WO2017020763A1 - 无人机 - Google Patents

无人机 Download PDF

Info

Publication number
WO2017020763A1
WO2017020763A1 PCT/CN2016/091932 CN2016091932W WO2017020763A1 WO 2017020763 A1 WO2017020763 A1 WO 2017020763A1 CN 2016091932 W CN2016091932 W CN 2016091932W WO 2017020763 A1 WO2017020763 A1 WO 2017020763A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
drone
center
fixing portion
aerial vehicle
Prior art date
Application number
PCT/CN2016/091932
Other languages
English (en)
French (fr)
Inventor
何建兵
林志文
蒋攀
肖锭锋
彭斌
Original Assignee
广州极飞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510467838.6A external-priority patent/CN105173068B/zh
Priority claimed from CN201510468299.8A external-priority patent/CN106394884B/zh
Priority claimed from CN201520574460.5U external-priority patent/CN204998762U/zh
Application filed by 广州极飞科技有限公司 filed Critical 广州极飞科技有限公司
Priority to ES16832251T priority Critical patent/ES2807923T3/es
Priority to AU2016303994A priority patent/AU2016303994B2/en
Priority to US15/523,897 priority patent/US10526087B2/en
Priority to EP16832251.9A priority patent/EP3202662B1/en
Priority to KR1020177012662A priority patent/KR101989258B1/ko
Priority to JP2017527807A priority patent/JP6463841B2/ja
Publication of WO2017020763A1 publication Critical patent/WO2017020763A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/70Constructional aspects of the UAV body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/90Cooling
    • B64U20/94Cooling of rotors or rotor motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/10Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for axial load mainly
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/50Foldable or collapsible UAVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors

Definitions

  • the invention relates to the technical field of aircraft, and in particular to a drone.
  • Unmanned aerial vehicles are unmanned aerial vehicles that are operated using radio remote control equipment and self-contained program control devices. At present, the application of drones has been extended to many civilian fields.
  • the UAVs represented by agricultural applications are often in the form of multi-rotor. It is a multi-arm with multiple propellers and a propeller.
  • the total lift is equivalent to acting on the intersection of the arms of the aircraft, that is, the geometric center of the plane of the fuselage, whereby the drone
  • the other load-bearing components are distributed above or/and below the geometric center so that the total gravity of the aircraft is also as close as possible to the geometric center of the fuselage plane to balance the total lift.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • the present invention needs to provide a drone structure with a reasonable rack structure and a proper weight distribution, so that the flight is stable and the control is simple.
  • a drone that includes:
  • a body comprising a body and a storage device disposed at a rear of the body for loading goods
  • At least two front arms symmetrically disposed about a central axis of the front-rear direction of the fuselage, one end of the front arm is connected to a front end of the fuselage and extends forward, and the other end of the front arm is disposed There is a front motor to drive the drone;
  • one end of the rear arm is connected to a rear end of the body and extends rearward, and the other end of the rear arm is provided with a rear motor Driving the drone;
  • An intersection area E of the rear arm and the front arm facing the extension of the fuselage and the central axis is located in front of a lift center of the drone, and the front motor and the rear motor
  • the point of action for the resultant force of the drone is the lift center, and the center of gravity of the drone is adjacent to the lift center.
  • the drones proposed by the above technical solutions respectively connect the arm directly to the front part of the fuselage, so that the intersection of the arm and its extension line is relatively advanced, and space is provided for the storage device at the rear of the fuselage.
  • the quality of the drone is not distributed in the vertical direction, so that the control of the drone is simple and stable.
  • the arm is linear or curved. It can make a large amount of available space between the arms on both sides, making it easy to store or install other objects.
  • At least two arm fixing members are disposed on the arm, and each of the fixing members respectively includes:
  • the first fixing portion is connected to the fuselage
  • the second fixing portion is connected to the fuselage, the first fixing portion is connected to the second fixing portion and cooperates to define a mounting slot, and the arm is disposed in the mounting slot Inside;
  • first fixing portion and the second fixing portion are respectively provided with at least one outer flat surface connected to the fuselage.
  • Two or more arm fixing members are arranged at intervals, so that the fuselage, the arm fixing member and the arm are integrally connected, and the plurality of sets of arm fixing members are locked in multiple places, thereby ensuring that the arm is in the shaft. It is not easy to swing, and the arm is fixed to the plurality of sets of arm fixings according to the required angle of deviation.
  • the arm fixing parts on the same side are flush with the body surface, and then the arm is mounted on the body, so that It is ensured that the declination of the arm relative to the plane of the fuselage is a required value.
  • An arm deflection locking hole is disposed on the arm, and the first fixing portion and the second fixing portion are respectively provided with an arm deflection fixing hole corresponding to the arm deflection locking hole position.
  • the arm can be locked from the radial direction of the arm and locked at multiple intervals along the axial direction of the arm to prevent the arm from swinging in the axial direction.
  • An arcuate inner surface matching the outer wall of the arm is respectively disposed on the first fixing portion and the second fixing portion.
  • the area of the contact faces of the first fixing portion and the second fixing portion with the arm can be increased to increase friction and prevent slippage.
  • An arm locking hole that is bolted to each other and a body connecting hole for bolting to the body are provided on the first fixing portion and the second fixing portion.
  • a folding cavity, a joint and a spray head folding rod are arranged under the arm, a driving component is arranged in the folding cavity, a middle part of the adapter is hinged in the folding cavity, and a front part of the adapter is connected with the driving component.
  • the rear portion of the adapter passes through the opening of the folding cavity and is fixedly coupled to one end of the dispensing head folding rod.
  • the driving assembly includes a driving body, a driving shaft and a connecting portion, which are rotatably connected to the driving body and the connecting portion, and the driving body is configured to drive the driving shaft to rotate. Having the connecting portion urge the adapter to rotate relative to the outer casing between the first position and the second position.
  • the driving body is a geared motor
  • the driving shaft is a screw rod
  • the connecting portion is a slider. The driving method is easy to implement and stable and reliable.
  • the outer wall of the drive shaft is provided with an external thread
  • the connecting portion is provided with a matching hole, and the inner wall of the matching hole is arranged
  • the internal shaft is threaded, and the drive shaft passes through the connecting portion, and the external thread is engaged with the internal thread.
  • the drive shaft and the connecting portion are connected in a threaded manner, which improves the control precision of the transmission.
  • a thrust bearing is disposed at one end of the drive shaft away from the drive body, and the thrust bearing is fixed in the outer casing, and the drive shaft rotatably penetrates the thrust bearing.
  • the front portion of the adapter is provided with a U-shaped groove, and the connecting portion is placed in the U-shaped groove.
  • the drone includes:
  • control module for controlling rotation of the drive assembly drive adapter
  • the current detecting module is configured to detect whether the current of the driving component is greater than a preset threshold, and if not, the current detecting module is configured to continue to detect whether the current of the driving component is greater than the preset threshold, and if so, The current detecting module is configured to send a control signal for turning off the driving component to the control module;
  • the control module is configured to turn off the driving component according to the control signal.
  • the upper end surface of the rotor motor of the drone is provided with a heat dissipation waterproof cover, and the heat dissipation waterproof cover comprises an upper sealing surface and a circumferential surface of the side wall, and a plurality of ventilation holes are arranged on a circumferential surface of the side wall adjacent to the upper sealing surface side, and the heat dissipation is provided.
  • the waterproof cover has a centrifugal fan rib extending along the center of the inner wall of the upward sealing surface of the vent hole.
  • the heat-dissipating waterproof cover rotates with the rotor during the rotation of the rotor of the rotor motor, and the centrifugal blade rib of the inner part rotates around the center of the circle, so that the hot air generated by the rotation of the rotor motor is extracted by the centrifugal force generated by the rotation of the centrifugal blade ridge.
  • a negative pressure is generated inside the heat-dissipating waterproof cover, and the airflow continuously enters from the lower part of the rotor motor, and is centrifugally extracted and flows out from the ventilation hole of the circumferential surface of the side wall, thereby forming a flow of air to dissipate heat to the rotor motor; and at the same time, due to heat dissipation of the rotor motor
  • the upper end face of the cover covers the upper part of the motor, and the rainwater cannot enter the rotor motor from the upper part, and is blown away by the high-speed airflow of the vent hole when the upper end surface of the heat-dissipating waterproof cover is connected with the circumferential surface of the side wall, ensuring that the rainwater still cannot enter.
  • the heat-dissipating waterproof cover acts as a waterproof cover.
  • An annular cavity is formed between the center of the inner wall of the upper sealing surface and the centrifugal blade rib to cooperate with the vent hole of the rotor motor.
  • the height of the centrifugal blade ridge on the center side of the inner wall of the upper sealing face is smaller than the height of the centrifugal blade ridge on the side of the vent hole.
  • the invention has the advantages that the structure is simple and reasonable, and the weight of the drone is evenly distributed to the front and rear of the fuselage, thereby reducing the weight distributed in the vertical direction of the drone, and the control of the drone is relatively simple and stable;
  • the arms are directly connected to the front of the fuselage, freeing up valuable storage space for the middle and rear. For this tiled unobstructed design, objects in the storage space are also easier to access.
  • the drone of the present invention may also have the following additional technical features:
  • the lift center is adjacent to a geometric center of the storage device.
  • the center of gravity of the drone, the center of the lift, and the geometric center of the storage device coincide.
  • both the front arm and the rear arm are two.
  • the angle between the two front arms is greater than the angle between the two rear arms.
  • the length of the rear arm is greater than the length of the front arm.
  • the other end of the two front arms and the other end of the two rear arms are located on four vertices of a rectangle.
  • the other ends of the two front arms and the other ends of the two rear arms are located on four vertices of a square.
  • the rear arm is configured to be linear or curved.
  • the front end of the airframe includes a front placement board, and the front placement board is provided with a control module, a current detecting module and an auxiliary device of the drone; Inside the storage device.
  • FIG. 1 is a plan view of a drone according to an embodiment of the present invention.
  • Figure 2 is a partial enlarged view of the portion D in Figure 1;
  • Figure 3 is a front elevational view of the arm, the first fixing portion, the second fixing portion, and the rotor motor of Figure 1 assembled;
  • Figure 4 is a partial exploded view of the arm and rotor motor of Figure 3;
  • Figure 5 is a right side elevational view of the assembly of the arm and the rotor motor of Figure 3, wherein the rotor motor is in a deflected state relative to the arm;
  • Figure 6 is a front elevational view of the sprinkler head folding rod of the fixed sprinkler head of the drone of Figure 1 in an extended state;
  • Figure 7 is a front elevational view of the sprinkler head of the fixed sprinkler head of Figure 6 in a folded state rotated 90° clockwise;
  • Figure 8 is an exploded view of the folded cavity of Figure 6;
  • Figure 9 is a view from another perspective of Figure 8.
  • Figure 10 is an exploded view of the heat-dissipating waterproof cover and the rotor motor in the embodiment of the present invention
  • Figure 11 is an assembled view of the heat-dissipating waterproof cover and the rotor motor of Figure 10;
  • Figure 12 is a perspective view of the heat dissipation waterproof cover of Figure 10;
  • FIG. 13 is a schematic structural view of a centrifugal blade ridge of a heat dissipation waterproof cover according to another embodiment of the present invention.
  • Figure 14 is a side elevational view of the heat-dissipating waterproof cover of Figure 10.
  • adapter 821, U-shaped groove; 822, raised shaft; 823, spray head folding rod mounting hole; 824, hollow hole; 825, first contact surface;
  • A the first intersection
  • B the second intersection
  • C the lift center
  • E the intersection area
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; may be mechanically connected or electrically connected; may be directly connected, or may be indirectly connected through an intermediate medium, may be internal communication of two elements or an interaction relationship of two elements.
  • Connected, or integrally connected may be mechanically connected or electrically connected; may be directly connected, or may be indirectly connected through an intermediate medium, may be internal communication of two elements or an interaction relationship of two elements.
  • General technology in the art For the personnel, the specific meaning of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include first and second features, unless otherwise specifically defined and defined. It is not in direct contact but through additional features between them.
  • the first feature "above”, “above” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature includes the first feature directly below and below the second feature, or merely the first feature level being less than the second feature.
  • the head of the drone 100 is located at the front, and the tail of the drone 100 is located at the rear.
  • the drone 100 includes a body 1, a boom, and a rotor motor 93.
  • the body 1 includes a body 2 and a storage device 4 for loading goods disposed at the rear of the body 2.
  • the arm includes a front arm 101 and a rear arm 102, and the rotor motor 93 includes a front motor 93a and a rear motor 93b.
  • front arm 101 There are at least two front arms 101, and the front arm 101 is symmetrically disposed about a central axis of the body 2 in the front-rear direction, and one end of each of the front arms 101 is connected to the front end of the body 2, each of which is The other end of the front arm 101 is provided with a corresponding front motor 93a to drive the drone 100.
  • each of the rear arms 102 is connected to the rear end of the body 2, and each of the rear arms A corresponding rear motor 93b is provided on the other end of the 102 to drive the drone 100.
  • the extension line of the rear arm 102 facing the body 2 and the intersection area E of the front arm 101 facing the extension of the body 2 are located at the drone 100.
  • the center of the lift center C, and the point of action of the front motor 93a and the rear motor 93b on the unmanned aerial vehicle 100 is the lift center C, and the center of gravity of the drone 100 is adjacent to the lift center C. .
  • the extension line of the rear arm 102 facing the body 2 and the central axis of the body 2 intersect the first intersection point A
  • the extension line of the front arm 101 facing the body 2 intersects with the above-mentioned center axis of the body 2.
