WO2017020481A1 - 电极结构和有机发光单元及其制造方法 - Google Patents

电极结构和有机发光单元及其制造方法 Download PDF

Info

Publication number
WO2017020481A1
WO2017020481A1 PCT/CN2015/097728 CN2015097728W WO2017020481A1 WO 2017020481 A1 WO2017020481 A1 WO 2017020481A1 CN 2015097728 W CN2015097728 W CN 2015097728W WO 2017020481 A1 WO2017020481 A1 WO 2017020481A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
strip
inorganic insulating
organic light
Prior art date
Application number
PCT/CN2015/097728
Other languages
English (en)
French (fr)
Inventor
何晓龙
舒适
徐威
曹占锋
姚琪
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/126,839 priority Critical patent/US20180034007A1/en
Priority to EP15884917.4A priority patent/EP3333922B1/en
Publication of WO2017020481A1 publication Critical patent/WO2017020481A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape

Definitions

  • the present disclosure relates to an electrode structure, an organic light emitting unit, and a method of fabricating the organic light emitting unit.
  • the organic light-emitting display device has the advantages of high contrast, wide color gamut, low power consumption, lightness and the like, and thus has been widely concerned, and is widely used in high-end mobile phones and televisions.
  • One way to fabricate a passive matrix organic light emitting device is to pattern the cathode using a cathode isolating column. For example, a cathode isolation column is first formed on a substrate, then a cathode metal is evaporated, and strip electrodes are formed between the isolation columns.
  • a process for preparing a cathode isolation column adopts an ultraviolet exposure process, which is difficult and difficult to control, and the material of the cathode isolation column is a modified negative photoresist, which is relatively high in cost.
  • a first aspect of the present invention provides an electrode structure comprising: a substrate; a plurality of strip spacers disposed on the substrate; and an electrode covering a surface of the substrate, the electrode including a surface on each strip spacer The first portion and the second portion between the two adjacent strip spacers.
  • Each strip spacer includes an upper layer and a lower layer stacked on each other, the upper layer and the lower layer being made of different materials; a bottom surface of the upper layer completely covering a top surface of the lower layer, and in the strip spacer The width of the bottom surface of the upper layer is greater than the width of the top surface of the lower layer.
  • a second aspect of the present invention provides an organic light emitting unit comprising: a substrate; a first electrode disposed on the substrate; a plurality of strip spacers disposed on the first electrode; An organic light-emitting layer between adjacent two strip-shaped spacers; and a second electrode covering the surface of the substrate, the second electrode including a first portion on a surface of each strip-shaped spacer and the organic light-emitting layer The second part on the surface.
  • Each strip spacer includes a first material layer in a lower layer and a second material layer in an upper layer, the first material layer and the second material layer being made of different materials; the bottom surface of the upper layer completely covers the Describe the top surface of the lower layer and the extension of the strip spacer In the plane perpendicular to the phase, the width of the bottom surface of the upper layer is greater than the width of the top surface of the lower layer.
  • a third aspect of the invention provides a method of fabricating an organic light emitting unit, comprising:
  • the second electrode Forming a second electrode on a surface of the substrate, the second electrode including a first portion on a surface of each strip-shaped spacer and a second portion on a surface of the organic light-emitting layer;
  • first material layer and the second material layer are made of different materials; in a plane perpendicular to the extending direction of the strip spacer, the bottom surface width of the second material layer is larger than the first The top surface of a layer of material, and the bottom surface of the second layer of material completely covers the top surface of the first layer of material.
  • Figure 1 is a schematic plan view showing an electrode structure in accordance with an embodiment of the present invention.
  • Figure 2 is a cross-sectional view taken along line I-I of Figure 1;
  • Figure 3a is a plan view schematically showing an organic light emitting unit according to an embodiment of the present invention.
  • Figure 3b is a cross-sectional view taken along line II-II of Figure 3a;
  • FIG. 4 is a flow chart of a method of fabricating an organic light emitting unit according to an embodiment of the present invention.
  • Figure 5a is a schematic plan view of a substrate of an organic light emitting unit according to an embodiment of the present invention.
  • Figure 5b is a cross-sectional view taken along line II-II of Figure 5a;
  • Figure 6a is a schematic plan view of a substrate of an organic light emitting unit according to an embodiment of the present invention.
  • Figure 6b is a cross-sectional view taken along line II-II of Figure 6a;
  • Figure 7a is a schematic plan view of a substrate of an organic light emitting unit according to an embodiment of the present invention.
  • Figure 7b is a cross-sectional view taken along line II-II of Figure 7a;
  • FIG. 8 is a schematic cross-sectional view showing a substrate of an organic light emitting unit according to an embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view showing a substrate of an organic light emitting unit according to an embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view showing a substrate of an organic light emitting unit according to an embodiment of the present invention.
  • Figure 11a is a plan view of a substrate of an organic light emitting unit according to an embodiment of the present invention.
  • Figure 11b is a cross-sectional view taken along line II-II of Figure 11a;
  • Figure 12 is a scanning electron micrograph of a substrate in accordance with an embodiment of the present invention.
  • FIG. 13 is a schematic cross-sectional view showing a substrate of an organic light emitting unit according to another embodiment of the present invention.
  • FIG. 14 is a view schematically showing a cross-sectional view of a substrate of an organic light emitting unit according to another embodiment of the present invention.
  • FIG. 15 is a schematic cross-sectional view showing a substrate of an organic light emitting unit according to another embodiment of the present invention.
  • an electrode structure including: a substrate 10; a plurality of strip spacers 20 disposed on the substrate 10; and an electrode 30 covering the surface of the substrate 10,
  • the electrode 30 includes a first portion 301 on the surface of each strip spacer 20 and a second portion 302 between two adjacent strip spacers 20.
  • Each of the strip spacers 20 includes an upper layer 202 and a lower layer 201 laminated to each other, and the upper layer 202 and the lower layer 201 are made of different materials.
  • the bottom surface of the upper layer 202 completely covers the top surface of the lower layer 201, and the width of the bottom surface of the upper layer 202 is greater than the width of the top surface of the lower layer 201 in a plane perpendicular to the extending direction of the strip spacers 20.
  • FIG. 2 illustrates a cross-sectional view perpendicular to the extending direction of FIG.
  • the width of the bottom surface of the upper layer 202 is greater than the width of the top surface of the lower layer 201 so that the first portion 301 and the second portion 302 of the electrode 30 are separated from each other and insulated from each other.
  • the upper surface of the lower layer 201 may be higher than the upper surface of the second portion 302 of the electrode 30, such as 600 nm higher than the upper surface of 302.
  • the cross section of the laminate formed by the upper layer 202 and the lower layer 201 is axisymmetric.
  • the maximum width w2 of one side of the upper layer 202 is larger than the maximum width w1 of the lower layer 201 on the same side by 1 ⁇ m to 2 ⁇ m.
  • the laminate may not be axisymmetric, for example, the center of the lower layer 201 may be offset from the center of the upper layer 202 by a distance as long as the bottom surface of the upper layer can completely cover the top surface of the lower layer.
  • the width of the bottom surface of the upper layer 202 may be 2 ⁇ m to 4 ⁇ m larger than the width of the bottom surface of the lower layer 201.
  • the cross-section of each layer should be rectangular, but due to the actual etching process, the cross-section of each layer is actually trapezoidal.
  • one of the upper layer 202 and the lower layer 201 is made of a resin material
  • the other layer is made of an inorganic insulating material.
  • a layer made of an inorganic insulating material has a thickness of 0.2 ⁇ m to 1 ⁇ m. If it is too thin, the strength is insufficient. If it is too thick, there is a problem of productivity and film stress, and the thickness may be 0.4 ⁇ m to 0.6 ⁇ m.
