WO2017020674A1 - 物联网控制的电动汽车底盘上的电池包更换和防爆系统 - Google Patents

物联网控制的电动汽车底盘上的电池包更换和防爆系统 Download PDF

Info

Publication number
WO2017020674A1
WO2017020674A1 PCT/CN2016/088289 CN2016088289W WO2017020674A1 WO 2017020674 A1 WO2017020674 A1 WO 2017020674A1 CN 2016088289 W CN2016088289 W CN 2016088289W WO 2017020674 A1 WO2017020674 A1 WO 2017020674A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
battery
contact
robot
socket
Prior art date
Application number
PCT/CN2016/088289
Other languages
English (en)
French (fr)
Inventor
韩磊
Original Assignee
韩磊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 韩磊 filed Critical 韩磊
Priority to US15/737,322 priority Critical patent/US11059382B2/en
Publication of WO2017020674A1 publication Critical patent/WO2017020674A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0455Removal or replacement of the energy storages
    • B60K2001/0472Removal or replacement of the energy storages from below
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the invention relates to a battery pack replacement and explosion-proof system on an IoT-controlled electric vehicle chassis composed of an Internet of Things-controlled electric vehicle chassis and a first battery pack, a second battery pack and a power station thereon.
  • the Internet of Things is an information sensing device such as radio frequency identification (RFID), infrared sensor, global positioning system, laser scanner, etc., which connects any item with the Internet according to the agreed protocol, and exchanges information and communication.
  • RFID radio frequency identification
  • a network concept that intelligently identifies, locates, tracks, monitors, and manages.
  • the robot is a robot that automatically performs work. It can accept human command, run pre-programmed procedures, or act according to the principles of artificial intelligence technology.
  • SPD power surge protector
  • SPD signal line, control line protector
  • the technical requirements of protection, the product has the following advantages: multi-level protection mechanism, residual voltage up to 0V.
  • the surge voltage after the diversion is generally between 2.5KV and 15KV.
  • the SPD products equipped should be subjected to multi-level protection to achieve extremely low residual voltage.
  • the special industry can reach 0 volts; the response speed is less than 1 nanosecond. Protection against secondary lightning, inductive lightning and electrical internal inrush transient voltage suppressors (TVS for short).
  • TVS diode response time is less than 1 nanosecond;
  • the housing is NEMA 4 standard, waterproof, fireproof, explosion-proof, anti-static;
  • patented sine wave ORN tracking technology accurate elimination of surge and harmonic functions;
  • unique chemical packaging patent technology Guaranteed long-lasting reliability of the device, special chemical closure, can quickly absorb the heat generated during the surge; true 10-mode (full-mode) protection, blocking all possible channels of the surge. Filter protection between line and line, blocking all possible channels of line and line, line and ground; hybrid diversified module, thermal and electric double fuse fuse design; the only unsurcharged surge protection product, patented Sine wave tracking technology, special chemical packaging, and nanosecond TVS components, ten-mode protection and hybrid diversification modules allow the product to release energy without grounding. (Reference: American company "Series Product Manual)
  • Electric vehicles refer to vehicles that use the vehicle power supply as the power to drive the wheels with the motor and meet the requirements of road traffic and safety regulations. At present, electric vehicles have good prospects for development in China. However, due to its inconvenient charging and insufficient endurance, electric vehicles have limited the development of electric vehicles in China and the world. At present, fast charging technology can fully charge the battery in a short time, but this charging technology seriously damages. The life of the battery, as well as the development of a charging pile technology is very imperfect, the need for special charging piles for vehicles, greatly reducing the use efficiency of charging piles, the establishment of a large number of power stations in urban underground parking lots can meet the requirements of electric vehicles' endurance, electric There are two ways to change the car: lateral power change and chassis power change. Chassis power change mainly refers to battery replacement at the bottom of the car.
  • the present invention overcomes the deficiencies by borrowing from the advantages of the following patents or patent applications.
  • the present invention provides a battery pack replacement and riot prevention system on the electric vehicle chassis controlled by the Internet of Things, in the electric vehicle chassis.
  • the upper battery replacement system includes a first battery pack placement portion and a second battery pack placement portion; the first battery pack placement portion is disposed at a middle front portion of the electric vehicle chassis, and the second battery pack placement portion is disposed in the electric vehicle chassis In the rear part, the first battery pack is placed in the first battery pack placement place during use; the second battery pack is placed in the second battery pack placement place, so that the center of gravity of the electric vehicle is in the middle of the electric vehicle, on the battery pack suspension bracket
  • the battery pack bracket wire channel is set, the first battery pack is connected to the electric socket, the second battery pack is connected to the electric socket, and the battery pack suspension bracket is installed on the inner top plate of the battery pack automatic replacement system by screws through the first fixed port and the second fixed port. below.
  • the first battery pack robot system and the second battery pack robot system are controlled. After the wheels are made of a conductive metal wheel and a conductive rubber tire, the ground can be transmitted to the ground. The current on the accessory ground wire.
  • the first battery pack is placed in the first battery pack casing, and the first shield duct and the second shield duct which are bent at a curvature of 90° are fixed by the conductive magnetic metal to the inside of the first battery pack casing.
  • the wire is connected at the first connection point
  • the second wire of the first wire control line protector is connected to the circuit board signal output line of the first battery pack, that is, the first control line and the BMS signal line and the first signal line control line
  • the protector is connected in series, and the first connection point unloads and absorbs a large current entering along the first control line and the BMS signal line.
  • the first signal line controls the line protector ground wire to be connected to the first power wave protector ground wire.
  • the second power cord is connected to the second wire of the first power surge protector before entering the interior of the first battery pack casing along the second shielded conduit a third connection point, and then the second power line is connected to the negative terminal of the first battery pack;
  • the first power wave protector ground wire is connected to the fourth strong electrical contact of the ground wire of the first battery pack plug;
  • the second connection The point unloads and absorbs the large current entering along the first power line;
  • the third connection point unloads and absorbs the large current entering along the second power line.
  • the third power surge protector first wire is connected to the outer surface of the first battery pack, and the third power surge protector second wire and the first battery
  • the inner surface of the outer casing is connected to unload and absorb the large current induced along the outer casing of the first battery pack.
  • the third power surge protector ground wire is connected to the first power wave protector ground wire.
  • the first signal line controls the line protector grounding conductor, the first power wave protector grounding conductor, and the third power surge protector grounding conductor to make an equipotential bonding
  • the current on each of the above grounding conductors is introduced into the fourth strong electric contact of the grounding conductor, and then introduced into the grounding system of the electric vehicle, and then the wheel is introduced into the ground.
  • the second battery pack is placed in the second battery pack casing, and the third shield duct and the fourth shield duct which are bent at a curvature of 90° are fixed by the conductive magnetic metal to the inside of the second battery pack casing.
  • a second signal line control line protector is installed inside the second battery pack casing, and the second control line and the BMS signal line enter the second battery pack casing along the third shield duct and the second signal line control line protector.
  • the wire is connected at the fourth connection point, and the first wire of the second wire control line protector is connected with the signal output line of the circuit board of the first battery pack, that is, the first control line and the BMS signal line and the second signal line control line protection
  • the connection of the devices is a series connection, and the fourth connection point unloads and absorbs a large current entering along the second control line and the BMS signal line.
  • the second wire number control line protector ground wire is connected to the second power surge protector ground wire.
  • the second battery pack is placed in the second battery pack casing, and the third shield duct and the fourth shield duct which are bent at a curvature of 90 are fixed by the conductive magnetic metal to the inner casing of the second battery pack outer casing.
  • a third power surge protector is installed inside the second battery pack casing, and the third power cord is connected to the second wire of the second power surge protector along the fourth shielded conduit before entering the second battery pack casing. a point, and then the third power line is connected to the positive terminal of the second battery pack; the fourth power line is connected to the first power line surge protector first wire before entering the second battery case outer casing along the fourth shielding tube At the sixth connection point, the fourth power line is connected to the negative terminal of the second battery pack, and the second power surge protector ground wire is connected to the ninth strong electrical contact of the second power connector, the fifth connection point The large current entering along the third power line is unloaded and absorbed; the sixth connection point unloads and absorbs the large current entering along the fourth power line.
  • the first power surge protector first wire is connected to the outer surface of the second battery pack, and the fourth power surge protector second wire and the second battery
  • the inner surface of the package is connected
  • the fourth power surge protector ground wire is connected to the second power surge protector ground wire.
  • the second power surge protector grounding conductor, the fourth power surge protector grounding conductor, and the second line number control line protector grounding conductor are equipotentially connected, and the current on each of the above grounding conductors is introduced into the ninth strong electrical contact After that, the grounding system of the electric vehicle is introduced and then the wheel is introduced into the earth.
  • the beneficial effects of the present invention are: the IoT-controlled electric vehicle chassis replacement system is replaced by the battery replacement robot, the first and second battery packs, and the power surge protectors and signal lines in the first and second battery packs.
  • the line protector can prevent the high current caused by the short circuit caused by the collision from attacking the battery pack and effectively increase the driving range of the electric vehicle.
  • Figure 1 is a partial cross-sectional view of the battery pack replacement system in an electric vehicle
  • Figure 2 is a perspective view of the battery pack replacement system on the chassis of the vehicle
  • Figure 3 is a schematic view of a battery pack replacement system
  • Figure 4 is a cross-sectional view of the battery pack replacement and riot prevention system on the IoT controlled electric vehicle chassis
  • Figure 5 is a system block diagram of controlling the first and second battery pack robot systems
  • Figure 6 is a topological view of the first battery pack of the battery pack replacement system of Figure 3;
  • Figure 7 is a topological view of the second battery pack of the battery pack replacement system of Figure 3;
  • FIG. 8 is a schematic structural view of first and second battery packs of the battery pack replacement system shown in FIG. 3;
  • FIG. 9 is an overall structural diagram of a battery pack replacement and riot prevention system on an electric vehicle chassis controlled by an Internet of Things;
  • 10 is an overall partial structural view of a battery pack replacement and riot prevention system on an electric vehicle chassis controlled by the Internet of Things;
  • Figure 11 is a structural view of the first and second battery pack outer casings
  • Figure 12 is a structural view of the first and second temperature adjustment plates
  • Figure 13 is a cross-sectional view of the first battery pack in the outer casing
  • Figure 14 is a cross-sectional view of the second battery pack in the outer casing
  • Figure 15 is a common way of connecting a power surge protector (SPD) to a power line in a circuit;
  • SPD power surge protector
  • Figure 16 is a top plan view of the battery pack
  • Figure 17 is a cross-sectional view showing the structure taken along line A-A of Figure 16;
  • Figure 18 is a top plan, partial cross-sectional structural view showing the internal structure of the battery pack with the outer casing removed;
  • Figure 19 is a structural view of the upper support base shown in the battery pack of Figure 17;
  • Figure 20 is a structural view of the lower support base shown in the battery pack of Figure 17;
  • Figure 21 is a cross-sectional view of a regular hexagonal prismatic unit cell
  • Figure 22 is a plan view of Figure 20;
  • Figure 23 is a plan view of the one-half regular hexagonal prism structure of Figure 20;
  • Figure 24 is a front structural view of the ferry robot
  • Figure 25 is a side structural view of the ferry robot
  • Figure 26 is a block diagram of the control system of the ferry robot
  • Figure 27 is a schematic view showing the use of the connector damping contact structure
  • Figure 28 is a front elevational view of the second electrical connector plug
  • Figure 29 is a combination view of the first electrical connector and the first electrical connector
  • Figure 30 is a combination view of the second electrical connector and the second connector.
  • the battery replacement system 5 mounted on the electric vehicle chassis 2 includes a first battery pack placement 32 and a second battery pack placement 33; the first battery pack placement 32 The second battery pack placement portion 33 is disposed in the middle rear portion of the electric vehicle chassis 2, and the first battery pack 3 is placed in the first battery pack placement portion 32 when in use; the second battery The bag 4 is placed in the second battery pack placement 33 such that the center of gravity of the electric vehicle is in the middle of the electric vehicle, and one battery pack bracket wire passage 49 is provided on the battery pack suspension bracket 220, and one first battery pack is connected to the electric socket.
  • a second battery pack is connected to the electric socket 262, and the battery pack suspension bracket 220 is installed under the inner top plate of the battery pack automatic replacing system 5 through the first fixing port 50 and the second fixing port 51 by screws.
  • One control first battery pack robot system 11 and one control second battery pack robot system 14 are installed inside the battery pack automatic change system 5, and the wheel 10 is electrically conductive. After the hub 99 made of metal and the tire 100 made of conductive rubber are used, the current on the grounding conductors of the various components can be conducted to the ground.
  • the switching unit 222 includes a first battery pack 3 and a second battery pack 4; the first battery pack 3 and the second battery pack 4 are independent power sources respectively disposed in the electric vehicle. In one case, the output end of the first battery pack 3 and the output end of the second battery pack 4 are connected in parallel.
  • the first battery pack 3 is a priority power source
  • the second battery pack 4 is a backup power source
  • the switching unit 222 is configured to switch to the second battery pack 4 when the SOC of the currently powered first battery pack 3 is less than a predetermined threshold. Power is supplied.
  • SOC is the abbreviation of State of Charge, which refers to the ratio of charging capacity to rated capacity. It is expressed as a percentage.
  • the battery has a rated capacity. When charging at a certain rate for a certain period of time, the charging capacity can be obtained. The ratio of the charging capacity to the rated capacity is the SOC.
  • the predetermined threshold is set between 5% and 8%.
  • the first main positive relay 7 is disposed on the internal wiring of the output end of the first battery pack 3, and the first main positive relay 7 is connected in parallel with the first diode 6.
  • the second main positive relay 8 is disposed on the internal wiring of the output end of the second battery pack 4, and the second main relay 8 is connected in parallel with the second diode 9.
  • the first battery pack 3 is generally used for power supply.
  • the first main positive relay 7 is closed and the second main positive relay 8 is turned off.
  • the first battery pack 3 and the second battery pack 4 each include a plurality of unit cells 54 that can be individually detached, and the first battery pack 3 and the second battery pack 4 include N (N ⁇ 1).
  • the acquisition board mainly collects the voltage and temperature of each single battery 54.
  • the main control board of the battery system mainly communicates with the peripheral unit of the battery system, and the main control board of the battery system controls the relays of the first battery pack 3 and the second battery pack 4 by signals. Turn on or off, and monitor the voltage between the total positive and negative negative.
  • the main control board of the battery system collects the current detected by the current sensor from time to time. As one of the main basis for calculating the SOC, the main control board of the battery system detects the relay. The on and off states are used as security monitoring conditions.
  • the switching unit 222 when the electric vehicle 1 is traveling, the switching unit 222 is configured to disconnect the first main positive relay 7, and the first battery pack 3 passes through the first diode. 6 external power supply; the second main positive relay 8 is closed, the second battery pack 4 is externally powered by the second main positive relay 8; under the condition that the voltage of the second battery pack 4 is greater than the voltage of the first battery pack 3, a single guide The first diode 6 that is turned on is turned off.
  • the electric vehicle 1 stop-time switching unit 222 is configured to: cause the low-voltage system of the first battery pack 3 to enter the sleep mode through the gateway controller, activate the low-voltage system of the second battery pack 4 during the restart of the electric vehicle 1, and prohibit the start-up The low voltage system of the first battery pack 3 is thus powered only by the second battery pack 4.
  • the gateway controller causes the low voltage system of the first battery pack 3 to enter the sleep mode, and only restarts the electrical system of the second battery pack 4 when restarting, completing Switch.
  • the first battery pack 3 suddenly reaches the early warning temperature, such as 150°, and the operation switch is switched from the first battery pack 3 to the second battery pack 4, if the temperature of the first battery pack 3 exceeds The warning temperature is still rising, and immediately starts to control the first battery pack robot system 11 to start working.
  • the first bracket 108 installed at the lower end of the link 113 is driven by the power unit to be separated from the first battery pack 3 along with the link 113.
  • the first load-bearing platform 257 on the first bracket 108 gradually disengages from the first battery pack second fixed platform 226 of the first battery pack 3, and the first bracket 108 is detached from the first battery pack 3, the first battery pack 3 automatically fall off the electric vehicle chassis 2 and fall to the road.