  • the extension line of the rear arm 102 facing the fuselage 2 in the right rear direction in FIG. 1 and the extension line of the front arm 101 facing the fuselage 2 in the left front direction in FIG. 1 are approximately overlapped, in FIG.
  • the extension line of the rear arm 102 facing the body 2 in the left rear direction is approximately coincident with the extension line of the front arm 101 facing the body 2 in the right front direction in FIG.
  • the extension arm 102 faces the extension of the body 2 and
  • the extension line of the front arm 101 toward the body 2 substantially intersects the midpoint of the first intersection A and the second intersection B.
  • the midpoints of the first intersection A and the second intersection B are located at the center of the lift C of the drone 100. In front.
  • the first intersection Both the point A and the second point B are located in front of the lift center C of the drone 100.
  • connection between the rear arm 102 and the body 2 is located in the middle of the body 1
  • connection between the front arm 101 and the body 2 is located at the front of the body 1
  • the lift center C of the drone 100 is located in the body.
  • the position of the middle of 1 is behind. Thereby, the position of the middle portion of the body 1 is left with the installation space of the storage device 4, so that the center of gravity of the drone 100 is adjacent to the lift center C, which is advantageous for the front motor 93a and the rear motor 93b to drive the drone 100.
  • the center of gravity of the unmanned drone 100 is adjacent to the lift center C of the drone 100, and the center of gravity of the cargo loaded by the drone 100 is also adjacent to the lift center C of the drone 100, so that the drone 100 carrying the cargo is in the cargo After the unloading, the position of the center of gravity of the drone 100 changes little.
  • the cargo (variable weight module) loaded in the drone 100 can be reduced to the drone 100.
  • the influence of the position of the center of gravity facilitates smoother control of the drone 100 and reduces the control difficulty of the drone 100.
  • the front motor 93a and the rear motor 93b may be motors of the same type to reduce the types of components of the drone 100, simplify the production process of the drone 100, and reduce the production cost of the drone 100.
  • a plurality of hollow structures may be disposed on the body 2 of the drone 100 to reduce the weight of the drone 100, thereby contributing to the weight reduction of the drone 100.
  • the lift center C of the drone 100 may be adjacent to the geometric center of the storage device 4.
  • the center of gravity of the cargo (variable weight module) loaded in the storage device 4 is adjacent to the geometric center of the storage device 4, particularly for liquid or powdered goods, the center of gravity of which is substantially coincident with the geometric center of the storage device 4.
  • Positioning the geometric center of the storage device 4 adjacent to the lift center C of the drone 100 is advantageous for reducing the influence of the cargo on the center of gravity of the drone 100, so that the weight of the drone 100 is dynamic (for example, The drone 100 is better controlled when the cargo is gradually removed.
  • the center of gravity of the drone 100, the lift center C of the drone 100, and the geometric center of the storage device 4 may coincide to reduce the influence of the variable weight module on the center of gravity of the drone 100.
  • the front end of the body 2 may include a front placement plate 3, and the front placement plate 3 may be provided with a control module, a current detecting module and an auxiliary device of the drone 100, and the drone 100
  • the battery can be placed in the storage device 4.
  • the constant weight module of the drone 100 can include the body 1, the front arm 101, the rear arm 102, the control module, the current detecting module, the auxiliary device, and the battery, by using a light weight control module, current
  • the detecting module and the auxiliary device are disposed at the front end of the body 1, and the battery with a larger weight is disposed at the rear end of the body 2, so that the center of gravity of the constant weight module of the drone 100 falls to a position behind the center of the body 1.
  • It is advantageous for the balance of the drone 100 and the arrangement of the variable weight module, and the constant weight module and the variable weight module can be laid flat in the front-rear direction, which is advantageous for maintaining the center of gravity of the drone 100 in the vicinity of the fuselage 2 in the direction of gravity.
  • the center of gravity rises or falls in the direction of gravity, and the arrangement position of the variable weight module is unobstructed, which facilitates the loading and unloading of the variable weight module.
  • At least part of the battery may be disposed at the rear end of the storage device 4, in other words, at least part of the battery may be disposed behind the variable weight module to reduce the drone 100 when the cargo (variable weight module) is removed.
  • the influence of the center of gravity is easier to control the drone 100.
  • the four rear arms 102 may be symmetrically disposed on both sides of the central axis.
  • the front arm 101 may be four
  • the rear arm 102 may be four
  • the four front arms 101 may be symmetrically disposed on both sides of the central axis, four rear machines.
  • the arms 102 can be symmetrically disposed on both sides of the central axis.
  • the number of the front arm 101 and the rear arm 102 is not limited to this.
  • the front arm 101 may be two, the two front arms 101 may be symmetrically disposed on two sides of the central axis, the rear arm 102 may be two, and the two rear arms 102 may be Symmetry is located on both sides of the central axis.
  • the drone 100 can be provided with sufficient driving force, and the structure of the drone 100 is simple.
  • the second intersection B is located between the first intersection A and the lift center C.
  • the first intersection A and the second intersection B are the vertices common to the two triangles, that is, two One of the triangles is a line connecting A and B, with the front arm 101 of the left front direction facing the extension of the body 2 and the intersection of the rear arm 102 of the left rear side facing the extension of the body 2.
  • the other of the two triangles is a line connecting A and B, with the front arm 101 in the right front direction facing the extension of the body 2 and the rear arm 102 in the right rear direction facing the machine.
  • the intersection of the extension lines of the body 2 is a fixed-point triangle, whereby the structure of the drone 100 is more stable.
  • the angle between the two rear arms 102 is ⁇
  • the angle between the two front arms 101 is ⁇
  • ⁇ and ⁇ can satisfy: ⁇ ⁇ ⁇ .
  • the two rear arms 102 can be retracted toward the center axis, whereby the lift center C of the drone 100 can be moved backward.
  • first intersection point A may be disposed adjacent to the second intersection point B, and may be largely combined, thereby increasing the space of the middle portion and the rear portion of the drone 100.
  • the length of the rear arm 102 may be greater than the length of the front arm 101.
  • the distance from the other end of the rear arm 102 (the end on which the rear motor 93b is mounted) to the first intersection A may be greater than the distance from the other end of the front arm 101 (the end on which the front motor 93a is mounted) to the second intersection B.
  • the connection between the rear arm 102 and the front arm 101 and the body 2 is relatively advanced, the balance of the drone 100 is made more by providing the above structure. Good, easy to control.
  • the rear arm 102 can be configured to be rectilinear.
  • the rear arm 102 can be configured in an arc shape.
  • the connection between the front motor 93a mounted on the front arm 101 and the rear motor 93b mounted on the rear arm 102 is as described above.
  • the central axis is parallel.
  • the other ends of the two front arms 101 (one end on which the front motor 93a is mounted) and the other ends of the two rear arms 102 (with the rear motor 93b mounted) One end) can be located at the four vertices of a square.
  • the lift center C of the drone 100 in the steady state is the center of the above square, and the center of gravity of the unloaded drone 100 and the cargo loaded by the drone 100 can be located near the center of the square.
  • the drone 100 has a simple structure, good symmetry and balance, and is easy to control.
  • the drone 100 may be an agricultural drone. Accordingly, the cargo (variable weight module) loaded by the drone 100 may be a pesticide, because the constant weight module of the drone 100 and the variable weight module are In the front and rear direction, the pesticide is loaded and unloaded conveniently. During the flight of the drone 100, the pesticide can be gradually sprayed out from the storage device 4 through the hose, and the pesticide is reduced (the weight of the variable weight module occurs) In the process of the change, the center of gravity of the drone 100 is always located near the lift center C of the drone 100, whereby the control of the drone 100 is relatively simple and stable.
  • the drone 100 includes at least two front arms 101 and at least two rear arms 102, and by connecting the rear arm 102 to the body 2, the first An intersection point A, a second intersection point B, and a lift center C of the drone 100 are sequentially disposed from front to back in the front-rear direction of the drone 100, and a storage device is disposed at a position offset from the center of the drone 100 4.
  • the center of gravity of the unmanned drone 100 and the center of gravity of the cargo loaded by the drone 100 are both adjacent to the lift center C of the drone 100.
  • the center of gravity of 100 and the center of gravity of the cargo loaded by the drone 100 are arranged to prevent the center of gravity of the drone 100 from rising and falling in the direction of gravity, and the storage device 4 is unobstructed, facilitating loading of the cargo of the drone 100 and Uninstall.
  • the UAV 100 according to an embodiment of the present invention will be further described below with reference to FIGS.
  • the technical solution proposed by the invention is applicable not only to a quadrotor aircraft, but also to a multi-axis multi-rotor aircraft such as a six-axis or an eight-axis.
  • the drone 100 of the present embodiment includes four arms distributed around the body 2, and is axially directed to the body 2. One end of the arm is connected to the body 2, and the other end is provided with a rotor motor. In the forward direction of the drone 100 The front arm 101 is slightly shorter and the rear arm 102 is slightly longer. The extension line of the position where the arm is connected to the body 2 is approximately coincident (ie, the intersection area E in FIG. 1), and the space left in the middle and rear of the drone 100 can be provided with the storage device 4 and other devices, such as a storage device. 4, battery, etc., at the same time, the front part of the fuselage 2 can be placed on the board 3 to place other accessories, such as the drone 100 flight control module, current detection module, auxiliary devices and so on.
  • the unmanned aerial vehicle 100 advances the intersection area E of the four arms relative to the lift center C, so that a part of the space is vacated in the middle and the rear of the drone 100, thereby being able to set the storage therein.
  • the device 4 is disposed with the weight of the drone 100 to ensure that the center of gravity of the drone 100 substantially coincides with the lift center C of the drone 100 when the center of gravity is not raised or lowered. After the drug or other type of storage in the storage space is gradually released from the drone 100, the overall center of gravity of the drone 100 does not shift too much, thereby making the control of the drone 100 relatively simple and stable. .
  • the center of gravity of the unmanned aerial vehicle 100 in the vicinity of the center of gravity C of the unmanned aerial vehicle 100, and the center of gravity of the cargo loaded by the drone 100 is also located at the center of gravity.
  • the vicinity of the lift center C of the machine 100, and substantially flat on the plane of the fuselage 2 of the drone 100 increases the proportion of the heavy objects in the horizontal layout, and avoids the heavy objects stacked on the drone 100.
  • the effect of offset and lift on the center position; and for the tiled unobstructed design, objects within the storage device 4 are easier to pick and place.
  • the arm can be arranged in a straight line or in an arc shape, and a plurality of available spaces are easily left on both sides of the curved arm to facilitate storage or installation of other objects.
  • the arm is provided with fixing members, and the fixing members respectively include a first fixing portion 10 and a second fixing portion 11.
  • At least one of the first fixing portion 10 and the second fixing portion 11 is connected to the body 2, and the first fixing portion 10 is connected to the second fixing portion 11 and cooperates to define a mounting groove in which the arm is disposed.
  • the first fixing portion 10 is connected to the body 2, and the second fixing portion 11 is connected to the body 2, and the first fixing portion 10 Connecting with the second fixing portion 11 and defining a mounting slot, the arm is disposed in the mounting slot; and the first fixing portion 10 and the second fixing portion 11 are respectively provided with at least one body 2 The outer flat surface of the connection.
  • an arm deflection locking hole 12 may be disposed on the arm, and at least one of the first fixing portion 10 and the second fixing portion 11 is provided with a machine corresponding to the position of the arm deflection locking hole 12
  • the arm deflecting fixing hole 15 is provided in the first fixing portion 10 and the second fixing portion 11 with the arm deflection fixing hole corresponding to the position of the arm deflection locking hole 12 15; an arcuate inner surface 16 matching the outer wall of the arm may be respectively disposed on the first fixing portion 10 and the second fixing portion 11, and the two arc-shaped inner surfaces cooperate to form an arm
  • the mounting groove is provided on the first fixing portion 10 and the second fixing portion 11, and the arm locking hole 13 for bolting, and the body connecting hole 14 for bolting to the body 2 are provided.
  • the shape of the mounting groove can be matched according to the shape of the arm.
  • the cross-sectional shape of the arm is circular
  • the cross-sectional shape of the mounting groove may be circular
  • the cross-sectional shape of the arm is square
  • the cross-sectional shape of the mounting groove may be square.
  • Figure 3 is a front view of the arm assembly, showing two sets of arm fixing members and arms, that is, two first fixing portions 10 and two second fixing portions 11, one of which is fixed
  • the first fixing portion and the second fixing portion of the member clamp the arm, and the other group arm fixing member is spaced apart from the first group arm fixing member, and also clamps the arm.
