range is set to a range in which the car position can be regarded as the same position, for example.
 主ロープ4に破断部4aが存在することが破断判定部26によって判定されると、動作制御部27は、かご1を最寄り階に停止させる(S115)。動作制御部27は、他の緊急動作を行っても良い。また、主ロープ4に破断部4aが存在することが破断判定部26によって判定されると、通報部28は、外部への通報を行う(S115)。例えば、通報部28は、主ロープ4に破断部4aが存在する旨の情報と位置検出部22によって検出された破断部4aの位置の情報とをエレベーターの保守会社に通報する。 When it is determined by the break determination unit 26 that the main rope 4 has the break portion 4a, the operation control unit 27 stops the car 1 at the nearest floor (S115). The operation control unit 27 may perform other emergency operations. Moreover, if the fracture | rupture determination part 26 determines that the fracture | rupture part 4a exists in the main rope 4, the reporting part 28 will report to the exterior (S115). For example, the reporting unit 28 reports to the elevator maintenance company information indicating that the broken portion 4a exists in the main rope 4 and information on the position of the broken portion 4a detected by the position detecting unit 22.
 図15は、制御装置13の破断判定機能の一例を説明するための図である。かご位置検出部25は、例えば、センサ信号の微分値uを2乗した値uのうち最大の値が検出された時のかご位置を検出する。かご位置検出部25は、変動検出部20によって計算された値uとエンコーダ18から入力される回転信号とに基づいて上記検出を行う。また、かご位置検出部25は、センサ信号の微分値uの2乗積分値が閾値を超えると変動判定部24によって判定されると、その時点において値uが最大となるかご位置を制御装置13に記憶させる。 FIG. 15 is a diagram for explaining an example of the break determination function of the control device 13. The car position detection unit 25 detects the car position when the maximum value is detected among the values u 2 obtained by squaring the differential value u of the sensor signal, for example. The car position detection unit 25 performs the above detection based on the value u 2 calculated by the fluctuation detection unit 20 and the rotation signal input from the encoder 18. Also, car position detection unit 25, the square integral value of the differential value u of the sensor signal is determined by a variation determination unit 24 exceeds the threshold value, the controller your location or value u 2 becomes maximum at the time 13 is stored.
 例えば、かご1が基準階に停止すると、変動検出部20による変動検出とかご位置検出部25によるかご位置検出とが初期化される。このため、かご1が基準階に停止する度に、上記各検出値が0にリセットされる。基準階は、例えば玄関階、最下階或いは最上階に設定される。かかる場合、センサ信号の微分値uの2乗積分値が閾値を超えると変動判定部24によって判定されると、かご1が基準階に前回停止してからその時点までの間にセンサが最大の変動(値u)を検出した時のかご位置が制御装置13に新たに記憶される。 For example, when the car 1 stops at the reference floor, the fluctuation detection by the fluctuation detection unit 20 and the car position detection by the car position detection unit 25 are initialized. For this reason, each time the car 1 stops at the reference floor, the above detection values are reset to zero. The reference floor is set to, for example, the entrance floor, the bottom floor, or the top floor. In such a case, if the change determination unit 24 determines that the square integral value of the differential value u of the sensor signal exceeds the threshold value, the sensor is at its maximum between the last stop of the car 1 at the reference floor and the point The position of the car when the change (value u 2 ) is detected is newly stored in the control device 13.
 破断判定部26は、制御装置13に記憶された上記かご位置に基づいて、主ロープ4に破断部4aが発生したか否かを判定する。破断判定部26は、例えば、制御装置13に記憶された一定数以上のかご位置が基準範囲に入っていれば、主ロープ4に破断部4aが存在することを判定する。破断部4aが存在することを判定するための条件は、適宜設定される。 The break determination unit 26 determines whether or not the break portion 4 a has occurred in the main rope 4 based on the car position stored in the control device 13. The break determination unit 26 determines, for example, that the break portion 4a exists in the main rope 4 if a certain number or more of the car positions stored in the control device 13 are within the reference range. Conditions for determining the presence of the fracture portion 4a are set as appropriate.
 上記構成を有する破断検出装置であれば、主ロープ4に破断部4aが発生したことを簡単な構成によって検出できる。 If the break detection device has the above-described configuration, it can be detected with a simple configuration that the break portion 4a has occurred in the main rope 4.
 なお、変動検出部20によるセンサ信号の変動検出は、かご1が移動している時のみ行っても良い。例えば、変動検出部20は、かご1が停止している間、センサ信号の微分値uの2乗積分値を計算しない。時間検出部21は、かご1が移動している時のみ時間の検出に必要な処理を行う。かかる構成であれば、制御装置13に掛かる負荷を軽減できる。 In addition, you may perform the fluctuation | variation detection of the sensor signal by the fluctuation | variation detection part 20 only when the cage | basket | car 1 is moving. For example, the fluctuation detection unit 20 does not calculate the square integral value of the differential value u of the sensor signal while the car 1 is stopped. The time detection unit 21 performs processing necessary for time detection only when the car 1 is moving. With this configuration, the load on the control device 13 can be reduced.
 また、センサ信号の微分値uの2乗積分値が閾値を超えることによって制御装置13にかご位置が記憶された場合は、制御装置13に記憶されたかご位置を含む周辺区間でのみ、その後のセンサ信号の変動検出を実施しても良い。かかる構成であれば、レール摩擦といった環境要因或いはセンサノイズによる影響を排除し、判定精度を向上させることができる。 In addition, when the car position is stored in the control device 13 because the square integral value of the differential value u of the sensor signal exceeds the threshold value, only in the peripheral section including the car position stored in the control device 13, Sensor signal fluctuation detection may be performed. With such a configuration, the influence of environmental factors such as rail friction or sensor noise can be eliminated, and the determination accuracy can be improved.
実施の形態2.
 実施の形態1では、変動検出部20がセンサ信号の微分値uの2乗積分値を計算する例について説明した。本実施の形態では、変動検出部20が他の方法によってセンサ信号の変動を検出する例について説明する。
Embodiment 2. FIG.