  • the second battery pack 4 When the second battery pack 4 suddenly reaches the warning temperature, such as 150°, the operation is switched immediately, and the second battery pack 4 is switched to the first battery pack 3. If the temperature of the second battery pack 4 exceeds the warning temperature, the temperature is still rising immediately.
  • the second battery pack 14 is started to operate, and the second bracket 109 mounted at the lower end of the link 113 is driven by the power unit to move away from the second battery pack 4 with the link 113.
  • the second load-bearing platform 252 is gradually separated from the second fixed platform 225 of the second battery pack 4 of the second battery pack 4, the second bracket 109 is detached from the second battery pack 4, and the second battery pack 4 is automatically detached from the electric vehicle chassis. 2 fell on the road.
  • the first battery pack robot system 11 can be simultaneously controlled to move away from the first battery pack 3 and The second battery pack robot system 14 does the movement away from the second battery pack 4 while discarding the first battery pack 3 and the second battery pack 4.
  • FIG. 9 In controlling the first battery pack robot system 11 and controlling the second battery pack robot system 14, the total controller 117 and the hydraulic pressure are included.
  • the controller 120 and the servo motor controller 127, the hydraulic controller 120 and the servo motor controller 127 are both connected to the overall controller 117, and the hydraulic controller 120 is connected to the multi-way decompression amplifier 123, and the multi-channel decompression amplifier 123 is connected.
  • the electro-hydraulic proportional valve 124 the electro-hydraulic proportional valve 124 is used to connect the cylinder 114 that moves the manipulator link 113 up and down; the servo motor controller 127 is connected to the multi-way servo amplifier 125, and the multi-way servo amplifier 125 is used to drive the connecting rod 113.
  • the rotating servo motor 115 is connected, the servo motor 115 is connected to the connecting rod 113 through the speed reducer 116; the hydraulic controller (120) is further connected with a displacement sensor 121 for detecting the moving distance of the connecting rod 113 and for detecting the hydraulic pressure in the oil cylinder 114.
  • the oil pressure pressure sensor 122, the servo motor controller 127 is further connected with a photoelectric encoder 126 for detecting the rotational speed of the power output shaft of the reduction gearbox 116, and the overall controller 117 is further connected with a camera 118 for recording the movement condition of the robot and The display screen 119 robot activity status.
  • Both the hydraulic controller 120 and the servo motor controller 127 communicate with the overall controller 117 via a CAN bus.
  • the total controller 117 receives the remote control command through the RS232 data line, distributes the task to the hydraulic controller 120 and the servo motor controller 127 through the CAN bus to control the action of each actuator of the robot, and the output of the hydraulic controller 120 is connected to the multi-channel decompression amplifier 123.
  • the oil cylinder 114 is controlled by the electro-hydraulic proportional valve 124.
  • the output end of the servo motor controller 127 is connected to the multi-channel servo amplifier 125, the output end of the multi-way servo amplifier 125 is connected to the servo motor 115, and the reduction gear box 116 is performed by the servo motor 115. control.
  • the environment is captured by the camera 118, and the operation of the robot is displayed through the display 119. And by providing the displacement sensor 121 on the robot's robot hand, collision between the self and the external environment is avoided.
  • the first step is to charge the electric vehicle 1 driver with the electric vehicle vehicle device through the wireless network and monitoring workstation 105 such as 3G/4G network.
  • the wireless network and monitoring workstation 105 such as 3G/4G network.
  • Contact find the electric vehicle battery pack replacement station 221 composed of the nearest Internet of Things and robots, and after reaching the electric vehicle battery pack replacement station 221 composed of the Internet of Things and the robot, drive the electric car 1 to the four-post lift 101,
  • the driver in the cab of the electric vehicle 1 activates the remote monitoring battery changing mode controlled by the monitoring workstation 105 on the LCD screen of the electric vehicle onboard device.
  • the monitoring workstation 105 controls the personnel to transfer the battery replacement process of the electric vehicle 1 to the monitoring workstation 106 through the network.
  • the monitoring workstation 106 starts remote monitoring, and the electric vehicle battery pack replacement system composed of the intelligent network and the robot is waited for.
  • the ferry robot 103 travels along the rail of the ferry robot walking rail 104 to the first battery pack mounting position 32 under the battery pack automatic changing system 5 of the electric vehicle 1, and the battery pack tray 159 bears against the first battery pack 3,
  • the monitoring computer 106 controls the person to start controlling the first battery pack robot system 11 to start working, and the first bracket 108 installed at the lower end of the link 113 is driven by the power unit to move away from the first battery pack 3 along with the link 113.
  • the first load-bearing platform 257 on a bracket 108 gradually disengages from the first battery pack second fixed platform 226 of the first battery pack 3, the first bracket 108 is disengaged from the first battery pack 3, and the swing robot 103 starts to work and drives
  • the first battery pack 3 is separated from the battery holder first load-bearing platform 52, and the first battery pack robot system 11 is controlled to stop working.
  • the ferry robot 103 carries the first battery pack 3 along the ferry robot walking rail 104 to the unloading battery of the first palletizing robot 102, and the first palletizing robot 102 unloads the first battery pack 3.
  • the first palletizing robot 103 grabs the charged first battery pack 3 and places it on the top battery tray 159 of the swing robot 103.
  • the ferry robot 103 walks along the ferry robot walking rail 104 to the four-column lift (101). After the swing robot 103 completes the X/Y direction positioning, the robot rises using the output of the ultrasonic distance measuring sensor and the hydraulic mechanism. After the output difference of the encoder is calculated, the PID control is used as the input of the PID controller to control the proportional flow valve. When the hydraulic mechanism is lifted to the desired position, the positioning is stopped and the positioning is accurate.
  • the monitoring station 106 sends an instruction to the ferry robot 199 to start installing the first battery pack (3) of the electric vehicle, and the ferry robot 103 pushes the first battery pack (3) of the electric vehicle to the first battery above the battery pack automatic changing system 5.
  • the package installation position 32, the monitoring computer 106 controls the person to start controlling the first battery pack robot system 11 to start working, pushing the first battery pack 3 to move the first battery pack first fixed platform 26 to gradually enter the battery holder first load-bearing platform 52.
  • the first battery pack plug 175 is in close contact with the first battery pack connector 176, and the first battery pack 3 is installed to control the first battery pack robot system 11 to stop working.
  • the ferry robot 103 exits the four-post lift 101 along the ferry robot walking rail 104.
  • the ferry robot 103 walks along the ferry robot walking rail 104 to the four-column lift 101, reaches the second battery pack mounting position 33 under the electric vehicle chassis 2, and the battery pack tray 159 stands against the second battery pack 4, and monitors
  • the computer 106 controls the person to start controlling the second battery pack robot system 14 to start working.
  • the second bracket 109 mounted at the lower end of the link 113 is driven by the power unit to move away from the second battery pack 4 along with the link 113.
  • the second load-bearing platform 252 on the bracket 109 gradually disengages from the second battery pack second fixed platform 225 of the second battery pack 4, and the second bracket 109 is disengaged from the second battery pack 4, and the second battery pack robot system 14 is controlled to stop. jobs.
  • the second battery pack 4 falls on the top battery tray 159 of the ferry robot 103, and the ferry robot 103 carries the second battery pack 4 along the railing of the ferry robot traveling rail 104 to the first palletizing robot 102, the first palletizing robot 102, the ferry robot 103 is unloaded by carrying the second battery pack 4.
  • the first palletizing robot 102 grabs the charged second battery pack 4 and places it on the top battery tray 159 of the waiting ferry robot 103.
  • the ferry robot 103 walks along the four-column lift 101 of the rail transit track 104 of the ferry robot, and after the swing robot 103 completes the X/Y direction positioning, the process of the robot ascending uses the output of the ultrasonic distance measuring sensor and the hydraulic mechanism encoder. After the output difference calculation, as the input of the PID controller, the proportional flow valve is PID-controlled, and when the hydraulic mechanism is lifted to the expected position, the rise is stopped; the positioning is accurate.
  • the monitoring station 106 sends an instruction to the ferry robot 103 to start installing the second battery pack 4, and the swing robot 103 holds the second battery pack 4 to reach the second battery pack mounting position 33 of the electric vehicle 1 under the electric vehicle chassis 2, the battery pack tray 159 against the second battery pack 4 to the second battery pack mounting position 33, the monitoring workstation 106 controls the person to start controlling the second battery pack robot system 14 to start working, pushing the first battery pack 3 to move the second battery pack 4
  • the first fixed platform 46 of the battery pack gradually enters the second load-bearing platform 53 of the battery holder, the second plug 254 of the electrical device is in close contact with the second battery-packed electrical receptacle 262, and the second battery pack 4 is installed, and the second battery is controlled.
  • the package robot system 14 stops working.
  • the monitoring station 106 issues an instruction to the ferry robot 103 to install the second battery pack 4, and the ferry robot 103 moves away from the four-post lift 101 along the track along the swing robot traveling rail 104.
  • the battery replacement process ends, the four-column lift 101 falls, and the driver drives the electric vehicle 1 away from the electric vehicle battery pack replacement workshop.
  • the monitoring workstation 106 issues a battery replacement completion signal, and the electric vehicle battery pack replacement station 221 composed of the entire Internet of Things and the robot completes the home position return.
  • the battery pack outer casing 199 constitutes a first battery pack casing 223 and a second battery pack casing 224, and the battery pack outer casing 199 includes a base 91 of the outer casing 199 of the battery pack by the upper cover 200 and the base 201.
  • the front side embedded with the connector plug 203 may constitute a first connector head 175 or a second connector plug 254.
  • the upper cover 200 of the battery pack outer casing 199 has a trapezoidal structure that is shorter than the bottom edge 174 of the base 201.
  • the first temperature adjustment plate 12 and the second temperature adjustment plate 13 are mounted on the upper surface of the battery replacement system 5 through a plurality of fixing ports 266, and the first temperature adjustment plate 12 is correspondingly mounted on the first battery pack.
  • the position 32 is above; the second temperature adjustment plate 13 is correspondingly mounted on the second battery pack mounting position 33.
  • the first connecting pipe 95 and the second connecting pipe 96 connect the first temperature adjusting plate 12 and the second temperature adjusting plate 13 together, and the first temperature adjusting plate 12 is provided with a coolant inlet 97 and a coolant outlet 98.
  • the first battery pack 3 is placed in the first battery pack casing 223, and a first shield duct 21 and a second shield duct 22 bent at a 90 degree curvature are electrically conductive.
  • the metal is fixed to the inside of the first battery pack case 223.
  • a first signal line control line protector 16 is mounted inside the first battery pack casing 223, and the first control line and the BMS signal line 20 enter the first battery pack casing 223 along the first shield duct 21 and the first signal.
  • the first line 17 of the line control line protector is connected at the first connection point 19, and the second line 18 of the first line number control line protector is connected to the circuit board signal output line 69 of the first battery pack 3, that is, the first control
  • the line and BMS signal lines 20 are connected in series with the first signal line control line protector 16 in a series connection, the first connection point 19 unloading and absorbing a large current entering along the first control line and the BMS signal line 20.
  • the first signal line control line protector ground line 15 is connected to the first power wave protector ground line 30.
  • a first power surge protector 31 is mounted inside the first battery pack casing 223, and the first power cord 23 enters the first battery along the second shield conduit 22.
  • the inside of the package casing 223 is connected to the first power surge protector first wire 28 at the second connection point 25, and then the first power line 23 is connected to the positive terminal 66 of the first battery pack 3; the second power line 24 Connected to the third connection point 27 of the first power surge protector second wire 29 before entering the first battery package casing 223 along the second shielding conduit 22, and then the second power supply line 24 and the first battery pack 3
  • the negative terminal stud 71 is connected;
  • the first power wave protector ground wire 30 is connected to the ground wire fourth strong electrical contact 198 of the first battery pack plug 176;
  • the second connection point 25 is unloaded and absorbed along the first power line 23 The incoming large current; the third connection point 27 unloads and absorbs the large current entering along the second power line 24.
  • a second power surge protector 229 is mounted inside the first battery pack casing 223, and the third power surge protector first wire 227 is connected to the outer surface of the first battery pack 3, and the third power surge protector is connected.
  • the two wires 228 are connected to the inner surface of the first battery pack case 223 to unload and absorb the large current induced along the first battery pack case 223.
  • the third power surge protector ground wire 230 is connected to the first power wave protector ground wire 30.
  • the first signal line controls the line protector grounding conductor 15, the first power wave protector grounding conductor 30 and the third power surge protector grounding conductor 230 to make an equipotential connection, and the current on each of the above grounding conductors is introduced into the grounding conductor. After the strong electric contact 198 is introduced into the grounding system of the electric vehicle 1, the wheel 10 is introduced into the ground.
  • the second battery pack 4 is placed in the second battery pack casing 224, and a third shield duct 38 and a fourth shield duct 41 which are bent at a curvature of 90 are electrically conductive.
  • the metal is fixed to the inside of the second battery pack case 224.
  • a second signal line control line protector 35 is mounted inside the second battery pack casing 224, and the second control line and the BMS signal line 40 enter the second battery pack casing 224 inside and after the second signal along the third shield duct 38.
  • the line control line protector second wire 37 is connected at the fourth connection point 39, and the second wire number control line protector first wire 36 is connected with the circuit board signal output line 69 of the first battery pack 3, that is, the first control line
  • the connection between the BMS signal line 20 and the second signal line control line protector 35 is connected in series, and the fourth connection point 39 unloads and absorbs a large current entering along the second control line and the BMS signal line 40.
  • the second wire number control line protector ground wire 34 is connected to the second power surge protector ground wire 47.
  • the second battery pack 4 is placed in the second battery pack casing 224, and the third shield duct 38 and the fourth shield duct 41 which are bent to have a curvature of 90° are fixed by the conductive magnetically conductive metal inside the second battery pack casing 224.
  • a third power surge protector 48 is mounted inside the second battery pack casing 224.
  • the third power cord 42 enters the second battery pack casing 224 along the fourth shield conduit 41 and the second power surge protector.
  • the two wires 238 are connected to the fifth connection point 43, and then the third power line 42 is connected to the positive terminal 66 of the second battery pack 4; the fourth power line 44 enters the second battery case 224 along the fourth shielded conduit 41.
  • the first front and second power surge protector first wires 237 are connected to the sixth connection point 45, and then the fourth power line 29 is connected to the negative terminal 71 of the second battery pack 4, and the second power surge protector is grounded.
  • the wire 47 is connected to the ninth strong electrical contact 253 of the second electrical connector 254, the fifth connection point 43 unloads and absorbs the large current entering along the third power line 42; the sixth connection point 45 unloads and absorbs the edge A large current entering the fourth power line 44 is entered.
  • a fourth power surge protector 234 is mounted inside the second battery pack casing 224.
  • the fourth power surge protector first wire 232 is connected to the outer surface of the second battery pack 4, and the fourth power surge protector is connected.
  • the two wires 233 are connected to the inner surface of the second battery pack casing 224, and the fourth power surge protector ground wire (235) is connected to the second power surge protector ground wire 47.
  • the second power surge protector grounding conductor 47, the fourth power surge protector grounding conductor 235 and the second line number control line protector grounding conductor 34 are equipotentially connected, and the current on each of the above grounding conductors is introduced into the ninth strongest
  • the electric contact 253 is then introduced into the grounding system of the electric vehicle 1 and then introduced into the ground by the wheel 10.
  • the power surge protector (SPD) is connected in parallel with the power line in the circuit.
  • a housing 63 is formed.
  • the housing is composed of a frame, an upper cover 64, and a lower cover 65.
  • the upper cover 64 of the housing is provided with a positive terminal 66 and a negative terminal 71.
  • Each battery is connected to an overvoltage/overcurrent/overtemperature circuit board 67, and the circuit board is provided with a circuit board signal output line 69.
  • the inside of the casing 63 includes a plurality of cells 54 separated by positive and negative electrodes at both ends.
  • the battery arrays of the adjacent cells are arranged in opposite polarity, and the positive and negative electrodes of the adjacent batteries are connected by the connecting piece 55, and the upper support seat 56 and the lower support seat 57 are respectively arranged on the top surface and the bottom surface of the battery array, and the upper support seat 56 is provided.
  • the lower support base 57 is fixedly connected by a plurality of support columns 60, and a circuit board protection cover 68 is mounted on the circuit board 67, and the circuit board signal output line 69 is taken out from the circuit board protection cover 68.
  • the connection between the positive electrode column 73 and the negative electrode column 75 in the unit cell 54 is at an angle of 90° with the extension line of the upper cover 64 and the extension line of the lower cover 65.
  • the battery cells 84 are arranged in a regular hexagon shape, and the battery cells 85 are arranged in a semi-hexagonal shape, and the two battery cells 54 are placed in two arrangements; the upper support base 56 and the lower
  • An elastic buffer rubber pad 61 is disposed between the bottom surface of the recess 58 of the support base 57 and the upper and lower end surfaces of the battery.
  • the elastic buffer rubber pad 61 has an annular shape and is made of EPDM.