  • the layer made of a resin material has a thickness of 1 ⁇ m to 3 ⁇ m. If it is too thin, the isolation effect is poor. If it is too thick, there is a problem of material waste and film stress, and the thickness may be 1.5 ⁇ m to 2 ⁇ m.
  • the upper layer 202 may be made of an inorganic insulating material, such as SiNx, SiOx, SiON, AlOx, etc., so that the strength is high; even if the scraping action is performed after spin coating, it is not broken; the lower layer 201 may be made of a resin material.
  • a thermosetting resin or a photocurable resin including commonly used positive, Negative photoresist, epoxy resin, etc., these materials have temperature resistance above 130 ° C, have a certain mechanical strength, and better isolation.
  • the upper layer 202 may be made of a resin material and the lower layer 201 may be made of an inorganic insulating material.
  • the resin material may be made of a photosensitive resin so that it is used as a mask after being patterned. Specific examples of the inorganic insulating material can be referred to the above examples.
  • the strip spacer employs a two-layer structure composed of an inorganic insulating layer and a resin layer, which not only improves mechanical strength, but also facilitates two portions (first portion 301 and second portion 302) of the electrode 30 to each other. Insulation, thereby avoiding short circuits and improving the stability of the electrode structure.
  • the strip spacers can be widely used in the field of display technology, especially when manufacturing electrode patterns insulated from each other on a substrate.
  • the strip spacer is applied to the organic light emitting unit as an example for further explanation, but the scope of the present disclosure is not limited thereto.
  • an organic light emitting unit including: a substrate substrate 100; a metal electrode 102, an interlayer dielectric layer 104, and a layer disposed on the substrate substrate 100 in sequence.
  • the organic light emitting unit further includes a second electrode 30 covering the surface of the substrate, the second electrode 30 including a first portion 301 on the surface of each strip spacer and a second portion 302 on the surface of the organic light emitting layer 400.
  • Each strip spacer 20 includes a first material layer at the lower layer 201 and a second material layer at the upper layer 202.
  • the first material layer and the second material layer are made of different materials.
  • one of the first material layer and the second material layer is made of a resin material, and the other layer is made of an inorganic insulating material.
  • the bottom surface of the upper layer 202 completely covers the top surface of the lower layer 201, and in the plane perpendicular to the extending direction of the strip spacer 20, the bottom surface width of the upper layer 202 is greater than the top surface width of the lower layer 201 to make the first portion of the second electrode 30
  • the 301 and the second portion 302 are separated from each other and insulated from each other.
  • the layout, material and thickness of the strip spacer 20 are the same as those of the previous embodiment, and are not described herein again.
  • the present embodiment provides a plurality of functional layers on the base substrate 100, including the metal electrode 102, the interlayer dielectric layer 104, the first electrode 106, and the organic light-emitting layer 400.
  • the base substrate 100 may be a transparent substrate such as glass, quartz, or plastic.
  • the metal electrode 102 may be made of a metal or alloy material.
  • the interlayer dielectric layer 104 may be made of an insulating material such as SiOx, SiNx or the like.
  • the interlayer dielectric layer 104 is provided with a via hole, and the first electrode 106 passes The via is electrically connected to the metal electrode 102.
  • the first electrode 106 serves as a cathode
  • the second electrode 30 serves as an anode
  • the organic light-emitting layer 400 is sandwiched between the cathode and the anode.
  • the configuration of the organic light emitting unit of FIG. 3b is merely illustrative.
  • the metal electrode 102 and the interlayer dielectric layer 104 may be omitted.
  • a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, or the like may be additionally provided between the cathode 106 and the anode 30 to further improve the performance of the organic light-emitting unit.
  • the cathode spacer in the organic light-emitting unit adopts a two-layer structure composed of an inorganic insulating layer and a resin layer, which not only improves mechanical strength but also facilitates two portions of the second electrode (first portion 301 and second Portions 302) are insulated from each other, thereby avoiding short circuits and improving cathode stability.
  • a method for manufacturing an organic light emitting unit includes the following steps:
  • S106 forming a second electrode on the surface of the substrate, the second electrode comprising a first portion on a surface of each strip-shaped spacer and a second portion on a surface of the organic light-emitting layer; the first material layer and the second material layer are different materials Forming; in a plane perpendicular to the extending direction of the strip spacer, the bottom surface width of the second material layer is greater than the top surface width of the first material layer, and the bottom surface of the second material layer completely covers the top of the first material layer surface.
  • step S101 may further include forming a metal electrode 102 and an interlayer dielectric layer 104 on the base substrate 100 before forming the first electrode 106, wherein the interlayer dielectric A via hole is formed in the layer 104 such that the first electrode 106 is electrically connected to the metal electrode 102 through the via hole.
  • the method for manufacturing the organic light-emitting unit will be further described below by taking the lower layer of the strip spacer 20 in the organic light-emitting unit of FIG. 3b as a resin layer and the upper layer as an inorganic insulating layer.
  • a method of fabricating an organic light emitting unit includes the following steps:
  • S201 a metal electrode 102, an interlayer dielectric layer 104, and a first electrode 106 are sequentially formed on the base substrate 100, wherein the interlayer dielectric layer 104 is provided with a via hole, and the metal electrode 102 is electrically connected to the first electrode 106 through the via hole. connection.
  • the step S201 may include the following steps S201a to S201c.
  • S201a a metal thin film is formed on the base substrate 100, and the metal thin film is patterned by a patterning process to form a plurality of metal electrodes 102 as shown in FIGS. 5a and 5b.
  • Fig. 5a schematically shows a plan view of a substrate according to an embodiment of the present invention
  • Fig. 5b is a cross-sectional view taken along line II-II of Fig. 5a.
  • the metal thin film is formed on the base substrate 100 by a usual plating process such as sputtering, plasma chemical vapor deposition (PECVD), evaporation, or the like.
  • the metal film may be a metal or an alloy including, but not limited to, a metal such as molybdenum, aluminum, copper, titanium, tantalum or the like.
  • a transparent substrate such as glass, quartz, or plastic can be used as the base substrate 100.
  • the metal electrode 102 has an elongated shape including a plurality of positive electrodes extending in the vertical direction and a plurality of negative electrodes extending in the horizontal direction.
  • the positive electrode is used to introduce a gate signal (positive voltage), for example, to apply a positive potential, to inject holes into the organic light-emitting layer through the hole injection layer and the transport layer;
  • the negative electrode is used to introduce a data signal (negative voltage), load a negative potential, and pass
  • the electron injecting layer and the transport layer inject electrons into the organic light emitting layer; finally driving the light emitting layer to emit light.
  • the "patterning process” herein typically includes process steps of coating photoresist, exposure, development, etching, stripping, and the like. In order to form a specific pattern, it is also possible to use a two-tone or gray scale mask when patterning.
  • S201b forming a thin film of an inorganic material on the plurality of metal electrodes 102, and patterning the inorganic insulating film by a patterning process to form an interlayer dielectric layer 104 covering each of the metal electrodes, wherein the interlayer dielectric layer 104 is formed with a plurality of layers Holes, as shown in Figures 6a and 6b, only one via is shown in Figure 6b as an example.
  • the interlayer dielectric layer 104 is made of an inorganic insulating material such as SiOx, SiNx, SiON, or the like.
  • S201c forming a transparent conductive film on the interlayer dielectric layer 104, and patterning the transparent conductive film by a patterning process to form a plurality of first electrodes 106, as shown in FIGS. 7a and 7b.