In the first embodiment, the example in which the fluctuation detection unit 20 calculates the square integral value of the differential value u of the sensor signal has been described. In the present embodiment, an example will be described in which the fluctuation detection unit 20 detects the fluctuation of the sensor signal by another method.
 図16は、変動検出部20の機能の一例を説明するための図である。図17は、制御装置13の破断判定機能の一例を説明するための図である。本実施の形態で開示しない破断検出装置の構成及び機能については、実施の形態1で開示した構成及び機能と同じである。 FIG. 16 is a diagram for explaining an example of the function of the fluctuation detection unit 20. FIG. 17 is a diagram for explaining an example of the break determination function of the control device 13. The configuration and function of the break detection device not disclosed in the present embodiment are the same as the configuration and function disclosed in the first embodiment.
 本実施の形態における巻上機11は、図10に示すようにエンコーダ29を備える。エンコーダ29は、駆動綱車8の回転方向及び回転角度に応じた回転信号を出力する。エンコーダ29から出力された回転信号は、制御装置13に入力される。 The hoisting machine 11 in the present embodiment includes an encoder 29 as shown in FIG. The encoder 29 outputs a rotation signal corresponding to the rotation direction and rotation angle of the drive sheave 8. The rotation signal output from the encoder 29 is input to the control device 13.
 変動検出部20は、巻上機11のエンコーダ29から出力された回転信号に基づいて、かご1の鉛直方向の加速度を演算する。変動検出部20は、主ロープ4の剛性及びエレベーターの動特性を表現した運動方程式を用いて上記演算を行っても良い。変動検出部20は、エンコーダ29が出力した回転信号を用いて演算した加速度と加速度計14からの加速度信号とを比較することにより、加速度計14が出力した加速度信号の変動を検出する。 The fluctuation detection unit 20 calculates the vertical acceleration of the car 1 based on the rotation signal output from the encoder 29 of the hoisting machine 11. The fluctuation detection unit 20 may perform the above calculation using an equation of motion expressing the rigidity of the main rope 4 and the dynamic characteristics of the elevator. The fluctuation detection unit 20 detects the fluctuation of the acceleration signal output from the accelerometer 14 by comparing the acceleration calculated using the rotation signal output from the encoder 29 with the acceleration signal from the accelerometer 14.
 巻上機11は、駆動綱車8を駆動するための電動機を備える。電動機に対しては、乗り心地を向上させるために、速度変動を打ち消すような制御が行われる。このような速度制御の効果により、エンコーダ29からの回転信号に現れる変動成分は、加速度計14からの加速度信号に現れる変動成分より小さくなる。図16に示すように、エンコーダ29が出力した回転信号を用いて演算した加速度と加速度計14からの加速度信号との差分eを求めることにより、加速度計14が出力した加速度信号の変動を検出することができる。 The hoisting machine 11 includes an electric motor for driving the driving sheave 8. In order to improve riding comfort, the electric motor is controlled so as to cancel out speed fluctuations. Due to the effect of such speed control, the fluctuation component appearing in the rotation signal from the encoder 29 becomes smaller than the fluctuation component appearing in the acceleration signal from the accelerometer 14. As shown in FIG. 16, the fluctuation of the acceleration signal output from the accelerometer 14 is detected by obtaining the difference e between the acceleration calculated using the rotation signal output from the encoder 29 and the acceleration signal from the accelerometer 14. be able to.
 また、変動検出部20は、秤装置12からの秤信号を用いてかご1の鉛直方向の加速度を演算する。変動検出部20は、エンコーダ29が出力した回転信号を用いて演算した加速度と秤信号を用いて演算した加速度とを比較することにより、秤装置12が出力した秤信号の変動を検出する。巻上機11による速度制御の効果により、エンコーダ29からの回転信号に現れる変動成分は、秤装置12からの秤信号に現れる変動成分より小さくなる。エンコーダ29が出力した回転信号を用いて演算した加速度と秤信号を用いて演算した加速度との差分eを求めることにより、秤装置12が出力した秤信号の変動を検出することができる。 Further, the fluctuation detecting unit 20 calculates the vertical acceleration of the car 1 using the scale signal from the scale device 12. The fluctuation detection unit 20 detects the fluctuation of the scale signal output from the scale device 12 by comparing the acceleration calculated using the rotation signal output from the encoder 29 and the acceleration calculated using the scale signal. Due to the effect of speed control by the hoisting machine 11, the fluctuation component appearing in the rotation signal from the encoder 29 is smaller than the fluctuation component appearing in the scale signal from the scale device 12. By obtaining a difference e between the acceleration calculated using the rotation signal output from the encoder 29 and the acceleration calculated using the scale signal, the fluctuation of the scale signal output from the scale device 12 can be detected.
 時間検出部21、距離演算部23及び位置検出部22の各機能は、実施の形態1で開示した各機能と同じである。本実施の形態に示す例では、時間検出部21は、加速度計14からの加速度信号と秤装置12からの秤信号とに基づいて、時間Δtを検出する。秤信号は、主ロープ4に発生した振動が主ロープ4のかご側端末の支持位置(第1位置)に到達した際に変動する。加速度信号は、主ロープ4に発生した振動が主ロープ4が吊り車5或いは吊り車6に巻き掛けられている位置(第2位置)に到達した際に変動する。 The functions of the time detection unit 21, the distance calculation unit 23, and the position detection unit 22 are the same as the functions disclosed in the first embodiment. In the example shown in the present embodiment, the time detection unit 21 detects the time Δt based on the acceleration signal from the accelerometer 14 and the scale signal from the scale device 12. The scale signal fluctuates when the vibration generated in the main rope 4 reaches the support position (first position) of the car-side terminal of the main rope 4. The acceleration signal fluctuates when the vibration generated in the main rope 4 reaches a position (second position) where the main rope 4 is wound around the suspension vehicle 5 or the suspension vehicle 6.
 時間検出部21は、例えば、加速度信号に変動が発生した時刻と秤信号に変動が発生した時刻との差を時間Δtとして検出する。時間検出部21は、変動検出部20によって検出された加速度信号の変動と秤信号の変動とに基づいて時間Δtの検出を行う。 The time detection unit 21 detects, for example, the difference between the time when the acceleration signal fluctuates and the time when the fluctuation signal fluctuates as the time Δt. The time detection unit 21 detects the time Δt based on the change in the acceleration signal detected by the change detection unit 20 and the change in the scale signal.