  • the insulating thermal conductive tape 62 is attached to the connecting piece. Grooves 58 capable of lying on both ends of the battery are respectively disposed on the upper support base 56 and the lower support base 57, and communication holes 59 for exposing the battery electrodes are disposed between the mutually connected battery recesses.
  • the fifth side 90 of the body battery and the sixth side 91 of the unit cell are equal in length.
  • the battery core 70, the inner casing 83, the outer casing 72, the positive electrode column 73 and the negative electrode column 75 are enclosed.
  • the inner casing 83 encloses the battery core 70 therein, and the outer casing 72 encloses the inner casing 83.
  • the positive electrode column 73 and the negative electrode column 75 are respectively located at the outer casing 72. The middle position of the upper and lower end faces.
  • a cover plate 76 is disposed on the upper end surface of the outer casing 72.
  • the cover plate 76 is provided with a first glue injection port 77.
  • the lower end surface of the outer casing 72 is provided with a second glue injection port 78 corresponding to the first glue injection port 77.
  • a high thermal conductivity electronic silica gel 79 is filled between the inner casing 83 and the outer casing 72.
  • the positive electrode column 73 and the negative electrode column 75 are respectively provided with a nut 80 matched with the positive electrode column 73 and the negative electrode column 75; a gasket 81 is disposed between the nut 80 and the contact surface of the outer casing 72; and a liquid inlet is provided at an intermediate position of the positive electrode column 73. 82.
  • An exhaust port 74 is further disposed beside the liquid injection port 82.
  • the high thermal conductivity electronic silica gel 79 filled between the inner casings can make the heat diffusion of the battery core 70 more uniform, and can quickly introduce heat into the outer casing 72. The heat dissipation speed is accelerated, and the shock resistance and sealing performance of the lithium battery can be effectively improved.
  • the positive electrode column 73 and the negative electrode column 75 are respectively provided with a nut 80, and a gasket 81 is disposed between the nut (80) and the contact surface of the outer casing 72.
  • the electric core 70 and the insulation for the outer casing 72 are used to improve electrical insulation and stability.
  • the positive electrode column 73 is provided with a liquid injection port 82 and an exhaust port 74, and has a liquid electrolyte and an exhaust gas of the lithium battery electrolyte. Decompression function.
  • the structure of the battery is a half-half positive prism structure, and the seventh side 92 of the unit cell, the eighth side 93 of the unit cell, and the ninth side 94 of the unit cell are equal in length.
  • the swing robot 141 includes degrees of freedom in three directions of the X-axis, the Z-axis, and the R-axis, and is sequentially a linear traveling mechanism 142, a hydraulic lifting mechanism hydraulic lifting mechanism 143, and an angle correcting mechanism 144.
  • the linear running mechanism 142 is located at the bottom of the swing robot 141, and includes a pulley 148, a universal joint 145, a belt 149, a first servo motor 150, a first reducer 151, and a base 152; the front two pulleys are robots.
  • a power unit connected to a set of universal joints, the rear two pulleys being driven devices; the first servo motor (150) and The auxiliary first reducer 151 is connected to the expansion sleeve, and the power transmission of the first reducer 151 and the pulley 148 is realized by the belt 149, and the drive pulley 148 travels straight on the slide rail.
  • Three photoelectric switches are arranged at the lower end of the linear running mechanism 301, and cooperate with the original blocking piece and the two front and rear limit blocks in sequence to provide the PLC control system 161 in-position switching signal, realize the robot origin search and reset, and prevent the cross-border operation;
  • the flap, the origin stop and the rear limit stop are arranged in sequence along the laid linear slide, and the original stop is located in the middle of the front and rear limit flaps.
  • the hydraulic lifting and lifting mechanism 143 is located at the upper portion of the base of the linear traveling mechanism 142, and includes two hydraulic telescopic cylinders; the first hydraulic cylinder 153 is located at the lower portion of the secondary hydraulic cylinder 154, and the primary hydraulic cylinder 153 is fully extended, and the secondary hydraulic pressure
  • the cylinder 154 performs a telescopic movement; the first and second hydraulic cylinders respectively weld the beam and are arranged with anti-rotation beams, and the anti-rotation beam cooperates with two anti-rotation holes on the welding beam of the first-stage hydraulic cylinder and the welding beam of the base to prevent the battery from being blocked.
  • the switch is disposed at the bottom end of the welding beam of the first-stage hydraulic cylinder.
  • the rack 146 is meshed with the encoder 147 through a gear, and the rising height of the secondary hydraulic cylinder 154 is obtained by calculating the number of revolutions of the encoder 147; the encoder 147 is connected to the PLC control system 161, and the PLC control system 161 starts high-speed counting.
  • the angle correcting mechanism 144 is located at the upper end of the hydraulic lifting mechanism 143, and includes a mounting flange 155, a large and small gear 156, a second servo motor 157, and a second speed reducer 158.
  • a mounting flange 155 is mounted on the secondary hydraulic cylinder 154.
  • the second servo motor 157 and the second reduction gear 158 are disposed on the mounting flange 155 in sequence.
  • the upper end of the second servo motor 157 is mounted with a pinion gear and a secondary hydraulic cylinder.
  • a large gear is mounted on the 154, and the large and small gears are mechanically engaged, and the second servo motor 157 is driven to rotate.
  • the lower end of the large gear is arranged with a blocking piece, and three second proximity switches are arranged on the mounting flange 155; the large gear sequentially triggers the rotation left and right limit and the original electric reset switch signal during the rotation process to ensure that the large gear rotates within a prescribed range.
  • a battery tray 159) is mounted on the upper end of the angle correcting mechanism 144, and the center of rotation of the large gear is concentric with the center of gravity of the battery pack tray 159.
  • the battery pack tray 159 is equipped with four limiting blocks 160, which are coupled with the four protrusions at the bottom of the battery compartment of the electric vehicle to be replaced (1), so that the position of the battery outer box can be finely adjusted and reliably fixed.
  • An ultrasonic ranging sensor 168 and a DMP sensor 169 are mounted on the battery pack tray (159) for measuring the distance of the battery tray 312 to the electric vehicle chassis to be replaced; the DMP sensor 169 is mounted on the power to be replaced.
  • the reflector on the chassis of the vehicle the position of the target of the reflector is searched for, and the horizontal angle deviation between the ferry robot 141 and the passenger to be replaced is obtained.
  • the linear traveling mechanism 142 and the hydraulic lifting mechanism 143 are interlocked.
  • the angle correcting mechanism 144 starts to operate, and only the battery tray 159 on the angle correcting mechanism 144 achieves the desired effect.
  • the hydraulic lifting mechanism 143 is restarted.
  • the linear running mechanism 142 and the angle correcting mechanism 144 are driven by a servo motor, and the driving motor is connected with a corresponding encoder, and each encoder is connected with a corresponding driver; the driver sends a position pulse signal to the servo motor, and the encoder transmits the collected motor rotation information. Return to the drive to form a full-closed control of the position mode.
  • the swing robot (141) controls a system block diagram, which is a core part of the action control of the swing robot 141, and includes a touch screen 162, a wireless communication module 163, an OMRON PLC controller 164, and an A/D module 405.
  • the DMP sensor 169, the hydraulic proportional flow valve 170, each encoder 171, the proximity switch 172, the photoelectric switch 173, and the like communicate with the PLC control system 161 in real time.
  • the ultrasonic ranging sensor 168 and the DMP sensor 169 are coupled to the A/D module 165 in the PLC control system 161 to convert the analog signals acquired by the sensor into digital signals for transmission to the PLC control system 161.
  • the hydraulic proportional flow valve 170 is coupled to the D/A module 166 in the PLC control system 161 to convert the digital control signal of the PLC control system 161 into analog flow control information to effect speed control of the hydraulic lift mechanism 143.
  • the encoder is connected to the A/D module 165 of the PLC control system 161.
  • the encoder 171 collects the rising height of the one-side rack of the secondary hydraulic cylinder 154, and obtains the lifting distance of the secondary hydraulic cylinder 154 through calculation, and feeds the data back to the PLC.
  • Control system 161 forms a full closed loop control during the lifting process.
  • the proximity switch 172 and the photoelectric switch 173 are connected to the OMRON PLC controller 164 in the PLC control system 161, and the limit position information of each of the swing robots 141 is transmitted in real time, and the interrupt mode and the high-speed counting mode of the PLC control system 161 are triggered to realize the swing robot. 141 Accurate and fast action within the specified range.
  • the contact body 204 connected to the connector base and the connector plug 207 connected to the battery pack are provided with contacts 209 at the right end of the contact connecting post 208 in the contact body 204, and the connector plug 207 is tightly coupled.
  • a spring 212 is disposed in the contact body 204, and the connector plug 207 is biased by the spring 212 when the contact 209 is pushed to the left.
  • the contact body 204 includes a housing 205 and a cover 206.
  • the cover 206 is sealed to the left end of the housing 205.
  • the right end of the housing 205 and the cover 206 each have a through hole.
  • the left end of the contact connecting post 208 is disposed in the through hole of the cover 206
  • the contact 209 is disposed in the through hole of the housing 205
  • the contact connecting post 208 and the through hole of the cover 206 are sealed
  • the contact 209 is
  • the through hole of the housing 205 is a sealed connection.
  • a contact strip 210 is disposed at a right end of the contact connecting post 208 in the housing 205.
  • the spring 212 is sleeved outside the contact connecting post 208. One end of the spring 212 abuts against the contact strip 210, and the other end of the spring 212 Abut the cover 206.
  • a space formed by the cover 206 and the contact vane 210 is filled with a damping oil 213.
  • the contact pad 210 has a damping hole 211 that communicates with a space on the left and right sides of the contact pad 210 in the housing 205.
  • the outer edge of the contact strip 210 has a gap with the inner surface of the housing 205.
  • a positioning screw 214 is fixedly disposed on a surface of the housing 205 corresponding to the connector plug 207.
  • a surface corresponding to the housing 205 on the left side of the connector plug 207 is provided with a positioning hole 215.
  • a first sealing ring 216 is disposed between the through hole of the cover 206 and the left end of the connecting post, and a first sealing ring 216 is disposed between the contact 209 and the through hole of the housing 205.
  • the diameter of the intermediate portion of the orifice 211 is smaller than the diameter of both ends of the orifice 211.
  • the contact 209 When the vehicle is running during shaking or acceleration and deceleration, the contact 209 has a tendency to move, and the casing 205 is filled with a damping oil 213, and the damping oil 213 is not electrically conductive.
  • the contact 209 is to be moved to the left, and must be moved against the damping of the damping oil 213.
  • the instantaneous movement cannot be moved due to the action of the damping oil 213, but the slow movement is possible, and the contact 209 can be slowed to the left under the action of an external force.
  • the design can effectively avoid the rapid movement of the high-voltage contacts due to vehicle shake or acceleration and deceleration, avoiding instantaneous conductive disconnection due to jitter, and avoiding arcing between the contacts 209 and damaging the contacts 209.
  • an outer ring and an inner ring double ring seal ring are integrally disposed in the first frame 179 of the first electrical plug bottom plate 177.
  • the first sealing ring 178, the sealing ring 178) surrounds the first strong electrical contact 185 disposed on the first electrical connector plug 175, the second strong electrical contact 190, the third strong electrical contact 193, and the fourth strongest
  • the electrical contacts 198 and the first signal control line contacts 186 are external.
  • the electrical battery box 180 on the first battery package 176 has a fifth strong resistive contact 187, a sixth strong resistive contact 189, a seventh strong resistive contact 191, and an eighth strong resistive contact.
  • the strong resistance contact 197 is connected, the signal line of the first signal control line socket 184 and the first signal control line are connected to the power box 188; the first signal control line power box 188 is provided with an elastic component, and the first signal control line contact When the first signal control line is connected to the electrical box 188, the first signal control line power box 188 is brought into close contact with the first signal control line contact 186 by the elastic member.
  • the first strong electrical contact 185 is in communication with the first power line 23, the second strong electrical contact 190 is in communication with the second power line 24, and the first power contact 198 of the fourth strong electrical contact 198 and the first battery pack 3 is protected.
  • the grounding conductor 30 is in communication, and the first signal control line contact 186 is in communication with the first control line and the BMS signal line 20 in the first battery pack 3.
  • the second socket 182 and the third socket 183 are connected to a strong electric wire of the electric vehicle 1, and the first signal control line socket 184 is connected to a signal control line of the electric vehicle.
  • the elastic member includes one end of the first rubber pad 195 connected to the electrical connector box 180, and the other end of the first rubber pad 195 is connected to the first electrical connector bracket 176, and the first bolt 194 is disposed in the rubber pad 195.
  • the first electrical connector plug 175 is mounted on the front end of the first battery pack 3, and after the first bracket 108 of the first battery pack robot system 11 is controlled to push the first battery pack 3 into the first battery pack 3 installation position, the first connection The electrical plug 175 is connected to the first battery-covered electrical connector 176, and the third strong electrical contact 193 pushes and abuts against the seventh strong resistive contact 191, and the first strong electrical contact 185 pushes and closely abuts the fifth strong a resistive contact 187; the second strong electrical contact 190 pushes and abuts against the sixth strong resistive contact 189; the fourth strong electrical contact 198 pushes and abuts against the eighth strong resistive contact 197;
  • the signal control line contact 186 is connected to the first signal control line
  • the first socket first air duct connector 280 is connected to the electric vehicle 1 ventilation control system, and the first socket first air duct connector 280 is connected to the first socket first air duct 281.
  • the first socket first vent tube 281 is coupled to the first socket first vent tube damper joint 282.
  • the first socket second vent tube connector 283 is coupled to the first socket second vent tube 284;
  • the first socket second vent tube 284 is coupled to the first socket second vent tube damper joint 285.
  • the first plug first air inlet 279 is connected to the second air inlet and outlet 276, and the outside air enters the air passage 274 and flows out through the first air inlet and outlet 275 to flow into the outer casing of the first battery pack 3 to cool the first battery pack 3.
  • the first plug first air outlet 278 and the first socket first air duct damping joint seat 282; the first plug first air inlet 279 and the first socket second air duct damping joint seat 285 are ventilated hollow structures.
  • the first sealing ring 178 and the first plug first air outlet 278 The first inlet 279 is spaced from the first plug.
  • the second connector plug 254 of the second connector 254 of the electrical device is mounted on the front end of the second battery pack 4, and the second socket 262 of the electrical connector is mounted on the suspension bracket 220 of the electric car battery pack, and the second electrical connector
  • the second frame 260 on the plug bottom plate 263 is provided with an outer ring and an inner ring structure of the second sealing ring 261.
  • the second sealing ring 261 surrounds the ninth strong electric contact disposed on the second connector plug 254.
  • the fifth socket 240, the sixth socket 242, the seventh socket 245, the eighth socket 248 and the second signal control line socket 244 are disposed; the wire of the fifth socket 240 is connected with the thirteenth strong resistance contact 239, and the sixth The wire of the socket 242 is connected to the fourteenth strong resistance contact 241, the wire of the seventh socket 245 and the tenth The strong resistance contact 246 is connected, the wire of the eighth socket 247 is connected to the sixteenth strong resistance contact 248, the signal line of the second signal control line socket 243 and the second signal control line are connected to the power box 244;
  • the sixth socket 242 and the seventh socket 245 are connected to a strong electric wire of the electric vehicle 1; the second signal control line socket 243 is connected to an electric vehicle internal signal control line.
  • the second elastic member includes one end of the second rubber pad 251 connected to the second electrical connector box 249, the other end of the second rubber pad 251 is connected to the second electrical connector bracket 262, and the second bolt 250 is disposed in the rubber pad 251.
  • the nine strong electric contacts 253 push and closely abut against the thirteenth strong resistive contact 239, and the tenth strong electric contact 255 pushes and closely abuts the fourteenth strong resistive contact 241; the eleventh strong electric contact 258 pushes and closely abuts the fifteenth strong resistive contact 246; the twelfth strong electrical contact 259 pushes and abuts against the sixteenth strong resistive contact 248; the first signal control line contact 256 and the second The signal control line is connected to the electrical box 244.
  • the second signal control line power box 244 is provided with an elastic member.
  • the second signal control line contact 256 pushes the second signal control line to the power box 244, the second signal control line is connected to the power box 244 by the elastic member.
  • the two-way sealing arc on the sealing ring is combined with the plane to deform, and two annular line seals are formed around the contacts.
  • the second outlet first vent connector 267 is coupled to the electric vehicle 1 ventilation control system, and the second outlet first vent connector 267 is coupled to the second outlet first vent 268.
  • the second socket first vent tube 268 is coupled to the second socket first vent tube damper joint 269.
  • the second socket second vent tube connector 270 is coupled to the second socket second vent tube 271; the second socket second vent tube 271 is coupled to the second socket second vent tube damper joint 277.
  • the second plug first intake head 273 is connected to the first air inlet and outlet 275, and the air enters the air passage 274 and flows out through the second air inlet and outlet 276 to flow into the second battery pack casing, and the second battery pack 4 is cooled.
  • the second plug first air outlet head 272 is discharged.
  • the second socket first vent tube damper joint 269 and the second plug first air outlet head 272 are ventilated hollow structures; the second vent tube damper joint 277 second plug first intake head 273 is ventilable Hollow structure.
  • the second plug first air outlet head 272 and the second plug first air inlet head 273 are separately surrounded by the second seal ring 261 to form a separate annular seal structure, and the second seal ring 261 is further connected to the second plug first air outlet head 272.
  • the second plug first intake head 273 is spaced from the middle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Combustion & Propulsion (AREA)