  • FIG. 4 is a partial exploded view of the arm assembly, showing the arm locking hole 13, the fuselage connecting hole 14, the arm deflection fixing hole 15, wherein the arm locking hole 13 is used for the screw
  • the first fixing portion 10 and the second fixing portion 11 are locked to each other, and the body connecting hole 14 is used for fixing the first fixing portion 10 and the second fixing portion 11 to the body 2 by screws, and the arm deflecting fixing hole 15 It is then used to screw the arm to a fixed angle as required.
  • the portion where the first fixing portion 10 and the second fixing portion 11 are clamped to the arm is an arc-shaped inner surface 16, and in the axial direction of the curved inner surface 16, the first fixing portion 10 and the first second fixing portion The thickness of 11 is increased such that the contact faces of the two curved inner surfaces 16 with the arms are larger, thereby better clamping the arms.
  • the arm deflection diagram is shown, and the screw for the arm deflection locking passes through the arm deflection locking hole 12, thereby accurately locking the deflection angle ⁇ of the arm and the body 2.
  • the first fixing portion 10 and the second fixing portion 11 of the first group of arm fixing members are first clamped on the arm, and then the screw is passed through the arm to deflect the fixing hole 15 and the arm.
  • the arm deflects the locking hole 12 and locks it, then screws the arm through the arm locking hole 13 to clamp the arm, and sequentially installs the second set of arm fixing members at the corresponding positions of the arm, and
  • the set of arm fixing members are spaced apart by a certain distance, wherein the upper and lower planes of the arm connecting members are placed on the same plane table, and are kept parallel, and the other end of the arm is mounted with the rotor motor 93, and the rotor motor 93 can be adjusted.
  • the lower plane of the motor seat is horizontal or at an angle ⁇ such that the rotor motor 93 is perpendicular to the vertical plane or at an angle ⁇ in the axial direction of the arm.
  • the fixing manner of the arm and the body 2 ensures that the arm is not easily oscillated in the axial direction, and the arm can be easily fixed on the plurality of fixing members according to the required angle of deviation, and then mounted on the body 2, Thereby ensuring that the yaw angle of the arm relative to the plane of the fuselage 2 is a demand setting or a target setting.
  • the upper end surface of the rotor motor 93 of the drone 100 is provided with a heat-dissipating waterproof cover 90.
  • the heat-dissipating waterproof cover 90 includes an upper sealing surface 914 and a side wall circumferential surface 92, and the side wall circumferential surface 92 is close to
  • the upper sealing surface 914 is provided with a plurality of ventilation holes 915.
  • the heat dissipation waterproof cover 90 is provided with a centrifugal blade rib 911.
  • the centrifugal blade rib 911 extends along the center of the inner wall of the upward sealing surface 914 of the ventilation hole 915.
  • annular cavity 916 is formed between the center of the inner wall of the upper sealing surface 914 and the centrifugal blade rib 911 to cooperate with the vent hole of the rotor motor 93; the centrifugal fan adjacent to the center side of the inner wall of the upper sealing surface 914
  • the height of the leaf rib 911 is smaller than the centrifugal fan adjacent to the vent 915 The height of the leaf rib 911.
  • the heat-dissipating waterproof cover 90 can cover the upper portion and the circumference of the rotor motor 93, and the upper portion of the heat-dissipating waterproof cover 90 is sealed, and the other end is open, and the upper sealing surface 914 of the heat-dissipating waterproof cover 90 can be provided with a positioning hole 913.
  • the outer diameter of the annular cavity 916 is larger than the diameter of the vent of the motor.
  • a venting hole 915 is disposed along the circumferential surface 92 of the side wall surrounding the heat dissipation waterproof cover 90, that is, the side wall circumferential surface 92 is hollowed out at the gap between the two adjacent centrifugal blade ribs 911, and is formed on the upper side.
  • a venting opening 914 engages the venting opening 914 with the side wall circumferential surface 92.
  • the heat-dissipating waterproof cover 90 rotates together with the rotor, and the centrifugal blade rib 911 inside thereof rotates around the rotation center of the rotor motor, and the hot air generated when the rotor motor 93 operates is centrifugally convex.
  • the centrifugal force generated by the rotation of the 911 is thrown out, and a negative pressure is generated at the annular cavity 916 inside the heat-dissipating waterproof cover 90, and the airflow continuously enters from the lower portion of the rotor motor 93 and is centrifugally pulled out from the vent hole 915, thereby forming a flow of air to the rotor motor.
  • a folding cavity 81, a joint 82, and a sprinkler head folding rod 83 are provided below the arm.
  • a drive assembly is disposed within the folding cavity 81.
  • the middle portion of the adapter 82 is hinged in the folding cavity 81, the front portion of the adapter 82 is coupled to the drive assembly, and the rear portion of the adapter 82 passes through the opening of the folding cavity 81 and is fixed to one end of the spray head folding lever 83. connection.
  • the driving assembly includes a driving body, a driving shaft and a connecting portion which are rotatably connected to the driving body and the connecting portion, and the driving body is configured to drive the driving shaft to rotate, so that the connecting portion pushes the rotating portion The joint rotates between the first position and the second position relative to the outer casing.
  • the driving body is a reduction motor 88, the driving shaft is a screw rod 832, and the connecting portion is a slider 831.
  • the outer wall of the drive shaft is provided with an external thread
  • the connecting portion is provided with a matching hole.
  • the inner wall of the engaging hole is provided with an internal thread, and the driving shaft passes through the connecting portion, and the external thread cooperates with the internal thread.
  • a thrust bearing 89 is disposed at one end of the drive shaft away from the drive body, and the thrust bearing 89 is fixed in the housing, and the drive shaft rotatably penetrates the thrust bearing 89.
  • the front portion of the adapter 82 is provided with a U-shaped groove 821, and the connecting portion is placed in the U-shaped groove 821.
  • a folding mechanism of the sprinkler head is provided below the arm, and includes a folding cavity 81, a joint 82, a sprinkler head folding rod 83, a head rotating motor 422, and a spraying member 41 that is driven by the head rotating motor 422.
  • One end of the folding cavity 81 is provided with a signal interface circuit board 87, and the other end is provided with an opening.
  • the folding cavity 81 is provided with a reduction motor 88 and a screw rod 832. The output end of the signal interface circuit board 87 and the speed reduction motor 88 are provided.
  • the input end is electrically connected, the output shaft of the reduction motor 88 is axially connected to one end of the screw rod 832, and the other end of the screw rod 832 is provided with a thrust bearing 89 on the open side of the folding cavity 81.
  • the inner cavity wall is provided with a protruding shaft 822.
  • the protruding shaft 822 is connected in series with the middle of the adapter 82.
  • One end of the adapter 82 is provided as a U-shaped groove 821, and the U-shaped groove 821 is provided with a slider 831 and a slider 831.
  • the middle portion is provided with a threaded hole for the screw rod 832 to pass through and is threadedly coupled with the screw rod 832.
  • the opposite inner side chamber walls of the folding cavity 81 are provided with the ends of the slider 831 along the axial direction of the screw rod 832.
  • a sliding in-line chute 813, the other end of the adapter 82 extending from the opening of the folding cavity 81 to the outside of the folding cavity 81 and fixedly connected to one end of the sprinkler folding rod 83, the nozzle rotating motor A 422 and a spray member 41 are disposed at the other end of the sprinkler head folding rod 83.
  • FIG. 6 is a schematic view showing a state in which the head is vertically lowered
  • FIG. 7 is a schematic view showing a state in which the head is horizontally folded.
  • the folding mechanism of the head mainly includes a folding chamber 81, a joint 82, a spray head folding rod 83, a nozzle rotating motor 422, and a spray member. 41 and other components.
  • the sprinkler head folding rod 83 is connected to the folding cavity 81 through the adapter 82
  • the nozzle rotating motor 422 and the spraying member 41 are fixedly connected with the sprinkler head folding rod 83
  • the head rotating motor 422 drives the spraying member 41 to rotate.
  • the first position may be set to the stowed position of the sprinkler head folding rod 83 and the spray member 41
  • the second position may be set to the open position of the sprinkler head folding rod 83 and the spray member 41.
  • the stowed position of the sprinkler head folding rod 83 and the spray member 41 is in a horizontal position
  • the open position of the sprinkler head folding rod 83 and the spray member 41 is in a vertical position.
  • the first position and the second position may be correspondingly set according to the scenario applied by the drone 100, and are not limited to the specific location defined by the embodiment of the present invention.
  • FIG. 8 it is a schematic diagram of the internal structure of the folding cavity 81, including a left side casing 811, a right side casing 812, a reduction motor 88, a joint 82, a screw 832, a slider 831, and a thrust bearing 89.
  • the geared motor 88 is mounted in a square groove of the left side casing 811 and the right side casing 812, and the screw rod 832 is connected to the output shaft of the reduction motor 88.
  • the end of the screw rod 832 bears against a thrust bearing 89 and is screwed on the screw rod.
  • the 832 is screwed into a slider 831 having a threaded hole in the middle, and the threaded hole is screw-fitted with the screw 832.
  • the two sides of the threaded hole in the middle of the slider 831 are first slidably engaged with the U-shaped groove 821 on the adapter 82, and then the ends of the slider 831 are the left side housing 811 and the right side housing in the drawing.
  • the corresponding inline chute 813 of the 812 is slidably engaged, that is, the slider 831 can slide along the inline chute, and the left and right sides of the corner position of the adapter 82 are provided with a convex shaft 822, and the convex shaft 822 and the left side in the figure
  • the corresponding round hole 814 of the outer casing 811 and the right outer casing 812 is rotatably coupled to form a rotary connection, wherein the inside of the adapter 82 is a hollow hole 824, and the cable used for circuit control Both the outlet pipe adapter 86 and the pipe used for the nozzle can pass through the hollow bore 824 portion.
  • the UAV 100 further includes: a control module and a current detecting module, wherein the control module is configured to control the driving component to drive the rotation of the adapter, and the current detecting module is configured to detect whether the current of the driving component is greater than a preset threshold, and if The current detecting module is configured to send a control signal for turning off the driving component to the control module, and if not, the current detecting module is configured to continue to detect whether the current of the driving component is greater than the preset threshold; the control module is configured to The control signal turns off the drive assembly. Thereby, the sprinkler head folding mechanism is automatically controlled by the control module and the current detecting module.
  • the sprinkler head folding mechanism folds the sprinkler head folding rod 83 and the spray member 41 in a horizontal position, and the slider 831 is located at the limit position of the near-reduction motor 88 on the screw rod 832, when no After the man machine 100 takes off, when the sprinkler head is required to start the agricultural spraying operation, the speed reducing motor 88 receives the driving signal from the signal interface circuit board 87 and rotates in the forward direction, pushing the slider 831 to the end of the screw rod 832 near the thrust bearing 89.
  • the left-hand housing 811 and the in-line chute 813 on the right side housing 812 restrict the two ends of the slider 831 from moving in parallel on a straight line, thereby preventing the slider 831 from rotating in the axial direction of the screw 832.
  • the slider 831 is simultaneously confined within the U-shaped slot 821 of the adapter 82, causing the slider 831 to push the U-shaped slot 821 during movement to rotate the adapter 82 about the raised shaft 822, while the other end of the adapter 82 passes
  • the sprinkler head folding rod 83 mounting hole 823 is connected to one end of the sprinkler head folding rod 83 to which the sprinkler head is fixed, thereby driving the sprinkler head folding rod 83 to rotate about the convex shaft 822 until the sprinkler head folding rod 83 is rotated to the vertical position.
  • the adapter 82 When the first contact surface 825 of the adapter 82 touches When the first end face 815 of the open end of the left side casing 811 and the right side casing 812 is closed, the adapter 82 is blocked from rotating (restricted to the first position), at which time the slider 831 cannot continue to move, and the screw 832 cannot continue to rotate.
  • the load of the reduction motor 88 is increased, so that the current through the reduction motor 88 is instantaneously increased greatly.
  • the control module After the internal current detection module of the drone 100 detects that the current is greatly increased, the control module sends a detection signal, and then the control module gives the transmission motor 88 a The control signal finally stops the motor; the sprinkler head folding rod 83 capable of maintaining the fixed sprinkler head during the flight of the drone 100 is perpendicular to the arm downward, and when the operation is completed, the drone 100 hovering over the landing position, this The control module gives the drive motor 88 a drive signal to rotate it in the reverse direction, and folds the sprinkler head folding rod 83 of the fixed sprinkler head back to the horizontal position. This process is similar to the process of deploying the sprinkler head folding rod 83 and the direction of movement of the associated mechanism. in contrast.
  • the sprinkler head folding rod 83 can be folded and stored during packaging and transportation, and the sprinkler head folding rod 83 of the fixed sprinkler head can be unfolded when the drone 100 performs the spraying operation to prevent the droplets from collecting.
  • the droplet phenomenon is formed, and the sprinkler head folding lever 83 can be folded up when not in use to prevent the ground from being touched.