 距離演算部23は、第1位置と第2位置とのロープ距離を演算する。位置検出部22は、距離演算部23によって演算されたロープ距離Lと時間検出部21によって検出された時間Δtとに基づいて、破断部4aの位置を検出する。なお、採用するセンサ信号によってはロープ距離Lが一定の場合がある。かかる場合は、制御装置13に距離演算部23を備える必要はない。 The distance calculation unit 23 calculates the rope distance between the first position and the second position. The position detection unit 22 detects the position of the breaking portion 4 a based on the rope distance L calculated by the distance calculation unit 23 and the time Δt detected by the time detection unit 21. Note that the rope distance L may be constant depending on the sensor signal employed. In such a case, it is not necessary to provide the distance calculation unit 23 in the control device 13.
 上記構成を有する破断検出装置であっても、簡単な構成によって破断部4aの位置を検出できる。多数の滑車が使用される2:1ローピング方式のエレベーター装置では、特に有効である。 Even in the break detection device having the above configuration, the position of the break portion 4a can be detected with a simple configuration. This is particularly effective in a 2: 1 roping type elevator apparatus in which a large number of pulleys are used.
 また、かご位置検出部25は、上記差分eのうち最大の値が検出された時のかご位置を検出する。かご位置検出部25は、変動検出部20によって計算された差分eとエンコーダ18から入力される回転信号とに基づいて上記検出を行う。かご位置検出部25は、差分eが閾値を超えると変動判定部24によって判定されると、その時点において差分eが最大となるかご位置を制御装置13に記憶させる。 Further, the car position detection unit 25 detects the car position when the maximum value among the differences e is detected. The car position detection unit 25 performs the above detection based on the difference e calculated by the variation detection unit 20 and the rotation signal input from the encoder 18. When the change e is determined by the variation determination unit 24 when the difference e exceeds the threshold, the car position detection unit 25 causes the control device 13 to store the car position at which the difference e is maximum.
 例えば、かご1が基準階に停止すると、変動検出部20による変動検出とかご位置検出部25によるかご位置検出とが初期化される。かかる場合、差分eが閾値を超えると変動判定部24によって判定されると、かご1が基準階に前回停止してからその時点までの間にセンサが最大の変動(差分e)を検出した時のかご位置が制御装置13に新たに記憶される。 For example, when the car 1 stops at the reference floor, the fluctuation detection by the fluctuation detection unit 20 and the car position detection by the car position detection unit 25 are initialized. In such a case, when the difference e exceeds the threshold, when the change is determined by the change determination unit 24, when the sensor detects the maximum change (difference e) between the time when the car 1 was last stopped on the reference floor and until that time. The car position is newly stored in the control device 13.
 破断判定部26は、制御装置13に記憶された上記かご位置に基づいて、主ロープ4に破断部4aが発生したか否かを判定する。破断判定部26は、例えば、制御装置13に記憶された一定数以上のかご位置が基準範囲に入っていれば、主ロープ4に破断部4aが存在することを判定する。破断部4aが存在することを判定するための条件は、適宜設定される。 The break determination unit 26 determines whether or not the break portion 4 a has occurred in the main rope 4 based on the car position stored in the control device 13. The break determination unit 26 determines, for example, that the break portion 4a exists in the main rope 4 if a certain number or more of the car positions stored in the control device 13 are within the reference range. Conditions for determining the presence of the fracture portion 4a are set as appropriate.
 上記構成を有する破断検出装置であっても、主ロープ4に破断部4aが発生したことを簡単な構成によって検出できる。 Even with the break detecting device having the above-described configuration, it is possible to detect the occurrence of the broken portion 4a in the main rope 4 with a simple configuration.
 なお、変動検出部20によるセンサ信号の変動検出は、かご1が移動している時のみ行っても良い。また、上記差分eが閾値を超えることによってかご位置が制御装置13に記憶された場合は、制御装置13に記憶されたかご位置を含む周辺区間でのみ、その後のセンサ信号の変動検出を実施しても良い。 In addition, you may perform the fluctuation | variation detection of the sensor signal by the fluctuation | variation detection part 20 only when the cage | basket | car 1 is moving. In addition, when the car position is stored in the control device 13 because the difference e exceeds the threshold value, the subsequent sensor signal fluctuation detection is performed only in the peripheral section including the car position stored in the control device 13. May be.
実施の形態3.
 実施の形態1及び2では、センサ信号を利用して破断部4aの有無を判定する例について説明した。本実施の形態では、破断部4aの存在が検出された後に行われる緊急動作の例について説明する。制御装置13は、例えば緊急動作として、かご1内が無人であることを条件に、主ロープ4に破断部4aが存在することを再確認するための診断運転を行う。
Embodiment 3 FIG.
In Embodiment 1 and 2, the example which determines the presence or absence of the fracture | rupture part 4a using a sensor signal was demonstrated. In the present embodiment, an example of an emergency operation performed after the presence of the fracture portion 4a is detected will be described. For example, as an emergency operation, the control device 13 performs a diagnostic operation for reconfirming that the broken portion 4a exists in the main rope 4 on the condition that the inside of the car 1 is unmanned.
 図18は、この発明の実施の形態3における破断検出装置の動作例を示すフローチャートである。図18のS101、及びS112~S116での処理は、実施の形態1或いは2で開示した処理と同様である。このため、詳細な説明は適宜省略する。 FIG. 18 is a flowchart showing an operation example of the breakage detection apparatus according to Embodiment 3 of the present invention. The processes in S101 and S112 to S116 in FIG. 18 are the same as the processes disclosed in the first or second embodiment. For this reason, detailed description is omitted as appropriate.