Abstract

一种物联网控制的电动汽车底盘上的电池包更换和防暴系统,物联网启动控制第一电池包机器人系统(11)和摆渡机器人(103)卸载和安装第一电池包(3)和第二电池包(4);启动控制第二电池包机器人系统(14)和摆渡机器人卸载和安装第一电池包(3)和第二电池包(4);第一电源浪涌保护器接地导线(30)的第二连接点(25)卸载和吸收了沿着第一电源线(23)进入的大电流;第三连接点(27)卸载和吸收了沿着第二电源线(24)进入的大电流;第二电源浪涌保护器的第五连接点(43)卸载和吸收了沿着第三电源线(42)进入的大电流;第六连接点(45)卸载和吸收了沿着第四电源线(29)进入的大电流;第一、二信号线控制线路保护器的第一、四连接点卸载和吸收了沿第一、二控制线和BMS信号线进入的大电流,各配件的接地导线通过导电轮胎将电流导入大地。

Description

物联网控制的电动汽车底盘上的电池包更换和防爆系统 所属技术领域
本发明涉及一种由物联网控制的电动汽车底盘和其上面的第一电池包、第二电池包和换电站等组成的物联网控制的电动汽车底盘上的电池包更换和防爆系统。
背景技术
一、物联网是通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络概念。
二、机器人(Robot)是自动执行工作的机器装置。它既可以接受人类指挥,又可以运行预先编排的程序,也可以根据以人工智能技术制定的原则纲领行动
三、国际最先进的电源浪涌保护器(SPD);信号线、控制线路保护器(SPD)的正弦波跟踪滤波及特殊化学封装的专利技术,包含浪涌保护和滤波技术,非常符合电磁脉冲防护的技术要求,产品具有以下优势:多级防护机制,残压可达0V。经过导流的浪涌电压一般在2.5KV~15KV之间,所配备的SPD产品应该经过多级防护后,达到极低的残压,特殊行业能够达到0伏;响应速度小于1纳秒,有效防护二次雷、感应雷以及电气内部涌流瞬态电压抑制器(简称TVS)。TVS二级管响应时间小于1纳秒;外壳采用NEMA 4标准,防水、防火、防爆、防静电;专利的正弦波ORN跟踪技术,精确消除浪涌、谐波功能;独一无二的化学封装专利技术,保障器件持久的可靠性能,特殊的化学封闭,能迅速吸收浪涌过程中产生的热量;真正的10模(全模)保护,阻断浪涌所有可能通道。线与线之间进行滤波保护,阻断了线与线、线与地所有可能的通道;混合多元化模块,热、电双保险熔断电容设计;唯一可不接地的浪涌保护产品,采用专利的正弦波跟踪技术,特殊化学封装,以及纳秒级TVS元件,十模保护以及混合多元化模块,使得该产品可以不通过接地释放能量。(参考文献:美国公司《系列产品说明书》)
四、电动汽车是指以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。目前电动汽车在中国发展前景良好。但是电动汽车由于其充电不方便,续航能力不足等问题,限制了电动汽车在中国以及在世界的发展,目前有快速充电技术可以在短时间内将电池电量充满,但是这种充电技术严重损害了电池的寿命,还有一种充电桩技术发展很不完善,需要专车专用充电桩,大大降低了充电桩的使用效率,在城市地下停车场大量建立换电站就能满足电动汽车续航能力的要求,电动汽车有两种换电方式:侧向换电和底盘换电,底盘换电主要指的是在汽车底部进行电池更换。
本发明借鉴了以下专利或专利申请的优点克服了不足。
1.CN201510067192.2电动车电池包的快换方法及快换系统
2.CN201420173472.2用于汽车电池包的接电器弹性密封结构
3.CN201320802525.8一种电池组
4.CN201310612437.6一种机器人机械手控制系统
5.CN201410053423.X计算机互联网多个机器人组成的电动汽车电池组更换系统
6.CN201320863239.2降低电动汽车电池组燃烧概率的电池组供电系统
发明内容
针对现有的电动汽车续航里程短和车体被撞击后线路短路造成电池包燃烧的不足,本发明提供了一种物联网控制的电动汽车底盘上的电池包更换和防暴系统,在电动汽车底盘上安装的电池更换系统包含第一电池包放置处和第二电池包放置处;第一电池包放置处设置于电动汽车底盘的中前部,第二电池包放置处设置于电动汽车底盘的中后部,使用时第一电池包放置于第一电池包放置处内;第二电池包放置于第二电池包放置处内,使得电动汽车的重心在电动汽车的中部,在电池包悬挂支架上设置电池包支架导线通道,第一电池包接电器座,第二电池包接电器座,用螺丝通过第一固定口和第二固定口把电池包悬挂支架安装在电池包自动更换系统的内部顶板下面。在电池包自动更换系统的内部安装控制第一电池包机器人系统和控制第二电池包机器人系统,车轮由导电的金属制成的轮毂和导电的橡胶制成的轮胎组成后,可以向地面传导各个配件接地导线上的电流。
把第一电池包放入第一电池包外壳中,弯成弯度90°的第一屏蔽导管和第二屏蔽导管由导电导磁的金属制成固定在第一电池包外壳的内部。在第一电池包外壳内部安装第一信号线控制线路保护器,第一控制线和BMS信号线沿着第一屏蔽导管进入第一电池包外壳内部前与第一信号线控制线路保护器第一导线连接在第一连接点处,第一线号线控制线路保护器第二导线与第一电池包的电路板信号输出线连接,即第一控制线和BMS信号线与第一信号线控制线路保护器的连接方式是串联连接,第一连接点卸载和吸收了沿着第一控制线和BMS信号线进入的大电流。第一信号线控制线路保护器接地导线与第一电源浪保护器接地导线连接。在第一电池包外壳内部安装第一电源浪涌保护器,第一电源线沿着第二屏蔽导管进入第一电池包外壳内部前与第一电源浪涌保护器第一导线连接于第二连接点处,然后第一电源线与第一电池包的正极接线柱连接;第二电源线沿着第二屏蔽导管进入第一电池包外壳内部前与第一电源浪涌保护器第二导线连接于第三连接点处,然后第二电源线与第一电池包的负极接线柱连接;第一电源浪保护器接地导线与第一电池包插头的接地导线第四强电触头连接;第二连接点卸载和吸收了沿着第一电源线进入的大电流;第三连接点卸载和吸收了沿着第二电源线进入的大电流。在第一电池包外壳内部安装第二电源浪涌保护器,第三电源浪涌保护器第一导线与第一电池包的外表面连接,第三电源浪涌保护器第二导线与第一电池包外壳的内表面连接,可以卸载和吸收沿着第一电池包外壳感应出来的大电流。第三电源浪涌保护器接地导线与第一电源浪保护器接地导线连接。第一信号线控制线路保护器接地导线、第一电源浪保护器接地导线和第三电源浪涌保护器接地导线做等电位连 接,把以上各个接地导线上的电流导入接地导线第四强电触头后再导入电动汽车的接地系统后由车轮导入大地。
把第二电池包放入第二电池包外壳中,弯成弯度90°的第三屏蔽导管和第四屏蔽导管由导电导磁的金属制成固定在第二电池包外壳的内部。在第二电池包外壳内部安装第二信号线控制线路保护器,第二控制线和BMS信号线沿着第三屏蔽导管进入第二电池包外壳内部前与第二信号线控制线路保护器第二导线连接在第四连接点处,第二线号线控制线路保护器第一导线与第一电池包的电路板信号输出线连接,即第一控制线和BMS信号线与第二信号线控制线路保护器的连接方式是串联连接,第四连接点卸载和吸收了沿着第二控制线和BMS信号线进入的大电流。第二线号线控制线路保护器接地导线与第二电源浪涌保护器接地导线连接。把第二电池包放入第二电池包外壳中,弯成弯度90°的第三屏蔽导管和第四屏蔽导管由导电导磁的金属制成固定在第二电池包外壳内部内壳上。在第二电池包外壳内部安装第三电源浪涌保护器,第三电源线沿着第四屏蔽导管进入第二电池包外壳内部前与第二电源浪涌保护器第二导线连接于第五连接点处,然后第三电源线与第二电池包的正极接线柱连接;第四电源线沿着第四屏蔽导管进入第二电池包外壳内部前与第二电源浪涌保护器第一导线连接于第六连接点处,然后第四电源线与第二电池包的负极接线柱连接,第二电源浪涌保护器接地导线与第二接电器插头的第九强电触头连接,第五连接点卸载和吸收了沿着第三电源线进入的大电流;第六连接点卸载和吸收了沿着第四电源线进入的大电流。在第二电池包外壳内部安装第四电源浪涌保护器,第四电源浪涌保护器第一导线与第二电池包的外表面连接,第四电源浪涌保护器第二导线与第二电池包外壳的内表面连接,第四电源浪涌保护器接地导线与第二电源浪涌保护器接地导线连接。第二电源浪涌保护器接地导线、第四电源浪涌保护器接地导线和第二线号线控制线路保护器接地导线做等电位连接,把以上各个接地导线上的电流导入第九强电触头后再导入电动汽车的接地系统后由车轮导入大地。
本发明的有益效果是:物联网控制的电动汽车底盘上更换系统由换电池站机器人更换第一和第二电池包,第一和第二电池包内带有的电源浪涌保护器和信号线控制线路保护器,可以防止因碰撞而短路造成的大电流攻击电池包造成的燃烧,有效地增加电动汽车的续驶里程。
附图说明
图1是电池包更换系统在电动汽车中的局部剖视图;
图2是电池包更换系统在汽车底盘上的立体图图;
图3是电池包更换系统的示意图;
图4是物联网控制的电动汽车底盘上的电池包更换和防暴系统的剖视图;
图5是控制第一、二电池包机器人系统的系统框图;
图6是图3所示电池包更换系统的第一电池包的拓扑图;
图7是图3所示电池包更换系统的第二电池包的拓扑图;
图8是图3所示电池包更换系统的第一、二电池包的结构示意图;
图9是物联网控制的电动汽车底盘上的电池包更换和防暴系统整体结构图;
图10是物联网控制的电动汽车底盘上的电池包更换和防暴系统整体局部结构图;
图11是第一、二电池包外壳结构图;
图12是第一、二温度调整板结构图;
图13是第一电池包在外壳内的剖面图;
图14是第二电池包在外壳内的剖面图;
图15是电源浪涌保护器(SPD)在电路中与电源线的常用连接方式;
图16是电池包的俯视结构图;
图17是图16的A-A剖视结构示意图;
图18是电池包去掉外壳的内部结构的俯视、局部剖视结构示意图;
图19是图17的电池包所示的上支撑座的结构图;
图20是图17的电池包所示的下支撑座的结构图;
图21是正六棱柱形单体电池的剖面图;
图22是图20的俯视图;
图23是图20的二分之一正六棱柱形结构时的俯视图;
图24是摆渡机器人正面结构图;
图25是摆渡机器人侧面结构图;
图26是摆渡机器人控制系统框图;
图27是接电器阻尼触头结构使用时的示意图;
图28是第二接电器插头的正视图;
图29是第一接电器插头和第一接电器座的结合图;
图30是第二接电器插头和第二接电器座的结合图。
具体实施方式
在图1、图2和图4中,电动汽车底盘2上安装的电池更换系统5包含1个第一电池包放置处32和1个第二电池包放置处33;第一电池包放置处32设置于电动汽车底盘2的中前部,第二电池包放置处33设置于电动汽车底盘2的中后部,使用时第一电池包3放置于第一电池包放置处32内;第二电池包4放置于第二电池包放置处33内,使得电动汽车的重心在电动汽车的中部,在电池包悬挂支架220上设置1个电池包支架导线通道49,1个第一电池包接电器座176,1个第二电池包接电器座262,用螺丝通过第一固定口50和第二固定口51把电池包悬挂支架220安装在电池包自动更换系统5的内部顶板下面。在电池包自动更换系统5的内部安装1个控制第一电池包机器人系统11和1个控制第二电池包机器人系统14,车轮10由导电的 金属制成的轮毂99和导电的橡胶制成的轮胎100组成后,可以向地面传导各个配件接地导线上的电流。
在图3、图6、图7和图8中,切换单元222包括第一电池包3和第二电池包4;第一电池包3和第二电池包4分别是独立动力电源配置在电动汽车1上,第一电池包3的输出端和第二电池包4的输出端并联连接。第一电池包3为优先动力电源,第二电池包4为备用动力电源,切换单元222被配置为:在当前供电的第一电池包3的SOC小于预定阈值时,切换到第二电池包4进行供电。SOC为State of Charge的缩写,指充电容量与额定容量的比值,用百分比表示,电池具有额定容量,在某倍率下充电一定的时间,可以得到充电容量,充电容量与额定容量的比值即为SOC,预定阈值设定为5%-8%之间。
在图6中,第一电池包3的输出端内部连线上设置有第一主正继电器7,第一主正继电器7并联第一二极管6。
在图7中,第二电池包4的输出端内部连线上设置有第二主正继电器8,第二主正继电器8并联第二二极管9。在正常行驶过程中,一般使用第一电池包3进行供电,在第一电池包3进行供电时,第一主正继电器7闭合,第二主正继电器8断开。
在图8和图17中,第一电池包3和第二电池包4都包括多个能够单独拆卸的单体电池54,第一电池包3和第二电池包4包含N个(N≥1,且为整数)单体电池54系统采集板LECU和一个电池系统主控板BMU。其中采集板主要采集每个单体电池54电压和温度,电池系统主控板主要与电池系统外围单元通讯,电池系统主控板通过信号控制第一电池包3和第二电池包4内部的继电器导通或关断,同时监测总正、总负之间的电压,电池系统主控板时时采集电流传感器检测的电流大小,作为计算SOC的主要依据之一,电池系统主控板检测继电器的导通和关断状态,作为安全监控条件。
在图6、图7、图8、图3和图4中,电动汽车1行驶时切换单元222被配置为:使第一主正继电器7断开,第一电池包3通过第一二极管6对外供电;使第二主正继电器8闭合,第二电池包4通过第二主正继电器8对外供电;在第二电池包4的电压大于第一电池包3的电压的条件下,单向导通的第一二极管6断开。电动汽车1停驶时切换单元222被配置为:通过网关控制器使得第一电池包3的低压系统进入休眠模式,在电动汽车1重新启动过程中启动第二电池包4的低压系统并且禁止启动第一电池包3的低压系统,从而仅通过第二电池包4供电。
运行切换:当第一电池包3工作需要切换到第二电池包4时,先控制第一电池包3的第一主正继电器7断开,此时通过第一二极管6导通对外供电,下一步闭合第二电池包4的第二主正继电器8,此时两个电池包同时对外供电,但由于第二电池包4的电压高于第一电池包3,第一二极管6反向截止,无法输出电压,也不会发生电压突变及两个电池包之间产生电势差,并由网关控制器使第一电池包3的低压系统进入休眠模式,顺利完成切换。
停车切换:当第一电池包3的SOC过低时,停车后,由网关控制器使第一电池包3的低压系统进入休眠模式,重新启动时只启动第二电池包4的电气系统,完成切换。
紧急情况处理:电动汽车1在运行时候,第一电池包3突然达到预警温度如150°时马上进行运行切换由第一电池包3切换到第二电池包4,如果第一电池包3温度超过预警温度还在在升高,立即启动控制第一电池包机器人系统11开始工作,在动力装置的带动下连杆113下端安装的第一托架108随连杆113一起做脱离第一电池包3的移动,第一托架108上的第一承重平台257逐渐脱离第一电池包3的第一电池包第二固定平台226,第一托架108与第一电池包3脱离,第一电池包3自动脱落离开电动汽车底盘2掉到路面上。第二电池包4突然达到预警温度如150°时马上进行运行切换,由第二电池包4切换到第一电池包3,如果在第二电池包4温度超过预警温度还在在升高,立即启动控制第二电池包机器人系统14开始工作,在动力装置的带动下连杆113下端安装的第二托架109随连杆113一起做脱离第二电池包4的移动,第二托架109上的第二承重平台252逐渐脱离第二电池包4的第二电池包4的第二固定平台225,第二托架109与第二电池包4脱离,第二电池包4自动脱落离开电动汽车底盘2掉到路面上。如果第一电池包3和第二电池包4同时达到预警温度如150°温度还在在升高并且无法控制,可以同时启动控制第一电池包机器人系统11做脱离第一电池包3的移动和第二电池包机器人系统14做脱离第二电池包4的移动,同时抛掉第一电池包3和第二电池包4。
在图9、图10、图3、图4、图5、图6和图7中,在控制第一电池包机器人系统11和控制第二电池包机器人系统14中,包括总控制器117、液压控制器120和伺服电机控制器127,液压控制器120和伺服电机控制器127均与总控制器117相接,液压控制器120接有多路减压放大器123,多路减压放大器123接有电液比例阀124,电液比例阀124用于带动机械手连杆113上下移动的油缸114连接;伺服电机控制器127接有多路伺服放大器125,多路伺服放大器125与用于带动连杆113转动的伺服电机115相连接,伺服电机115通过减速机116与连杆113相连接;液压控制器(120)还接有用于检测连杆113移动距离的位移传感器121和用于检测油缸114内液压油压力的压力传感器122,伺服电机控制器127还接有用于检测减速箱116动力输出轴转速的光电编码器126,总控制器117还接有用于摄录机械手活动状况的摄像机118和用于显示机械手活动状况的显示屏119。液压控制器120和伺服电机控制器127均通过CAN总线与总控制器117通信。总控制器117通过RS232数据线接收遥控端指令,通过CAN总线分配任务给液压控制器120和伺服电机控制器127控制机械手各执行机构动作,液压控制器120的输出端连接多路减压放大器123,通过电液比例阀124对油缸114进行控制,伺服电机控制器127的输出端连接多路伺服放大器125,多路伺服放大器125的输出端连接伺服电机115,通过伺服电机115对减速箱116进行控制。通过摄像机118对环境进行采集,通过显示屏119显示机械手的操作过程。并通过在机器人的机械手上设置位移传感器121,避免自体和外界环境的碰撞。
物联网控制的电动汽车底盘上的电池包更换和防暴系统更换第一电池包3和第二电池包4的步骤:
第一步,要充电的电动汽车1驾驶员用电动汽车车载装置通过3G/4G网络等无线网络与监控工作站105 联系,查到距离其最近的物联网和机器人组成的电动汽车电池包更换站221,到达物联网和机器人组成的电动汽车电池包更换站221后,把电动汽车1开上四柱举升机101,电动汽车1驾驶室内的驾驶员在电动汽车车载装置的LCD液晶屏幕上启动由监控工作站105控制的远程监控换电池模式。
第二步、监控工作站105操控人员通过网络把电动汽车1的换电池过程移交给监控工作站106,这时候监控工作站106开始进行远程监控,启智联网和机器人组成的电动汽车电池组更换系统由等待状态进入工作状态,摆渡机器人103沿着摆渡机器人行走钢轨104轨道行走到电动汽车1的电池包自动更换系统5下面的第一电池包安装位置32,电池包托盘159顶住第一电池包3,监控计算机106操控人员启动控制第一电池包机器人系统11开始工作,在动力装置的带动下连杆113下端安装的第一托架108随连杆113一起做脱离第一电池包3的移动,第一托架108上的第一承重平台257逐渐脱离第一电池包3的第一电池包第二固定平台226,第一托架108与第一电池包3脱离,摆渡机器人103开始工作带动托着第一电池包3脱离电池支架第一承重平台52,控制第一电池包机器人系统11停止工作。摆渡机器人103载着第一电池包3沿着摆渡机器人行走钢轨104轨道行走运到第一码垛机器人102的卸载电池处,第一码垛机器人102把第一电池包3卸载下来。
第三步、第一码垛机器人103抓取到充好电的第一电池包3放到摆渡机器人103顶部电池托盘159上面。第四步、摆渡机器人103沿着摆渡机器人行走钢轨104行走到四柱举升机(101)下,摆渡机器人103完成X/Y方向定位后,机器人上升的过程利用超声测距传感器的输出与液压机构编码器的输出差值运算后,作为PID控制器的输入对比例流量阀进行PID控制,当液压机构举升至预期位置停止上升,定位准确。由监控工作站106向摆渡机器人199发出开始安装电动汽车第一电池包(3)的指令,摆渡机器人103把电动汽车第一电池包(3)顶到.电池包自动更换系统5上面的第一电池包安装位置32,监控计算机106操控人员启动控制第一电池包机器人系统11开始工作,推着第一电池包3移动使第一电池包第一固定平台26逐步进入到电池支架第一承重台52上,第一接电器插头175与第一电池包接电器座176紧密接触,第一电池包3安装完毕,控制第一电池包机器人系统11停止工作。摆渡机器人103沿着摆渡机器人行走钢轨104离开四柱举升机101下。
第五步、摆渡机器人103沿着摆渡机器人行走钢轨104行走到四柱举升机101下,到达电动汽车底盘2下面第二电池包安装位置33,电池包托盘159顶住第二电池包4,监控计算机106操控人员启动控制第二电池包机器人系统14开始工作,在动力装置的带动下连杆113下端安装的第二托架109随连杆113一起做脱离第二电池包4的移动,第二托架109上的第二承重平台252逐渐脱离第二电池包4的第二电池包第二固定平台225,第二托架109与第二电池包4脱离,控制第二电池包机器人系统14停止工作。第二电池包4落在摆渡机器人103顶部电池托盘159上面,摆渡机器人103载着第二电池包4沿着摆渡机器人行走钢轨104轨道行走运到第一码垛机器人102处,第一码垛机器人102把摆渡机器人103载着第二电池包4卸载下来。
第六步第一码垛机器人102抓取到充好电的第二电池组包4,放到等待的摆渡机器人103顶部电池托盘159上面。
第七步、摆渡机器人103沿着摆渡机器人行走钢轨104轨道行走四柱举升机101下,摆渡机器人103完成X/Y方向定位后,机器人上升的过程利用超声测距传感器的输出与液压机构编码器的输出差值运算后,作为PID控制器的输入对比例流量阀进行PID控制,当液压机构举升至预期位置停止上升;定位准确。由监控工作站106向摆渡机器人103发出开始安装第二电池包4的指令,摆渡机器人103托举着第二电池包4到达电动汽车1电动汽车底盘2下部第二电池包安装位置33,电池包托盘159顶住第二电池包4到第二电池包安装位置33,监控工作站106操控人员启动控制第二电池包机器人系统14开始工作,推着第一电池包3移动使第二电池包4的第二电池包第一固定平台46逐步进入到电池支架第二承重台53上,接电器第二插头254与第二电池包接电器插座262紧密接触,第二电池包4安装完毕,控制第二电池包机器人系统14停止工作。由监控工作站106向摆渡机器人103发出第二电池包4安装完毕的指令,摆渡机器人103沿着沿着摆渡机器人行走钢轨104轨道离开四柱举升机101下。
第八步、电池更换过程结束,四柱举升机101落下,驾驶员驾驶电动汽车1驶离电动汽车电池组更换车间。
第九步、监控工作站106发出电池更换完毕信号,整个物联网和机器人组成的电动汽车电池包更换站221完成原点复位。