Abstract

一种无人机,包括:机体(1),机体(1)包括机身(2)和储物装置(4);机臂,机臂包括关于机身(2)前后方向的中轴线对称设置的至少两个前机臂(101)以及关于中轴线对称设置的至少两个后机臂(102);旋翼电机(93),旋翼电机(93)包括前电机(93a)和后电机(93b);前机臂(101)的一端与机身(2)的前端相连,前机臂(101)的另一端上设有前电机(93a)以驱动无人机;后机臂(102)的一端与机身(2)的后端相连,后机臂(102)的另一端上设有后电机(93b)以驱动无人机;后机臂(102)朝向机身(2)的延长线与前机臂(101)朝向机身(2)的延长线的交叉区域位于无人机的升力中心前方,且前电机(93a)与后电机(93b)对无人机的合力的作用点为升力中心,无人机的重心邻近升力中心。该无人机机架结构及配重分布合理,飞行平稳、控制简单

Description

无人机 技术领域
本发明涉及飞行器的技术领域,特别是涉及一种无人机。
背景技术
无人机是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞行器。目前对无人机的运用已拓展到了多个民用领域,其中以农业应用为代表的无人机往往采用多旋翼的形式,它是一种有多个螺旋桨且布置螺旋桨的多条机臂呈交叉形态的飞行器,由于多个螺旋桨布置在飞行器的周围且提供的升力大致相同,故总升力相当于作用在飞行器的机臂交叉点上,即机身平面的几何中心上,由此,无人机的其他承重部件便分布在该几何中心的上方或/和下方,以使飞行器的总重力的作用点也尽量地靠近机身平面的几何中心,从而与总升力保持平衡。
然而,以上的设置方式将会导致无人机在竖直方向分布的质量过多,一旦飞行器在竖直方向上受力发生变化,便很容易产生难以控制的倾覆力矩,导致飞行器颠簸、失去平衡。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
针对现有技术的不足,本发明需要提出一种机架结构及配重分布合理的无人机,以使其飞行平稳、控制简单。
为了解决上述技术问题,本发明的技术方案如下:
一种无人机,包括:
机体,所述机体包括机身和设在所述机身的后方用于装载货物的储物装置;
关于所述机身前后方向的中轴线对称设置的至少两个前机臂,所述前机臂的一端与所述机身的前端相连且朝前延伸,所述前机臂的另一端上设有前电机以驱动所述无人机;
关于所述中轴线对称设置的至少两个后机臂,所述后机臂的一端与所述机身的后端相连且朝后延伸,所述后机臂的另一端上设有后电机以驱动所述无人机;其中
所述后机臂的及所述前机臂朝向所述机身的延长线与所述中轴线的交叉区域E位于所述无人机的升力中心前方,且所述前电机与所述后电机对所述无人机的合力的作用点为所述升力中心,所述无人机的重心邻近所述升力中心。
以上技术方案提出的无人机,分别将机臂直接连接到机身的前部,使机臂及其延长线的交叉点相对前移,为机身后部设置储物装置腾出了空间,使得无人机不会在竖直方向分布的质量过多,从而使得无人机的控制较为简易和平稳。
所述机臂呈直线形或弧形。可以使两侧机臂间留出大量可用空间,便于储物或安装设置其它物件。
所述机臂上间隔设置有至少两个机臂固定件,每个所述固定件分别包括:
第一固定部,所述第一固定部与所述机身相连;
第二固定部,所述第二固定部与所述机身相连,所述第一固定部与所述第二固定部相连且配合限定出安装槽,所述机臂穿设在所述安装槽内;
且第一固定部和第二固定部分别设有至少一个与机身连接的外平表面。
采用间隔设置的两组或更多机臂固定件,可使机身、机臂固定件、机臂之间连成整体,多组机臂固定件多处锁定,由此保证了机臂在轴向不容易摆动,并且先将机臂按照需求的偏角固定在多组机臂固定件上,同侧的机臂固定件与机身面相平,然后将机臂安装在机身上,这样就确保了机臂相对于机身平面的偏角为需求定值。
在所述机臂上设有机臂偏转锁定孔,所述第一固定部和第二固定部上均设有与所述机臂偏转锁定孔位置对应的机臂偏转固定孔。可以从机臂的径向锁住机臂,沿机臂轴向多处间隔锁定后,能够防止机臂轴向摆动。
在所述第一固定部和第二固定部上分别设有与机臂外壁相匹配的弧形内表面。可增大第一固定部和第二固定部与机臂的接触面的面积,增大摩擦,防止滑动。
在所述第一固定部和第二固定部上设有相互螺栓连接的机臂锁紧孔,以及用于与机身螺栓连接的机身连接孔。
所述机臂的下方设有折叠腔体、转接头及喷洒头折叠杆,折叠腔体内设有驱动组件,所述转接头的中部铰接在折叠腔体内,转接头的前部与驱动组件连接,转接头的后部穿出折叠腔体的开口并与喷洒头折叠杆的一端固定连接。利用所述可折叠的喷洒头折叠杆,在非工作状态下折叠收藏,便于包装运输,并可避免杆上设置的喷洒件等部件触碰地面,而在利用无人机喷雾时,则可展开所述喷洒头折叠杆,使喷洒件伸到无人机的支架下方而防止雾滴聚集形成液滴现象。
所述驱动组件包括安装在外壳内的驱动本体、驱动轴及连接部,所述驱动轴能够转动地连接所述驱动本体及所述连接部,所述驱动本体用于驱动所述驱动轴转动,使所述连接部推动所述转接头相对于所述外壳在所述第一位置及所述第二位置之间转动。驱动本体为减速电机,驱动轴为丝杆,连接部为滑块。所述驱动方式易于实现,且稳定可靠。
所述驱动轴外壁设置有外螺纹,所述连接部开设有配合孔,所述配合孔的内壁设置 有内螺纹,所述驱动轴穿设所述连接部,所述外螺纹与所述内螺纹配合。使驱动轴与连接部以螺纹配合方式连接,提高了传动的控制精度。
所述驱动轴远离所述驱动本体的一端设置有止推轴承,所述止推轴承固定在所述外壳内,所述驱动轴转动地穿设所述止推轴承。
所述转接头的前部设有U形槽,所述连接部置于U形槽内。
所述无人机包括:
控制模块,所述控制模块用于控制所述驱动组件驱动转接头转动;以及
电流检测模块,
所述电流检测模块用于检测所述驱动组件的电流是否大于预设阈值,若否,所述电流检测模块用于继续检测所述驱动组件的电流是否大于所述预设阈值,若是,所述电流检测模块用于发送关闭所述驱动组件的控制信号到所述控制模块;
所述控制模块用于根据所述控制信号,关闭所述驱动组件。
无人机的旋翼电机的上端面上设有散热防水盖,散热防水盖包括上封口面和侧壁圆周面,在靠近上封口面一侧的侧壁圆周面上设置有若干个通风孔,散热防水盖内设有沿通风孔向上封口面内壁中心延伸的离心扇叶凸条。所述散热防水盖在旋翼电机转子旋转的过程中随转子一起旋转,其内部的离心扇叶凸条绕圆心转动,使旋翼电机旋转产生的热空气被离心扇叶凸条旋转产生的离心力甩出,同时在散热防水盖内部产生负压,气流不断从旋翼电机下部进入,并被离心甩出后从侧壁圆周面的通风孔流出,从而形成气流流动对旋翼电机散热;同时由于旋翼电机散热防水盖的上端端面盖住了电机上部,雨水从上部无法进入旋翼电机,并在流向散热防水盖的上端端面与侧壁圆周面衔接处时被通风孔的高速气流吹走,确保了雨水仍无法进入散热防水盖内,从而起到防水的作用。
在所述上封口面内壁中心和离心扇叶凸条之间形成与旋翼电机内部通气孔相配合的环形空腔。
在所述上封口面内壁中心侧的离心扇叶凸条的高度小于通风孔侧的离心扇叶凸条的高度。
本发明的优点是:其结构简单合理,将无人机重量平摊到了机身前后,减少了无人机竖直方向上分配的重物,使无人机的控制较为简易和平稳;且机臂直接连接到机身前部,为中部和后部腾出了宝贵的储物空间,对于这种平铺无遮挡设计,储物空间内的物体也更容易取放。
针对现有技术的不足,本发明所提出的无人机还可以具有如下附加的技术特征:
优选地,所述升力中心邻近所述储物装置的几何中心。
可选地,所述无人机的重心、所述升力中心以及所述储物装置的几何中心重合。
优选地,所述前机臂和所述后机臂均为两个。
进一步地,两个所述前机臂的夹角大于两个所述后机臂的夹角。
进一步地,所述后机臂的长度大于所述前机臂的长度。
进一步地,两个所述前机臂的所述另一端与两个所述后机臂的所述另一端位于一个矩形的四个顶点上。
优选地,两个所述前机臂的所述另一端与两个所述后机臂的所述另一端位于一个正方形的四个顶点上。
可选地,所述后机臂构造为直线形或弧形。
可选地,所述机身的前端包括前部放置板,所述前部放置板上设有所述无人机的控制模块、电流检测模块和辅助装置;所述无人机的电池设在所述储物装置内。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1是本发明实施例的无人机的俯视图;
图2是图1中D处的局部放大图;
图3是图1中机臂、第一固定部、第二固定部及旋翼电机组装后的正视图;
图4是图3中的机臂与旋翼电机的局部爆炸图;
图5是图3中的机臂与旋翼电机的组装的右视图,其中,所述旋翼电机相对于所述机臂处于偏转状态;
图6是图1中的无人机的固定喷洒头的喷洒头折叠杆处于伸展状态的正视图;
图7是图6中固定喷洒头的喷洒头折叠杆处于折叠状态的正视图经过顺时针旋转90°的视图;
图8是图6中折叠腔体的爆炸图;
图9是图8的另一视角的视图;
图10是本发明实施例中散热防水盖与旋翼电机的爆炸图;
图11是图10中散热防水盖与旋翼电机的组装图;
图12是图10中散热防水盖的立体图;
图13是本发明的其他实施例中散热防水盖的离心叶片凸条的结构示意图;
图14是图10中散热防水盖的侧视图。
附图标记说明:
100、无人机;
1、机体;101、前机臂;102、后机臂;93a、前电机;93b、后电机;
2、机身;3、前部放置板;4、储物装置;
10、第一固定部;11、第二固定部;12、机臂偏转锁定孔;13、机臂锁紧孔;14、机身连接孔;15、机臂偏转固定孔;16、弧形内表面;
41、喷洒件;422、喷头转动电机;
81、折叠腔体;811、左侧外壳;812、右侧外壳;813、一字形滑槽;814、圆孔;815、第一端面;
82、转接头;821、U形槽;822、凸起轴;823、喷洒头折叠杆安装孔;824、中空孔;825、第一接触面;
83、喷洒头折叠杆;831、滑块;832、丝杆;
86、出水管转接头;87、信号接口电路板;88、减速电机;89、止推轴承;
90、散热防水盖;91、螺丝;92、侧壁圆周面;93、旋翼电机;911、离心扇叶凸条;912、侧壁圆周面内壁;913、定位孔;914、上封口面;915、通风孔;916、环形空腔;
A、第一交点;B、第二交点;C、升力中心;E、交叉区域;
α、两个后机臂之间的夹角;γ、两个前机臂之间的夹角。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“轴向”、“周向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术 人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下面将参考附图并结合实施例来详细说明本发明。
如图1所述,本发明实施例中,无人机100的头部位于前方,所述无人机100的尾部位于后方。
下面参照图1-图17描述根据本发明实施例的无人机100,如图1-图17所示,无人机100包括机体1、机臂和旋翼电机93。
请参照图1,所述机体1包括机身2和设在所述机身2的后方的用于装载货物的储物装置4。
其中机臂包括前机臂101和后机臂102,旋翼电机93包括前电机93a和后电机93b。
前机臂101至少有两个,前机臂101关于所述机身2前后方向的中轴线对称设置,每个所述前机臂101的一端与所述机身2的前端相连,每个所述前机臂101的另一端上设有对应的前电机93a以驱动所述无人机100。
后机臂102至少有两个,而且后机臂102关于所述中轴线对称设置,每个所述后机臂102的一端与所述机身2的后端相连,每个所述后机臂102的另一端上设有对应的后电机93b以驱动所述无人机100。
如图1和图2所示,所述后机臂102朝向机身2的延长线与所述前机臂101朝向所述机身2的延长线的交叉区域E位于所述无人机100的升力中心C前方,且所述前电机93a与所述后电机93b对所述无人机100的合力的作用点为所述升力中心C,所述无人机100的重心邻近所述升力中心C。
具体地,后机臂102的朝向机身2的延长线与机身2的中轴线交于第一交点A,前机臂101的朝向机身2的延长线与机身2的上述中轴线交于第二交点B,图1中右后方向的后机臂102朝向机身2的延长线与图1中左前方向的前机臂101朝向机身2的延长线近似重合在一起,图1中左后方向的后机臂102朝向机身2的延长线与图1中右前方向的前机臂101朝向机身2的延长线近似重合在一起,后机臂102朝向机身2的延长线与前机臂101朝向机身2的延长线大体交叉于第一交点A和第二交点B的中点处,第一交点A和第二交点B的中点位于无人机100的升力中心C的前方。可选地,第一交 点A和第二交点B均位于无人机100的升力中心C前方。
可以理解的是,后机臂102与机身2的连接处位于机体1的中部,前机臂101与机身2的连接处位于机体1的前部,无人机100的升力中心C位于机体1的中部偏后的位置。由此,机体1的中部偏后的位置留有储物装置4的安装空间,使得无人机100的重心邻近升力中心C,有利于前电机93a与后电机93b驱动无人机100。
空载的无人机100的重心邻近无人机100的升力中心C,无人机100装载的货物的重心也邻近无人机100的升力中心C,使得装载货物的无人机100在将货物卸载后,无人机100的重心位置变化较小。
根据本发明实施例的无人机100,通过使无人机100的前机臂101与后机臂102前移,可以降低无人机100内装载的货物(变量重量模块)对无人机100的重心位置的影响,便于更平稳地控制无人机100,降低无人机100的控制难度。
可选地,前电机93a与后电机93b可以为相同型号的电机以减少无人机100的零部件种类,简化无人机100的生产流程,降低无人机100的生产成本。
可选地,无人机100的机身2上可以设有多个镂空结构,以降低无人机100的重量,有助于实现无人机100的轻量化。
在本发明的一些优选实施例中,如图1所述,无人机100的升力中心C可以邻近储物装置4的几何中心。储物装置4内装载的货物(变量重量模块)的重心邻近储物装置4的几何中心,特别是对于液体或粉末类的货物,其重心与储物装置4的几何中心大体重合。将储物装置4的几何中心设在与无人机100的升力中心C邻近的位置,有利于减轻货物对无人机100的重心的影响,便于在无人机100的重量处于动态(例如,逐渐卸掉货物)时更好地操控无人机100。
优选地,无人机100的重心、无人机100的升力中心C以及储物装置4的几何中心可以重合,以降低变量重量模块对无人机100的重心的影响。
在本发明的一个具体示例中,机身2的前端可以包括前部放置板3,前部放置板3上可以设有无人机100的控制模块、电流检测模块和辅助装置,无人机100的电池可以设在储物装置4内。
可以理解的是,无人机100的常量重量模块可以包括机体1、前机臂101、后机臂102、控制模块、电流检测模块、辅助装置以及电池,通过将重量较轻的控制模块、电流检测模块、辅助装置设在机体1的前端,将重量较大的电池设在机身2的后端,可以使无人机100的常量重量模块的重心落在机体1的中部偏后的位置,有利于无人机100的平衡以及变量重量模块的布置,且常量重量模块与变量重量模块可以在前后方向平铺布置,有利于在重力方向上使无人机100的重心维持在机身2附近,避免无人机100的 重心在重力方向上上升或下降,且变量重量模块的布置位置无遮挡,有利于变量重量模块的装载和卸载。
可选地,至少部分电池可以设在储物装置4的后端,换言之,至少部分电池可以设在变量重量模块的后方,以在卸掉货物(变量重量模块)时,减轻无人机100的重心受到的影响,无人机100的控制更简易。
在一些可选的实施例中,前机臂101可以为两个,后机臂102可以为四个,四个后机臂102可以两两对称设在中轴线的两侧。在另一些可选的实施例中,前机臂101可以为四个,后机臂102可以为四个,四个前机臂101可以两两对称设在中轴线的两侧,四个后机臂102可以两两对称设在中轴线的两侧。当然,前机臂101与后机臂102的数量不限于此。
优选地,如图1所示,前机臂101可以为两个,两个前机臂101可以对称设在中轴线的两侧,后机臂102可以为两个,两个后机臂102可以对称设在中轴线的两侧。由此可以为无人机100提供充足的驱动力,且无人机100的结构简单。
如图1和图2所示,第二交点B位于第一交点A和升力中心C之间。
由此,有助于在无人机100的升力中心C附近空出大量的空间用于装载货物,使得货物的重心紧邻无人机100升力中心C,以减轻变量重量模块对无人机100的重心的影响,无人机100的操作更简易。
另一方面,通过设置上述结构,相当于在无人机100上增加了两个三角形结构,如图2所示,第一交点A与第二交点B为这两个三角形共有的顶点,即两个三角形中的一个是以A和B的连线为底边,以左前方向的前机臂101朝向机身2的延长线和左后侧的后机臂102朝向机身2的延长线的交点为定点的三角形,两个三角形中的另一个是以A和B的连线为底边,以右前方向的前机臂101朝向机身2的延长线和右后方向的后机臂102朝向机身2的延长线的交点为定点的三角形,由此无人机100的结构更稳固。