 変動検出部20は、センサ信号の変動を検出する(S101)。変動判定部24は、変動検出部20によって検出された変動が閾値を超えるか否かを判定する(S112)。変動検出部20によって検出された変動が閾値を超えると変動判定部24によって判定されない場合、動作制御部27は、通常運転を継続する(S116)。変動検出部20によって検出された変動が閾値を超えると変動判定部24によって判定されると、かご位置検出部25は、一定の条件の下で最大となる変動をセンサが検出した時のかご位置を検出する(S113)。 The fluctuation detection unit 20 detects a fluctuation of the sensor signal (S101). The fluctuation determination unit 24 determines whether or not the fluctuation detected by the fluctuation detection unit 20 exceeds a threshold value (S112). If the fluctuation detected by the fluctuation detector 20 exceeds the threshold and is not determined by the fluctuation determiner 24, the operation controller 27 continues normal operation (S116). When the fluctuation detection unit 24 determines that the fluctuation detected by the fluctuation detection unit 20 exceeds the threshold, the car position detection unit 25 detects the car position when the sensor detects the maximum fluctuation under a certain condition. Is detected (S113).
 破断判定部26は、主ロープ4に破断部4aが存在するか否かを判定する(S114)。破断判定部26は、例えば、かご位置検出部25によって検出された複数のかご位置に基づいて上記判定を行う。主ロープ4に破断部4aが存在することが破断判定部26によって判定されない場合、動作制御部27は、通常運転を継続する(S116)。破断判定部26は、例えば、かご位置検出部25によって検出された複数のかご位置が基準範囲に入っている場合に、主ロープ4に破断部4aが存在することを判定する(S114のYes)。 The break determination unit 26 determines whether or not the break portion 4a exists in the main rope 4 (S114). The break determination unit 26 performs the above determination based on, for example, a plurality of car positions detected by the car position detection unit 25. When the break determination unit 26 does not determine that the main rope 4 has the broken portion 4a, the operation control unit 27 continues the normal operation (S116). For example, when the plurality of car positions detected by the car position detection unit 25 are within the reference range, the break determination unit 26 determines that the main rope 4 has the break part 4a (Yes in S114). .
 主ロープ4に破断部4aが存在することが破断判定部26によって判定されると、動作制御部27は、かご1を最寄り階に停止させる。動作制御部27は、かご1を最寄り階に停止させると、ドアを開放させる。また、動作制御部27は、かご1を最寄り階に停止させると、かご1を降りるように促すためのアナウンスをかご1内の乗客に対して行う(S127)。 When it is determined by the break determination unit 26 that the main rope 4 has the break portion 4a, the operation control unit 27 stops the car 1 at the nearest floor. The operation control unit 27 opens the door when the car 1 is stopped at the nearest floor. In addition, when the car 1 is stopped at the nearest floor, the operation control unit 27 makes an announcement to prompt passengers in the car 1 to get off the car 1 (S127).
 次に、動作制御部27は、かご1内が無人であるか否かを判定する(S128)。動作制御部27は、例えば、秤装置12からの秤信号に基づいてS128の判定を行う。動作制御部27は、他の装置からの信号に基づいて上記判定を行っても良い。例えば、かご1にカメラが設置される。動作制御部27は、カメラからの画像信号に基づいて、かご1内が無人であるか否かを判定しても良い。動作制御部27は、かご1内が無人であることを判定できなければ、かご1を降りるように促すためのアナウンスをかご1内の乗客に対して行う(S127)。 Next, the operation control unit 27 determines whether or not the car 1 is unattended (S128). For example, the operation control unit 27 performs the determination of S128 based on a scale signal from the scale device 12. The operation control unit 27 may make the above determination based on a signal from another device. For example, a camera is installed in the car 1. The operation control unit 27 may determine whether or not the car 1 is unattended based on the image signal from the camera. If it is not possible to determine that the interior of the car 1 is unattended, the operation control unit 27 makes an announcement for prompting the passenger to exit the car 1 (S127).
 かご1内の乗客がアナウンスを聞いてかご1から降りると、かご1内が無人であることが動作制御部27によって判定される(S128のYes)。動作制御部27は、かご1内が無人であることを判定すると、ドアを閉めて診断運転を行う(S129)。診断運転では、例えば、かご1を走行させ、最下階から最上階の間を1往復させる。診断運転において、かご1は、最下階から最上階の間を複数回往復しても良い。 When the passenger in the car 1 hears the announcement and gets out of the car 1, the operation control unit 27 determines that the car 1 is unmanned (Yes in S128). When it is determined that the car 1 is unattended, the operation control unit 27 closes the door and performs a diagnostic operation (S129). In the diagnostic operation, for example, the car 1 is run and reciprocated once between the lowest floor and the highest floor. In the diagnostic operation, the car 1 may reciprocate a plurality of times from the lowest floor to the highest floor.
 S129でかご1の走行が開始されると、図18のS101、及びS112~S114で行われる処理と同様の処理が行われる。例えば、破断判定部26は、主ロープ4に破断部4aが存在するか否かを判定する(S1210)。主ロープ4に破断部4aが存在することが破断判定部26によって判定されない場合(S1210のNo)、動作制御部27は、診断運転を終了して通常運転に復帰させる(S1211)。 When the traveling of the car 1 is started in S129, the same processes as those performed in S101 and S112 to S114 in FIG. 18 are performed. For example, the break determination unit 26 determines whether or not the break portion 4a exists in the main rope 4 (S1210). If the break determination unit 26 does not determine that the broken portion 4a exists in the main rope 4 (No in S1210), the operation control unit 27 ends the diagnostic operation and returns to the normal operation (S1211).
 破断判定部26は、例えば、かご位置検出部25によって検出された複数のかご位置が基準範囲に入っている場合に、主ロープ4に破断部4aが存在することを判定する(S1210のYes)。主ロープ4に破断部4aが存在することが破断判定部26によって判定されると、動作制御部27は、かご1を最寄り階に停止させる。また、主ロープ4に破断部4aが存在することが破断判定部26によって判定されると、通報部28は、外部への通報を行う(S115)。例えば、通報部28は、主ロープ4に破断部4aが存在する旨の情報と位置検出部22によって検出された破断部4aの位置の情報とをエレベーターの保守会社に通報する。 For example, when the plurality of car positions detected by the car position detecting unit 25 are within the reference range, the break determining unit 26 determines that the main rope 4 has the broken part 4a (Yes in S1210). . When the break determination unit 26 determines that the broken portion 4a exists in the main rope 4, the operation control unit 27 stops the car 1 at the nearest floor. Moreover, if the fracture | rupture determination part 26 determines that the fracture | rupture part 4a exists in the main rope 4, the reporting part 28 will report to the exterior (S115). For example, the reporting unit 28 reports to the elevator maintenance company information indicating that the broken portion 4a exists in the main rope 4 and information on the position of the broken portion 4a detected by the position detecting unit 22.