  • the transparent conductive film may be ITO (Indium tin oxide), IZO (Indium). Transparent oxide material such as zinc oxide or indium zinc oxide.
  • the first electrode 106 covers both the positive electrode and the negative electrode, wherein the first electrode 106 on the positive electrode extends as a strip electrode perpendicular to the extending direction of the plurality of negative electrodes for loading the positive electrode signal; the first electrode 106 on the negative electrode covers only the electrode Directly above, it is used to connect the vapor-deposited anode metal and load the negative signal.
  • the method for manufacturing the above organic light emitting unit further includes:
  • a resin liquid is applied onto the first electrode by a dropping method.
  • the resin liquid may be a thermosetting resin or a photocurable resin, and then the resin liquid is photocured or thermally cured to form a resin film 108.
  • the above resins include commonly used positive and negative photoresists, epoxy resins, etc., the temperature resistance of these materials is above 130 ° C, has a certain mechanical strength, and the isolation effect is good and the cost is low.
  • an inorganic insulating film 110 is deposited on the resin film 108 by a PECVD method.
  • the inorganic insulating film is made of an inorganic insulating material such as SiNx, SiOx, SiON, AlOx or the like, and therefore has high strength; even when the scraping operation is performed after spin coating, it is not broken.
  • the inorganic insulating film 110 has a thickness of 0.2 ⁇ m to 1 ⁇ m. If it is too thin, the strength is insufficient. If it is too thick, there is a problem of productivity and film stress. In some embodiments, the thickness is from 0.4 ⁇ m to 0.6 ⁇ m. The thickness of the resin film 108 is 1 ⁇ m to 3 ⁇ m. If it is too thin, the isolation effect is poor, and if it is too thick, there is a problem of material waste and film stress. In some embodiments, the thickness is from 1.5 ⁇ m to 2 ⁇ m.
  • S203 forming a photoresist 112 on the inorganic insulating film 110, and patterning the photoresist 112 by an exposure and development process to expose a portion of the inorganic insulating film, as shown in FIG.
  • the etching gas is a mixed gas of a fluorine-containing gas and oxygen.
  • the fluorine-containing gas is, for example, SF6 or CF4, and the gas flow rate is 50 sccm to 800 sccm, for example, 350 to 400 sccm. If the gas flow rate is too low, the etching rate is slow, which is disadvantageous for mass production. If the gas flow rate is too high, the uniformity is higher. difference.
  • the flow rate of oxygen is, for example, 0 to 300 sccm, or 100 sccm to 150 sccm, and its effect is mainly used to increase the etching rate to some extent.
  • the etching gas may further include helium (He), and the flow rate is, for example, 0 to 200 sccm, which increases the etching uniformity to some extent.
  • the etching power is, for example, 200 W to 800 W, and the etching rate is usually For example To increase efficiency, excessive speed can cause uniformity to deteriorate.
  • the etching time is, for example, 20 seconds to 400 seconds. Excessive etching time may cause the substrate to overheat and deform.
  • S205 treating the resin film 108 by an ashing process by using the plurality of first strips 202' as a mask to simultaneously remove a part of the resin film and the remaining photoresist, thereby obtaining a plurality of second strips made of a resin material.
  • 201' i.e., the lower layer 201 in Fig. 3
  • the first strip 202' and the second strip 201' constitute a strip spacer 20.
  • the resin film in the ashing process, can be ashed using an oxygen plasma to avoid damage to the first strip 202' while removing residual lithography remaining on the first strip 202'. gum.
  • the ashing time is determined according to the thickness of the resin film to be removed and the desired width of the second strip 201'. In the present embodiment, the ashing time is about 100 seconds to 200 seconds, for example, 150 seconds.
  • the width of the first strip 202' is greater than the width of the second strip 201', thereby ensuring subsequent evaporation of the metal
  • the electrode can be broken at the strip spacer 20.
  • the maximum width of one side of the first strip 202' is greater than the maximum width of the second strip 201' on the same side by 1 [mu]m to 2 [mu]m.
  • FIG. 12 is a scanning electron microscope (SEM) diagram of the substrate after completion of step S205. As can be seen from the figure, the maximum width of one side of the first strip 202' is larger than the maximum width of the second strip 201' on the same side, and is, for example, measured to be about 1.2 [mu]m. In some embodiments, the maximum width of the first strip 202' on both sides exceeds the maximum width of the second strip 201' on both sides by 1 ⁇ m to 2 ⁇ m, respectively.
  • S206 Forming the organic light emitting layer 400 between the plurality of strip spacers 20.
  • the organic light-emitting layer 400 is deposited in a space between the strip spacers 20 by an evaporation method, and the organic light-emitting layer uses an OLED small molecule or a quantum dot material, and since these materials are isotropic, organic light emission can be performed.
  • the layers are in physical contact with the second strip 201' on either side thereof.
  • S207 forming a second electrode 30 on the surface of the substrate, the second electrode 30 including a first portion 301 on the surface of each strip spacer 20 and a second portion 302 on the surface of the organic light emitting layer, as shown in FIGS. 3a and 3b. .
  • the second electrode 30 is formed on the surface of the substrate by an evaporation method, and the metal may be selected from one or more of magnesium, silver, and aluminum. Since the width of the first strip 202' is greater than the width of the second strip 201', the first portion 301 and the second portion 302 of the second electrode 30 are due to the first strip 202' and the second strip during deposition. The strips 201' are disconnected from each other by a discontinuous interface, separated from each other and insulated from each other.
  • the first electrode 106 serves as a cathode
  • the second electrode 30 serves as an anode
  • the organic light-emitting layer 400 is sandwiched between the cathode and the anode.
  • the cathode spacer of the organic light-emitting unit adopts a two-layer structure composed of a resin layer/inorganic insulating layer, which not only improves mechanical strength but also facilitates mutual contact between the two electrode portions (the first portion 301 and the second portion 302) Insulation, thus avoiding short circuits and improving cathode stability.
  • a method of fabricating an organic light emitting unit is provided.
  • the lower layer of the strip spacer 20 is an inorganic insulating layer and the upper layer is a resin layer.
  • the method includes the following steps:
  • step S301 Same as step S201.
  • step S301 can include S201a-S201c, as shown in Figures 5a through 7b.
  • S303 etching the exposed inorganic insulating film 114 by a dry etching process using the plurality of first strips 202' as a mask to obtain a plurality of second strips 201' made of an inorganic insulating material, as shown in FIG. 15 is shown.
  • the first strip 202' and the second strip 201' constitute a strip spacer 20.
  • the etching gas is the same as in the previous embodiment.
  • step S304 Same as step S206.
  • step S305 Same as step S207.
  • the inorganic insulating film 114 is the same in material and thickness as the inorganic insulating film 110 of the foregoing embodiment.
  • the resin film is made of a photosensitive resin such as DPI-1000, which is more advantageous as a mask, and the cost is lowered.
  • the formation process of the film is the same as that of the foregoing embodiment. Since the width of the first strip 202' is greater than the width of the second strip 201', the first portion 301 and the second portion 302 of the second electrode 30 are separated from each other and insulated from each other.
  • the cathode spacer of the organic light-emitting unit adopts a two-layer structure composed of an inorganic insulating layer/resin layer, which not only improves mechanical strength but also facilitates mutual contact of the two electrode portions (the first portion 301 and the second portion 302) Insulation, thus avoiding short circuits and improving cathode stability.
  • the organic light-emitting layer in the organic light-emitting unit provided by the embodiment of the present invention may be any electroluminescent layer. Therefore, embodiments of the present invention also relate to an electroluminescent unit. Further, embodiments of the present invention also provide a display device including the organic light emitting unit or the electroluminescence unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种电极结构和有机发光单元及其制造方法。该电极结构包括:基板(10);设置在基板(10)上的多个条状隔离物(20);和覆盖基板(10)表面的电极(30),该电极(30)包括位于每个条状隔离物(20)表面上的第一部分(301)和位于两个相邻条状隔离物(20)之间的第二部分(302);每个条状隔离物(20)包括彼此层叠的上层(202)和下层(201),上层(202)和下层(201)由不同材料制成;上层(202)的底面完全覆盖下层(201)的顶面,并且在与条状隔离物(20)的延伸方向相垂直的平面内,上层(202)的底面宽度大于下层(201)的顶面宽度。