如图2所示,两个后机臂102之间的夹角为α,两个前机臂101之间的夹角为γ,且α与γ可以满足:α<γ。相较于两个前机臂101,两个后机臂102可以朝靠近中轴线的方向内收,由此,可使无人机100的升力中心C后移。
可选地,第一交点A可以与第二交点B邻近设置,可以大体重合,由此可增大无人机100的中部和后部的空间。
进一步地,如图1所示,后机臂102的长度可以大于前机臂101的长度。换言之,后机臂102的另一端(安装有后电机93b的一端)到第一交点A的距离可以大于前机臂101的另一端(安装有前电机93a的一端)到第二交点B的距离。由于后机臂102和前机臂101与机身2的连接处均相对前移,通过设置上述结构使得无人机100的平衡性更 好,便于操控。
在本发明的一些可选实施例中,如图1所示,后机臂102可以构造为直线形。
在本发明的另一些可选实施例中,后机臂102可以构造为弧形。
优选地,对于位于中轴线同侧的前机臂101与后机臂102,安装在该前机臂101上的前电机93a与安装在该后机臂102上的后电机93b的连线与上述中轴线平行。
在本发明的一个具体示例中,如图1所示,两个前机臂101的另一端(安装有前电机93a的一端)与两个后机臂102的另一端(安装有后电机93b的一端)可以位于一个正方形的四个顶点上。
可以理解的是,无人机100在平稳状态下的升力中心C即为上述正方形的中心,且空载的无人机100以及无人机100装载的货物的重心可以均位于上述正方形的中心附近,由此,无人机100的结构简单,对称性及平衡性好,易于控制。
根据本发明实施例的无人机100可以为农用无人机,相应地,无人机100装载的货物(变量重量模块)可以为农药,由于无人机100的常量重量模块以及变量重量模块为在前后方向上平铺布置,农药的装载以及卸载都较为方便,在无人机100飞行过程中,农药可以从储物装置4通过软管逐渐喷洒出去,在农药减少(变量重量模块的重量发生变化)的过程中,无人机100的重心始终位于无人机100的升力中心C附近,由此,无人机100的控制较为简易和平稳。
综上所述,根据本发明实施例的无人机100,包括至少两个前机臂101和至少两个后机臂102,通过前移后机臂102与机身2的连接处,使第一交点A、第二交点B与无人机100的升力中心C在无人机100的前后方向上从前到后顺次设置,并在无人机100的中部偏后的位置设置有储物装置4,使得空载的无人机100的重心以及无人机100装载的货物的重心均邻近于无人机100的升力中心C。由此,可以减少无人机100装载的货物对整个无人机100的重心的影响,以简化无人机100的控制,使无人机100飞行得更平稳,且将空载的无人机100的重心和无人机100装载的货物的重心平铺布置,可以防止无人机100的重心在重力方向的升降,并且,储物装置4无遮挡,便于无人机100的货物的装载与卸载。
下面将参考图1-图14,进一步描述根据本发明实施例的无人机100.
本发明提出的技术方案不仅适用于四旋翼飞行器,同时还适用于六轴或八轴等多轴多旋翼飞行器。
如图1所示,本实施例的无人机100包括四个机臂,分布在机身2周围,其轴向指向机身2,机臂的一端连接机身2,另一端设置旋翼电机。在该无人机100的前进方向 上,所设置的前机臂101稍短,后机臂102稍长。机臂连接机身2的位置的延长线近似重合(即图1中交叉区域E),无人机100的中部和后部留出的空间可以设置储物装置4和其他装置,如储物装置4和电池等,同时可在机身2的前部设置前部放置板3,以放置其他附属物,如无人机100飞行控制模块、电流检测模块、辅助装置等。
上述无人机100在前进方向上,其四条机臂的交叉区域E相对升力中心C前移,这样就在无人机100的中部和后部腾出部分空间,由此可以在此设置储物装置4,并将无人机100的重物设置于此,从而保证在重心不升高的或降低的条件下,该无人机100的重心基本与无人机100的升力中心C重合,当储物空间内的药物或其他类型的储存物逐渐被释放出无人机100后,无人机100的整体重心位置不会发生太大偏移,从而使无人机100的控制较为简易和平稳。
通过以上无人机100的设置布局,可以在保证空载的无人机100的重心位置位于整个无人机100的升力中心C的附近,无人机100装载的货物的重心位置也位于无人机100的升力中心C的附近,且基本上平铺在无人机100机身2所在的平面上,增大了重物在水平布局上占的比例,避免了无人机100上下堆叠重物对于中心位置造成偏移和升降的影响;且对于平铺无遮挡设计,储物装置4内的物体更容易取放。
其中,所述机臂可以设置为直线形,也可以设置为弧形,弧形的机臂两侧容易留出大量可用空间,便于储物或安装设置其它物件。
作为本发明的进一步改进,所述机臂上设有固定件,所述固定件分别包括:第一固定部10和第二固定部11。
第一固定部10及第二固定部11中的至少一个与机身2相连,第一固定部10与第二固定部11相连且配合限定出安装槽,机臂穿设在该安装槽内。
在本发明的一个实施例中,具体而言,所述第一固定部10与所述机身2相连,所述第二固定部11与所述机身2相连,所述第一固定部10与所述第二固定部11相连且配合限定出安装槽,所述机臂穿设在所述安装槽内;且第一固定部10和第二固定部11分别设有至少一个与机身2连接的外平表面。
进一步地,可在所述机臂上设有机臂偏转锁定孔12,所述第一固定部10和第二固定部11中的至少一个设有与所述机臂偏转锁定孔12位置对应的机臂偏转固定孔15,在本发明的一个具体实施例中,所述第一固定部10和第二固定部11上均设有与所述机臂偏转锁定孔12位置对应的机臂偏转固定孔15;还可在所述第一固定部10和第二固定部上11上分别设有与机臂外壁相匹配的弧形内表面16,两圆弧形内表面配合形成机臂穿设在内的安装槽;在所述第一固定部10和第二固定部11上设有用于螺栓连接的机臂锁紧孔13,以及用于与机身2螺栓连接的机身连接孔14。
其中,安装槽的形状可以根据机臂的形状进行匹配设置。例如,当机臂的截面形状为圆形时,安装槽的截面形状可以为圆形;当机臂的截面形状为方形时,安装槽的截面形状可以为方形。
如图3所示为机臂组装正视图,图中示出了两组机臂固定件和机臂,即两个第一固定部10、两个第二固定部11,其中一组机臂固定件中的第一固定部和第二固定部将机臂夹紧,另一组机臂固定件中与第一组机臂固定件间隔一定距离,也并将机臂夹紧。
如图4所示为机臂组装局部爆炸图,图中示出了机臂锁紧孔13、机身连接孔14、机臂偏转固定孔15,其中机臂锁紧孔13用于供螺丝将第一固定部10和第二固定部11相互锁紧,机身连接孔14用于供螺丝将第一固定部10和第二固定部11分别固定在机身2上,机臂偏转固定孔15则用于供螺丝将机臂按照需求锁定在固定的角度。其中,第一固定部10和第二固定部11与机臂夹紧的部位为弧形内表面16,在弧形内表面16的轴向方向,第一固定部10和第一第二固定部11的厚度增大,使得两个弧形内表面16与机臂的接触面更大,从而更好的夹紧机臂。
如图5所示为机臂偏转示意图,用于机臂偏转锁定的螺丝穿过机臂偏转锁定孔12,从而将机臂与机身2的偏转角Φ精确地锁定。
在使用的过程中,首先将第一组机臂固定件的第一固定部10和第二固定部11夹持在机臂上,然后用螺丝穿过机臂偏转固定孔15和机臂上的机臂偏转锁定孔12,并将其锁紧,然后用螺丝穿过机臂锁紧孔13将机臂夹紧,依次将第二组机臂固定件安装在机臂的相应位置,并与第一组机臂固定件间隔一定的距离,其中上述机臂连接件的上下平面放置在同一平面工作台上,保持平行,再将机臂的另一端安装上旋翼电机93,旋翼电机93可以通过调整电机座下平面水平或成一定的角度Φ,使旋翼电机93在机臂轴向上与竖直面垂直或成一个夹角Φ。旋翼电机93固定好后,再将安装好机臂固定件的机臂安装在机身2上,即使用螺丝通过机身连接孔14将其锁定在机身2上即可。
该机臂与机身2的固定方式保证了机臂在轴向不容易摆动,可以很方便的先将机臂按照需求的偏角固定在多个固定件上,再安装在机身2上,从而确保机臂相对于机身2平面的偏角为需求定值或目标定值。
如图10-图14,无人机100的旋翼电机93的上端面上设有散热防水盖90,散热防水盖90包括上封口面914和侧壁圆周面92,所述侧壁圆周面92靠近上封口面914处设置有若干个通风孔915,散热防水盖90内设有离心扇叶凸条911,离心扇叶凸条911沿通风孔915向上封口面914内壁中心延伸设置。进一步地,在所述上封口面914内壁中心和离心扇叶凸条911之间形成与旋翼电机93内部通气孔相配合的环形空腔916;临近所述上封口面914内壁中心侧的离心扇叶凸条911的高度小于临近通风孔915的离心扇 叶凸条911的高度。
上述散热防水盖90可将旋翼电机93的上部和圆周覆盖住,而散热防水盖90的上部封住,另一端开口,散热防水盖90封住的上封口面914上可以开设定位孔913,以用螺丝91将散热防水盖90固定在旋翼电机93的转子端面上,在上封口面914的内侧向侧壁圆周面内壁912设置数个离心扇叶凸条911(本实施例中设置了11个),记其末端的切线方向与径向的夹角为β,离心扇叶凸条911的形状设置可设置为如图所示的三种方式,即β角分为0°<β<90°的后向式、β=90°的径向式,以及90°<β<180°的前向式。在离心扇叶凸条911的径向内侧留有一个环形空腔916,环形空腔916的外圆直径要大于电机内部通风口的直径。同时,环绕散热防水盖90的侧壁圆周面92上沿设置有通风孔915,即把侧壁圆周面92处于两条相邻离心扇叶凸条911的间隙的部位掏空,便形成位于上封口面914与侧壁圆周面92衔接出的通风孔915。
在旋翼电机93转子旋转的过程中,散热防水盖90跟随转子一起旋转,其内部的离心扇叶凸条911绕旋翼电机的旋转中心转动,旋翼电机93运转时产生的热空气被离心扇叶凸条911旋转产生的离心力甩出,散热防水盖90内部的环形空腔916处产生负压,气流不断从旋翼电机93下部进入并被离心力从通风孔915中甩出,从而形成气流流动对旋翼电机93散热;同时由于散热防水盖90上部封盖面盖住了旋翼电机93上部,雨水从其上部无法进入旋翼电机93,并在流向散热防水盖90上封口面914与侧壁圆周面92衔接的位置时,被通风孔915甩出的高速气流吹开,由此阻止了雨水进入旋翼电机93内,起到了防水的作用。
如图6-图9所示,所述机臂的下方设有折叠腔体81、转接头82及喷洒头折叠杆83。折叠腔体81内设有驱动组件。所述转接头82的中部铰接在折叠腔体81内,转接头82的前部与驱动组件连接,转接头82的后部穿出折叠腔体81的开口并与喷洒头折叠杆83的一端固定连接。
该驱动组件包括安装在外壳内的驱动本体、驱动轴及连接部,该驱动轴能够转动地连接该驱动本体及连接部,该驱动本体用于驱动该驱动轴转动,使该连接部推动该转接头相对于该外壳在该第一位置及该第二位置之间转动。
所述驱动本体为减速电机88,驱动轴为丝杆832,连接部为滑块831。
该驱动轴外壁设置有外螺纹,该连接部开设有配合孔,该配合孔的内壁设置有内螺纹,该驱动轴穿设该连接部,该外螺纹与该内螺纹配合。
该驱动轴远离该驱动本体的一端设置有止推轴承89,该止推轴承89固定在该外壳内,该驱动轴转动地穿设该止推轴承89。
所述转接头82的前部设有U形槽821,所述连接部置于U形槽821内。
即,所述机臂的下方设有喷洒头的折叠机构,包括折叠腔体81、转接头82、喷洒头折叠杆83、喷头转动电机422及在喷头转动电机422驱动下工作的喷洒件41。折叠腔体81的一端设有信号接口电路板87,另一端设置有开口,折叠腔体81内设有减速电机88、丝杆832,所述信号接口电路板87的输出端与减速电机88的输入端电连接,减速电机88的输出轴与所述丝杆832的一端轴向传动连接,丝杆832的另一端设有止推轴承89,在所述折叠腔体81内靠开口一侧的内腔壁上设有凸起轴822,该凸起轴822上串接转接头82中部,转接头82的一端设置为U形槽821,U形槽821内设有滑块831,滑块831的中部开设有供所述丝杆832穿过并与丝杆832螺纹配合连接的螺纹孔,折叠腔体81相对的两内侧腔壁上设有供滑块831的两端沿丝杆832轴向滑动的一字形滑槽813,所述转接头82的另一端从折叠腔体81的开口延伸至折叠腔体81的外部并与所述喷洒头折叠杆83的一端固定连接,所述喷头转动电机422以及喷洒件41设置在喷洒头折叠杆83的另一端。
图6为喷头垂直下放状态的示意图,图7为喷头水平折叠状态的示意图,该喷洒头的折叠机构主要包括折叠腔体81、转接头82、喷洒头折叠杆83、喷头转动电机422以及喷洒件41等部件。其中,喷洒头折叠杆83通过转接头82与折叠腔体81连接,喷头转动电机422及喷洒件41则与喷洒头折叠杆83固定连接,且喷头转动电机422驱动所述喷洒件41旋转。
第一位置可设置为喷洒头折叠杆83及喷洒件41的收起位置,第二位置可设置为喷洒头折叠杆83及喷洒件41的打开位置。在实际操作过程中,作为一个例子说明,喷洒头折叠杆83及喷洒件41的收起位置是位于水平位置,喷洒头折叠杆83及喷洒件41的打开位置是位于垂直位置。可以理解,在其它例子中,第一位置及第二位置可根据无人机100所应用的场景作相应具体的设定,而不限于本发明实施方式所限定的具体位置。
如图8所示,其为折叠腔体81的内部结构示意图,包括左侧外壳811、右侧外壳812、减速电机88、转接头82、丝杆832、滑块831以及止推轴承89。其中减速电机88安装在左侧外壳811和右侧外壳812的方形凹槽内,丝杆832与减速电机88的输出轴连接,丝杆832的末端顶住一个止推轴承89,并在丝杆832上旋入一个中间开有一个螺纹孔的滑块831,且该螺纹孔与丝杆832螺旋配合。
如图8和图9所示,滑块831中部的螺纹孔两侧首先与转接头82上的U形槽821滑动配合,然后滑块831的两端与图中左侧外壳811和右侧外壳812上对应的一字形滑槽813滑动配合,即滑块831可沿该一字形滑槽滑动,转接头82的拐角位置左右两侧设置有凸起轴822,凸起轴822与图中左侧外壳811和右侧外壳812上对应的圆孔814转动配合,形成旋转连接,其中转接头82的内部为中空孔824,电路控制上所用的线缆 和喷头所用出水管转接头86及其管道都可以从该中空孔824部分穿过。
该无人机100还包括如下模块:控制模块和电流检测模块,该控制模块用于控制该驱动组件驱动转接头转动,该电流检测模块用于检测该驱动组件的电流是否大于预设阈值,若是,该电流检测模块用于发送关闭该驱动组件的控制信号到该控制模块,若否,该电流检测模块用于继续检测该驱动组件的电流是否大于该预设阈值;该控制模块用于根据该控制信号,关闭该驱动组件。由此,利用控制模块和电流检测模块对喷洒头折叠机构进行自动控制。
下面将对喷洒头折叠机构的使用和控制方法进行描述。
无人机100待起飞状态时,该喷洒头折叠机构将喷洒头折叠杆83及喷洒件41折叠在水平位置,此时滑块831位于丝杆832上的近减速电机88的极限位置,当无人机100起飞后,需要喷洒头开始进行农业喷洒作业时,减速电机88从信号接口电路板87收到驱动信号而正向旋转,将滑块831推至丝杆832近止推轴承89的一端,在此过程中,左侧外壳811和右侧外壳812上的一字形滑槽813将滑块831的两端限制在一条直线上平行移动,避免滑块831绕丝杆832的轴向转动,滑块831同时被限制在转接头82的U形槽821内,导致滑块831在移动的过程中推动U形槽821使转接头82绕凸起轴822转动,而转接头82的另一端通过喷洒头折叠杆83安装孔823与固定有喷洒头的喷洒头折叠杆83的一端相连,从而带动喷洒头折叠杆83绕凸起轴822转动,直至该喷洒头折叠杆83转动到竖直位置,当转接头82的第一接触面825触碰到左侧外壳811和右侧外壳812的开口端的第一端面815时,转接头82被堵住转动(限制在第一位置),此时滑块831无法继续移动,丝杆832不能继续转动,减速电机88负载加大,从而通过减速电机88的电流瞬间大幅增加,无人机100内部电流检测模块检测到电流大幅增加后,便给控制模块一个检测信号,进而由控制模块给减速电机88一个控制信号,最终使得电机停止;无人机100飞行过程中能保持固定喷洒头的喷洒头折叠杆83垂直于机臂向下,当作业完成后,无人机100悬停在降落位置上空,此时控制模块给减速电机88一个驱动信号,使其反向旋转,便将固定喷洒头的喷洒头折叠杆83折叠回水平位置,此过程与展开喷洒头折叠杆83的过程类似且相关机构运动方向相反。
通过上述喷洒头折叠机构,一来在包装运输时可将喷洒头折叠杆83折叠收藏,二来在无人机100进行喷洒作业时可展开固定喷洒头的喷洒头折叠杆83,防止雾滴聚集形成液滴现象,又能在不使用时折起喷洒头折叠杆83,防止触碰地面。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术 语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (20)