 上記構成を有する破断検出装置であれば、主ロープ4に生じた破断部4aの検出精度を向上させることができる。例えば、センサ信号の変動は、かご1内の乗客が動くことによっても発生する。本実施の形態に示す例では、かご1内が無人の状態で破断部4aの存在を再確認するための診断運転が行われるため、乗客の動作に起因する誤検知を防止できる。 If it is a break detection device having the above-described configuration, the detection accuracy of the break portion 4a generated in the main rope 4 can be improved. For example, the fluctuation of the sensor signal also occurs when a passenger in the car 1 moves. In the example shown in the present embodiment, since the diagnostic operation for reconfirming the existence of the breakage portion 4a is performed in an unmanned state in the car 1, it is possible to prevent erroneous detection due to passenger movement.
 なお、診断運転で行われるかご1の往復走行は、最下階から最上階の間に限定されない。例えば、S114で存在が検出された破断部4aの位置を位置検出部22で特定し、滑車がその特定された位置を通過するようにかご1を往復走行させても良い。例えば、滑車が破断部4aを通過するような特定の階床間だけ、かご1を往復走行させても良い。かかる構成であれば、診断運転に要する時間を短縮させることができる。 Note that the round trip of the car 1 performed in the diagnostic operation is not limited between the lowest floor and the highest floor. For example, the position of the breaking portion 4a whose presence is detected in S114 may be specified by the position detection unit 22, and the car 1 may be reciprocated so that the pulley passes through the specified position. For example, the car 1 may be reciprocated only between specific floors where the pulley passes through the breaking portion 4a. With such a configuration, the time required for the diagnostic operation can be shortened.
 実施の形態1から3では、主ロープ4に発生した振動によって出力信号が変動するセンサとして、秤装置12、巻上機11のトルク検出機能及び加速度計14を例示した。上記センサは、これらに限定されない。例えば、秤装置12と同様の装置を主ロープ4のおもり側端末に設置しても良い。 In Embodiments 1 to 3, the scale device 12, the torque detection function of the hoisting machine 11, and the accelerometer 14 are exemplified as sensors whose output signals fluctuate due to vibration generated in the main rope 4. The sensor is not limited to these. For example, a device similar to the scale device 12 may be installed at the weight side terminal of the main rope 4.
 実施の形態1から3では、破断部の位置及びその発生を検出するためのロープとして、エレベーターの主ロープ4を例示した。上記ロープは、これに限定されない。例えば、エレベーターで使用されている他のロープの破断検出を上記構成の破断検出装置によって実施しても良い。また、エレベーター以外で使用されているロープの破断検出を上記構成の破断検出装置によって実施しても良い。 In Embodiments 1 to 3, the main rope 4 of the elevator is exemplified as a rope for detecting the position of the fractured portion and its occurrence. The rope is not limited to this. For example, you may detect the break of the other rope currently used by the elevator with the break detection apparatus of the said structure. Moreover, you may implement the break detection of the rope used except the elevator by the break detection apparatus of the said structure.
 符号20~28に示す各部は、制御装置13が有する機能を示す。図19は、制御装置13のハードウェア構成を示す図である。制御装置13は、ハードウェア資源として、例えば入出力インターフェース30とプロセッサ31とメモリ32とを含む回路を備える。制御装置13は、メモリ32に記憶されたプログラムをプロセッサ31によって実行することにより、各部20~28が有する各機能を実現する。各部20~28が有する各機能の一部又は全部をハードウェアによって実現しても良い。 Each unit indicated by reference numerals 20 to 28 represents a function of the control device 13. FIG. 19 is a diagram illustrating a hardware configuration of the control device 13. The control device 13 includes a circuit including, for example, an input / output interface 30, a processor 31, and a memory 32 as hardware resources. The control device 13 implements the functions of the units 20 to 28 by executing the program stored in the memory 32 by the processor 31. Some or all of the functions of the units 20 to 28 may be realized by hardware.
 また、各部20~28が有する機能は、クラウド上の計算機にてプログラムを実行することによって実現しても良い。かかる場合、各部20~28によって得られた結果は、ネットワーク及び通信等を通じて制御装置13に送信される。制御装置13は、受信した情報に基づいて必要な動作を行なえば良い。 Also, the functions of the units 20 to 28 may be realized by executing a program on a computer on the cloud. In such a case, the results obtained by the units 20 to 28 are transmitted to the control device 13 through a network and communication. The control device 13 may perform a necessary operation based on the received information.
 この発明に係る破断検出装置は、ロープが用いられた装置に適用できる。 The break detection device according to the present invention can be applied to a device using a rope.
 1 かご、 2 昇降路、 3 つり合いおもり、 4 主ロープ、 4a 破断部、 5 吊り車、 6 吊り車、 7 返し車、 8 駆動綱車、 9 返し車、 10 吊り車、 11 巻上機、 12 秤装置、 13 制御装置、 14 加速度計、 15 調速機、 16 調速ロープ、 17 調速綱車、 18 エンコーダ、 19 外れ止め、 20 変動検出部、 21 時間検出部、 22 位置検出部、 23 距離演算部、 24 変動判定部、 25 かご位置検出部、 26 破断判定部、 27 動作制御部、 28 通報部、 29 エンコーダ、 30 入出力インターフェース、 31 プロセッサ、 32 メモリ 1 car, 2 hoistway, 3 counterweight, 4 main rope, 4a fractured part, 5 suspension car, 6 suspension car, 7 return car, 8 drive sheave, 9 return car, 10 suspension car, 11 hoisting machine, 12 Weighing device, 13 control device, 14 accelerometer, 15 speed governor, 16 speed control rope, 17 speed control sheave, 18 encoder, 19 derailment, 20 fluctuation detection unit, 21 time detection unit, 22 position detection unit, 23 Distance calculation unit, 24 fluctuation determination unit, 25 car position detection unit, 26 break determination unit, 27 operation control unit, 28 notification unit, 29 encoder, 30 input / output interface, 31 processor, 32 memory