Description

电极结构和有机发光单元及其制造方法 技术领域
本公开涉及一种电极结构、有机发光单元以及该有机发光单元的制造方法。
背景技术
有机发光显示器件具有对比度高、色域广、功耗低、轻薄等优势,因此广受关注,在高端手机、电视等领域应用广泛。
一种制作无源矩阵有机发光器件的方式是利用阴极隔离柱对阴极进行图案化。例如,首先在基板上形成阴极隔离柱,然后蒸镀阴极金属,在隔离柱之间形成条状电极。但是,一种制备阴极隔离柱的工艺采用紫外曝光工艺,难度较高且不易控制,并且阴极隔离柱的材料为经改性的负性光刻胶,成本相对较高。
发明内容
本发明第一方面提供了一种电极结构,包括:基板;设置在所述基板上的多个条状隔离物;和覆盖基板表面的电极,该电极包括位于每个条状隔离物表面上的第一部分和位于两个相邻条状隔离物之间的第二部分。每个条状隔离物包括彼此层叠的上层和下层,所述上层和所述下层由不同材料制成;所述上层的底面完全覆盖所述下层的顶面,并且在与所述条状隔离物的延伸方向相垂直的平面内,所述上层的底面宽度大于所述下层的顶面宽度。
本发明第二方面提供了一种有机发光单元,包括:衬底基板;设置在所述衬底基板之上的第一电极;设置在所述第一电极上的多个条状隔离物;设置在相邻两个条状隔离物之间的有机发光层;和覆盖基板表面的第二电极,所述第二电极包括位于每个条状隔离物表面上的第一部分和位于所述有机发光层表面上的第二部分。每个条状隔离物包括位于下层的第一材料层和位于上层的第二材料层,所述第一材料层和所述第二材料层由不同材料制成;所述上层的底面完全覆盖所述下层的顶面,并且在与所述条状隔离物的延伸方 向相垂直的平面内,所述上层的底面宽度大于所述下层的顶面宽度。
本发明第三方面提供了一种有机发光单元的制造方法,包括:
在衬底基板之上形成第一电极;
在所述第一电极上形成第一材料层;
在所述第一材料层上形成第二材料层并且图案化所述第二材料层以得到多个第一条状物;
以多个第一条状物作为掩模刻蚀所述第一材料层以得到多个第二条状物,使得彼此层叠的每个第一条状物和每个第二条状物构成条状隔离物;
在多个条状隔离物之间形成有机发光层;以及
在基板表面形成第二电极,所述第二电极包括位于每个条状隔离物表面上的第一部分和位于所述有机发光层表面上的第二部分;
其中所述第一材料层和所述第二材料层由不同材料制成;在与所述条状隔离物的延伸方向相垂直的平面内,所述第二材料层的底面宽度大于所述第一材料层的顶面宽度,并且所述第二材料层的底面完全覆盖所述第一材料层的顶面。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1示意性示出了根据本发明实施例的电极结构的平面图;
图2为沿图1的I-I线的截面图;
图3a示意性示出了根据本发明实施例的有机发光单元的平面图;
图3b为沿图3a的II-II线的截面图;
图4为根据本发明实施例的有机发光单元的制造方法的流程图;
图5a示意性示出了根据本发明实施例的有机发光单元的基板平面图;
图5b为沿图5a的II-II线的截面图;
图6a示意性示出了根据本发明实施例的有机发光单元的基板平面图;
图6b为沿图6a的II-II线的截面图;
图7a示意性示出了根据本发明实施例的有机发光单元的基板平面图;
图7b为沿图7a的II-II线的截面图;
图8示意性示出了根据本发明实施例的有机发光单元的基板截面图;
图9示意性示出了根据本发明实施例的有机发光单元的基板截面图;
图10示意性示出了根据本发明实施例的有机发光单元的基板截面图;
图11a示意性示出了根据本发明实施例的有机发光单元的基板平面图;
图11b为沿图11a的II-II线的截面图;
图12为根据本发明实施例的基板的扫描电子显微镜图;
图13示意性示出了根据本发明另一实施例的有机发光单元的基板截面图;
图14示意性示出了根据本发明另一实施例的有机发光单元的基板截面图;
图15示意性示出了根据本发明另一实施例的有机发光单元的基板截面图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对 象的绝对位置改变后,则所述相对位置关系也可能相应地改变。
如图1和图2所示,根据本发明一个实施例,提供一种电极结构,包括:基板10;设置在基板10上的多个条状隔离物20;覆盖基板10表面的电极30,该电极30包括位于每个条状隔离物20表面上的第一部分301和位于两个相邻条状隔离物20之间的第二部分302。每个条状隔离物20包括彼此层叠的上层202和下层201,上层202和下层201由不同材料制成。上层202的底面完全覆盖所述下层201的顶面,并且在与条状隔离物20的延伸方向相垂直的平面内,上层202的底面宽度大于下层201的顶面宽度。
多个条状隔离物20相互平行地设置,并且沿图1的水平方向延伸,图2示意了与图1延伸方向相垂直的截面图。从图中可以看出,上层202的底面宽度大于下层201的顶面宽度能使电极30的第一部分301与第二部分302彼此分离并且相互绝缘。在一个示例中,为了进一步保证电极30的第一部分301与第二部分302彼此分离,下层201的上表面可以高于电极30的第二部分302的上表面,例如比302的上表面高600nm。图2中,上层202和下层201构成的叠层的截面为轴对称。在一些实施方式中,上层202一侧的最大宽度w2比位于同一侧的下层201的最大宽度w1大1μm~2μm。然而,在本发明其他实施例中,叠层可以不是轴对称的,例如下层201的中心可以与上层202的中心错开一定距离,只要上层的底面能够完全覆盖所述下层的顶面即可。在此情况下,上层202的底面宽度可以比下层201的底面宽度大2μm~4μm。在理想情况下,各层的截面应为矩形,但受实际刻蚀工艺影响,各层的截面实际多为梯形。
在一个示例中,上层202和下层201之一由树脂材料制成,另一层由无机绝缘材料制成。例如,由无机绝缘材料制成的层的厚度为0.2μm~1μm,若太薄则强度不够,若太厚则存在产能和薄膜应力问题,该厚度可以为0.4μm~0.6μm。在一个示例中,由树脂材料制成的层的厚度为1μm~3μm,若太薄则隔离效果差,若太厚则存在材料浪费和薄膜应力问题,该厚度可以为1.5μm~2μm。
在一个示例中,上层202可由无机绝缘材料制成,例如SiNx、SiOx、SiON、AlOx等,因此强度高;即使在旋涂后进行刮边动作时,依然不会被破坏;下层201可由树脂材料制成,例如热固化树脂或光固化树脂,包括常用的正性、 负性光刻胶、环氧树脂等,这些材料的耐温性在130℃以上,具有一定的机械强度,而且隔离效果较好。
在另一个示例中,上层202可由树脂材料制成,下层201可由无机绝缘材料制成。在此情况下,为了便于条状隔离物的制造,该树脂材料可以采用感光树脂,以便其被图案化后作为掩模使用。无机绝缘材料的具体示例可参见上述示例。
在本实施例中,条状隔离物采用由无机绝缘层和树脂层构成的双层结构,不仅提高了机械强度,而且有利于电极30的两个部分(第一部分301和第二部分302)彼此绝缘,从而避免了短路,提高了电极结构的稳定性。该条状隔离物可广泛应用在显示技术领域,尤其是在基板上制造彼此绝缘的电极图案时。下面以该条状隔离物应用于有机发光单元为例做进一步说明,但是本公开的范围不限于此。
如图3a和3b所示,根据本发明另一实施例,提供一种有机发光单元,包括:衬底基板100;依次设置在衬底基板100上的金属电极102、层间介质层104、第一电极106;设置在第一电极106上的多个条状隔离物20;和设置在相邻两个条状隔离物20之间的有机发光层400。该有机发光单元还包括覆盖基板表面的第二电极30,该第二电极30包括位于每个条状隔离物表面上的第一部分301和位于有机发光层400表面上的第二部分302。每个条状隔离物20包括位于下层201的第一材料层和位于上层202的第二材料层。第一材料层和第二材料层由不同材料制成。例如,第一材料层和第二材料层之一由树脂材料制成,另一层由无机绝缘材料制成。上层202的底面完全覆盖下层201的顶面,并且在与条状隔离物20的延伸方向相垂直的平面内,上层202的底面宽度大于下层201的顶面宽度以使第二电极30的第一部分301与第二部分302彼此分离并且相互绝缘。
本实施例中,条状隔离物20的布局、材料和厚度与前述实施例相同,此处不再赘述。与前述实施例不同的是,本实施例在衬底基板100上设置了多个功能层,包括金属电极102、层间介质层104、第一电极106、有机发光层400。这里,衬底基板100可以采用例如玻璃、石英、塑料等透明基板。金属电极102可以由金属或合金材料制成。层间介质层104可以由绝缘材料制成,例如SiOx、SiNx等。该层间介质层104上设置有过孔,第一电极106通过 该过孔与金属电极102电连接。
本实施例中,第一电极106用作阴极,第二电极30用作阳极,有机发光层400夹在阴极和阳极之间。可以理解的是,图3b的有机发光单元的构造仅为示意性的,在本发明其他实施例中,可以省略金属电极102、层间介质层104。另外,也可以在阴极106和阳极30之间额外设置空穴注入层、空穴传输层、电子注入层、电子传输层等,从而进一步提高有机发光单元的性能。
在本实施例中,有机发光单元中阴极隔离物采用由无机绝缘层和树脂层构成的双层结构,不仅提高了机械强度,而且有利于第二电极的两个部分(第一部分301和第二部分302)彼此绝缘,从而避免了短路,提高了阴极稳定性。
根据本发明实施例再一实施例,提供一种有机发光单元的制造方法,如图4所示,该方法包括以下步骤:
S101:在衬底基板之上形成第一电极;
S102:在第一电极上形成第一材料层;
S103:在第一材料层上形成第二材料层并且图案化第二材料层以得到多个第一条状物;
S104:以多个第一条状物作为掩模刻蚀第一材料层以得到多个第二条状物,使得彼此层叠的每个第一条状物和每个第二条状物构成条状隔离物;
S105:在多个条状隔离物之间形成有机发光层;以及
S106:在基板表面形成第二电极,第二电极包括位于每个条状隔离物表面上的第一部分和位于有机发光层表面上的第二部分;第一材料层和第二材料层由不同材料制成;在与条状隔离物的延伸方向相垂直的平面内,第二材料层的底面宽度大于第一材料层的顶面宽度,并且第二材料层的底面完全覆盖第一材料层的顶面。在本申请中,表述“第二材料层的底面宽度大于第一材料层的顶面宽度”或者类似的表述是指对于每个条状隔离物而言,第二材料层的底面宽度大于第一材料层的顶面宽度。
在一个示例中,为了制造图3b所示的有机发光单元,步骤S101还可以包括在形成第一电极106之前,在衬底基板100上形成金属电极102和层间介质层104,其中层间介质层104中形成有过孔,以使第一电极106通过该过孔与金属电极102电连接。
下面以图3b有机发光单元中条状隔离物20的下层为树脂层、上层为无机绝缘层为例进一步说明该有机发光单元的制造方法。
根据本发明又一实施例,提供一种有机发光单元的制造方法,包括以下步骤:
S201:在衬底基板100上依次形成金属电极102、层间介质层104和第一电极106,其中层间介质层104设置有过孔,该金属电极102通过该过孔与第一电极106电连接。
在一个示例中,该步骤S201可包括以下步骤S201a~S201c。
S201a:在衬底基板100上形成金属薄膜,并且通过构图工艺图案化该金属薄膜以形成多个金属电极102,如图5a和5b所示。
图5a示意性示出了根据本发明实施例的基板的平面图,图5b是沿图5a的II-II线的截面图。例如,采用诸如溅射、等离子体化学气相沉积(PECVD)、蒸镀等常用镀膜工艺在衬底基板100上形成该金属薄膜。该金属薄膜可以采用金属或合金,包括但不限于钼、铝、铜、钛、钕等金属或者其合金。衬底基板100可以采用例如玻璃、石英、塑料等透明基板。金属电极102呈长条状,包括沿竖直方向延伸的多个正极和沿水平方向延伸的多个负极。正极用于导入栅极信号(正电压),例如,加载正电位,通过空穴注入层和传输层向有机发光层注入空穴;负极用于导入数据信号(负电压),加载负电位,通过电子注入层和传输层向有机发光层注入电子;最终驱动发光层发光。本文中“构图工艺”典型地包括涂覆光刻胶、曝光、显影、刻蚀、剥离等工艺步骤。为了形成特定图案,还可以在图案化时使用双色调或灰度掩模板。
S201b:在多个金属电极102上形成无机材料薄膜,并且通过构图工艺图案化该无机绝缘薄膜以形成覆盖每个金属电极的层间介质层104,其中该层间介质层104形成有多个过孔,如图6a和6b所示,图6b中仅示出了一个过孔以作为示例。
例如,该层间介质层104由无机绝缘材料制成,比如SiOx、SiNx,SiON等。
S201c:在层间介质层104上形成透明导电薄膜,并且通过构图工艺图案化该透明导电薄膜以形成多个第一电极106,如图7a和7b所示。
例如,透明导电薄膜可采用ITO(Indium tin oxide,氧化铟锡)、IZO(Indium  zinc oxide,氧化铟锌)等透明导电材料。第一电极106同时覆盖正极和负极,其中正极上的第一电极106延伸为条状电极,与多个负极的延伸方向垂直,用来加载正极信号;负极上的第一电极106仅覆盖在电极正上方,用来连接蒸镀的负极金属,加载负极信号。
上述有机发光单元的制造方法还包括:
S202:在第一电极106上形成用于第一材料层的树脂薄膜108,然后在树脂薄膜108上形成用于第二材料层的无机绝缘薄膜110,如图8所示。
例如,采用滴涂法在第一电极上涂布树脂液。该树脂液可采用热固化树脂或光固化树脂,然后光固化或热固化该树脂液,使其形成树脂薄膜108。由于上述树脂包括常用的正性、负性光刻胶、环氧树脂等,这些材料的耐温性在130℃以上,具有一定的机械强度,而且隔离效果较好,成本较低。接下来,通过PECVD法在树脂薄膜108上沉积无机绝缘薄膜110。该无机绝缘薄膜采用诸如SiNx、SiOx、SiON、AlOx等的无机绝缘材料,因此强度高;即使在旋涂后进行刮边动作时,依然不会被破坏。
例如,无机绝缘薄膜110的厚度为0.2μm~1μm,若太薄则强度不够,若太厚则存在产能和薄膜应力问题。在一些实施方式中,该厚度为0.4μm~0.6μm。树脂薄膜108的厚度为1μm~3μm,若太薄则隔离效果差,若太厚则存在材料浪费和薄膜应力问题。在一些实施方式中,该厚度为1.5μm~2μm。
S203:在无机绝缘薄膜110上形成光刻胶112,并且通过曝光、显影工艺图案化该光刻胶112以暴露部分无机绝缘薄膜,如图9所示。
S204:通过干法刻蚀工艺刻蚀暴露的部分无机绝缘薄膜以得到由无机绝缘材料制成的多个第一条状物202'(即图3中的上层202),如图10所示。
例如,在干法刻蚀中,刻蚀气体采用含氟气体和氧气的混合气体。含氟气体例如为SF6或CF4,气体流量为50sccm~800sccm,例如为350~400sccm,如果气体流量过低,那么刻蚀速率较慢,不利于量产,如果气体流量过高,那么均匀性较差。氧气的流量例如为0~300sccm,或者为100sccm~150sccm,其作用主要用于一定程度上增加刻蚀速率。在一个示例中,刻蚀气体还可以包括氦气(He),流量例如为0~200sccm,一定程度上增加刻蚀均匀性。刻蚀功率例如为200W~800W,刻蚀速率通常为
Figure PCTCN2015097728-appb-000001
例如为
Figure PCTCN2015097728-appb-000002
Figure PCTCN2015097728-appb-000003
以提高效率,过高的速度会造成均匀性变差。刻蚀时间例如为20秒至400 秒,过长的刻蚀时间会造成基板过热,发生变形。
S205:以多个第一条状物202'作为掩模通过灰化工艺处理树脂薄膜108以同时去除部分树脂薄膜和剩余的光刻胶,得到由树脂材料制成的多个第二条状物201'(即图3中的下层201),如图11a和11b所示。该第一条状物202'和第二条状物201'构成了条状隔离物20。
例如,在灰化工艺中,可利用氧气等离子体对树脂薄膜进行灰化,从而避免对第一条状物202'的损伤,同时可以去除留在第一条状物202'上的剩余光刻胶。灰化时间根据要去除的树脂薄膜的厚度以及第二条状物201'的期望宽度来确定。在本实施例中,灰化时间大约为100秒至200秒,例如为150秒。在第一条状物202'与第二条状物201'相接的界面处,第一条状物202'的宽度比第二条状物201'的宽度大,从而保证在后续蒸镀金属电极时可以在条状隔离物20处断裂。在一些实施方式中,第一条状物202'一侧的最大宽度比位于同侧的第二条状物201'的最大宽度大1μm~2μm。图12为完成步骤S205后的基板的扫描电子显微镜(SEM)图。从图中可以看出,第一条状物202'一侧的最大宽度比同一侧上第二条状物201'的最大宽度大,并且例如测量为约1.2μm。在一些实施方式中,第一条状物202'在两侧的最大宽度分别超出第二条状物201'在两侧的最大宽度1μm~2μm。
S206:在多个条状隔离物20之间形成有机发光层400。
例如,通过蒸镀法在条状隔离物20之间的空隙内沉积该有机发光层400,该有机发光层采用OLED小分子或者量子点材料,由于这些材料具有各向同性,因此可使有机发光层分别与其两侧的第二条状物201'物理接触。
S207:在基板表面形成第二电极30,第二电极30包括位于每个条状隔离物20表面上的第一部分301和位于有机发光层表面上的第二部分302,如图3a和3b所示。
例如,通过蒸镀法在基板表面上形成第二电极30,该金属可以选自镁、银、铝中的一种或几种。由于第一条状物202'的宽度大于第二条状物201'的宽度,第二电极30的第一部分301与第二部分302在沉积过程中由于第一条状物202'和第二条状物201'间非连续的界面而断开,彼此分离并且相互绝缘。本实施例中,第一电极106用作阴极,第二电极30用作阳极,有机发光层400夹在阴极和阳极之间。
在本实施例中,有机发光单元的阴极隔离物采用树脂层/无机绝缘层构成的双层结构,不仅提高了机械强度,而且有利于两个电极部分(第一部分301和第二部分302)彼此绝缘,从而避免了短路,提高了阴极稳定性。
根据本发明再一实施例,提供一种有机发光单元的制造方法,与前述实施例不同的是,本实施例中条状隔离物20的下层为无机绝缘层、上层为树脂层。该方法包括以下步骤:
S301:与步骤S201相同。
在一个示例中,步骤S301可包括S201a~S201c,如图5a至7b所示。
S302:在第一电极106上形成用于第一材料层的无机绝缘薄膜114,然后在无机绝缘薄膜上形成用于第二材料层的树脂薄膜116,如图13所示;接下来,通过曝光、显影工艺图案化该树脂薄膜116以得到由树脂材料制成的多个第一条状物202'并且暴露部分无机绝缘薄膜,如图14所示。
S303:以多个第一条状物202'作为掩模通过干法刻蚀工艺刻蚀暴露的无机绝缘薄膜114以得到由无机绝缘材料制成的多个第二条状物201',如图15所示。该第一条状物202'和第二条状物201'构成了条状隔离物20。
在干法刻蚀工艺中,刻蚀气体和上一实施例相同。
S304:与步骤S206相同。
S305:与步骤S207相同。
本实施例中,无机绝缘薄膜114与前述实施例中无机绝缘薄膜110在材料和厚度上相同。然而,本实施例中树脂薄膜采用感光树脂,例如DPI-1000,这样更有利于用作掩模,使成本降低。薄膜的形成工艺与前述实施例相同。由于第一条状物202'的宽度大于第二条状物201'的宽度,第二电极30的第一部分301与第二部分302彼此分离并且相互绝缘。
在本实施例中,有机发光单元的阴极隔离物采用无机绝缘层/树脂层构成的双层结构,不仅提高了机械强度,而且有利于两个电极部分(第一部分301和第二部分302)彼此绝缘,从而避免了短路,提高了阴极稳定性。
本发明的实施例提供的有机发光单元中的有机发光层可以是任何电致发光层,因此,本发明的实施例也涉及一种电致发光单元。此外,本发明的实施例还提供包含所述有机发光单元或者电致发光单元的显示设备。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范 围,本发明的保护范围由所附的权利要求确定。
本申请要求于2015年8月3日递交的中国专利申请第201510482988.4号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (19)

  1. 一种电极结构,包括:
    基板;
    设置在所述基板上的多个条状隔离物;和
    覆盖基板表面的电极,该电极包括位于每个条状隔离物表面上的第一部分和位于两个相邻条状隔离物之间的第二部分;
    其中,每个条状隔离物包括彼此层叠的上层和下层,所述上层和所述下层由不同材料制成;所述上层的底面完全覆盖所述下层的顶面,并且在与所述条状隔离物的延伸方向相垂直的平面内,所述上层的底面宽度大于所述下层的顶面宽度。
  2. 根据权利要求1所述的电极结构,其中所述下层的上表面高于所述电极的第二部分的上表面。
  3. 根据权利要求1或2所述的电极结构,其中所述上层的底面宽度比所述下层的底面宽度大2μm~4μm。
  4. 根据权利要求1至3中任一项所述的电极结构,其中在与所述条状隔离物的延伸方向相垂直的平面内,由所述上层和所述下层构成的叠层的截面为轴对称。
  5. 根据权利要求1至4中任一项所述的电极结构,其中所述上层和所述下层之一由树脂材料制成,另一层由无机绝缘材料制成。
  6. 根据权利要求5所述的电极结构,其中由所述无机绝缘材料制成的层的厚度为0.2μm~1μm,由所述树脂材料制成的层的厚度为1μm~3μm。
  7. 一种有机发光单元,包括:
    衬底基板;
    设置在所述衬底基板之上的第一电极;
    设置在所述第一电极上的多个条状隔离物;
    设置在相邻两个条状隔离物之间的有机发光层;和
    覆盖基板表面的第二电极,所述第二电极包括位于每个条状隔离物表面上的第一部分和位于所述有机发光层表面上的第二部分;
    其中,每个条状隔离物包括位于下层的第一材料层和位于上层的第二材 料层,所述第一材料层和所述第二材料层由不同材料制成;所述上层的底面完全覆盖所述下层的顶面,并且在与所述条状隔离物的延伸方向相垂直的平面内,所述上层的底面宽度大于所述下层的顶面宽度。
  8. 根据权利要求7所述的有机发光单元,其中所述上层的底面宽度比所述下层的底面宽度大2μm~4μm。
  9. 根据权利要求7或8所述的有机发光单元,其中所述第一材料层和所述第二材料层之一由树脂材料制成,另一层由无机绝缘材料制成。
  10. 根据权利要求9所述的有机发光单元,其中由所述无机绝缘材料制成的层的厚度为0.2μm~1μm,由所述树脂材料制成的层的厚度为1μm~3μm。
  11. 一种有机发光单元的制造方法,包括:
    在衬底基板之上形成第一电极;
    在所述第一电极上形成第一材料层;
    在所述第一材料层上形成第二材料层并且图案化所述第二材料层以得到多个第一条状物;
    以多个第一条状物作为掩模刻蚀所述第一材料层以得到多个第二条状物,使得彼此层叠的第一条状物和第二条状物构成条状隔离物;
    在多个条状隔离物之间形成有机发光层;以及
    在基板表面形成第二电极,所述第二电极包括位于每个条状隔离物表面上的第一部分和位于所述有机发光层表面上的第二部分;
    其中所述第一材料层和所述第二材料层由不同材料制成;在与所述条状隔离物的延伸方向相垂直的平面内,所述第二材料层的底面宽度大于所述第一材料层的顶面宽度,并且所述第二材料层的底面完全覆盖所述第一材料层的顶面。
  12. 根据权利要求11所述的方法,其中所述第一材料层由树脂材料制成,所述第二材料层由无机绝缘材料制成。
  13. 根据权利要求12所述的方法,其中,
    形成用于所述第一材料层的树脂薄膜,然后在所述树脂薄膜上形成用于所述第二材料层的无机绝缘薄膜;
    在所述无机绝缘薄膜上形成光刻胶,并且通过曝光、显影工艺图案化该光刻胶以暴露部分无机绝缘薄膜;以及
    通过干法刻蚀工艺刻蚀暴露的部分无机绝缘薄膜以得到由所述无机绝缘材料制成的多个第一条状物。
  14. 根据权利要求13所述的方法,其中,
    以所述多个第一条状物作为掩模通过灰化工艺处理所述树脂薄膜以同时去除部分树脂薄膜和剩余的光刻胶,得到由树脂材料制成的多个第二条状物。
  15. 根据权利要求14所述的方法,其中在所述灰化工艺中,灰化气体为氧气等离子体。
  16. 根据权利要求11所述的方法,其中所述第一材料层由无机绝缘材料制成,所述第二材料层由树脂材料制成。
  17. 根据权利要求16所述的方法,其中,
    形成用于所述第一材料层的无机绝缘薄膜,然后在所述无机绝缘薄膜上形成用于所述第二材料层的树脂薄膜,并且通过曝光、显影工艺图案化该树脂薄膜以得到由树脂材料制成的多个第一条状物并且暴露部分无机绝缘薄膜。
  18. 根据权利要求17所述的方法,其中,
    以所述多个第一条状物作为掩模通过干法刻蚀工艺刻蚀暴露的无机绝缘薄膜以得到由无机绝缘材料制成的多个第二条状物。
  19. 根据权利要求16至18中任一项所述的方法,其中所述树脂材料为感光树脂。
PCT/CN2015/097728 2015-08-03 2015-12-17 电极结构和有机发光单元及其制造方法 WO2017020481A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/126,839 US20180034007A1 (en) 2015-08-03 2015-12-17 Electrode Structure and Organic Light Emitting Unit and Manufacturing Method Thereof
EP15884917.4A EP3333922B1 (en) 2015-08-03 2015-12-17 Organic luminescence unit and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510482988.4A CN105118929B (zh) 2015-08-03 2015-08-03 电极结构和有机发光单元及其制造方法
CN201510482988.4 2015-08-03

Publications (1)

Publication Number Publication Date
WO2017020481A1 true WO2017020481A1 (zh) 2017-02-09

Family

ID=54666867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097728 WO2017020481A1 (zh) 2015-08-03 2015-12-17 电极结构和有机发光单元及其制造方法

Country Status (4)

Country Link
US (1) US20180034007A1 (zh)
EP (1) EP3333922B1 (zh)
CN (1) CN105118929B (zh)
WO (1) WO2017020481A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118929B (zh) * 2015-08-03 2018-01-02 京东方科技集团股份有限公司 电极结构和有机发光单元及其制造方法
CN106654052B (zh) * 2017-03-10 2018-11-30 江苏集萃有机光电技术研究所有限公司 有机发光二极管器件及其封装方法
US10431743B2 (en) * 2017-10-30 2019-10-01 Wuhan China Star Optoelectronics Technology Co., Ltd. Manufacturing method of an OLED anode and an OLED display device thereof
CN110767674B (zh) 2018-08-06 2022-05-17 苏州清越光电科技股份有限公司 显示面板、显示屏及显示终端
CN109830513B (zh) * 2019-01-30 2021-03-16 合肥京东方光电科技有限公司 一种阵列基板及其制备方法和显示面板
CN110034247B (zh) * 2019-04-02 2021-03-16 深圳市华星光电半导体显示技术有限公司 一种阴极隔离柱的制备方法
CN110767836B (zh) * 2019-04-12 2020-08-25 昆山国显光电有限公司 半导体结构、显示面板及其制备方法和显示终端
CN111128876B (zh) * 2019-12-23 2023-11-28 Tcl华星光电技术有限公司 一种阵列基板的制备方法
CN114203890B (zh) * 2021-12-10 2024-01-26 Tcl华星光电技术有限公司 显示面板及显示面板的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701055A (en) * 1994-03-13 1997-12-23 Pioneer Electronic Corporation Organic electoluminescent display panel and method for manufacturing the same
CN105118929A (zh) * 2015-08-03 2015-12-02 京东方科技集团股份有限公司 电极结构和有机发光单元及其制造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1416300A (en) * 1917-11-27 1922-05-16 American Chain & Cable Co Chain tire grip and tightener therefor
US5407529A (en) * 1992-03-04 1995-04-18 Nec Corporation Method for manufacturing semiconductor device
JPH10106747A (ja) * 1996-09-26 1998-04-24 Mitsubishi Electric Corp 有機エレクトロルミネッセンス表示装置およびその製法
JP3428397B2 (ja) * 1997-10-14 2003-07-22 松下電器産業株式会社 有機エレクトロルミネセンス素子及びその製造方法
US6060728A (en) * 1998-01-12 2000-05-09 Fed Corporation Organic light emitting device structure and process
DE10133684A1 (de) * 2001-07-11 2003-02-13 Osram Opto Semiconductors Gmbh Organisches, farbiges, elektrolumineszierendes Display und dessen Herstellung
DE10152919A1 (de) * 2001-10-26 2003-05-22 Osram Opto Semiconductors Gmbh Organisches elektrolumineszierendes Display
CN1181707C (zh) * 2002-11-12 2004-12-22 清华大学 一种有机电致发光器件及其制备方法
JP4206075B2 (ja) * 2003-03-17 2009-01-07 富士フイルム株式会社 有機エレクトロルミネッセンス表示装置及びその製造方法
KR100587340B1 (ko) * 2003-12-11 2006-06-08 엘지전자 주식회사 유기 el 소자의 제조방법
JP4225238B2 (ja) * 2004-04-21 2009-02-18 セイコーエプソン株式会社 有機el装置の製造方法及び有機el装置並びに電子機器
JP2006164708A (ja) * 2004-12-06 2006-06-22 Semiconductor Energy Lab Co Ltd 電子機器および発光装置
GB0517195D0 (en) * 2005-08-23 2005-09-28 Cambridge Display Tech Ltd Molecular electronic device structures and fabrication methods
JP2009021477A (ja) * 2007-07-13 2009-01-29 Sony Corp 半導体装置およびその製造方法、ならびに表示装置およびその製造方法
KR102015971B1 (ko) * 2010-12-28 2019-08-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 유닛, 발광 장치, 조명 장치, 및 발광 유닛의 제작 방법
CN102881836A (zh) * 2012-09-27 2013-01-16 彩虹集团公司 一种有机发光器件阴极隔离装置及其制作方法
KR102227455B1 (ko) * 2013-10-08 2021-03-11 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701055A (en) * 1994-03-13 1997-12-23 Pioneer Electronic Corporation Organic electoluminescent display panel and method for manufacturing the same
CN105118929A (zh) * 2015-08-03 2015-12-02 京东方科技集团股份有限公司 电极结构和有机发光单元及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3333922A4 *

Also Published As

Publication number Publication date
EP3333922A1 (en) 2018-06-13
EP3333922B1 (en) 2022-02-16
CN105118929B (zh) 2018-01-02
CN105118929A (zh) 2015-12-02
US20180034007A1 (en) 2018-02-01
EP3333922A4 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
WO2017020481A1 (zh) 电极结构和有机发光单元及其制造方法
KR102660896B1 (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
CN109360900B (zh) 一种显示面板及其制作方法
US10916600B2 (en) Flexible touch control display screen and method for manufacturing same
KR102603867B1 (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
CN110416269B (zh) 一种显示面板和显示面板的制作方法
US11469374B2 (en) Organic light-emitting display apparatus and method of manufacturing the same
WO2019042299A1 (zh) Oled显示母板及其制备方法、oled显示面板的制备方法及其oled显示装置
WO2016176956A1 (zh) 有机发光显示面板及其制备方法、显示装置
JP5720054B2 (ja) 表示パネル装置および表示パネル装置の製造方法
US10930875B2 (en) Organic light-emitting display apparatus and method of manufacturing the same
JP2022126730A (ja) 有機発光表示装置
US11335870B2 (en) Display substrate and preparation method thereof, and display device
WO2016000342A1 (zh) 阵列基板及其制作方法、显示装置
KR20140042698A (ko) 유기 발광 다이오드, 터치 디스플레이 장치 및 그의 제조 방법
WO2019041829A1 (zh) 薄膜晶体管及制作方法、显示基板及制作方法、显示装置
KR20120078642A (ko) 전극 및 이를 포함하는 전자소자
WO2018036258A1 (zh) Oled器件及制作方法、显示面板以及显示装置
CN109103235B (zh) 有机发光二极管显示面板及其制作方法、显示装置
JP2006002243A (ja) マスク、マスクの製造方法、成膜方法、電子デバイス、及び電子機器
KR100768715B1 (ko) 유기 전계 발광 소자 및 그 제조방법
CN110310921B (zh) 一种显示基板及其制作方法、显示面板及显示装置
KR100612118B1 (ko) 다층 구조의 격벽 구조물을 포함하는 유기 전계발광소자및 그의 제조 방법
WO2022236559A1 (zh) 显示基板、电子装置及显示基板的制作方法
KR100773938B1 (ko) 유기 발광 소자의 제조 방법

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2015884917

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015884917

Country of ref document: EP