在图11中,电池包外部壳体199构成了第一电池包外壳223和第二电池包外壳224,电池包外部壳体199包括由上盖200和底座201电池包外部壳体199底座91的前侧面嵌装有接电器插头203可以构成第一接电器头175或第二接电器插头254,电池包外部壳体199的上盖200长度小于底座201的底边174的梯形结构。
在图12中,用螺丝通过多个固定口266把第一温度调整板12和第二温度调整板13安装在电池更换系统5的上面,第一温度调整板12对应安装在第一电池包安装位置32上面;第二温度调整板13对应安装在第二电池包安装位置33上面。第一连接管95和第二连接管96把第一温度调整板12和第二温度调整板13连接在一起,第一温度调整板12上设置冷却液进口97和冷却液出口98。
在图13和图17中,把第一电池包3放入第一电池包外壳223中,弯成弯度90°的1个第一屏蔽导管21和1个第二屏蔽导管22由导电导磁的金属制成固定在第一电池包外壳223的内部。在第一电池包外壳223内部安装1个第一信号线控制线路保护器16,第一控制线和BMS信号线20沿着第一屏蔽导管21进入第一电池包外壳223内部前与第一信号线控制线路保护器第一导线17连接在第一连接点19处,第一线号线控制线路保护器第二导线18与第一电池包3的电路板信号输出线69连接,即第一控制线和BMS信号线20与第一信号线控制线路保护器16的连接方式是串联连接,第一连接点19卸载和吸收了沿着第一控制线和BMS信号线20进入的大电流。第一信号线控制线路保护器接地导线15与第一电源浪保护器接地导线30连接。在第一电池包外壳223内部安装1个第一电源浪涌保护器31,第一电源线23沿着第二屏蔽导管22进入第一电池 包外壳223内部前与第一电源浪涌保护器第一导线28连接于第二连接点25处,然后第一电源线23与第一电池包3的正极接线柱66连接;第二电源线24沿着第二屏蔽导管22进入第一电池包外壳223内部前与第一电源浪涌保护器第二导线29连接于第三连接点27处,然后第二电源线24与第一电池包3的负极接线柱71连接;第一电源浪保护器接地导线30与第一电池包插头176的接地导线第四强电触头198连接;第二连接点25卸载和吸收了沿着第一电源线23进入的大电流;第三连接点27卸载和吸收了沿着第二电源线24进入的大电流。在第一电池包外壳223内部安装1个第二电源浪涌保护器229,第三电源浪涌保护器第一导线227与第一电池包3的外表面连接,第三电源浪涌保护器第二导线228与第一电池包外壳223的内表面连接,可以卸载和吸收沿着第一电池包外壳223感应出来的大电流。第三电源浪涌保护器接地导线230与第一电源浪保护器接地导线30连接。第一信号线控制线路保护器接地导线15、第一电源浪保护器接地导线30和第三电源浪涌保护器接地导线230做等电位连接,把以上各个接地导线上的电流导入接地导线第四强电触头198后再导入电动汽车1的接地系统后由车轮10导入大地。
在图14和图17中,把第二电池包4放入第二电池包外壳224中,弯成弯度90°的1个第三屏蔽导管38和1个第四屏蔽导管41由导电导磁的金属制成固定在第二电池包外壳224的内部。在第二电池包外壳224内部安装1个第二信号线控制线路保护器35,第二控制线和BMS信号线40沿着第三屏蔽导管38进入第二电池包外壳224内部前与第二信号线控制线路保护器第二导线37连接在第四连接点39处,第二线号线控制线路保护器第一导线36与第一电池包3的电路板信号输出线69连接,即第一控制线和BMS信号线20与第二信号线控制线路保护器35的连接方式是串联连接,第四连接点39卸载和吸收了沿着第二控制线和BMS信号线40进入的大电流。第二线号线控制线路保护器接地导线34与第二电源浪涌保护器接地导线47连接。把第二电池包4放入第二电池包外壳224中,弯成弯度90°的第三屏蔽导管38和第四屏蔽导管41由导电导磁的金属制成固定在第二电池包外壳224内部内壳上。在第二电池包外壳224内部安装1个第三电源浪涌保护器48,第三电源线42沿着第四屏蔽导管41进入第二电池包外壳224内部前与第二电源浪涌保护器第二导线238连接于第五连接点43处,然后第三电源线42与第二电池包4的正极接线柱66连接;第四电源线44沿着第四屏蔽导管41进入第二电池包外壳224内部前与第二电源浪涌保护器第一导线237连接于第六连接点45处,然后第四电源线29与第二电池包4的负极接线柱71连接,第二电源浪涌保护器接地导线47与第二接电器插头254的第九强电触头253连接,第五连接点43卸载和吸收了沿着第三电源线42进入的大电流;第六连接点45卸载和吸收了沿着第四电源线44进入的大电流。在第二电池包外壳224内部安装1个第四电源浪涌保护器234,第四电源浪涌保护器第一导线232与第二电池包4的外表面连接,第四电源浪涌保护器第二导线233与第二电池包外壳224的内表面连接,第四电源浪涌保护器接地导线(235)与第二电源浪涌保护器接地导线47连接。第二电源浪涌保护器接地导线47、第四电源浪涌保护器接地导线235和第二线号线控制线路保护器接地导线34做等电位连接,把以上各个接地导线上的电流导入第九强电触头253后再导入电动汽车1的接地系统后由车轮10导入大地。
在图15中,电源浪涌保护器(SPD)在电路中与电源线的常用连接方式是并联。
在图16、图17和图21中,包括外壳63,外壳是由边框及上盖64、下盖65组成,外壳的上盖64上设有正极接线柱66、负极接线柱71,通过导线与每个电池连接的防过压/过流/过温电路板67,电路板设有电路板信号输出线69;外壳63的内部包括由若干正、负电极分设在两端的单体电池54以相邻电池极性相反组合排列构成的电池阵列,相邻电池的正负电极通过连接片55连接,在电池阵列的顶面和底面分别设有上支撑座56、下支撑座57,上支撑座56、下支撑座57通过多根支撑柱60固定连接,在电路板67上安装电路板保护罩68,电路板信号输出线69从电路板保护罩68上引出。单体电池54中正极柱73和负极柱75的连线与上盖64的延长线和下盖65延长线都成90°夹角。
在图18、图19和图20中,电池格84排列为正六边形,电池格85排列为半个正六边形,两种排列方式放置两种电池单体54;在上支撑座56、下支撑座57的凹槽58底面分别与电池上下端面之间设置弹性缓冲胶垫61,弹性缓冲胶垫61的形状为圆环状,材料为EPDM,在连接片上贴附绝缘导热胶带62。在上支撑座56、下支撑座57上分别设置能够卧装电池两端的凹槽58,在相互连接的电池凹槽间设置能露出电池电极的连通孔59。
在图21和图22中,是正六棱柱形锂电池的结构,单体电池第一边86、单体电池第二边87、单体电池第三边88、单体电池第四边89、单体电池第五边90、单体电池第六边91长度相等。包括电芯70、内壳83、外壳72、正极柱73和负极柱75,内壳83将电芯70包裹在其中,外壳72包裹住内壳83正极柱73和负极柱75分别位于外壳72的上下端面的中间位置。外壳72上端面设有一盖板76,盖板76上设有第一注胶口77,外壳72的下端面与第一注胶口77对应位置设有第二注胶口78。内壳83和外壳72之间填充有高导热电子硅胶79。正极柱73和负极柱75均套有一与正极柱73和负极柱75相匹配的螺母80;螺母80与外壳72接触面之间设有垫片81;正极柱73的中间位置设有注液口82,注液口82旁还设有排气口74,通过内外壳之间填满的高导热电子硅胶79,能使得电芯70的热扩散更加均匀,并能快速的将热量导入外壳72,加快了散热速度,且能有效的提高锂电池的抗震能力和密封性,正极柱73和负极柱75均套有一螺母80,螺母(80)与外壳72接触面之间设有垫片81,用以固定电芯70及用来与外壳72的绝缘,提高了电绝缘性和稳定性,正极柱73上设有注液口82和排气口74,具有锂电池电解液的注液及排气减压功能。
在图23和图21中,电池的结构为半个二分之一正棱柱体结构,单体电池第七边92、单体电池第八边93、单体电池第九边94长度相等。
在图24和图25中,摆渡机器人141包括X轴、Z轴、R轴三个方向的自由度,依次为直线行走机构142、液压举升机构液压举升机构143和角度纠偏机构144。直线行走机构142位于摆渡机器人141的底部,包括滑轮148、万向联轴器145、皮带149、第一伺服电机150、第一减速机151和底座152等几个部分;前端两个滑轮为机器人动力装置,与一组万向联轴器连接,后端两个滑轮为从动装置;第一伺服电机(150)与 配套的第一减速机151胀套连接,通过皮带149实现第一减速机151与滑轮148的动力传输,驱动滑轮148在滑轨上直线行走。直线行走机构301下端布置有三个光电开关,依次与原点挡片和前后两个极限挡片配合,提供给PLC控制系统161到位开关信号,实现机器人原点搜索和复位,并杜绝其越界运行;前极限挡片、原点挡片及后极限挡片沿铺设的直线滑轨依次排列,原点挡片位于前后极限挡片中间。液压举升举升机构143位于直线行走机构142底座的上部,包括两个液压伸缩缸;一级液压缸153位于二级液压缸154的下部,一级液压缸153完全伸出后,二级液压缸154开展伸缩运动;一、二级液压缸一侧分别焊接横梁并布置有防转梁,防转梁与位于一级液压缸焊接横梁及底座焊接横梁上的两个防转孔配合,防止电池随液压机构143举升过程中的旋转;一、二级液压缸另一侧分别设置有齿条146、编码器147、挡片和第一接近开关;挡片与接近开关相配合,第一接近开关设置于一级液压缸焊接横梁的底端,当一级液压缸155完全伸出,挡片触发接近开关的开关信号,二级液压缸154开始伸缩运动;位于二级液压缸154侧面上的齿条146通过齿轮与编码器147啮合,通过计算编码器147转数获取二级液压缸154上升高度;编码器147与PLC控制系统161连接,PLC控制系统161开始高速计数。角度纠偏机构144位于液压举升机构143的上端,包括安装法兰155、大小齿轮156、第二伺服电机157和第二减速机158等几个部分。二级液压缸154上安装有安装法兰155,第二伺服电机157、第二减速机158大小齿轮156依次布置于安装法兰155上,第二伺服电机157上端安装小齿轮,二级液压缸154上安装大齿轮,大小齿轮机械啮合,随第二伺服电机157驱动配合旋转。大齿轮下端布置有挡片,安装法兰155上布置三个第二接近开关;大齿轮在旋转过程中依次触发旋转左右极限、原电复位开关信号,确保大齿轮在规定的范围内旋转动。角度纠偏机构144上端安装有电池托盘159),大齿轮旋转圆心与电池包托盘159重心同心。电池包托盘159安装有四个限位块160,与待换电动汽车(1)电池组箱底部四个突起耦合,可实现电池外箱位置微调和可靠固定。电池包托盘(159)上安装有超声测距传感器168和DMP传感器169超声测距传感器168用于测量电池托盘312到待换电的电动汽车底盘的距离;DMP传感器169与安装于待换电乘用车底盘上的反光板配合,搜寻计算反光板靶点位置,获取摆渡机器人141与待换电乘用车的水平角度偏差。直线行走机构142、液压举升机构143联动,只有摆渡机器人141直线行进和垂直举升到达设定位置时,角度纠偏机构144才开始动作,只有角度纠偏机构144上的电池托盘159达到预期效果,液压举升机构143才重新开始动作。直线行走机构142、角度纠偏机构144采用伺服电机驱动,驱动电机与相应的编码器连接,各编码器与相应的驱动器连接;驱动器发送位置脉冲信号给伺服电机,编码器将采集的电机旋转信息传递回驱动器,形成位置模式全闭环控制。
在图26中,摆渡机器人(141)控制系统框图,所述PLC控制系统161为摆渡机器人141动作控制的核心部分,包括触摸屏162、无线通信模块163、欧姆龙PLC控制器164、A/D模块405、D/A模块166等;无线通信模块163通过串口RS485与触摸屏162通信,欧姆龙PLC控制器164通过串口RS232与触摸屏162通信,触摸屏162通过工业以太网与后台监控系统167通信;超声测距传感器168、DMP传感器169、液压比例流量阀170、各编码器171、接近开关172、光电开关173等与PLC控制系统161实时数据传输通信。超声测距传感器168和DMP传感器169与PLC控制系统161中的A/D模块165连接,将传感器采集的模拟信号转化为数字信号,并传送给PLC控制系统161。液压比例流量阀170与PLC控制系统161中的D/A模块166连接,将PLC控制系统161的数字控制信号转化为模拟流量控制信息,实现对液压举升机构143的速度控制。编码器与PLC控制系统161的A/D模块165连接,编码器171采集二级液压缸154单侧齿条的上升高度,经过计算获取二级液压缸154举升距离,将该数据反馈给PLC控制系统161,形成举升过程中的全闭环控制。接近开关172和光电开关173与PLC控制系统161中的欧姆龙PLC控制器164连接,实时传输摆渡机器人141各自由度的极限位置信息,触发PLC控制系统161的中断模式及高速计数模式,实现摆渡机器人141在规定范围内的准确、快速动作。
在图27中,与接电器座相连的触头主体204和与电池包相连的接电器插头207,在触头主体204内触头连接柱208右端设置有触头209,接电器插头207紧密抵靠该触头209,触头主体204内设置有弹簧212,接电器插头207向左推动触头209时由弹簧212限位。触头主体204包括壳体205和盖206,盖206密封盖设于壳体205的左端,壳体205的右端和盖206均具有通孔。触头连接柱208的左端穿设于盖206的通孔内,触头209设于壳体205的通孔内,且触头连接柱208与盖206的通孔为密封连接,触头209与壳体205的通孔为密封连接。在壳体205内触头连接柱208的右端处设置有触头挡片210,弹簧212套设于触头连接柱208外,弹簧212的一端抵靠触头挡片210,弹簧212的另一端抵靠盖206。壳体205内部,盖206和触头挡片210形成的空间内填充设置有阻尼油213。触头挡片210具有阻尼孔211,该阻尼孔211连通位于壳体205内触头挡片210左右两侧的空间。触头挡片210的外缘与壳体205的内表面具有间隙。壳体205右侧与接电器插头207相对应的表面固定设置有定位螺钉214,接电器插头207左侧与壳体205相对应的表面设置有定位孔215。盖206的通孔与连接柱的左端之间设置有第一密封圈216,触头209与壳体205的通孔之间设置有第一密封圈216。阻尼孔211中间部分的直径小于该阻尼孔211两端的直径。当安装在电池包上的接电器插头207向左移动,接电器插头207插头顶住触头209压缩弹簧,两接触平面紧密接触导通电源。触头209功能是将电池包的高压电导入到电动汽车,当电池包上的接电器插头207压迫触头209,触头209向左退缩,并随着压缩量的增加,触头与接电器插头207之间的正压力加大,使它们之间紧密结合。当车辆运行中抖动或加减速时,触头209有移动趋势,在壳体205内加注有阻尼油213,本阻尼油213不导电。触头209要向左移动,必须克服阻尼油213的阻尼后方可移动,瞬间的移动因阻尼油213的作用而无法移动,但慢速移动就可以,触头209可以在外力作用下向左慢速移动,当触头209向左移动时,在触头209左方的油压力增高,这些油只能通过在触头209上设计的阻尼孔211或边缘缝隙流到前面,而这个流动只能慢速进行,如遇瞬时抖动,由于改变运动状态的时间短而无法移动。此设计可有效避免因车辆抖动或加减速时高压触头快速移动,避免因抖动而产生瞬间导电断开,避免触头209间拉弧而损坏触头209。
图29和图11中,接第一电器插头底板177的第一骨架179内设置有一体设置的外圈和内圈双环密封环 的第一密封环178,密封环178)环绕设置于第一接电器插头175上设置的第一强电触头185、第二强电触头190、第三强电触头193、第四强电触头198和第一信号控制线触头186外。第一电池包接电器座176上的接电器盒180内具有第五强电阻尼触头187、第六强电阻尼触头189、第七强电阻尼触头191、第八强电阻尼触头197、第一信号控制线接电盒188、第一插座192、第二插座182、第三插座183、第四插座196和第一信号控制线插座184;第一插座192的导线与第七强电阻尼触头191连接、第二插座182的导线与第五强电阻尼触头187连接、第三插座183的导线与第六强电阻尼触头189连接、第四插座196的导线与第八强电阻尼触头197连接,第一信号控制线插座184的信号线与第一信号控制线接电盒188;第一信号控制线接电盒188设置有弹性部件,第一信号控制线触头186推动第一信号控制线接电盒188时通过该弹性部件使第一信号控制线接电盒188紧贴第一信号控制线触头186。第一强电触头185与第一电源线23连通,第二强电触头190与第二电源线24连通,第四强电触头198与第一电池包3的第一电源浪涌保护器接地导线30连通,第一信号控制线触头186与第一电池包3内的第一控制线和BMS信号线20连通。第二插座182和第三插座183与电动汽车1的强电电线连接,第一信号控制线插座184与电动汽车的信号控制线连接。弹性部件包括第一橡胶垫195一端与接电器盒180连接,该第一橡胶垫195的另一端与第一接电器支架176连接,第一螺栓194设置在橡胶垫195内。第一接电器插头175安装在第一电池包3前端,当控制第一电池包机器人系统11的第一托架108将第一电池包3顶入第一电池包3安装位置后,第一接电器插头175与第一电池包接电器座176连接,第三强电触头193推动并紧密抵靠第七强电阻尼触头191,第一强电触头185推动并紧密抵靠第五强电阻尼触头187;第二强电触头190推动并紧密抵靠第六强电阻尼触头189;第四强电触头198推动并紧密抵靠第八强电阻尼触头197;第一信号控制线触头186与第一信号控制线接电盒188连接,密封环178随着第一电池包3的移动,密封环上的两到密封圆弧与平面结合,产生变形,在触点周围形成两道环形线密封。
在图29、图13和图17中,第一插座第一通风管连接器280与电动汽车1通风控制系统连接,第一插座第一通风管连接器280与第一插座第一通风管281连接;第一插座第一通风管281与第一插座第一通风管阻尼接头座282连接。第一插座第二通风管连接器283与第一插座第二通风管284连接;第一插座第二通风管284与第一插座第二通风管阻尼接头座285连接。第一插头第一进气口279与第二空气进出口276连接,外部空气进入空气通道274后通过第一空气进出口275流出而流入第一电池包3外壳内,把第一电池包3冷却之后从第一插头第一出气口278排出。第一插头第一出气口278和第一插座第一通风管阻尼接头座282;第一插头第一进气口279和第一插座第二通风管阻尼接头座285中间是可以通风的空心结构。第一插头第一出气口278和第一插头第一进气口279单独被第一密封环178围起来形成单独的环形密封结构后,第一密封环178再把第一插头第一出气口278和第一插头第一进气口279从中间隔开。
在图30和图28中,接电器第二插头254第二接电器插头254安装在第二电池包4前端,接电器第二插座262安装在电动轿车电池包悬挂支架220上,第二接电器插头底板263上的第二骨架260内设置有一体设置的外圈和内圈结构的第二密封环261,第二密封环261环绕设置于第二接电器插头254上设置的第九强电触头253、第十强电触头255、第十一强电触头258、第十二强电触头259和第二信号控制线触头256外,接电器座262上的接电器盒249内具有第十三强电阻尼触头239、第十四强电阻尼触头241、第十五强电阻尼触头246、第十六强电阻尼触头248和第二信号控制线接电盒244、设置第五插座240、第六插座242、第七插座245、第八插座248和第二信号控制线插座244;第五插座240的导线与第十三强电阻尼触头239连接、第六插座242的导线与第十四强电阻尼触头241连接、第七插座245的导线与第十五强电阻尼触头246连接、第八插座247的导线与第十六强电阻尼触头248连接,第二信号控制线插座243的信号线与第二信号控制线接电盒244;第十强电触头255与第二电池包4第三电源线42连通,第十一强电触头258与第二电池包4的第四电源线44连接,第九强电触头253与第二电池包4的第二电源浪涌保护器接地导线47连通,第十二强电触头259与第二电池包4的第二信号线控制线路保护器接地导线34连通,第二信号控制线触头256与第二电池包4的第二控制线和BMS信号线40连通。第六插座242和第七插座245与电动汽车1的强电电线连接;第二信号控制线插座243与电动汽车内信号控制线连接。第二弹性部件包括第二橡胶垫251一端与第二接电器盒249连接,该第二橡胶垫251的另一端与第二接电器支架262连接,第二螺栓250设置在橡胶垫251内。当控制第二电池包机器人系统14的第二托架109将第二电池包4顶入第二电池包4安装位置后,第二接电器插头244与第二接电器座262)连接时,第九强电触头253推动并紧密抵靠第十三强电阻尼触头239,第十强电触头255推动并紧密抵靠第十四强电阻尼触头241;第十一强电触头258推动并紧密抵靠第十五强电阻尼触头246;第十二强电触头259推动并紧密抵靠第十六强电阻尼触头248;第一信号控制线触头256与第二信号控制线接电盒244连接。第二信号控制线接电盒244设置有弹性部件,第二信号控制线触头256推动第二信号控制线接电盒244时通过该弹性部件使第二信号控制线接电盒244紧贴第二信号控制线触头256。第二密封环261随着第二电池包4的移动,密封环上的两到道密封圆弧与平面结合,产生变形,在触点周围形成两道环形线密封。
在图30、图17和图14中,第二插座第一通风管连接器267与电动汽车1通风控制系统连接,第二插座第一通风管连接器267与第二插座第一通风管268连接;第二插座第一通风管268与第二插座第一通风管阻尼接头座269连接。第二插座第二通风管连接器270与第二插座第二通风管271连接;第二插座第二通风管271与第二插座第二通风管阻尼接头座277连接。第二插头第一进气头273与第一空气进出口275连接,空气进入空气通道274后通过第二空气进出口276流出而流入第二电池包外壳内,把第二电池包4冷却之后从第二插头第一出气头272排出。第二插座第一通风管阻尼接头座269和第二插头第一出气头272中间是可以通风的空心结构;第二通风管阻尼接头座277第二插头第一进气头273中间是可以通风的空心结构。第二插头第一出气头272和第二插头第一进气头273单独被第二密封环261围起来形成单独的环形密封结构后,第二密封环261再把第二插头第一出气头272和第二插头第一进气头273从中间隔开。