Claims (12)

  1.  ロープに発生した振動が前記ロープの第1位置に到達した際に出力信号が変動する第1センサと、
     前記ロープに発生した振動が前記ロープの第2位置に到達した際に出力信号が変動する第2センサと、
     前記第1センサからの出力信号と前記第2センサからの出力信号とに基づいて、前記ロープに発生した振動が前記第1位置に到達してから前記第2位置に到達するまでの時間を検出する時間検出部と、
     前記第1位置及び前記第2位置のロープ距離と前記時間検出部によって検出された時間とに基づいて、前記ロープの破断部の位置を検出する位置検出部と、
    を備えた破断検出装置。
    A first sensor whose output signal fluctuates when vibration generated in the rope reaches the first position of the rope;
    A second sensor whose output signal fluctuates when vibration generated in the rope reaches a second position of the rope;
    Based on an output signal from the first sensor and an output signal from the second sensor, a time from when the vibration generated in the rope reaches the first position to the second position is detected. A time detector to perform,
    A position detection unit that detects a position of a breaking portion of the rope based on a rope distance of the first position and the second position and a time detected by the time detection unit;
    A break detection device comprising:
  2.  前記ロープは、エレベーターのかごを昇降路に吊り下げ、
     前記第1センサ及び前記第2センサからの出力信号の変動を検出する変動検出部と、
     前記変動検出部によって検出された変動が閾値を超えるか否かを判定する変動判定部と、
     変動が閾値を超えると前記変動判定部によって判定された場合に、最大となる変動を前記第1センサ又は前記第2センサが検出した時のかご位置を検出するかご位置検出部と、
     前記かご位置検出部によって検出された複数のかご位置に基づいて、前記ロープに破断部が存在するか否かを判定する破断判定部と、
    を備えた請求項1に記載の破断検出装置。
    The rope hangs the elevator car on the hoistway,
    A fluctuation detector for detecting fluctuations of output signals from the first sensor and the second sensor;
    A variation determination unit that determines whether or not the variation detected by the variation detection unit exceeds a threshold;
    A car position detecting unit for detecting a car position when the first sensor or the second sensor detects a maximum fluctuation when the fluctuation is determined by the fluctuation determining unit when the fluctuation exceeds a threshold;
    Based on a plurality of car positions detected by the car position detection unit, a break determination unit that determines whether or not a break portion exists in the rope;
    The break detection device according to claim 1 provided with.
  3.  前記ロープは、エレベーターに備えられた定滑車及び動滑車に巻き掛けられ、
     前記第1位置及び前記第2位置の少なくとも一方は、前記ロープの端部からのロープ距離がかご位置に応じて変化する請求項2に記載の破断検出装置。
    The rope is wound around a fixed pulley and a movable pulley provided in an elevator,
    The break detection device according to claim 2, wherein at least one of the first position and the second position, a rope distance from an end portion of the rope changes according to a car position.
  4.  前記第1センサ及び前記第2センサからの出力信号は、前記ロープが巻き掛けられた駆動綱車を有する巻上機からのトルク信号、前記かごの積載荷重を検出する秤装置からの秤信号、又は前記かごに設けられた加速度計からの加速度信号である請求項2又は請求項3に記載の破断検出装置。 The output signals from the first sensor and the second sensor are a torque signal from a hoisting machine having a driving sheave around which the rope is wound, a weighing signal from a weighing device that detects the load of the car, The breakage detection device according to claim 2 or 3, wherein the breakage detection device is an acceleration signal from an accelerometer provided in the car.
  5.  前記ロープに破断部が存在すると前記破断判定部によって判定された場合に、前記かご内が無人の状態で診断運転を行う動作制御部を更に備え、
     前記診断運転において、前記かごは、前記ロープが巻き掛けられた滑車が前記位置検出部によって検出された破断部の位置を通過するように走行する請求項2から請求項4の何れか一項に記載の破断検出装置。
    When it is determined by the rupture determining unit that a rupture portion exists in the rope, the rope further includes an operation control unit that performs a diagnostic operation in an unmanned state in the car
    5. The vehicle according to claim 2, wherein, in the diagnostic operation, the car travels so that a pulley on which the rope is wound passes through a position of a breakage portion detected by the position detection unit. The break detection device as described.
  6.  前記動滑車の位置に基づいて、前記第1位置及び前記第2位置のロープ距離を演算する距離演算部を更に備え、
     前記位置検出部は、前記距離演算部によって演算されたロープ距離と前記時間検出部によって検出された時間とに基づいて、前記ロープの破断部の位置を検出する請求項3に記載の破断検出装置。
    A distance calculator that calculates a rope distance between the first position and the second position based on the position of the movable pulley;