  1. 一种无人机,其特征在于,包括:
    机体,所述机体包括机身和设在所述机身的后方用于装载货物的储物装置;
    机臂,所述机臂包括关于所述机身前后方向的中轴线对称设置的至少两个前机臂以及关于所述中轴线对称设置的至少两个后机臂;
    旋翼电机,所述旋翼电机包括前电机和后电机;
    所述前机臂的一端与所述机身的前端相连,所述前机臂的另一端上设有所述前电机以驱动所述无人机;
    所述后机臂的一端与所述机身的后端相连,所述后机臂的另一端上设有所述后电机以驱动所述无人机;其中
    所述后机臂朝向所述机身的延长线与所述前机臂朝向所述机身的延长线的交叉区域位于所述无人机的升力中心前方,且所述前电机与所述后电机对所述无人机的合力的作用点为所述升力中心,所述无人机的重心邻近所述升力中心。
  2. 根据权利要求1所述的无人机,其特征在于,所述机臂呈直线形或弧形。
  3. 根据权利要求1所述的无人机,其特征在于,所述机臂上设置有机臂固定件,所述机臂固定件分别包括:
    第一固定部,所述第一固定部与所述机身相连;
    第二固定部,所述第二固定部与所述机身相连,所述第一固定部与所述第二固定部相连且配合限定出安装槽,所述机臂穿设在所述安装槽内;
    且所述第一固定部和所述第二固定部分别设有至少一个与所述机身连接的外平表面。
  4. 根据权利要求3所述的无人机,其特征在于,在所述机臂上设有机臂偏转锁定孔,所述第一固定部和第二固定部上均设有与所述机臂偏转锁定孔位置对应的机臂偏转固定孔。
  5. 根据权利要求3所述的无人机,其特征在于,所述第一固定部和第二固定部分别设有与机臂外壁相匹配的弧形内表面。
  6. 根据权利要求3所述的无人机,其特征在于,所述第一固定部和第二固定部设有用于螺栓连接的机臂锁紧孔,以及用于与机身螺栓连接的机身连接孔。
  7. 根据权利要求1所述的无人机,其特征在于,所述机臂的下方设有折叠腔体、转接头及喷洒头折叠杆,所述折叠腔体内设有驱动组件,所述转接头的中部铰接在所述折叠腔体内,所述转接头的前部与所述驱动组件连接,所述转接头的后部穿出所述折叠腔体的开口并与所述喷洒头折叠杆的一端固定连接。
  8. 根据权利要求7所述的无人机,其特征在于,所述驱动组件包括安装在外壳内的驱动本体、驱动轴及连接部,所述驱动轴能够转动地连接所述驱动本体及所述连接部,所述驱 动本体用于驱动所述驱动轴转动,使所述连接部推动所述转接头相对于所述外壳在所述第一位置及所述第二位置之间转动。
  9. 根据权利要求8所述的无人机,其特征在于,所述驱动轴外壁设置有外螺纹,所述连接部开设有配合孔,所述配合孔的内壁设置有内螺纹,所述驱动轴穿设所述连接部,所述外螺纹与所述内螺纹配合。
  10. 根据权利要求8所述的无人机,其特征在于,所述驱动轴远离所述驱动本体的一端设置有止推轴承,所述止推轴承固定在所述外壳内,所述驱动轴转动地穿设所述止推轴承。
  11. 根据权利要求8所述的无人机,其特征在于,所述转接头的前部设有U形槽,所述连接部置于U形槽内。
  12. 根据权利要求7所述的无人机,其特征在于,所述无人机还包括:
    控制模块,所述控制模块用于控制所述驱动组件驱动转接头转动;以及
    电流检测模块,
    所述电流检测模块用于检测所述驱动组件的电流是否大于预设阈值,若是,所述电流检测模块用于发送关闭所述驱动组件的控制信号到所述控制模块;
    所述控制模块用于根据所述控制信号,关闭所述驱动组件。
  13. 根据权利要求1-12任意一项所述的无人机,其特征在于,所述旋翼电机的上端面上设有散热防水盖,所述散热防水盖包括上封口面和侧壁圆周面,所述侧壁圆周面靠近上封口面处设置有若干个通风孔,所述散热防水盖内设有离心扇叶凸条,所述离心扇叶凸条沿所述通风孔向所述上封口面内壁中心延伸设置。
  14. 根据权利要求13所述的无人机,其特征在于,在所述上封口面内壁中心和所述离心扇叶凸条之间形成与所述旋翼电机内部通气孔相配合的环形空腔。
  15. 根据权利要求13所述的无人机,其特征在于,临近所述上封口面内壁中心的所述离心扇叶凸条的高度小于临近所述通风孔的所述离心扇叶凸条的高度。
  16. 根据权利要求1-15中任一项所述的无人机,其特征在于,所述升力中心邻近所述储物装置的几何中心。
  17. 根据权利要求16所述的无人机,其特征在于,所述无人机的重心、所述升力中心以及所述储物装置的几何中心重合。
  18. 根据权利要求16所述的无人机,其特征在于,所述前机臂和所述后机臂均为两个。
  19. 根据权利要求18所述的无人机,其特征在于,两个所述前机臂的夹角大于两个所述后机臂的夹角。
  20. 根据权利要求19所述的无人机,其特征在于,所述后机臂的长度大于所述前机臂的长度。
PCT/CN2016/091932 2015-07-31 2016-07-27 无人机 WO2017020763A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES16832251T ES2807923T3 (es) 2015-07-31 2016-07-27 Vehículo aéreo no tripulado
AU2016303994A AU2016303994B2 (en) 2015-07-31 2016-07-27 Unmanned aerial vehicle and unmanned aerial vehicle body configured for unmanned aerial vehicle
US15/523,897 US10526087B2 (en) 2015-07-31 2016-07-27 Unmanned aerial vehicle and unmanned aerial vehicle body configured for unmanned aerial vehicle
EP16832251.9A EP3202662B1 (en) 2015-07-31 2016-07-27 Unmanned aerial vehicle
KR1020177012662A KR101989258B1 (ko) 2015-07-31 2016-07-27 무인기 및 무인기에 이용되는 기체
JP2017527807A JP6463841B2 (ja) 2015-07-31 2016-07-27 無人航空機