Claims (3)

  1. 一种物联网控制的电动汽车底盘上的电池包更换和防暴系统,其特征是:在电动汽车底盘(2)上安装的电池更换系统(5)包含第一电池包放置处(32)和第二电池包放置处(33);第一电池包(3)放置于第一电池包放置处(32)内;第二电池包(4)放置于第二电池包放置处(33)内,在电池包自动更换系统(5)的内部安装控制第一电池包机器人系统(11)和控制第二电池包机器人系统(14)。
  2. 根据权利要求1的一种物联网控制的电动汽车底盘上的电池包更换和防暴系统,其特征是:在电动汽车底盘(2)上安装的电池更换系统(5)包含第一电池包放置处(32)和第二电池包放置处(33);在电池包悬挂支架(220)上设置电池包支架导线通道(49),第一电池包接电器座(176),第二电池包接电器座(262),在电池包自动更换系统(5)的内部安装控制第一电池包机器人系统(11)和控制第二电池包机器人系统(14),把第一电池包(3)放入第一电池包外壳(223)中,弯成弯度90°的第一屏蔽导管(21)和第二屏蔽导管(22)由导电导磁的金属制成固定在第一电池包外壳(223)的内部,在第一电池包外壳(223)内部安装第一信号线控制线路保护器(16),在第一电池包外壳(223)内部安装第一电源浪涌保护器(31),在第一电池包外壳(223)内部安装第二电源浪涌保护器(229),把第二电池包(4)放入第二电池包外壳(224)中,弯成弯度90°的第三屏蔽导管(38)和第四屏蔽导管(41)由导电导磁的金属制成固定在第二电池包外壳(224)的内部,在第二电池包外壳(224)内部安装第二信号线控制线路保护器(35),在第二电池包外壳(224)内部安装第三电源浪涌保护器(48),在第二电池包外壳(224)内部安装第四电源浪涌保护器(234)。
  3. 根据权利要求1的一种物联网控制的电动汽车底盘上的电池包更换和防暴系统,其特征是:在电动汽车底盘(2)上安装的电池更换系统(5)包含1个第一电池包放置处(32)和1个第二电池包放置处(33);第一电池包放置处(32)设置于电动汽车底盘(2)的中前部,第二电池包放置处(33)设置于电动汽车底盘(2)的中后部,使用时第一电池包(3)放置于第一电池包放置处(32)内;第二电池包(4)放置于第二电池包放置处(33)内,使得电动汽车的重心在电动汽车的中部,在电池包悬挂支架(220)上设置1个电池包支架导线通道(49),1个第一电池包接电器座(176),1个第二电池包接电器座(262),用螺丝通过第一固定口(50)和第二固定口(51)把电池包悬挂支架(220)安装在电池包自动更换系统(5)的内部顶板下面,在电池包自动更换系统(5)的内部安装1个控制第一电池包机器人系统(11)和1个控制第二电池包机器人系统(14),车轮(10)由导电的金属制成的轮毂(99)和导电的橡胶制成的轮胎(100)组成后,可以向地面传导各个配件接地导线上的电流,切换单元(222)包括第一电池包(3)和第二电池包(4);第一电池包(3)和第二电池包(4)分别是独立动力电源配置在电动汽车(1)上,第一电池包(3)的输出端和第二电池包(4)的输出端并联连接,第一电池包(3)为优先动力电源,第二电池包(4)为备用动力电源,切换单元(222)被配置为:在当前供电的第一电池包(3)的SOC小于预定阈值时,切换到第二电池包(4)进行供电,SOC为State of Charge的缩写,指充电容量与额定容量的比值,用百分比表示,电池具有额定容量,在某倍率下充电一定的时间,可以得到充电容量,充电容量与额定容量的比值即为SOC,预定阈值设定为5%-8%之间,第一电池包(3)的输出端内部连线上设置有第一主正继电器(7),第一主正继电器(7)并联第一二极管(6),第二电池包(4)的输出端内部连线上设置有第二主正继电器(8),第二主正继电器(8)并联第二二极管(9),在正常行驶过程中,一般使用第一电池包(3)进行供电,在第一电池包(3)进行供电时,第一主正继电器(7)闭合,第二主正继电器(8)断开,第一电池包(3)和第二电池包(4)都包括多个能够单独拆卸的单体电池(54),第一电池包(3)和第二电池包(4)包含N个(N≥1,且为整数)单体电池(54)系统采集板LECU和一个电池系统主控板BMU,其中采集板主要采集每个单体电池(54)电压和温度,电池系统主控板主要与电池系统外围单元通讯,电池系统主控板通过信号控制第一电池包(3)和第二电池包(4)内部的继电器导通或关断,同时监测总正、总负之间的电压,电池系统主控板时时采集电流传感器检测的电流大小,作为计算SOC的主要依据之一,电池系统主控板检测继电器的导通和关断状态,作为安全监控条件,电动汽车(1)行驶时切换单元(222)被配置为:使第一主正继电器(7)断开,第一电池包(3)通过第一二极管(6)对外供电;使第二主正继电器(8)闭合,第二电池包(4)通过第二主正继电器(8)对外供电;在第二电池包(4)的电压大于第一电池包(3)的电压的条件下,单向导通的第一二极管(6)断开,电动汽车(1)停驶时切换单元(222)被配置为:通过网关控制器使得第一电池包(3)的低压系统进入休眠模式,在电动汽车(1)重新启动过程中启动第二电池包(4)的低压系统并且禁止启动第一电池包(3)的低压系统,从而仅通过第二电池包(4)供电,运行切换:当第一电池包(3)工作需要切换到第二电池包(4)时,先控制第一电池包(3)的第一主正继电器(7)断开,此时通过第一二极管(6)导通对外供电,下一步闭合第二电池包(4)的第二主正继电器(8),此时两个电池包同时对外供电,但由于第二电池包(4)的电压高于第一电池包(3),第一二极管(6)反向截止,无法输出电压,也不会发生电压突变及两个电池包之间产生电势差,并由网关控制器使第一电池包(3)的低压系统进入休眠模式,顺利完成切换,停车切换:当第一电池包(3)的SOC过低时,停车后,由网关控制器使第一电池包(3)的低压系统进入休眠模式,重新启动时只启动第二电池包(4)的电气系统,完成切换,紧急情况处理:电动汽车(1)在运行时候,第一电池包(3)突然达到预警温度如150°时马上进行运行切换由第一电池包(3)切换到第二电池包(4),如果第一电池包(3)温度超过预警温度还在在升高,立即启动控制第一电池包机器人系统(11)开始工作,在动力装置的带动下连杆(113)下端安装的第一托架(108)随连杆(113)一起做脱离第一电池包(3)的移动,第一托架(108)上的第一承重平台(257)逐渐脱离第一电池包(3)的第一电池包第二固定平台(226),第一托架(108)与第一电池包(3)脱离,第一电池包(3)自动脱落离开电动 汽车底盘(2)掉到路面上,第二电池包(4)突然达到预警温度如150°时马上进行运行切换,由第二电池包(4)切换到第一电池包(3),如果在第二电池包(4)温度超过预警温度还在在升高,立即启动控制第二电池包机器人系统(14)开始工作,在动力装置的带动下连杆(113)下端安装的第二托架(1089)随连杆(113)一起做脱离第二电池包(4)的移动,第二托架(109)上的第二承重平台(252)逐渐脱离第二电池包(4)的第二电池包(4)的第二固定平台(225),第二托架(109)与第二电池包(4)脱离,第二电池包(4)自动脱落离开电动汽车底盘(2)掉到路面上,如果第一电池包(3)和第二电池包(4)同时达到预警温度如150°温度还在在升高并且无法控制,可以同时启动控制第一电池包机器人系统(11)做脱离第一电池包(3)的移动和第二电池包机器人系统(14)做脱离第二电池包(4)的移动,同时抛掉第一电池包(3)和第二电池包(4),在控制第一电池包机器人系统(11)和控制第二电池包机器人系统(14)中,包括总控制器(117)、液压控制器(120)和伺服电机控制器(127),液压控制器(120)和伺服电机控制器(127)均与总控制器(117)相接,液压控制器(120)接有多路减压放大器(123),多路减压放大器(123)接有电液比例阀(124),电液比例阀(124)用于带动机械手连杆(113)上下移动的油缸(114)连接;伺服电机控制器(127)接有多路伺服放大器(125),多路伺服放大器(125)与用于带动连杆(113)转动的伺服电机(115)相连接,伺服电机(115)通过减速机(116)与连杆(113)相连接;液压控制器(120)还接有用于检测连杆(113)移动距离的位移传感器(121)和用于检测油缸(114)内液压油压力的压力传感器(122),伺服电机控制器(127)还接有用于检测减速箱(116)动力输出轴转速的光电编码器(126),总控制器(117)还接有用于摄录机械手活动状况的摄像机(118)和用于显示机械手活动状况的显示屏(119),液压控制器(120)和伺服电机控制器(127)均通过CAN总线与总控制器(117)通信,总控制器(117)通过RS232数据线接收遥控端指令,通过CAN总线分配任务给液压控制器(120)和伺服电机控制器(127)控制机械手各执行机构动作,液压控制器(120)的输出端连接多路减压放大器(123),通过电液比例阀(124)对油缸(114)进行控制,伺服电机控制器(127)的输出端连接多路伺服放大器(125),多路伺服放大器(125)的输出端连接伺服电机(115),通过伺服电机(115)对减速箱(116)进行控制,通过摄像机(118)对环境进行采集,通过显示屏(119)显示机械手的操作过程,并通过在机器人的机械手上设置位移传感器(121),避免自体和外界环境的碰撞,物联网控制的电动汽车底盘上的电池包更换和防暴系统更换第一电池包(3)和第二电池包(4)的步骤:第一步,要充电的电动汽车(1)驾驶员用电动汽车车载装置通过3G/4G网络等无线网络与监控工作站(105)联系,查到距离其最近的物联网和机器人组成的电动汽车电池包更换站(221),到达物联网和机器人组成的电动汽车电池包更换站(221)后,把电动汽车(1)开上四柱举升机(101),电动汽车(1)驾驶室内的驾驶员在电动汽车车载装置的LCD液晶屏幕上启动由监控工作站(105)控制的远程监控换电池模式,第二步、监控工作站(105)操控人员通过网络把电动汽车(1)的换电池过程移交给监控工作站(106),这时候监控工作站(106)开始进行远程监控,启智联网和机器人组成的电动汽车电池组更换系统由等待状态进入工作状态,摆渡机器人(103)沿着摆渡机器人行走钢轨(104)轨道行走到电动汽车(1)的电池包自动更换系统(5)下面的第一电池包安装位置(32),电池包托盘(159)顶住第一电池包(3),监控计算机(106)操控人员启动控制第一电池包机器人系统(11)开始工作,在动力装置的带动下连杆(113)下端安装的第一托架(108)随连杆(113)一起做脱离第一电池包(3)的移动,第一托架(108)上的第一承重平台(257)逐渐脱离第一电池包(3)的第一电池包第二固定平台(226),第一托架(108)与第一电池包(3)脱离,摆渡机器人(103)开始工作带动托着第一电池包(3)脱离电池支架第一承重平台(52),控制第一电池包机器人系统(11)停止工作,摆渡机器人(103)载着第一电池包(3)沿着摆渡机器人行走钢轨(104)轨道行走运到第一码垛机器人(102)的卸载电池处,第一码垛机器人(102)把第一电池包(3)卸载下来,第三步、第一码垛机器人(103)抓取到充好电的第一电池包(3)放到摆渡机器人(103)顶部电池托盘(159)上面,第四步、摆渡机器人(103)沿着摆渡机器人行走钢轨(104)行走到四柱举升机(101)下,摆渡机器人(103)完成X/Y方向定位后,机器人上升的过程利用超声测距传感器的输出与液压机构编码器的输出差值运算后,作为PID控制器的输入对比例流量阀进行PID控制,当液压机构举升至预期位置停止上升,定位准确,由监控工作站(106)向摆渡机器人(199)发出开始安装电动汽车第一电池包(3)的指令,摆渡机器人(103)把电动汽车第一电池包(3)顶到.电池包自动更换系统(5)上面的第一电池包安装位置(32),监控计算机(106)操控人员启动控制第一电池包机器人系统(11)开始工作,推着第一电池包(3)移动使第一电池包第一固定平台(26)逐步进入到电池支架第一承重台(52)上,第一接电器插头(175)与第一电池包接电器座(176)紧密接触,第一电池包(3)安装完毕,控制第一电池包机器人系统(11)停止工作,摆渡机器人(103)沿着摆渡机器人行走钢轨(104)离开四柱举升机(101)下,第五步、摆渡机器人(103)沿着摆渡机器人行走钢轨(104)行走到四柱举升机(101)下,到达电动汽车底盘(2)下面第二电池包安装位置(33),电池包托盘(159)顶住第二电池包(4),监控计算机(106)操控人员启动控制第二电池包机器人系统(14)开始工作,在动力装置的带动下连杆(113)下端安装的第二托架(1089)随连杆(113)一起做脱离第二电池包(4)的移动,第二托架(109)上的第二承重平台(252)逐渐脱离第二电池包(4)的第二电池包第二固定平台(225),第二托架(109)与第二电池包(4)脱离,控制第二电池包机器人系统(14)停止工作,第二电池包(4)落在摆渡机器人(103)顶部电池托盘(159)上面,摆渡机器人(103)载着第二电池包(4)沿着摆渡机器人行走钢轨(104)轨道行走运到第一码垛机器人(102)处,第一码垛机器人(102)把摆渡机器人(103)载着第二电池包(4)卸载下来,第六步第一码垛机器人(102)抓取到充好电的第二电池组包(4),放到等待的摆渡机器人(103) 顶部电池托盘(159)上面,第七步、摆渡机器人(103)沿着摆渡机器人行走钢轨(104)轨道行走四柱举升机(101)下,摆渡机器人(103)完成X/Y方向定位后,机器人上升的过程利用超声测距传感器的输出与液压机构编码器的输出差值运算后,作为PID控制器的输入对比例流量阀进行PID控制,当液压机构举升至预期位置停止上升;定位准确,由监控工作站(106)向摆渡机器人(103)发出开始安装第二电池包(4)的指令,摆渡机器人(103)托举着第二电池包(4)到达电动汽车(1)电动汽车底盘(2)下部第二电池包安装位置(33),电池包托盘(159)顶住第二电池包(4)到第二电池包安装位置(33),监控工作站(106)操控人员启动控制第二电池包机器人系统(14)开始工作,推着第一电池包(3)移动使第二电池包(4)的第二电池包第一固定平台(46)逐步进入到电池支架第二承重台(53)上,接电器第二插头(254)与第二电池包接电器插座(262)紧密接触,第二电池包(4)安装完毕,控制第二电池包机器人系统(14)停止工作,由监控工作站(106)向摆渡机器人(103)发出第二电池包(4)安装完毕的指令,摆渡机器人(103)沿着沿着摆渡机器人行走钢轨(104)轨道离开四柱举升机(101)下,第八步、电池更换过程结束,四柱举升机(101)落下,驾驶员驾驶电动汽车(1)驶离电动汽车电池组更换车间,第九步、监控工作站(106)发出电池更换完毕信号,整个物联网和机器人组成的电动汽车电池包更换站(221)完成原点复位,电池包外部壳体(199)构成了第一电池包外壳(223)和第二电池包外壳(224),电池包外部壳体(199)包括由上盖(200)和底座(201)电池包外部壳体(199)底座(91)的前侧面嵌装有接电器插头(203)可以构成第一接电器头(175)或第二接电器插头(254),电池包外部壳体(199)的上盖(200)长度小于底座(201)的底边(174)的梯形结构,用螺丝通过多个固定口(266)把第一温度调整板(12)和第二温度调整板(13)安装在电池更换系统(5)的上面,第一温度调整板(12)对应安装在第一电池包安装位置(32)上面;第二温度调整板(13)对应安装在第二电池包安装位置(33)上面,第一连接管(95)和第二连接管(96)把第一温度调整板(12)和第二温度调整板(13)连接在一起,第一温度调整板(12)上设置冷却液进口(97)和冷却液出口(98),把第一电池包(3)放入第一电池包外壳(223)中,弯成弯度90°的1个第一屏蔽导管(21)和1个第二屏蔽导管(22)由导电导磁的金属制成固定在第一电池包外壳(223)的内部,在第一电池包外壳(223)内部安装1个第一信号线控制线路保护器(16),第一控制线和BMS信号线(20)沿着第一屏蔽导管(21)进入第一电池包外壳(223)内部前与第一信号线控制线路保护器第一导线(17)连接在第一连接点(19)处,第一线号线控制线路保护器第二导线(18)与第一电池包(3)的电路板信号输出线(69)连接,即第一控制线和BMS信号线(20)与第一信号线控制线路保护器(16)的连接方式是串联连接,第一连接点(19)卸载和吸收了沿着第一控制线和BMS信号线(20)进入的大电流,第一信号线控制线路保护器接地导线(15)与第一电源浪保护器接地导线(30)连接,在第一电池包外壳(223)内部安装1个第一电源浪涌保护器(31),第一电源线(23)沿着第二屏蔽导管(22)进入第一电池包外壳(223)内部前与第一电源浪涌保护器第一导线(28)连接于第二连接点(25)处,然后第一电源线(23)与第一电池包(3)的正极接线柱(66)连接;第二电源线(24)沿着第二屏蔽导管(22)进入第一电池包外壳(223)内部前与第一电源浪涌保护器第二导线(29)连接于第三连接点(27)处,然后第二电源线(24)与第一电池包(3)的负极接线柱(71)连接;第一电源浪保护器接地导线(30)与第一电池包插头(176)的接地导线第四强电触头(198)连接;第二连接点(25)卸载和吸收了沿着第一电源线(23)进入的大电流;第三连接点(27)卸载和吸收了沿着第二电源线(24)进入的大电流,在第一电池包外壳(223)内部安装1个第二电源浪涌保护器(229),第三电源浪涌保护器第一导线(227)与第一电池包(3)的外表面连接,第三电源浪涌保护器第二导线(228)与第一电池包外壳(223)的内表面连接,可以卸载和吸收沿着第一电池包外壳(223)感应出来的大电流,第三电源浪涌保护器接地导线(230)与第一电源浪保护器接地导线(30)连接,第一信号线控制线路保护器接地导线(15)、第一电源浪保护器接地导线(30)和第三电源浪涌保护器接地导线(230)做等电位连接,把以上各个接地导线上的电流导入接地导线第四强电触头(198)后再导入电动汽车(1)的接地系统后由车轮(10)导入大地,把第二电池包(4)放入第二电池包外壳(224)中,弯成弯度90°的1个第三屏蔽导管(38)和1个第四屏蔽导管(41)由导电导磁的金属制成固定在第二电池包外壳(224)的内部,在第二电池包外壳(224)内部安装1个第二信号线控制线路保护器(35),第二控制线和BMS信号线(40)沿着第三屏蔽导管(38)进入第二电池包外壳(224)内部前与第二信号线控制线路保护器第二导线(37)连接在第四连接点(39)处,第二线号线控制线路保护器第一导线(36)与第一电池包(3)的电路板信号输出线(69)连接,即第一控制线和BMS信号线(20)与第二信号线控制线路保护器(35)的连接方式是串联连接,第四连接点(39)卸载和吸收了沿着第二控制线和BMS信号线(40)进入的大电流,第二线号线控制线路保护器接地导线(34)与第二电源浪涌保护器接地导线(47)连接,把第二电池包(4)放入第二电池包外壳(224)中,弯成弯度90°的第三屏蔽导管(38)和第四屏蔽导管(41)由导电导磁的金属制成固定在第二电池包外壳(224)内部内壳上,在第二电池包外壳(224)内部安装1个第三电源浪涌保护器(48),第三电源线(42)沿着第四屏蔽导管(41)进入第二电池包外壳(224)内部前与第二电源浪涌保护器第二导线(238)连接于第五连接点(43)处,然后第三电源线(42)与第二电池包(4)的正极接线柱(66)连接;第四电源线(44)沿着第四屏蔽导管(41)进入第二电池包外壳(224)内部前与第二电源浪涌保护器第一导线(237)连接于第六连接点(45)处,然后第四电源线(29)与第二电池包(4)的负极接线柱(71)连接,第二电源浪涌保护器接地导线(47)与第二接电器插头(254)的第九强电触头(253)连接,第五连接点(43)卸载和吸收了沿着第三电源线(42)进入的大电流;第六连接点(45)卸载和吸收了沿着第四电源线(44)进入的大电流,在第 二电池包外壳(224)内部安装1个第四电源浪涌保护器(234),第四电源浪涌保护器第一导线(232)与第二电池包(4)的外表面连接,第四电源浪涌保护器第二导线(233)与第二电池包外壳(224)的内表面连接,第四电源浪涌保护器接地导线(235)与第二电源浪涌保护器接地导线(47)连接,第二电源浪涌保护器接地导线(47)、第四电源浪涌保护器接地导线(235)和第二线号线控制线路保护器接地导线(34)做等电位连接,把以上各个接地导线上的电流导入第九强电触头(253)后再导入电动汽车(1)的接地系统后由车轮(10)导入大地,电源浪涌保护器(SPD)在电路中与电源线的常用连接方式是并联,包括外壳(63),外壳是由边框及上盖(64)、下盖(65)组成,外壳的上盖(64)上设有正极接线柱(66)、负极接线柱(71),通过导线与每个电池连接的防过压/过流/过温电路板(67),电路板设有电路板信号输出线(69);外壳(63)的内部包括由若干正、负电极分设在两端的单体电池(54)以相邻电池极性相反组合排列构成的电池阵列,相邻电池的正负电极通过连接片(55)连接,在电池阵列的顶面和底面分别设有上支撑座(56)、下支撑座(57),上支撑座(56)、下支撑座(57)通过多根支撑柱(60)固定连接,在电路板(67)上安装电路板保护罩(68),电路板信号输出线(69)从电路板保护罩(68)上引出,单体电池(54)中正极柱(73)和负极柱(75)的连线与上盖(64)的延长线和下盖(65)延长线都成90°夹角,电池格(84)排列为正六边形,电池格(85)排列为半个正六边形,两种排列方式放置两种电池单体(54);在上支撑座(56)、下支撑座(57)的凹槽(58)底面分别与电池上下端面之间设置弹性缓冲胶垫(61),弹性缓冲胶垫(61)的形状为圆环状,材料为EPDM,在连接片上贴附绝缘导热胶带(62),在上支撑座(56)、下支撑座(57)上分别设置能够卧装电池两端的凹槽(58),在相互连接的电池凹槽间设置能露出电池电极的连通孔(59),是正六棱柱形锂电池的结构,单体电池第一边(86)、单体电池第二边(87)、单体电池第三边(88)、单体电池第四边(89)、单体电池第五边(90)、单体电池第六边(91)长度相等,包括电芯(70)、内壳(83)、外壳(72)、正极柱(73)和负极柱(75),内壳(83)将电芯(70)包裹在其中,外壳(72)包裹住内壳(83)正极柱(73)和负极柱(75)分别位于外壳(72)的上下端面的中间位置,外壳(72)上端面设有一盖板(76),盖板(76)上设有第一注胶口(77),外壳(72)的下端面与第一注胶口(77)对应位置设有第二注胶口(78),内壳(83)和外壳(72)之间填充有高导热电子硅胶(79),正极柱(73)和负极柱(75)均套有一与正极柱(73)和负极柱(75)相匹配的螺母(80);螺母(80)与外壳(72)接触面之间设有垫片(81);正极柱(73)的中间位置设有注液口(82),注液口(82)旁还设有排气口(74),通过内外壳之间填满的高导热电子硅胶(79),能使得电芯(70)的热扩散更加均匀,并能快速的将热量导入外壳(72),加快了散热速度,且能有效的提高锂电池的抗震能力和密封性,正极柱(73)和负极柱(75)均套有一螺母(80),螺母(80)与外壳(72)接触面之间设有垫片(81),用以固定电芯(70)及用来与外壳(72)的绝缘,提高了电绝缘性和稳定性,正极柱(73)上设有注液口(82)和排气口(74),具有锂电池电解液的注液及排气减压功能,电池的结构为半个二分之一正棱柱体结构,单体电池第七边(92)、单体电池第八边(93)、单体电池第九边(94)长度相等,摆渡机器人(141)包括X轴、Z轴、R轴三个方向的自由度,依次为直线行走机构(142)、液压举升机构液压举升机构(143))和角度纠偏机构(144),直线行走机构(142)位于摆渡机器人(141)的底部,包括滑轮(148)、万向联轴器(145)、皮带(149)(149)、第一伺服电机(150)、第一减速机(151)和底座(152)等几个部分;前端两个滑轮为机器人动力装置,与一组万向联轴器连接,后端两个滑轮为从动装置;第一伺服电机(150)与配套的第一减速机(151)胀套连接,通过皮带(149)实现第一减速机(151)与滑轮(148)的动力传输,驱动滑轮(148)在滑轨上直线行走,直线行走机构(301)下端布置有三个光电开关,依次与原点挡片和前后两个极限挡片配合,提供给PLC控制系统(161)到位开关信号,实现机器人原点搜索和复位,并杜绝其越界运行;前极限挡片、原点挡片及后极限挡片沿铺设的直线滑轨依次排列,原点挡片位于前后极限挡片中间,液压举升举升机构(143)位于直线行走机构(142)底座的上部,包括两个液压伸缩缸;一级液压缸(153)位于二级液压缸(154)的下部,一级液压缸(153)完全伸出后,二级液压缸(154)开展伸缩运动;一、二级液压缸一侧分别焊接横梁并布置有防转梁,防转梁与位于一级液压缸焊接横梁及底座焊接横梁上的两个防转孔配合,防止电池随液压机构(143)举升过程中的旋转;一、二级液压缸另一侧分别设置有齿条(146)、编码器(147)、挡片和第一接近开关;挡片与接近开关相配合,第一接近开关设置于一级液压缸焊接横梁的底端,当一级液压缸(155)完全伸出,挡片触发接近开关的开关信号,二级液压缸(154)开始伸缩运动;位于二级液压缸(154)侧面上的齿条(146)通过齿轮与编码器(147)啮合,通过计算编码器(147)转数获取二级液压缸(154)上升高度;编码器(147)与PLC控制系统(161)连接,PLC控制系统(161)开始高速计数,角度纠偏机构(144)位于液压举升机构(143)的上端,包括安装法兰(155)、大小齿轮(156)、第二伺服电机(157)和第二减速机(158)等几个部分,二级液压缸(154)上安装有安装法兰(155),第二伺服电机(157)、第二减速机(158)、大小齿轮(156)依次布置于安装法兰(155)上,第二伺服电机(157)上端安装小齿轮,二级液压缸(154)上安装大齿轮,大小齿轮机械啮合,随第二伺服电机(157)驱动配合旋转,大齿轮下端布置有挡片,安装法兰(155)上布置三个第二接近开关;大齿轮在旋转过程中依次触发旋转左右极限、原电复位开关信号,确保大齿轮在规定的范围内旋转动,角度纠偏机构(144)上端安装有电池托盘(159),大齿轮旋转圆心与电池包托盘(159)重心同心,电池包托盘(159)安装有四个限位块(160),与待换电动汽车(1)电池组箱底部四个突起耦合,可实现电池外箱位置微调和可靠固定,电池包托盘(159)上安装有超声测距传感器(168)和DMP传感器(169);超声测距传感器(168)用于测量电池托盘(312)到待换电的电动汽车底盘的距离;DMP传感器(169)与安装于待换电乘用车底盘上的反光板配合,搜寻计算反光板靶点位置,获取摆渡机器人(141)与待换电乘用车的水平角度偏差,直线行走机构(142)、液压举升机构(143)联动, 只有摆渡机器人(141)直线行进和垂直举升到达设定位置时,角度纠偏机构(144)才开始动作,只有角度纠偏机构(144)上的电池托盘(159)达到预期效果,液压举升机构(143)才重新开始动作,直线行走机构(142)、角度纠偏机构(144)采用伺服电机驱动,驱动电机与相应的编码器连接,各编码器与相应的驱动器连接;驱动器发送位置脉冲信号给伺服电机,编码器将采集的电机旋转信息传递回驱动器,形成位置模式全闭环控制,摆渡机器人(141)控制系统框图,所述PLC控制系统(161)为摆渡机器人(141)动作控制的核心部分,包括触摸屏(162)、无线通信模块(163)、欧姆龙PLC控制器(164)、A/D模块(405)、D/A模块(166)等;无线通信模块(163)通过串口RS(485)与触摸屏(162)通信,欧姆龙PLC控制器(164)通过串口RS(232)与触摸屏(162)通信,触摸屏(162)通过工业以太网与后台监控系统(167)通信;超声测距传感器(168)、DMP传感器(169)、液压比例流量阀(170)、各编码器(171)、接近开关(172)、光电开关(173)等与PLC控制系统(161)实时数据传输通信,超声测距传感器(168)和DMP传感器(169)与PLC控制系统(161)中的A/D模块(165)连接,将传感器采集的模拟信号转化为数字信号,并传送给PLC控制系统(161),液压比例流量阀(170)与PLC控制系统(161)中的D/A模块(166)连接,将PLC控制系统(161)的数字控制信号转化为模拟流量控制信息,实现对液压举升机构(143)的速度控制,编码器与PLC控制系统(161)的A/D模块(165)连接,编码器(171)采集二级液压缸(154)单侧齿条的上升高度,经过计算获取二级液压缸(154)举升距离,将该数据反馈给PLC控制系统(161),形成举升过程中的全闭环控制,接近开关(172)和光电开关(173)与PLC控制系统(161)中的欧姆龙PLC控制器(164)连接,实时传输摆渡机器人(141)各自由度的极限位置信息,触发PLC控制系统(161)的中断模式及高速计数模式,实现摆渡机器人(141)在规定范围内的准确、快速动作,与接电器座相连的触头主体(204)和与电池包相连的接电器插头(207),在触头主体(204)内触头连接柱(208)右端设置有触头(209),接电器插头(207)紧密抵靠该触头(209),触头主体(204)内设置有弹簧(212),接电器插头(207)向左推动触头(209)时由弹簧(212)限位,触头主体(204)包括壳体(205)和盖(206),盖(206)密封盖设于壳体(205)的左端,壳体(205)的右端和盖(206)均具有通孔,触头连接柱(208)的左端穿设于盖(206)的通孔内,触头(209)设于壳体(205)的通孔内,且触头连接柱(208)与盖(206)的通孔为密封连接,触头(209)与壳体(205)的通孔为密封连接,在壳体(205)内触头连接柱(208)的右端处设置有触头挡片(210),弹簧(212)套设于触头连接柱(208)外,弹簧(212)的一端抵靠触头挡片(210),弹簧(212)的另一端抵靠盖(206),壳体(205)内部,盖(206)和触头挡片(210)形成的空间内填充设置有阻尼油(213),触头挡片(210)具有阻尼孔(211),该阻尼孔(211)连通位于壳体(205)内触头挡片(210)左右两侧的空间,触头挡片(210)的外缘与壳体(205)的内表面具有间隙,壳体(205)右侧与接电器插头(207)相对应的表面固定设置有定位螺钉(214),接电器插头(207)左侧与壳体(205)相对应的表面设置有定位孔(215),盖(206)的通孔与连接柱的左端之间设置有第一密封圈(216),触头(209)与壳体(205)的通孔之间设置有第一密封圈(216),阻尼孔(211)中间部分的直径小于该阻尼孔(211)两端的直径,当安装在电池包上的接电器插头(207)向左移动,接电器插头(207)插头顶住触头(209)压缩弹簧,两接触平面紧密接触导通电源,触头(209)功能是将电池包的高压电导入到电动汽车,当电池包上的接电器插头(207)压迫触头(209),触头(209)向左退缩,并随着压缩量的增加,触头与接电器插头(207)之间的正压力加大,使它们之间紧密结合,当车辆运行中抖动或加减速时,触头(209)有移动趋势,在壳体(205)内加注有阻尼油(213),本阻尼油(213)不导电,触头(209)要向左移动,必须克服阻尼油(213)的阻尼后方可移动,瞬间的移动因阻尼油(213)的作用而无法移动,但慢速移动就可以,触头(209)可以在外力作用下向左慢速移动,当触头(209)向左移动时,在触头(209)左方的油压力增高,这些油只能通过在触头(209)上设计的阻尼孔(211)或边缘缝隙流到前面,而这个流动只能慢速进行,如遇瞬时抖动,由于改变运动状态的时间短而无法移动,此设计可有效避免因车辆抖动或加减速时高压触头快速移动,避免因抖动而产生瞬间导电断开,避免触头(209)间拉弧而损坏触头(209),接第一电器插头底板(177)的第一骨架(179)内设置有一体设置的外圈和内圈双环密封环的第一密封环(178),密封环(178)环绕设置于第一接电器插头(175)上设置的第一强电触头(185)、第二强电触头(190)、第三强电触头(193)、第四强电触头(198)和第一信号控制线触头(186)外,第一电池包接电器座(176)上的接电器盒(180)内具有第五强电阻尼触头(187)、第六强电阻尼触头(189)、第七强电阻尼触头(191)、第八强电阻尼触头(197)、信号控制线接电盒(188)、第一插座(192)、第二插座(182)、第三插座(183)、第四插座(196)和第一信号控制线插座(184);第一插座(192)的导线与第七强电阻尼触头(191)连接、第二插座(182)的导线与第五强电阻尼触头(187)连接、第三插座(183)的导线与第六强电阻尼触头(189)连接、第四插座(196)的导线与第八强电阻尼触头(197)连接,第一信号控制线插座(184)的信号线与第一信号控制线接电盒(188);第一信号控制线接电盒(188)设置有弹性部件,第一信号控制线触头(186)推动第一信号控制线接电盒(188)时通过该弹性部件使第一信号控制线接电盒(188)紧贴第一信号控制线触头(186),第一强电触头(185)与第一电源线(23)连通,第二强电触头(190)与第二电源线(24)连通,第四强电触头(198)与第一电池包(3)的第一电源浪涌保护器接地导线(30)连通,第一信号控制线触头(186)与第一电池包(3)内的第一控制线和BMS信号线(20)连通,第二插座(182)和第三插座(183)与电动汽车(1)的强电电线连接,第一信号控制线插座(184)与电动汽车的信号控制线连接,弹性部件包括第一橡胶垫(195)一端与接电器盒(180)连接,该第一橡胶垫(195)的另一端与第一接电器支架(176)连接,第一螺栓(194)设置在 橡胶垫(195)内,第一接电器插头(175)安装在第一电池包(3)前端,当控制第一电池包机器人系统(11)的第一托架(108)将第一电池包(3)顶入第一电池包(3)安装位置后,第一接电器插头(175)与第一电池包接电器座(176)连接,第三强电触头(193)推动并紧密抵靠第七强电阻尼触头(191),第一强电触头(185)推动并紧密抵靠第五强电阻尼触头(187);第二强电触头(190)推动并紧密抵靠第六强电阻尼触头(189);第四强电触头(198)推动并紧密抵靠第八强电阻尼触头(197);第一信号控制线触头(186)与信号控制线接电盒(188)连接,密封环(178)随着第一电池包(3)的移动,密封环上的两到密封圆弧与平面结合,产生变形,在触点周围形成两道环形线密封,第一插座第一通风管连接器(280)与电动汽车(1)通风控制系统连接,第一插座第一通风管连接器(280)与第一插座第一通风管(281)连接;第一插座第一通风管(281)与第一插座第一通风管阻尼接头座(282)连接,第一插座第二通风管连接器(283)与第一插座第二通风管(284)连接;第一插座第二通风管(284)与第一插座第二通风管阻尼接头座(285)连接,第一插头第一进气口(279)与第二空气进出口(276)连接,外部空气进入空气通道(274)后通过第一空气进出口(275)流出而流入第一电池包(3)外壳内,把第一电池包(3)冷却之后从第一插头第一出气口(278)排出,第一插头第一出气口(278)和第一插座第一通风管阻尼接头座(282);第一插头第一进气口(279)和第一插座第二通风管阻尼接头座(285)中间是可以通风的空心结构,第一插头第一出气口(278)和第一插头第一进气口(279)单独被第一密封环(178)围起来形成单独的环形密封结构后,第一密封环(178)再把第一插头第一出气口(278)和第一插头第一进气口(279)从中间隔开,接电器第二插头(254)第二接电器插头(254)安装在第二电池包(4)前端,接电器第二插座(262)安装在电动轿车电池包悬挂支架(220)上,第二接电器插头底板(263)上的第二骨架(260)内设置有一体设置的外圈和内圈结构的第二密封环(261),第二密封环(261)环绕设置于第二接电器插头(254)上设置的第九强电触头(253)、第十强电触头(255)、第十一强电触头(258)、第十二强电触头(259)和第二信号控制线触头(256)外,接电器座(262)上的接电器盒(249)内具有第十三强电阻尼触头(239)、第十四强电阻尼触头(241)、第十五强电阻尼触头(246)、第十六强电阻尼触头(248)和第二信号控制线接电盒(244)、设置第五插座(240)、第六插座(242)、第七插座(245)、第八插座(248)和第二信号控制线插座(244);第五插座(240)的导线与第十三强电阻尼触头(239)连接、第六插座(242)的导线与第十四强电阻尼触头(241)连接、第七插座(245)的导线与第十五强电阻尼触头(246)连接、第八插座(247)的导线与第十六强电阻尼触头(248)连接,第二信号控制线插座(243)的信号线与第二信号控制线接电盒(244);第十强电触头(255)与第二电池包(4)第三电源线(42)连通,第十一强电触头(258)与第二电池包(4)的第四电源线(44)连接,第九强电触头(253)与第二电池包(4)的第二电源浪涌保护器接地导线(47)连通,第十二强电触头(259)与第二电池包(4)的第二信号线控制线路保护器接地导线(34)连通,第二信号控制线触头(256)与第二电池包(4)的第二控制线和BMS信号线(40)连通,第六插座(242)和第七插座(245)与电动汽车(1)的强电电线连接;第二信号控制线插座(243)与电动汽车内信号控制线连接,第二弹性部件包括第二橡胶垫(251)一端与第二接电器盒(249)连接,该第二橡胶垫(251)的另一端与第二接电器支架(262)连接,第二螺栓(250)设置在橡胶垫(251)内,当控制第二电池包机器人系统(14)的第二托架(109)将第二电池包(4)顶入第二电池包(4)安装位置后,第二接电器插头(244)与第二接电器座(262)连接时,第九强电触头(253)推动并紧密抵靠第十三强电阻尼触头(239),第十强电触头(255)推动并紧密抵靠第十四强电阻尼触头(241);第十一强电触头(258)推动并紧密抵靠第十五强电阻尼触头(246);第十二强电触头(259)推动并紧密抵靠第十六强电阻尼触头(248);第一信号控制线触头(256)与第二信号控制线接电盒(244)连接,第二信号控制线接电盒(244)设置有弹性部件,第二信号控制线触头(256)推动第二信号控制线接电盒(244)时通过该弹性部件使第二信号控制线接电盒(244)紧贴第二信号控制线触头(256),第二密封环(261)随着第二电池包(4)的移动,密封环上的两到道密封圆弧与平面结合,产生变形,在触点周围形成两道环形线密封,第二插座第一通风管连接器(267)与电动汽车(1)通风控制系统连接,第二插座第一通风管连接器(267)与第二插座第一通风管(268)连接;第二插座第一通风管(268)与第二插座第一通风管阻尼接头座(269)连接,第二插座第二通风管连接器(270)与第二插座第二通风管(271)连接;第二插座第二通风管(271)与第二插座第二通风管阻尼接头座(277)连接,第二插头第一进气头(273)与第一空气进出口(275)连接,空气进入空气通道(274)后通过第二空气进出口(276)流出而流入第二电池包外壳内,把第二电池包(4)冷却之后从第二插头第一出气头(272)排出,第二插座第一通风管阻尼接头座(269)和第二插头第一出气头(272)中间是可以通风的空心结构;第二通风管阻尼接头座(277)第二插头第一进气头(273)中间是可以通风的空心结构,第二插头第一出气头(272)和第二插头第一进气头(273)单独被第二密封环(261)围起来形成单独的环形密封结构后,第二密封环(261)再把第二插头第一出气头(272)和第二插头第一进气头(273)从中间隔开。
PCT/CN2016/088289 2015-08-04 2016-07-03 物联网控制的电动汽车底盘上的电池包更换和防爆系统 WO2017020674A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/737,322 US11059382B2 (en) 2015-08-04 2016-07-03 Battery box replacement system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510478027.6A CN106427936B (zh) 2015-08-04 2015-08-04 监控工作站、换电池站和电动汽车通过物联网组成的电池箱更换系统
CN201510478027.6 2015-08-04

Publications (1)

Publication Number Publication Date
WO2017020674A1 true WO2017020674A1 (zh) 2017-02-09

Family

ID=57942375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/088289 WO2017020674A1 (zh) 2015-08-04 2016-07-03 物联网控制的电动汽车底盘上的电池包更换和防爆系统

Country Status (3)

Country Link
US (1) US11059382B2 (zh)
CN (1) CN106427936B (zh)
WO (1) WO2017020674A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109664779A (zh) * 2019-01-24 2019-04-23 厦门理工学院 一种抗震无线充电接收器安装结构

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107305372B (zh) * 2016-04-25 2020-06-19 岳秀兰 云计算网络架构的远程监控的电动汽车能源监控和补给网
US10846674B2 (en) * 2016-06-15 2020-11-24 Dignan Rayner Rechargeable devices and kiosks for same
CN206201948U (zh) * 2016-08-31 2017-05-31 比亚迪股份有限公司 一种车用托盘组件、车用电池包体和汽车
DE102016123553A1 (de) * 2016-12-06 2018-06-07 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Fahrzeugkarosserie für ein elektrisch angetriebenes Fahrzeug
JP6624084B2 (ja) * 2017-01-12 2019-12-25 トヨタ自動車株式会社 電動車両
WO2018179897A1 (ja) * 2017-03-29 2018-10-04 パナソニックIpマネジメント株式会社 非水電解質二次電池及び電池モジュール
CN207028817U (zh) * 2017-04-10 2018-02-23 上海蔚来汽车有限公司 储能单元的可调节安装组件
CN107380136B (zh) * 2017-04-28 2021-01-15 蔚来(安徽)控股有限公司 移动更换电池的方法和装置
WO2018218306A1 (en) * 2017-06-02 2018-12-06 Engineer & Artist Pty Ltd A charger for charging an electric vehicle
US10193191B2 (en) * 2017-06-09 2019-01-29 GM Global Technology Operations LLC Electrical system with battery module and cover assembly providing built-in circuit protection
JP7369114B2 (ja) * 2017-07-26 2023-10-25 オートテック・エンジニアリング・ソシエダッド・リミターダ 電気自動車用バッテリボックスフロアおよび対応する車両本体
CN107585011B (zh) * 2017-09-07 2020-06-09 芜湖皖江知识产权运营中心有限公司 一种新能源汽车电池安装结构
CN107585012B (zh) * 2017-09-07 2019-08-20 郑兆瑞 电动汽车电池安装结构
CN107554345A (zh) * 2017-09-18 2018-01-09 江西爱驰亿维实业有限公司 双源电池包、管理方法和系统以及电动汽车
CN107672434A (zh) * 2017-10-25 2018-02-09 广州市竞驰实业有限公司 一种卡丁车侧箱翻转机构
CN108263353A (zh) * 2018-02-11 2018-07-10 博众精工科技股份有限公司 汽车换电站防卡死充电机构
EP3759761A4 (en) * 2018-03-01 2021-09-08 Shape Corp. COOLING SYSTEM INTEGRATED IN VEHICLE BATTERY COMPARTMENT
CN108414926A (zh) * 2018-03-06 2018-08-17 苏州正力蔚来新能源科技有限公司 用于快换动力电池包的继电器健康状态记录系统
EP3556597B1 (en) * 2018-04-18 2021-07-21 ABB Schweiz AG Detecting a bad contact of a charging cable
JP7056468B2 (ja) * 2018-08-24 2022-04-19 トヨタ自動車株式会社 車両床下構造
CN110896233B (zh) * 2018-09-12 2021-07-30 宁德时代新能源科技股份有限公司 电池管理系统
JP7101093B2 (ja) * 2018-09-25 2022-07-14 三菱重工業株式会社 無人搬送車並びに電池の交換方法および充電方法
AU201816468S (en) * 2018-10-29 2019-01-25 Applied Electric Vehicles Pty Ltd Vehicle chassis
AU201816585S (en) * 2018-11-02 2019-01-25 Applied Electric Vehicles Pty Ltd Vehicle chassis
IT201800021199A1 (it) * 2018-12-27 2020-06-27 Ferrari Spa Automobile sportiva elettrica o ibrida
CN113348130B (zh) * 2019-02-05 2022-04-29 本田技研工业株式会社 电动车辆以及电池单元
CN109703348B (zh) * 2019-02-26 2023-12-19 中瑞德科(北京)工业设计有限公司 汽车电池固定结构以及汽车电池固定方法
CN110416455B (zh) * 2019-07-15 2022-08-26 重庆电子工程职业学院 电动汽车电池组防爆脱落结构
CN110416454B (zh) * 2019-07-15 2022-08-23 重庆电子工程职业学院 一种安全可靠的新能源汽车电池系统
KR20210012160A (ko) * 2019-07-24 2021-02-03 현대자동차주식회사 차량용 배터리 냉각장치 및 그 제조방법
JP7477910B2 (ja) * 2019-10-30 2024-05-02 インダクトイーブイ インク. 非接触型の交換可能なバッテリーシステム
USD944684S1 (en) * 2019-12-31 2022-03-01 Ree Automotive Ltd. Multipurpose flat chassis vehicle platform
CN114801863A (zh) * 2020-01-23 2022-07-29 奥动新能源汽车科技有限公司 夹车道控制方法及系统、电子设备及存储介质
US11142194B1 (en) * 2020-03-24 2021-10-12 Kiomars Anvari Use of IoT network and IoT ranging device for an object control system
KR20210149399A (ko) * 2020-06-02 2021-12-09 현대자동차주식회사 무선충전패드가 장착된 전기차의 서브프레임 밀림 방지 장치
CN114204153A (zh) * 2020-09-17 2022-03-18 奥动新能源汽车科技有限公司 竖直对接式车端液冷连接装置、电池安装部及电动汽车
TWI774116B (zh) * 2020-11-06 2022-08-11 瑞昱半導體股份有限公司 用於積體電路的自動檢測電路及方法
US20220212638A1 (en) * 2021-01-04 2022-07-07 The Boeing Company Systems and Methods for Automated In-Situ Swapping of Batteries for Electric Vehicles
CN112706762B (zh) * 2021-01-27 2022-03-15 东风汽车集团股份有限公司 一种高速碰撞时车载总成主动脱离方法
CN113183816B (zh) * 2021-02-01 2023-04-28 东风(十堰)汽车液压动力有限公司 一种电动重卡的电池包快换及锁止系统
US11088401B1 (en) * 2021-02-15 2021-08-10 Ahmed Tarfaoui Tubular battery pack and integral tubular battery with thermal management and safety relief system
CN113241496B (zh) * 2021-07-12 2021-09-17 深圳市金尊能源科技有限公司 一种新能源汽车电池防爆阻燃装置
CN113665335B (zh) * 2021-07-15 2023-03-10 广东力人科技有限公司 基于智能网联的新能源汽车可更换式电池基座及其方法
CN113541374B (zh) * 2021-09-07 2021-12-14 天津飞旋科技股份有限公司 一种防爆式磁悬浮旋转设备
CN113787934B (zh) * 2021-11-13 2022-07-05 杭州非德新能源科技有限公司 一种电动物流车的电池快换装置
WO2023107587A1 (en) 2021-12-07 2023-06-15 InductEV, Inc. Contactless swappable battery system
TWI831211B (zh) * 2022-05-19 2024-02-01 巴斯威爾股份有限公司 具有預警裝置的充電樁與其操作方法
CN115162456B (zh) * 2022-06-23 2024-02-20 厦门宇龙机械有限公司 一种纯电动微型挖掘机的三电联动布置系统
GB2620790A (en) * 2022-07-22 2024-01-24 Autocraft Solutions Group Ltd Battery servicing system and battery servicing method
CN115384297B (zh) * 2022-10-27 2022-12-20 长春职业技术学院 一种新能源汽车电池防涉水装置
CN115784084B (zh) * 2023-01-13 2023-04-28 河南巨人起重机集团有限公司 一种智能换电站专用起重机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201825013U (zh) * 2010-08-20 2011-05-11 北京华商三优新能源科技有限公司 电动汽车电池自动更换系统
CN102673534A (zh) * 2011-03-09 2012-09-19 北京市电力公司 电动汽车的电池换装系统和电池换装方法
JP2013038002A (ja) * 2011-08-10 2013-02-21 Toyota Motor Corp 電池ユニット
US20140100071A1 (en) * 2012-10-04 2014-04-10 Means Industries, Inc. Vehicle drive system including a transmission
CN204323021U (zh) * 2014-11-11 2015-05-13 韦国鑫 双换单充式电动汽车
CN104723855A (zh) * 2013-12-18 2015-06-24 韩磊 降低电动汽车电池组燃烧概率的电池组供电系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040053090A1 (en) * 2002-09-16 2004-03-18 Hanson George E. Fuel cell based battery backup apparatus for storage subsystems
CN201907491U (zh) * 2011-01-11 2011-07-27 山东电力研究院 快速换电池机器人
CN202138210U (zh) * 2011-06-28 2012-02-08 比亚迪股份有限公司 一种电动客车
CN104647384A (zh) * 2013-11-22 2015-05-27 陕西银河网电科技有限公司 一种机器人机械手控制系统
CN106740206B (zh) * 2015-02-09 2020-07-21 浙江吉利汽车研究院有限公司 电动车电池包的快换方法及快换系统
CN107305372B (zh) * 2016-04-25 2020-06-19 岳秀兰 云计算网络架构的远程监控的电动汽车能源监控和补给网

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201825013U (zh) * 2010-08-20 2011-05-11 北京华商三优新能源科技有限公司 电动汽车电池自动更换系统
CN102673534A (zh) * 2011-03-09 2012-09-19 北京市电力公司 电动汽车的电池换装系统和电池换装方法
JP2013038002A (ja) * 2011-08-10 2013-02-21 Toyota Motor Corp 電池ユニット
US20140100071A1 (en) * 2012-10-04 2014-04-10 Means Industries, Inc. Vehicle drive system including a transmission
CN104723855A (zh) * 2013-12-18 2015-06-24 韩磊 降低电动汽车电池组燃烧概率的电池组供电系统
CN204323021U (zh) * 2014-11-11 2015-05-13 韦国鑫 双换单充式电动汽车

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109664779A (zh) * 2019-01-24 2019-04-23 厦门理工学院 一种抗震无线充电接收器安装结构
CN109664779B (zh) * 2019-01-24 2024-04-12 厦门理工学院 一种抗震无线充电接收器安装结构

Also Published As

Publication number Publication date
US11059382B2 (en) 2021-07-13
CN106427936A (zh) 2017-02-22
US20180251102A1 (en) 2018-09-06
CN106427936B (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
WO2017020674A1 (zh) 物联网控制的电动汽车底盘上的电池包更换和防爆系统
CN104085313B (zh) Agv底盘的8自由度机械臂系统
CN105742554B (zh) 电动汽车模块化快换动力电池单元
CN1706601A (zh) 电站设备智能自主巡检机器人
CN105720220A (zh) 一种电动汽车动力电池
CN104816619A (zh) 一种可自动拆装动力电池的电动汽车及其控制方法
CN202641566U (zh) 混合动力乘用车高压配电盒
CN104723855B (zh) 降低电动汽车电池组燃烧概率的电池组供电装置
CN108032743A (zh) 智能快速充电系统和方法
CN203937526U (zh) Agv底盘的8自由度机械臂系统
CN102795118A (zh) 电动车用动力电池系统
CN109768629A (zh) 无人机充电系统及其方法
CN109986529A (zh) 飞机起落架柔性智能安装系统
CN206012365U (zh) 一种电动车自动充电机械臂机构
CN204801681U (zh) 新型防爆车辆
CN207984594U (zh) 一种无人值守式无人机工作站充电系统
CN211308264U (zh) 一种agv自动充电机
EP4147949A2 (en) Vehicle chassis and vehicle
CN210500290U (zh) 基于温度自适应控制的变电站电缆沟巡检机器人
CN114475342A (zh) 组合式换电机器人
CN217645705U (zh) 一种用于仓库的烟雾感应监测装置
CN216101648U (zh) 换电站
CN212210262U (zh) 一种用于变电站的倒闸操作及巡视的辅助装置
CN204399129U (zh) 一种可移动式充电机器人
CN214267392U (zh) 一种电动车充电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832162

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15737322

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 16832162

Country of ref document: EP

Kind code of ref document: A1