    The break detection device according to claim 3, wherein the position detection unit detects the position of the broken portion of the rope based on the rope distance calculated by the distance calculation unit and the time detected by the time detection unit. .
  7.  前記動滑車は、エレベーターのかごに備えられ、
     前記距離演算部は、前記かごの位置に基づいて前記第1位置及び前記第2位置のロープ距離を演算する請求項6に記載の破断検出装置。
    The movable pulley is provided in an elevator car,
    The break detection device according to claim 6, wherein the distance calculation unit calculates a rope distance between the first position and the second position based on the position of the car.
  8.  前記時間検出部は、前記かごが移動している時に時間の検出に必要な処理を行う請求項2に記載の破断検出装置。 The break detection device according to claim 2, wherein the time detection unit performs processing necessary for time detection when the car is moving.
  9.  前記ロープは、巻上機の駆動綱車に巻き掛けられ、
     前記変動検出部は、前記巻上機のエンコーダが出力した回転信号を用いて演算した前記かごの加速度と前記第1センサからの出力信号を用いて演算した前記かごの加速度とを比較することにより、前記第1センサからの出力信号の変動を検出する請求項2に記載の破断検出装置。
    The rope is wound around the driving sheave of the hoist,
    The fluctuation detection unit compares the acceleration of the car calculated using the rotation signal output from the encoder of the hoist with the acceleration of the car calculated using the output signal from the first sensor. The break detection device according to claim 2, wherein a fluctuation of an output signal from the first sensor is detected.
  10.  エレベーターの主ロープに発生した振動が前記主ロープの第1位置に到達した際に出力信号が変動するセンサと、
     前記センサからの出力信号の変動を検出する変動検出部と、
     前記変動検出部によって検出された変動が閾値を超えるか否かを判定する変動判定部と、
     変動が閾値を超えると前記変動判定部によって判定された場合に、最大となる変動を前記センサが検出した時のかご位置を検出するかご位置検出部と、
     前記かご位置検出部によって検出された複数のかご位置に基づいて、前記主ロープに破断部が存在するか否かを判定する破断判定部と、
    を備えた破断検出装置。
    A sensor whose output signal fluctuates when vibration generated in the main rope of the elevator reaches the first position of the main rope;
    A fluctuation detector for detecting fluctuations in the output signal from the sensor;
    A variation determination unit that determines whether or not the variation detected by the variation detection unit exceeds a threshold;
    A car position detection unit that detects a car position when the sensor detects a maximum fluctuation when the fluctuation is determined by the fluctuation determination unit when the fluctuation exceeds a threshold;
    A break determination unit that determines whether or not a break portion exists in the main rope based on a plurality of car positions detected by the car position detection unit;
    A break detection device comprising:
  11.  前記センサからの出力信号は、前記主ロープが巻き掛けられた駆動綱車を有する巻上機からのトルク信号、前記主ロープによって吊り下げられたかごの積載荷重を検出する秤装置からの秤信号、又は前記かごに設けられた加速度計からの加速度信号である請求項10に記載の破断検出装置。 The output signal from the sensor includes a torque signal from a hoisting machine having a driving sheave around which the main rope is wound, and a weighing signal from a weighing device that detects a load of a car suspended by the main rope. The break detection device according to claim 10, which is an acceleration signal from an accelerometer provided in the car.
  12.  前記主ロープは、巻上機の駆動綱車に巻き掛けられ、エレベーターのかごを昇降路に吊り下げ、
     前記変動検出部は、前記巻上機のエンコーダが出力した回転信号を用いて演算した前記かごの加速度と前記センサからの出力信号を用いて演算した前記かごの加速度とを比較することにより、前記センサからの出力信号の変動を検出する請求項10に記載の破断検出装置。
    The main rope is wound around the driving sheave of the hoisting machine, and the elevator car is suspended from the hoistway,
    The fluctuation detection unit compares the acceleration of the car calculated using the rotation signal output from the encoder of the hoist with the acceleration of the car calculated using the output signal from the sensor, The break detection device according to claim 10, wherein a fluctuation of an output signal from the sensor is detected.
PCT/JP2016/072512 2015-08-05 2016-08-01 Fracture detection device WO2017022709A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017533053A JP6436238B2 (en) 2015-08-05 2016-08-01 Break detection device
DE112016003550.0T DE112016003550T5 (en) 2015-08-05 2016-08-01 BREAK DETECTION DEVICE
KR1020187001289A KR102028293B1 (en) 2015-08-05 2016-08-01 Breaking detection device
CN201680044980.2A CN107922153B (en) 2015-08-05 2016-08-01 Break detector apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-154975 2015-08-05
JP2015154975 2015-08-05

Publications (1)

Publication Number Publication Date
WO2017022709A1 true WO2017022709A1 (en) 2017-02-09

Family

ID=57943205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072512 WO2017022709A1 (en) 2015-08-05 2016-08-01 Fracture detection device

Country Status (5)

Country Link
JP (1) JP6436238B2 (en)
KR (1) KR102028293B1 (en)
CN (1) CN107922153B (en)
DE (1) DE112016003550T5 (en)
WO (1) WO2017022709A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112919288A (en) * 2019-12-06 2021-06-08 东芝电梯株式会社 Deterioration determination method
US20210188597A1 (en) * 2017-08-10 2021-06-24 Mitsubishi Electric Corporation Break detection device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020089508A1 (en) * 2018-11-02 2020-05-07 Kone Corporation Arrangement for detecting bearing failures in elevator
CZ2019196A3 (en) * 2019-03-29 2020-10-07 Rieter Cz S.R.O. Non-contact optical detection method of yarn at the textile machine workplace for yarn production, optical yarn sensor and textile machine
KR102466496B1 (en) 2019-12-03 2022-11-11 주식회사 리틀캣 Exercise apparatus for pet
KR20210156967A (en) 2020-06-19 2021-12-28 주식회사 리틀캣 Exercise apparatus for pet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081462A (en) * 1996-09-06 1998-03-31 Hitachi Building Syst Co Ltd Abnormality diagnostic device for elevator
JP2002333431A (en) * 2001-05-10 2002-11-22 Hitachi Building Systems Co Ltd Wire rope diagnostic measuring device
JP2007176627A (en) * 2005-12-27 2007-07-12 Toshiba Elevator Co Ltd Elevator
JP5203339B2 (en) * 2009-02-24 2013-06-05 三菱電機株式会社 Elevator rope monitoring device
JP2014108835A (en) * 2012-11-30 2014-06-12 Mitsubishi Electric Building Techno Service Co Ltd Rope strand rupture detection device for elevator, and method of detecting rope strand rupture
JP2015078073A (en) * 2011-03-08 2015-04-23 三菱電機株式会社 Elevator abnormality diagnostic apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523339B2 (en) 1972-01-12 1977-01-27
JPS507114B2 (en) 1972-03-02 1975-03-20
JPS523339A (en) 1975-06-27 1977-01-11 Agency Of Ind Science & Technol Information file system
JPS6017754A (en) * 1983-07-12 1985-01-29 Ricoh Co Ltd Printing plate for electrophotographic plate making
JPH08333066A (en) * 1995-06-09 1996-12-17 Mitsubishi Denki Bill Techno Service Kk Rope rupture detecting device for elevator
JP4896692B2 (en) 2006-12-08 2012-03-14 三菱電機ビルテクノサービス株式会社 Main rope abnormality detection device and elevator device provided with the same
JP4415041B2 (en) * 2007-10-10 2010-02-17 三菱電機ビルテクノサービス株式会社 Rope inspection method
JP5118538B2 (en) * 2008-04-07 2013-01-16 株式会社日立ビルシステム Elevator wire rope strand breakage diagnosis system
JP2011158871A (en) * 2010-02-04 2011-08-18 Panasonic Corp Method for driving plasma display panel
JP6375948B2 (en) * 2012-09-28 2018-08-22 日本電気株式会社 Defect analysis apparatus, defect analysis method and program
CN204038800U (en) * 2014-08-11 2014-12-24 广州广日电梯工业有限公司 Elevator traction steel band rope break detection device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081462A (en) * 1996-09-06 1998-03-31 Hitachi Building Syst Co Ltd Abnormality diagnostic device for elevator
JP2002333431A (en) * 2001-05-10 2002-11-22 Hitachi Building Systems Co Ltd Wire rope diagnostic measuring device
JP2007176627A (en) * 2005-12-27 2007-07-12 Toshiba Elevator Co Ltd Elevator
JP5203339B2 (en) * 2009-02-24 2013-06-05 三菱電機株式会社 Elevator rope monitoring device
JP2015078073A (en) * 2011-03-08 2015-04-23 三菱電機株式会社 Elevator abnormality diagnostic apparatus
JP2014108835A (en) * 2012-11-30 2014-06-12 Mitsubishi Electric Building Techno Service Co Ltd Rope strand rupture detection device for elevator, and method of detecting rope strand rupture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210188597A1 (en) * 2017-08-10 2021-06-24 Mitsubishi Electric Corporation Break detection device
US12110211B2 (en) * 2017-08-10 2024-10-08 Mitsubishi Electric Corporation Break detection device
CN112919288A (en) * 2019-12-06 2021-06-08 东芝电梯株式会社 Deterioration determination method
CN112919288B (en) * 2019-12-06 2022-05-03 东芝电梯株式会社 Deterioration determination method

Also Published As

Publication number Publication date
KR102028293B1 (en) 2019-10-02
JPWO2017022709A1 (en) 2018-02-01
KR20180018743A (en) 2018-02-21
CN107922153A (en) 2018-04-17
CN107922153B (en) 2019-07-19
JP6436238B2 (en) 2018-12-12
DE112016003550T5 (en) 2018-05-03

Similar Documents

Publication Publication Date Title
JP6436238B2 (en) Break detection device
JP6049902B2 (en) Elevator diagnostic equipment
EP2628697B1 (en) Method for controlling an elevator, and an elevator
JP6601559B2 (en) Break detection device
US9714155B2 (en) Method for condition monitoring of elevator ropes and arrangement for the same
CN110167861B (en) Fracture detection device
EP3693315B1 (en) Elevator system control based on building sway
JP5704700B2 (en) Elevator control device and sensor
JPWO2019030888A1 (en) Break detection device
WO2016151694A1 (en) Elevator system
JP2009215057A (en) Compulsory deceleration control system of elevator
CN112384462A (en) Elevator diagnosis system
WO2019063866A1 (en) A method and an elevator system for defining an elongation of an elevator car suspension means
EP3901081A1 (en) Elevator compensation assembly monitor
US11511969B2 (en) Method, an elevator safety control unit, and an elevator system for defining a condition of an elevator car suspension means
CN109415183B (en) Rope monitoring device for elevator
JP2013209210A (en) Elevator control device
JP2022121812A (en) Elevator control device
WO2019003310A1 (en) Abnormality detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017533053

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187001289

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016003550

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832988

Country of ref document: EP

Kind code of ref document: A1