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201510467838.6A CN105173068B (zh) 2015-07-31 2015-07-31 一种无人机
CN201520574460.5 2015-07-31
CN201510468299.8A CN106394884B (zh) 2015-07-31 2015-07-31 无人机
CN201510467838.6 2015-07-31
CN201520574460.5U CN204998762U (zh) 2015-07-31 2015-07-31 无人机
CN201510468299.8 2015-07-31

Publications (1)

Publication Number Publication Date
WO2017020763A1 true WO2017020763A1 (zh) 2017-02-09

Family

ID=57942425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091932 WO2017020763A1 (zh) 2015-07-31 2016-07-27 无人机

Country Status (7)

Country Link
US (1) US10526087B2 (zh)
EP (1) EP3202662B1 (zh)
JP (1) JP6463841B2 (zh)
KR (1) KR101989258B1 (zh)
AU (1) AU2016303994B2 (zh)
ES (1) ES2807923T3 (zh)
WO (1) WO2017020763A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107168346A (zh) * 2017-04-28 2017-09-15 上海交通大学 一种基于可穿戴显示器的异步式脑控无人机系统
CN108394550A (zh) * 2018-04-09 2018-08-14 洛阳理工学院 一种可伸缩旋翼及基于该旋翼的飞行器
CN113060280A (zh) * 2021-05-13 2021-07-02 哈尔滨学院 一种多自由度遥感无人机
CN113148213A (zh) * 2021-04-29 2021-07-23 四川傲势科技有限公司 一种无人机弹射点结构
CN113525666A (zh) * 2021-08-29 2021-10-22 贵州电网有限责任公司六盘水供电局 一种基于输变电设备的三维模型扫描用无人机
CN116009520A (zh) * 2023-03-27 2023-04-25 四川腾盾科技有限公司 一种无人机三轴稳定性激励测试方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10870477B1 (en) * 2016-04-05 2020-12-22 Fpv Manuals Llc Foldable arm mechanism for rotary wing aircraft
AU201811872S (en) * 2017-08-01 2018-05-29 Guangzhou Xaircraft Tech Co Unmanned aerial vehicle
CN207060377U (zh) * 2017-08-01 2018-03-02 广州极飞科技有限公司 无人机
USD857105S1 (en) * 2017-08-28 2019-08-20 Jiejia Zhang Quadcopter toy
FR3070607B1 (fr) * 2017-09-07 2020-09-04 Parrot Drones Drone a voilure tournante comprenant une structure de drone pliable
CN107685872A (zh) * 2017-09-30 2018-02-13 深圳市道通智能航空技术有限公司 无人飞行器
USD843267S1 (en) * 2017-10-11 2019-03-19 Shenzhen Highgreat Innovation Technology Development Co., Ltd. Unmanned aerial vehicle
KR102352811B1 (ko) * 2017-12-18 2022-01-18 에스지 디제이아이 테크놀러지 코., 엘티디 스프레이 어셈블리 및 농업식물보호용 무인항공기
USD856848S1 (en) * 2018-01-05 2019-08-20 SZ DJI Technology Co., Ltd. Aerial vehicle
USD861573S1 (en) * 2018-01-19 2019-10-01 SZ DJI Technology Co., Ltd. Aerial vehicle
JP7158678B2 (ja) * 2018-07-09 2022-10-24 独立行政法人国立高等専門学校機構 無人飛行体
WO2020053877A1 (en) * 2018-09-11 2020-03-19 Srinath MALLIKARJUNAN Apparatus for aerial transportation of payload
JP7221514B2 (ja) * 2018-10-10 2023-02-14 ルーチェサーチ株式会社 無人飛行体
JP7207699B2 (ja) * 2018-10-10 2023-01-18 ルーチェサーチ株式会社 無人飛行体
CN109436288A (zh) * 2018-12-13 2019-03-08 广州极飞科技有限公司 用于飞行器的机架及飞行器
CN110217387B (zh) * 2019-06-14 2024-01-23 南京工业职业技术学院 一种设有落水防护结构的无人机
GB2587325B (en) * 2019-09-06 2022-06-08 Tethered Drone Systems Ltd Cooling Unmanned Aerial Vehicles (Drones) Using Fans or Redirecting Cool Air
KR102337269B1 (ko) * 2020-06-01 2021-12-09 한국광기술원 우수한 결합력을 갖는 드론 암 및 그를 포함하는 드론
CN112340010B (zh) * 2020-09-11 2022-12-27 广州极飞科技股份有限公司 无人机
CN113353264B (zh) * 2021-07-21 2023-01-17 陈佳欣 一种具有喷药杆折叠功能的无人机及其使用方法
KR102405606B1 (ko) * 2021-11-30 2022-06-07 베셀에어로스페이스 주식회사 분리형 테더링 드론시스템
CN115633498B (zh) * 2022-12-16 2023-02-28 南京迈动科技有限公司 一种多旋翼无人机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140263822A1 (en) * 2013-03-18 2014-09-18 Chester Charles Malveaux Vertical take off and landing autonomous/semiautonomous/remote controlled aerial agricultural sensor platform
CN104354864A (zh) * 2014-10-29 2015-02-18 浙江大学 一种用于喷洒农药的旋翼式无人机
CN104670499A (zh) * 2015-02-28 2015-06-03 广州快飞计算机科技有限公司 一种植保无人机
CN204895873U (zh) * 2015-07-07 2015-12-23 徐宗平 农药喷洒无人机
CN105173068A (zh) * 2015-07-31 2015-12-23 广州极飞电子科技有限公司 一种无人机
CN204998762U (zh) * 2015-07-31 2016-01-27 广州极飞电子科技有限公司 无人机

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4124531B2 (ja) 1999-01-11 2008-07-23 ヤンマー農機株式会社 無線操縦ヘリコプタ―の薬剤散布装置
US8453962B2 (en) * 2007-02-16 2013-06-04 Donald Orval Shaw Modular flying vehicle
DE102008014853B4 (de) * 2008-03-18 2010-11-18 Ascending Technologies Gmbh Drehflügelfluggerät
DE102008018901A1 (de) 2008-04-14 2009-12-31 Gerhard, Gregor, Dr. Fluggerät mit Impellerantrieb
JP2009269493A (ja) 2008-05-08 2009-11-19 Yamaha Motor Co Ltd 無人ヘリコプタ
FR2963431B1 (fr) * 2010-07-27 2013-04-12 Cofice Dispositif permettant le controle non destructif de structures et comportant un drone et une sonde de mesure embarquee
JP5700796B2 (ja) 2011-01-21 2015-04-15 ニューデルタ工業株式会社 無人ヘリコプターの薬液散布装置
EP2715126B1 (en) 2011-05-23 2016-07-06 Sky Windpower Corporation Flying electric generators with clean air rotors
SG194241A1 (en) * 2012-04-11 2013-11-29 Singapore Tech Aerospace Ltd A rotor-arm assembly and a multi-rotorcraft
US8973861B2 (en) * 2012-10-29 2015-03-10 Shenzhen Hubsan Technology Co., Ltd. Tetra-propeller aircraft
DE202013012543U1 (de) * 2012-11-15 2017-07-03 SZ DJI Technology Co., Ltd. Unbemanntes Luftfahrzeug mit mehreren Rotoren
CN203681871U (zh) * 2013-12-20 2014-07-02 深圳市大疆创新科技有限公司 一种飞行器的机臂组件、机架装置以及飞行器
TWI508763B (zh) 2014-01-08 2015-11-21 Univ Nat Formosa Foldable Shaped six rotorcraft
JP2015137092A (ja) * 2014-01-20 2015-07-30 憲太 安田 パラレルハイブリット方式によるマルチローター航空機
CN203865003U (zh) 2014-06-04 2014-10-08 黄河科技学院 飞行式农药喷洒设备
CN204056294U (zh) 2014-09-12 2014-12-31 西北工业大学明德学院 一种折叠式四轴多旋翼飞行器
CN106794899B (zh) * 2014-10-14 2019-07-05 特温技术公司 飞行设备
CN204232146U (zh) 2014-10-29 2015-04-01 成都好飞机器人科技有限公司 高效农药喷洒无人机
CA2911998A1 (en) * 2014-11-26 2016-05-26 Gilles Daigle Unmanned aerial vehicle
US9919797B2 (en) * 2014-12-04 2018-03-20 Elwha Llc System and method for operation and management of reconfigurable unmanned aircraft
CN204399473U (zh) 2014-12-12 2015-06-17 华南农业大学 一种折叠快拆式多旋翼无人飞行器
US20160207368A1 (en) * 2015-01-21 2016-07-21 Rajesh Gaonjur Vertical Take-Off and Landing Roadable Aircraft
CN204638398U (zh) 2015-02-06 2015-09-16 浙江大学 一种农用植保无人机用的离心喷雾喷施组件
CN104691749A (zh) 2015-03-05 2015-06-10 葛讯 一种横向交错折叠四旋翼飞行器
CN204620259U (zh) 2015-04-16 2015-09-09 巴州极飞农业航空科技有限公司 一种带中空轴电机的旋转喷洒装置
KR20160130100A (ko) * 2015-05-01 2016-11-10 박준국 화재 진압용 장비 및 화재진압 방법
CN113086177A (zh) * 2015-05-19 2021-07-09 株式会社爱隆未来 旋翼机
DE102015006511A1 (de) * 2015-05-26 2016-12-01 Airbus Defence and Space GmbH Senkrechtstartfähiges Fluggerät
EP3204291B1 (en) * 2015-06-01 2021-07-07 SZ DJI Technology Co., Ltd. System, kit, and method for dissipating heat generated by a motor assembly
CN204776018U (zh) * 2015-07-06 2015-11-18 哈瓦国际航空技术(深圳)有限公司 一种多旋翼航拍飞行器
US10737780B2 (en) * 2016-04-27 2020-08-11 Vectored Propulsion Technologies Inc. Aerial vehicle with uncoupled heading and orientation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140263822A1 (en) * 2013-03-18 2014-09-18 Chester Charles Malveaux Vertical take off and landing autonomous/semiautonomous/remote controlled aerial agricultural sensor platform
CN104354864A (zh) * 2014-10-29 2015-02-18 浙江大学 一种用于喷洒农药的旋翼式无人机
CN104670499A (zh) * 2015-02-28 2015-06-03 广州快飞计算机科技有限公司 一种植保无人机
CN204895873U (zh) * 2015-07-07 2015-12-23 徐宗平 农药喷洒无人机
CN105173068A (zh) * 2015-07-31 2015-12-23 广州极飞电子科技有限公司 一种无人机
CN204998762U (zh) * 2015-07-31 2016-01-27 广州极飞电子科技有限公司 无人机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3202662A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107168346A (zh) * 2017-04-28 2017-09-15 上海交通大学 一种基于可穿戴显示器的异步式脑控无人机系统
CN108394550A (zh) * 2018-04-09 2018-08-14 洛阳理工学院 一种可伸缩旋翼及基于该旋翼的飞行器
CN113148213A (zh) * 2021-04-29 2021-07-23 四川傲势科技有限公司 一种无人机弹射点结构
CN113060280A (zh) * 2021-05-13 2021-07-02 哈尔滨学院 一种多自由度遥感无人机
CN113060280B (zh) * 2021-05-13 2021-11-02 哈尔滨学院 一种多自由度遥感无人机
CN113525666A (zh) * 2021-08-29 2021-10-22 贵州电网有限责任公司六盘水供电局 一种基于输变电设备的三维模型扫描用无人机
CN113525666B (zh) * 2021-08-29 2023-04-14 贵州电网有限责任公司六盘水供电局 一种基于输变电设备的三维模型扫描用无人机
CN116009520A (zh) * 2023-03-27 2023-04-25 四川腾盾科技有限公司 一种无人机三轴稳定性激励测试方法

Also Published As

Publication number Publication date
EP3202662A1 (en) 2017-08-09
EP3202662B1 (en) 2020-06-24
JP6463841B2 (ja) 2019-02-06
KR20170086029A (ko) 2017-07-25
US20170327222A1 (en) 2017-11-16
JP2017535478A (ja) 2017-11-30
EP3202662A4 (en) 2018-05-16
ES2807923T3 (es) 2021-02-24
US10526087B2 (en) 2020-01-07
KR101989258B1 (ko) 2019-09-30
AU2016303994A1 (en) 2017-06-01
AU2016303994B2 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
WO2017020763A1 (zh) 无人机
US9682774B2 (en) System, apparatus and method for long endurance vertical takeoff and landing vehicle
US9862486B2 (en) Vertical takeoff and landing aircraft
US6561456B1 (en) Vertical/short take-off and landing aircraft
US5758844A (en) Vertical/short take-off and landing (V/STOL) air vehicle capable of providing high speed horizontal flight
CN105173068A (zh) 一种无人机
US8833692B2 (en) Wall effects on VTOL vehicles
US10850836B2 (en) Spherical VTOL aerial vehicle
US20100072325A1 (en) Forward (Upstream) Folding Rotor for a Vertical or Short Take-Off and Landing (V/STOL) Aircraft
CA2894365C (en) Convertible helicopter ring member
US20140084114A1 (en) VTOL Aircraft with Propeller tiltable around two Axes and a retractable Rotor
US20170183091A1 (en) Vertical take-off and landing (vtol) aircraft with exhaust deflector
US20210039784A1 (en) Agricultural unmanned aerial vehicle
WO2018098993A1 (zh) 一种螺旋桨双轴矢量伺服变向装置及垂直起降固定翼无人机
KR102077291B1 (ko) 비행체 및 그 제어 방법
US8910464B2 (en) Lift fan spherical thrust vectoring nozzle
CN108202568A (zh) 飞行汽车
EP0960812A1 (en) Vertical/short take-off and landing (V/STOL) air vehicle capable of providing high speed horizontal flight
US20190170087A1 (en) Thrust vector controller
US20220363367A1 (en) Aircraft propulsion system
CN211442751U (zh) 一种可倾转无叶飞行器
CN105329442A (zh) 一种本体旋转的小型无人机
CN111003173A (zh) 高机动性无旋翼式无人机
KR20230011955A (ko) 항공기 재급유를 위한 디바이스
Solheim Aircraft Airfoil Assembly and Method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832251

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15523897

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016832251

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177012662

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017527807

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016303994

Country of ref document: AU

Date of ref document: 20160727

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE