WO2016176956A1 - 有机发光显示面板及其制备方法、显示装置 - Google Patents

有机发光显示面板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2016176956A1
WO2016176956A1 PCT/CN2015/091053 CN2015091053W WO2016176956A1 WO 2016176956 A1 WO2016176956 A1 WO 2016176956A1 CN 2015091053 W CN2015091053 W CN 2015091053W WO 2016176956 A1 WO2016176956 A1 WO 2016176956A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
luminescent material
metal layer
pixel defining
organic light
Prior art date
Application number
PCT/CN2015/091053
Other languages
English (en)
French (fr)
Inventor
刘利宾
许晓伟
李良坚
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/122,887 priority Critical patent/US9991322B2/en
Publication of WO2016176956A1 publication Critical patent/WO2016176956A1/zh
Priority to US15/920,669 priority patent/US10332946B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment

Definitions

  • the present invention relates to the field of display, and in particular to an organic light emitting display panel and a method of fabricating the same, and a display device provided with the organic light emitting display panel.
  • OLED Organic Light Emitting Diode
  • OLED has no self-illumination, no backlight, high contrast, thin thickness, wide viewing angle, fast response, flexible panel, wide temperature range, construction and process Simple features such as simplicity are considered to be emerging technologies for next-generation flat panel displays.
  • the OLED display panel comprises a substrate, an ITO (Indium Tin Oxide) anode, an illuminating layer and a cathode, and the illuminating principle is: under the action of voltage, holes and electrons are combined in the luminescent layer to a lower energy band. On the top, the photons with the same energy and energy gap are emitted, and the wavelength (light emission color) depends on the energy gap of the light-emitting layer.
  • the luminescent layer is usually fabricated by inkjet printing technology, and a Photo Defined Layer (PDL) needs to be formed on the substrate in advance to limit the precise injection of ink droplets into a specified pixel area.
  • PDL Photo Defined Layer
  • the PDL layer is usually formed by a photolithography process of an organic material film, a large exposure amount is required to ensure no residue, resulting in a large critical dimension deviation (CD bias) (about 2.0 ⁇ m).
  • CD bias critical dimension deviation
  • the organic material film needs to undergo a curing process after film formation, and the curing process causes the organic material to shrink, so that the critical dimension deviation is further increased.
  • the CD Crohn's Dimension, CD for short
  • the critical dimension deviation ie, the CD (After etch inspection CD) detected after etching, minus the developed CD (After develop inspection CD) is used to characterize the etching amount and etching uniformity.
  • Important data parameters can be simply understood as the deviation of the etch design value from the actual etch value, ie the etch bias.
  • the technical problem to be solved by the present invention is to provide an organic light emitting display panel, a preparation method thereof, and a display device, which can reduce the key dimension deviation of the pixel defining layer and improve the display Display uniformity of the display panel.
  • An embodiment of the present invention provides an organic light emitting display panel, including: a pixel defining layer, the pixel defining layer is provided with a plurality of luminescent material filling domains, and further includes: a metal layer disposed on the pixel defining layer; The metal layer is provided with openings that correspond one-to-one with the luminescent material filling domains.
  • the width of the opening is greater than the opening width of the luminescent material fill domain.
  • the distance from the edge of the opening to the edge of the luminescent material filling domain on the same side is 1 to 3 ⁇ m.
  • the organic light emitting display panel further includes: filling a luminescent material in the luminescent material filling domain, and respectively providing a second electrode and a first electrode in electrical contact with the luminescent material above and below the luminescent material.
  • the second electrode is laminated on the metal layer and in parallel with the metal layer.
  • the second electrode is a cathode.
  • the metal layer is made of one or more of the following materials: silver, aluminum, copper, nickel, chromium, and platinum.
  • the pixel defining layer is made of one or more of the following materials: polyimide, silicon oxide, and silicon nitride.
  • the surface of the metal layer is hydrophobic.
  • the embodiment of the present invention further provides a display device, comprising: the organic light emitting display panel according to any one of the above.
  • An embodiment of the present invention further provides a method for fabricating an organic light emitting display panel, comprising: forming a first electrode; forming a pixel defining material layer and performing curing; forming a patterned metal layer, wherein the metal layer is formed with a predetermined light emitting a material-filling domain-to-one opening; through a patterning process, a pixel defining material layer under the opening forms a luminescent material filling domain; filling the luminescent material and forming a second electrode.
  • the width of the opening is greater than the opening width of the luminescent material fill domain.
  • the forming the patterned metal layer is: directly forming a patterned metal layer by performing evaporation under the mask of the mask; or forming a metal material layer first, and then forming a pattern by a patterning process.
  • Metal layer is: directly forming a patterned metal layer by performing evaporation under the mask of the mask; or forming a metal material layer first, and then forming a pattern by a patterning process.
  • Metal layer is: directly forming a patterned metal layer by performing evaporation under the mask of the mask; or forming a metal material layer first, and then forming a pattern by a patterning process.
  • Metal layer is: directly forming a patterned metal layer by performing evaporation under the mask of the mask; or forming a metal material layer first, and then forming a pattern by a patterning process.
  • the pixel defining a material layer under the opening by a patterning process Forming a luminescent material filling domain, comprising: coating a photoresist and performing exposure and development; performing dry etching to remove the pixel defining material at the exposed portion to form a luminescent material filling domain; and stripping the photoresist.
  • the pixel defining layer is made of polyimide;
  • the etching gas used in the dry etching mainly includes oxygen, and further includes CF 4 or SF 6 for adjusting the etching slope angle, or CF 4 and SF 6 mixed gas.
  • the pixel defining material layer when the pixel defining material layer is made of a photosensitive material, the pixel defining material layer under the opening forms a luminescent material filling domain by a patterning process, including: coating a photoresist and performing exposure; stripping the photoresist And removing the pixel defining material at the exposure by ashing to form a luminescent material filling domain.
  • the step of forming the first electrode further comprising: forming an active layer, a gate insulating layer, a gate metal layer, and a source/drain metal layer of the thin film transistor on the substrate; on the substrate on which the thin film transistor is formed, A step of forming an interlayer insulating layer and via holes.
  • the invention provides a display panel, a preparation method thereof, and a display device.
  • a patterned metal layer is disposed on the pixel defining layer, and the metal layer is provided with an opening corresponding to the filling field of the luminescent material in the pixel defining layer.
  • the above metal layer and the photoresist together can be used as a mask of the pixel defining layer, which can reduce the key dimension deviation of the pixel defining layer (refer to the comparative test data in the implementation part, for example). Improve display uniformity.
  • FIG. 1 is a front plan view of a pixel defining layer and a metal layer on an organic light emitting display panel according to an embodiment of the present invention
  • Figure 2 is a cross-sectional structural view of Figure 1 taken along the line A-A';
  • FIG. 3 is a flowchart of a method for fabricating an organic light emitting display panel according to an embodiment of the present invention
  • FIG. 4 is a schematic cross-sectional structural view of an organic light emitting display panel according to an embodiment of the present invention.
  • 5(a) to 5(j) are schematic diagrams showing a process of preparing an organic light emitting display panel according to an embodiment of the present invention.
  • Embodiments of the present invention provide an organic light emitting display panel, a method for fabricating the same, and a display device, which can reduce key dimension deviation of a pixel defining layer and improve display uniformity.
  • the backplane includes a pixel defining layer 12, and the pixel defining layer 12 is provided with a plurality of luminescent material filling domains 121, and further includes: The pixel defines a metal layer 13 over the layer 12; the metal layer 13 is provided with an opening 131 in one-to-one correspondence with the luminescent material filling domain 121.
  • the organic light-emitting display panel generally includes at least a substrate, an ITO (Indium Tin Oxide) anode 11, a luminescent material, a cathode, and the like (only the film layers related to the present invention are shown in FIGS. 1 and 2, such as the pixel defining layer 12 and The metal layer 13), wherein the luminescent material is formed in the luminescent material filling domain 121 in the pixel defining layer 12.
  • the metal layer 13 is overlaid on the pixel defining layer 12, and an opening 131 (ie, a patterned metal layer 13) corresponding to the luminescent material filling field 121 is disposed thereon, and the corresponding portion is preferably the upper layer.
  • the opening 131 of the metal layer 13 is in one-to-one correspondence with the opening of the lower luminescent material filling domain 121.
  • the metal layer 13 is provided with the opening 131 for the purpose of reducing the key of the pixel defining layer 12 when the pixel defining layer 12 is etched to form the luminescent material filling region 121, and the metal layer 13 can be used as a mask of the pixel defining layer 12.
  • the dimensional deviation so that the size reserved for the critical dimension deviation can be designed to be smaller, the footprint of the luminescent material filling field 121 on the panel will be relatively large, and the display uniformity can be improved.
  • the metal layer 13 of the present embodiment has an opening 131, that is, the metal layer 13 has a hollow structure at a position corresponding to the luminescent material filling region 121.
  • the opening 131 of the metal layer 13 is larger, that is, the corresponding distribution range of the opening 131. It is larger than the range corresponding to the luminescent material filling domain 121.
  • the range corresponding to the luminescent material filling field 121 is determined by the opening size. That is, it is generally ensured that the corresponding distribution range of the opening 131 is larger than the opening range of the luminescent material filling field 121.
  • a person skilled in the art can set the size of the opening 131 of the metal layer 13 according to the actual situation, specifically to ensure that the metal layer 13 is not short-circuited with the electrode at the bottom of the luminescent material filling field 121.
  • the corresponding distribution range of the opening 131 can be measured by the width of the opening in a certain direction, that is, to avoid short circuit, the opening width of the opening 131 is larger than the opening width of the luminescent material filling field 121.
  • the opening width of the metal layer 13 is M
  • the opening width of the luminescent material filling field 121 is T.
  • the edge of the opening of the metal layer 13 is located.
  • the organic light emitting display panel further includes: a luminescent material filled in the luminescent material filling domain 121, respectively disposed above and below the luminescent material, and a second electrode and a first two electrode electrically contacting the luminescent material, the metal Layer 13 can be in parallel with the first electrode or the second electrode.
  • the metal layer 13 in this embodiment may be connected in parallel with the first electrode or the second electrode to lower the resistance of the electrode. Due to the complexity of the LTPS (Low Temperature Poly-silicon) process, if the method of adding the auxiliary line and the electrode in parallel in other layers causes the short circuit probability to increase, the present embodiment utilizes the pixel to define the metal layer on the layer 12. As a parallel resistance, the pixel defining layer 12 can simultaneously perform an insulation function, which can reduce the probability of short circuit.
  • LTPS Low Temperature Poly-silicon
  • the metal layer 13 in this embodiment may be directly stacked above or below the first electrode (or the second electrode), or another intermediate film may be interposed between the metal layer 13 and the first electrode (or the second electrode).
  • the metal layer 13 is connected in parallel by vias penetrating these intermediate film layers.
  • the first electrode and the second electrode in this embodiment are both an anode and the other is a cathode.
  • the metal layer 13 can be connected in parallel with the cathode or the anode to serve as a parallel resistance for reducing the resistance of the electrode.
  • the metal layer 13 is selected in parallel with the second electrode located above the luminescent material because the second electrode is located above the luminescent material and is often in the form of a full film overlay for direct overlay by the metal layer 13.
  • the parallel connection is achieved in a manner on the metal layer 13, without the need to add additional steps to achieve parallel connection.
  • the above metal layer 13 may be made of one or more of the following materials: silver, aluminum, copper, nickel, chromium, and platinum.
  • the specific implementation is not limited to the above metal, as long as the resistivity is sufficiently small to be full
  • the design of the foot is sufficient, and the metal layer 13 in the embodiment is not limited to be specifically formed by using the above metal material.
  • the metal layer 13 may be separately formed by one of the above metal materials; two of the above metal materials may also be used.
  • the metal layer 13 may be formed of an alloy or two or more kinds of materials; the metal layer 13 may also be composed of a plurality of layers of a film, each of which is formed of one or more of the above metals.
  • the above pixel defining layer 12 may be made of one or more of the following materials: polyimide, silicon oxide, and silicon nitride. Similarly, the present embodiment does not limit how to form the pixel defining layer 12 in this embodiment by using the above materials. One of the above materials may separately form the element defining layer 12; or the pixel defining layer 12 may be superposed by the multilayer film. Composition, each of which is formed from one or more of the materials described above.
  • the top layer of the pixel defining layer 12 of the embodiment is provided with a metal layer 13, preferably, the surface of the metal layer 13 is hydrophobic, or is formed by using a hydrophobic material or the surface is subjected to hydrophobic treatment, and the existing luminescent material is obtained.
  • the luminescent material can form droplets and flow into the luminescent material filling domain 121, which can reduce the cost and facilitate mass production.
  • the embodiment of the invention further provides a method for preparing an organic light emitting display panel. As shown in FIG. 3, the method includes:
  • the main component of the organic light-emitting display panel is a light-emitting device, and its main structure is formed by sandwiching two electrodes with an electroluminescent material (also referred to as a light-emitting material in this embodiment), and currently mainly consists of a thin and transparent semiconductor.
  • the characteristic indium tin oxide (ITO), together with another metal anode, is sandwiched between two (indium tin oxide and metal anode) to form a sandwich-like structure.
  • the first electrode of the light-emitting device is formed in this step, and is generally formed by using a film-forming method and then using a photolithography technique.
  • the specific implementation of the step in the embodiment of the present invention is not limited, and may be a technology in the field. Any implementation known to the person.
  • This step is a film forming process of the pixel defining layer 12, and any film forming method such as coating, vapor deposition, sputtering, or chemical vapor deposition may be employed.
  • the metal layer 13 is formed with an opening 131 corresponding to a predetermined luminescent material filling domain;
  • the metal layer 13 is patterned to form the metal layer 13 and the predetermined luminescent material.
  • the filling step can be performed by using a method of performing vapor deposition under the shielding of the mask to form a patterned metal layer directly; or, first, forming a metal material layer and then adopting a patterning process. A patterned metal layer is formed.
  • the latter method generally adopts a photolithography process, first coating a photoresist, and performing exposure and development to form a window in which a photoresist is completely peeled off in a predetermined opening region, and then selecting a metal layer exposed by a suitable etching solution at the window. 13 etching is performed to form the opening 131.
  • the pixel defining material layer under the opening 131 forms a luminescent material filling domain 121;
  • the pixel defining material layer is patterned to form the luminescent material filling region 121, which can also be completed by a photolithography process, except that the step is generally dry etching, where dry etching includes but is not limited to sputtering. And ion beam milling, reactive ion reactive ion etching (RIE), high density plasma etching (HDP), plasma etching (Plasma Etching) and high pressure plasma etching.
  • dry etching includes but is not limited to sputtering.
  • RIE reactive ion reactive ion etching
  • HDP high density plasma etching
  • Plasma Etching plasma etching
  • high pressure plasma etching high pressure plasma etching
  • the step generally includes: coating the photoresist and performing exposure and development, and the exposed area is in one-to-one correspondence with the opening 131 on the metal layer 13; performing dry etching to remove the pixel defining material at the exposed portion to form a luminescent material filling field 121, dry engraving
  • the etching gas used also includes a component for adjusting the etching slope angle to reduce the step difference, so as to avoid the film layer (such as the layer where the second electrode is located) is broken due to excessive step difference; gum.
  • the step may further select not to perform dry etching, specifically comprising: coating the photoresist and performing exposure; stripping the photoresist, and removing the pixel defining material at the exposure by ashing, A luminescent material fill domain 121 is formed.
  • the opening width of the luminescent material filling region 121 formed in this step is smaller than the opening width of the opening 131 of the metal layer.
  • the above exposed area should not exceed the preset range of the luminescent material filling field 121.
  • the patterned metal layer formed in step 103 can function as an occlusion, contributing to the final reduction of the critical dimension deviation of the pixel defining layer 12.
  • the luminescent material filling field 121 is filled with the luminescent material, and specifically, vapor deposition or printing may be employed, but the specific implementation is not limited thereto.
  • a second electrode is also formed in this step, which is substantially similar to the prior art and will not be described in detail herein.
  • the method for fabricating the organic light-emitting display panel of the present embodiment further includes: forming an active layer, a gate insulating layer, a gate metal layer, and a source/drain metal of the thin film transistor on the substrate before the step of forming the first electrode a step of forming a layer; and forming a layer insulating layer and a via hole on the substrate on which the thin film transistor is formed.
  • a process such as encapsulation is further included.
  • the metal layer 13 is disposed on the pixel defining layer 12, and the pixel defining material layer is deposited first, and then the patterned metal layer 13 (ie, the metal layer with the opening 131) is formed, and then the self-metal layer is used.
  • the method of dry etching at the opening 131 forms the luminescent material filling domain 121, which can reduce the critical dimension deviation; in addition, the second electrode is laminated with the metal layer 13, and the metal layer 13 can also serve as a parallel resistance of the electrode to lower the electrode resistance.
  • an organic light emitting display panel includes: a substrate 10, a transition layer 101 sequentially disposed on the substrate 10, and a patterned active layer 102 (a trench for forming a TFT) a gate insulating layer 103 and a patterned gate metal layer 104 (including a gate of the TFT, a gate line, and other wirings in the driver circuit to be implemented in the layer); the gate metal An insulating layer 105 is deposited on the layer 104, and a patterned source/drain electrode layer 106 is formed thereon.
  • the source/drain electrode layer 106 includes a source, a drain, a data signal line of the TFT, and other components in the driving circuit.
  • the realized connection, the source and the drain of the TFT are respectively connected to the active layer 102 through via holes in the insulating layer 105; the flat layer 108 and the interlayer insulating layer 107 are disposed on the source/drain electrode layer 106 to reduce the step difference and realize Interlayer insulation; an anode 11 is disposed on the interlayer insulating layer 107, the anode 11 is connected to the drain of the driving TFT through the via hole, and the pixel defining layer 12 is disposed above the anode 11, and the pixel defining layer 12 is disposed at a position corresponding to the anode 11.
  • luminescent material filling field 121 There is a luminescent material filling field 121, and the luminescent material filling field 121 is filled
  • Light emitting material 14; 12 on the pixel defining layer 13 are sequentially provided, a cathode layer 15, and other packaging (encapsulating film layer not shown in the drawing) of the metal layer.
  • the metal layer 13 in this embodiment is silver or aluminum
  • the pixel defining layer 12 is made of polyimide (PI)
  • the active layer 102 is made of amorphous silicon material
  • the cathode material layer ie, the cathode of the light emitting device 15) is laminated on the metal layer 13 and in parallel with the metal layer 13 .
  • Step 1 sequentially forming a transition layer 101, an amorphous silicon layer P-Si layer (corresponding to the active layer 102 in the figure), a gate insulator layer 103 (GI), and a gate on the glass substrate.
  • FIG. 5(a) a layer of Ag or Al metal (corresponding to the metal film 130 in the figure) is formed by a sputtering process, as shown in FIG. 5.
  • (b) is shown.
  • the organic light-emitting display panel is manufactured in the direction indicated by the arrow in the drawing, and the arrangement order of FIGS. 5(a) to 5(j) is also determined.
  • Step 2 forming an opening 131 pattern corresponding to the luminescent material filling domain 121 on the metal film 130 (ie, Ag or Al metal) by a patterning process.
  • a metal is first deposited and then a photoresist 200 is coated on the metal layer, and exposure, development, and etching are performed, as shown in FIG. 5(c).
  • the etching step etches Ag or Al metal by a wet etching process, and the selected etching liquid should contain phosphoric acid, acetic acid, nitric acid, other additives, water and the like, and the etching time can be set according to different equipments. Done, do not ask here.
  • Step 3 performing a photoresist coating process on the photoresist 200 again to form a photoresist 300, as shown in FIG. 5(d); performing an exposure and development step to form a window for completely removing the photoresist, as shown in FIG. 5(e); then the pixel defining material layer 120 is dry-etched from the window, as shown in Figure 5(f).
  • the etching gas is mainly oxygen.
  • the slope angle can be adjusted by adding CF 4 or SF 6 in an appropriate amount.
  • the pressure, power and time of etching can be adjusted according to different equipments, and no requirement is made here.
  • the adjustment of the slope angle of the pixel defining layer 12 is to increase the bombardment by increasing the CF 4 or SF 6 gas, so that the slope angle can be changed and the step difference can be adjusted.
  • Step 4 then, as shown in FIG. 5(j), the photoresists 200 and 300 are peeled off, and the subsequent process is continued to complete the panel fabrication.
  • Experiment 1 uses PI to produce key size figures (prior art). Table 1 shows that the pattern formed by experiment 1 is used to measure key size patterns at seven different positions. Compared with the design values, the Bias data is obtained, and the minimum value is 1.51 ⁇ m. 2.73, the average value is 2.00 ⁇ m.
  • Experiment 2 According to the pixel defining layer and the metal layer forming method mentioned in the embodiment of the present invention (see steps 1 to 3), a key dimension pattern is formed, wherein various process parameters and experiment 1 of the PI film layer fabrication and photolithography are performed. The exact same, the PI graphics are exactly the same.
  • Table 2 shows the Bias data measured and calculated at 7 different positions in the graph formed in Experiment 2, with a minimum value of 1.35 ⁇ m, a maximum value of 2.63, and an average value of 1.94 ⁇ m.
  • the structure of the organic light-emitting display panel provided by the embodiment and the manufacturing method thereof can reduce the key dimension deviation of the pixel defining layer from 2.0 ⁇ m to 1.94 ⁇ m, and the aperture ratio and display uniformity are correspondingly corresponding. improve.
  • the embodiment of the invention further provides a display device comprising any of the above organic light emitting display panels, which can reduce the key dimension deviation of the pixel defining layer, thereby improving the aperture ratio and display uniformity; and simultaneously connecting the metal layer and the electrode in parallel
  • the electrode resistance value can be reduced, the power consumption of the display device can be reduced, and the manufacturing process is simple, and no additional parallel line of the motor for reducing the resistance value of the electrode can be required, which can reduce the cost and facilitate mass production.
  • the display device can For: OLED panels, electronic paper, mobile phones, tablets, televisions, monitors, notebook computers, digital photo frames, navigators and other products or components with display functions.
  • the preparation process of the light-emitting layer of the organic light-emitting display panel is taken as an example, the application of the present invention is not limited thereto, and the present invention can be widely applied to the need to reduce the critical dimension deviation of a certain layer and the layer.
  • the scene on which the metal layer can be designed is taken as an example, the application of the present invention is not limited thereto, and the present invention can be widely applied to the need to reduce the critical dimension deviation of a certain layer and the layer. The scene on which the metal layer can be designed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种有机发光显示面板及其制备方法、显示装置,可以减小像素界定层的关键尺寸偏离,提高显示均匀性。有机发光显示面板,包括:像素界定层(12),像素界定层(12)设置有多个发光材料填充域(121),还包括:设置在像素界定层(12)之上的金属层(13);金属层(13)设置有与发光材料填充域(121)一一对应的开口(131)。

Description

有机发光显示面板及其制备方法、显示装置 技术领域
本发明涉及显示领域,尤其涉及一种有机发光显示面板及其制备方法,以及设置有该有机发光显示面板的显示装置。
背景技术
有机发光显示(Organic Light Emitting Diode,OLED)由于同时具备自发光,不需背光源、对比度高、厚度薄、视角广、反应速度快、可用于挠曲性面板、使用温度范围广、构造及制程简单等优异特性,被认为是下一代平面显示器的新兴技术。
OLED显示面板包括基板、ITO(Indium Tin Oxide,铟锡氧化物)阳极、发光层和阴极等,其发光原理为:在电压作用下,空穴与电子在发光层复合掉到较低的能带上,放出能量与能隙相同的光子,其波长(发光颜色)取决于发光层的能隙大小。其中,发光层的制作通常采用喷墨打印技术,需要预先在基板上制作像素界定层(Photo Define Layer,PDL),以限定墨滴精确的喷入指定的像素区域。但是,由于PDL层是通常由有机材料膜采用光刻工艺形成,为保证无残留需要大的曝光量,导致关键尺寸偏离差(Critical Dimension bias,CD bias)较大(约2.0μm)。另外,有机材料膜成膜后还需要经历固化过程,而固化过程会导致有机材料收缩,使得关键尺寸偏差进一步加大。
上述叙述中的CD(Critical Dimension,简称:CD)即关键尺寸,为评估及控制集成电路光掩模制造及光刻工艺的图形处理精度,而特别设计的一种反映集成电路特征线条宽度的专用线条图形。而关键尺寸偏差即蚀刻后检测到的CD(After etch inspection CD)减去蚀刻前检测到的显影CD(After develop inspection CD),用于表征刻蚀量和刻蚀均一性,是生产过程中非常重要的数据参数,可简单理解成蚀刻设计值与蚀刻实际值的偏差,即刻蚀偏差。
发明内容
本发明所要解决的技术问题在于提供一种有机发光显示面板及其制备方法、显示装置,可以减小像素界定层的关键尺寸偏差,提高显 示面板的显示均匀性。
为达到上述目的,本发明的实施例采用如下技术方案:
本发明实施例提供一种有机发光显示面板,包括:像素界定层,所述像素界定层设置有多个发光材料填充域,还包括:设置在所述像素界定层之上的金属层;所述金属层设置有与所述发光材料填充域一一对应的开口。
优选地,所述开口的宽度大于所述发光材料填充域的开口宽度。
优选地,所述开口的边沿到位于同一侧的所述发光材料填充域的边沿的距离为1~3μm。
所述有机发光显示面板,还包括:在所述发光材料填充域中填充发光材料,分别在所述发光材料的上方和下方设置与所述发光材料电接触的第二电极和第一电极。
可选地,所述第二电极层叠于所述金属层之上,并与所述金属层并联。
可选地,所述第二电极为阴极。
可选地,所述金属层采用下述材料中的一种或多种制成:银、铝、铜、镍、铬和铂。
可选地,所述像素界定层采用下述材料中的一种或多种制成:聚酰亚胺、硅氧化物和硅氮化物。
优选地,所述金属层的表面具有疏水性。
本发明实施例还提供一种显示装置,包括:上述任一项所述的有机发光显示面板。
本发明实施例还提供一种有机发光显示面板的制备方法,包括:形成第一电极;形成像素界定材料层并进行固化;形成图案化的金属层,所述金属层形成有与预设的发光材料填充域一一对应的开口;通过构图工艺,在所述开口下方的像素界定材料层形成发光材料填充域;填充发光材料以及形成第二电极。
优选地,所述开口的宽度大于所述发光材料填充域的开口宽度。
优选地,所述形成图案化的金属层,具体为:采用在掩模板的遮挡下进行蒸镀的方法,直接形成图案化的金属层;或者,先形成金属材料层,再通过构图工艺形成图案化的金属层。
可选地,所述通过构图工艺,在所述开口下方的像素界定材料层 形成发光材料填充域,包括:涂敷光刻胶并进行曝光、显影;进行干刻去除曝光处的像素界定材料,形成发光材料填充域;剥离光刻胶。
可选地,所述像素界定层采用聚酰亚胺制成;干刻时采用的刻蚀气体主要包括氧气,还包括用于调整刻蚀坡度角的CF4或者SF6,或者CF4与SF6的混合气体。
可选地,像素界定材料层采用感光性材料时,所述通过构图工艺在所述开口下方的像素界定材料层形成发光材料填充域,包括:涂敷光刻胶并进行曝光;剥离光刻胶,并通过灰化处理去除曝光处的像素界定材料,形成发光材料填充域。
可选地,在形成第一电极的工序之前,还包括:在基板上形成薄膜晶体管的有源层、栅绝缘层、栅金属层和源漏金属层的工序;在形成薄膜晶体管的基板上,形成层间绝缘层及过孔的工序。
本发明提供一种显示面板及其制备方法、显示装置,在像素界定层之上设置一层图案化的金属层,该金属层设置有与像素界定层中发光材料填充域一一对应的开口,在对像素界定层进行构图时,上述金属层和光刻胶一起可作为像素界定层的掩模使用,可以减小像素界定层的关键尺寸偏差(具体可见实施实施部分中的对比试验数据),提高显示均匀性。
附图说明
图1为本发明实施例提供的有机发光显示面板上像素界定层及金属层的正面俯视图;
图2为图1沿A-A’方向的剖面结构示意图;
图3为本发明实施例提供的有机发光显示面板的制备方法流程图;
图4为本发明实施例提供的有机发光显示面板的截面结构示意图;
图5(a)~图5(j)为本发明实施例提供的有机发光显示面板的制备过程示意图。
附图标记说明
10-基板,101-过渡层,102-有源层,103-栅绝缘层,104-栅金属层,
105-绝缘层,106-源漏电极层,107-平坦层,108-层间绝缘层,
11-阳极,12-像素界定层,121-发光材料填充域,13-金属层,
14-发光材料,15-阴极,120-像素界定材料层,130-金属膜,
200-光刻胶,300-光刻胶。
具体实施方式
本发明实施例提供一种有机发光显示面板及其制备方法、显示装置,可以减小像素界定层的关键尺寸偏差,提高显示均匀性。
下面结合附图对本发明实施例进行详细描述。此处所描述的具体实施方式仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供一种有机发光显示面板,如图1和图2所示,该背板包括:像素界定层12,像素界定层12设置有多个发光材料填充域121,还包括:设置在像素界定层12之上的金属层13;金属层13设置有与发光材料填充域121一一对应的开口131。
有机发光显示面板一般至少包括基板、ITO(Indium Tin Oxide,铟锡氧化物)阳极11、发光材料和阴极等(图1、2中仅示出本发明相关的膜层,如像素界定层12和金属层13),其中,发光材料形成于像素界定层12中的发光材料填充域121中。本实施例金属层13覆于像素界定层12上,并且其上设置有与发光材料填充域121一一对应的开口131(即图案化的金属层13),此处的对应最好是上层的金属层13的开口131与下层发光材料填充域121的开口保持中心一一对应。上述金属层13设置开口131目的在于:在对像素界定层12进行刻蚀形成发光材料填充域121时,金属层13可作为像素界定层12的掩模使用,从而减小像素界定层12的关键尺寸偏差,这样设计时为关键尺寸偏差预留的尺寸可以设计得小些,发光材料填充域121在面板上的占用空间会相对变大,显示均匀性从而得以提高。
本实施例所述金属层13存在开口131,即金属层13在对应于发光材料填充域121的位置存在镂空结构。
需要注意的是,金属层13与像素界定层12的图形越是一致,越能减小像素界定层12的关键尺寸偏差,但发光材料填充域121的底部设置有电极(如图中的阳极11),为避免金属层13延伸到发光材料填充域121内而与底部的电极接触而发生短路,优选地,需将金属层13的开口131要设计的大些,即开口131的对应的分布范围大于发光材料填充域121对应的范围。具体实施时发光材料填充域121如果是开口窄底部宽的结构,发光材料填充域121对应的范围以其开口大小为准, 即这时一般是保证开口131的对应的分布范围大于发光材料填充域121的开口范围。本领域技术人员可以根据实际情况对金属层13的开口131大小进行设置,具体以能保证金属层13不与发光材料填充域121底部的电极发生短路为准。
具体实施时,开口131的对应的分布范围可以通过某一方向上的开口宽度进行衡量,即为避免短路,开口131的开口宽度大于发光材料填充域121的开口宽度。如图2所示,在图1的AA’方向,金属层13的开口宽度为M,发光材料填充域121的开口宽度为T,在现有工艺水平下,金属层13开口处的边沿到位于同一侧的发光材料填充域121边沿的距离L(L=T-M)一般设置为1~3μm,其中L设置为2μm为最佳,既能保证不发生短路,又能最大程度减小像素界定层12的关键尺寸偏差。
进一步地,上述有机发光显示面板还包括:在发光材料填充域121中填充的发光材料,分别在发光材料的上方和下方设置,与发光材料电接触的第二一电极和第一二电极,金属层13可与第一电极或第二电极并联。
本实施例中的金属层13可与第一电极或第二电极并联,以降低电极的阻值。由于LTPS(Low Temperature Poly-silicon,低温多晶硅技术)工艺的复杂性,如果在其他层增加辅助线与电极并联的方法会导致短路几率增大,而本实施例利用像素界定层12上的金属层13作为并联电阻,像素界定层12同时能起到绝缘作用,可降低短路几率。
本实施例中的金属层13可以直接层叠在第一电极(或第二电极)的上方或下方,也可以是金属层13与第一电极(或第二电极)之间间隔有其它中间膜,金属层13通过贯穿这些中间膜层的过孔实现并联。本实施例中的第一电极和第二电极其一为阳极,另一则为阴极,金属层13可以与阴极或阳极并联,充当并联阻值,用以降低电极的电阻。但优选地,金属层13选择与位于发光材料的上方的第二电极并联,其原因在于,第二电极位于发光材料的上方,且往往是整层膜覆盖形式存在,便于通过金属层13直接叠加在金属层13上的方式实现并联,不需要为实现并联而额外增加工序。
上述金属层13可采用下述材料中的一种或多种制成:银、铝、铜、镍、铬和铂。具体实施不限于上述金属,只要是电阻率足够小,能满 足设计要求即可,并且对具体如何利用上述金属材料形成本实施例中金属层13也不做限定,可以上述金属材料中的一种单独形成金属层13;也可以使用上述金属材料中的两种或两种以上的材料以合金的形成金属层13;金属层13还可以由多层膜叠加构成,其中的每一层膜为上述金属中的一种或多种材料形成。
上述像素界定层12可采用下述材料中的一种或多种制成:聚酰亚胺、硅氧化物和硅氮化物。同样,本实施例对具体如何利用上述材料形成本实施例中像素界定层12也不做限定,可以上述材料中的一种单独形成素界定层12;也可以像素界定层12由多层膜叠加构成,其中的每一层膜为上述的一种或多种材料形成。
此外,本实施例像素界定层12的顶层设置有金属层13,优选地,该金属层13的表面具有疏水性,或选用疏水性材料形成或表面经过疏水性处理而获得,而现有发光材料一般为亲水性,这样在采用打印方式形成像素界定层12时,即便打印偏离像素区域,发光材料也可形成液滴,流入发光材料填充域121,可降低成本,便于大规模生产。
本发明实施例还提供一种有机发光显示面板的制备方法,如图3所示,方法包括:
101、形成第一电极;
一般而言,有机发光显示面板的主要部件为发光器件,其主要结构是由两个电极夹设电致发光材料(本实施例中也简称发光材料)形成,目前主要由一薄而透明具半导体特性的铟锡氧化物(ITO),再加上另一个金属阳极,两者(铟锡氧化物与金属阳极)之间夹设电致发光材料,包成如三明治的结构。本步骤中形成发光器件的第一电极,一般可采用先成膜再利用光刻技术进行构图的方式形成,但本发明实施例对该步骤的具体实现方式并不做限定,可以是本领域技术人员所熟知的任意实现方式。
102、形成像素界定材料层并进行固化;
本步骤为像素界定层12的成膜工序,可采用涂敷、蒸镀、溅射、化学气相沉积等任意成膜方式。
103、形成图案化的金属层13,金属层13形成有与预设的发光材料填充域一一对应的开口131;
本步骤对金属层13进行构图,使金属层13形成与预设的发光材 料填充域一一对应的开口131,具体实施时,本步骤可采用在掩模板的遮挡下进行蒸镀的方法,直接形成图案化的金属层;或者,先形成金属材料层,再通过构图工艺形成图案化的金属层。后一种方法通常采用光刻工艺,先涂敷光刻胶,并进行曝光、显影在预设开口区域形成光刻胶完全剥离的窗口,再选择合适刻蚀液对窗口处暴露出的金属层13进行刻蚀形成开口131。
104、通过构图工艺,在开口131下方的像素界定材料层形成发光材料填充域121;
本步骤对像素界定材料层进行构图以形成发光材料填充域121,同样可采用光刻工艺完成,不同之处在于本步骤一般采用干法刻蚀,这里的干法刻蚀包括但不限于溅射与离子束铣蚀、反应离子反应离子刻蚀(RIE,Reactive Ion Etching)、高密度等离子体刻蚀(HDP,High Density Plasma Etching)、等离子刻蚀(Plasma Etching)和高压等离子刻蚀。
本步骤大致包括:涂敷光刻胶并进行曝光、显影,曝光区域与金属层13上的开口131一一对应;进行干刻去除曝光处的像素界定材料,形成发光材料填充域121,干刻时采用的刻蚀气体还包括用于调整刻蚀坡度角的组分,用以减小段差,避免因段差过大导致上面的膜层(如第二电极所在层)发生断裂;剥离剩余光刻胶。
如果像素界定层采用感光性材料时,本步骤还可以选择不进行干刻,具体包括:涂敷光刻胶并进行曝光;剥离光刻胶,并通过灰化处理去除曝光处的像素界定材料,形成发光材料填充域121。
另外,需要提到的是,优选地,为避免金属层13与第一电极短路,如图2所示,本步骤形成的发光材料填充域121的开口宽度小于金属层的开口131的开口宽度,上述曝光区域应不超出发光材料填充域121的预设范围。并且,本步骤中构图工艺的曝光工序中,步骤103形成的图案化金属层能起到遮挡作用,有助于最终减小像素界定层12的关键尺寸偏差。
105、填充发光材料以及形成第二电极。
本步骤中在发光材料填充域121中填充发光材料,具体可采用蒸镀或者打印的方式,但具体实施时并不限于此。本步骤中还形成第二电极,与现有技术大致类似,在此不再详述。
此外,本实施例所述的有机发光显示面板的制备方法,在形成第一电极的工序之前,还包括:在基板上形成薄膜晶体管的有源层、栅绝缘层、栅金属层和源漏金属层的工序;在形成薄膜晶体管的基板上,形成层间绝缘层及过孔的工序。在步骤105之后还包括封装等工序。
本发明实施例在像素界定层12上设置有金属层13,制作时先沉积像素界定材料层,再形成图案化的金属层13(即带有开口131的金属层),然后再采用自金属层开口131处进行干刻的方法形成发光材料填充域121,可以减小关键尺寸偏差;另外,第二电极与金属层13层叠,金属层13还可充当电极的并联电阻用以降低电极阻值。
为了本领域技术人员更好的理解本发明实施例提供的有机发光显示面板的结构及其制作方法,下面通过具体的实施例进行详细说明。
如图4所示,为本发明的一个实施例提供的有机发光显示面板,包括:基板10,依次设置在基板10上的过渡层101和图案化的有源层102(用以形成TFT的沟道),有源层102之上设置有栅绝缘层103和图案化的栅金属层104(包括TFT的栅极、栅线以及驱动电路中的其它需在该层实现的连线);栅金属层104之上沉积一层绝缘层105,之上形成图案化的源漏电极层106,源漏电极层106包括TFT的源极、漏极、数据信号线以及驱动电路中的其它需在该层实现的连线,TFT的源极和漏极分别通过绝缘层105中过孔连接到有源层102;源漏电极层106之上设置平坦层108和层间绝缘107,以减小段差及实现层间绝缘;层间绝缘层107之上设置有阳极11,阳极11通过过孔与驱动TFT的漏极相连,阳极11之上像素界定层12,像素界定层12在与阳极11对应的位置设置有发光材料填充域121,发光材料填充域121内填充有发光材料14;像素界定层12之上依次设置有金属层13、阴极15以及其他封装膜层(图中未示出封装膜层)。
本实施例中的金属层13为银或者铝,像素界定层12采用聚酰亚胺(Polyimide,PI)制成,有源层102采用非晶硅材料;阴极材料层(即发光器件的阴极15)层叠于金属层13之上,并与金属层13并联。
下面结合该具体实施方式,对上述有机发光显示面板制造时大致流程进行简单说明:
步骤一、在玻璃基板上依次形成过渡层101、非晶硅层P-Si层(对应图中的有源层102)、栅绝缘层103(gate insulator layer,GI)、栅 金属层104(gate layer)、绝缘层105、源漏电极层106、平坦层108、层间绝缘层107、阳极电极层(对应于图中的阳极11)并涂覆一层像素界定材料(对应图中的像素界定材料层120)进行固化,如图5(a)所示;然后通过溅射(sputter)工艺制作一层Ag或者Al金属(对应图中的金属膜130),具体如图5(b)所示。有机发光显示面板制造时沿图中的箭头所示方向进行,图5(a)~图5(j)的排列顺序也由此而定。
步骤二、通过构图工艺在金属膜130(即Ag或者Al金属)上制作与发光材料填充域121对应的开口131图形。本步骤中先沉积金属再在金属层上涂覆光刻胶200,并进行曝光、显影和刻蚀等步骤,具体见图5(c)。其中,刻蚀步骤利用湿刻工艺对Ag或者Al金属进行刻蚀,可选择的刻蚀液应包含磷酸、醋酸、硝酸及其他添加剂和水等成分,其刻蚀的时间可根据不同设备进行设定,在此不做要求。
步骤三、在光刻胶200上再次进行光刻胶涂覆工序,形成光刻胶300,见图5(d)所示;进行曝光、显影步骤,形成光刻胶完全去除的窗口,如图5(e)所示;然后自窗口处对像素界定材料层120进行干刻,干刻后如图5(f)所示。刻蚀气体主要为氧气,可适量添加CF4或SF6对坡度角进行调整,刻蚀的压力、功率和时间可根据不同设备进行调整,在此不做要求。像素界定层12坡度角的调整就是通过增加CF4或者SF6气体从而增大轰击,这样就可以改变坡度角,调整段差。
步骤四、然后,如图5(j)所示,剥离光刻胶200、300,继续后续流程,完成面板制作。
为进一步证明金属层13对像素界定层12关键尺寸偏差的减小作用,下面列出对比试验结果:
实验一采用PI制作出关键尺寸图形(现有技术),表1示出实验一形成的图形在7个不同位置进行测量关键尺寸图形,与设计值比较获得Bias数据,最小值1.51μm,最大值2.73,平均值为2.00μm。
实验二按本发明实施例提到的像素界定层和金属层形成方法(参见步骤一至步骤三相关部分)制成关键尺寸图形,其中PI膜层制作、光刻时的各项工艺参数与实验一完全相同,PI图形也完全一致。表2示出实验二所形成的图形在7个不同位置进行测量并计算出的Bias数据,最小值1.35μm,最大值2.63,平均值为1.94μm。
经过对比发现,采用本实施例提供的有机发光显示面板的结构及其制作方法,可以将像素界定层的关键尺寸偏差由2.0μm减小到1.94μm左右,开口率及显示均匀性当然也会相应提高。
表1:
实验一 材料 厚度 关键尺寸偏差(μm)
1st unit test PI 1.5μm 2.73
2nd unit test PI 1.5μm 1.86
3rd unit test PI 1.5μm 2.31
4th unit test PI 1.5μm 1.70
5th unit test PI 1.5μm 2.18
6th unit test PI 1.5μm 1.72
7th unit test PI 1.5μm 1.51
Average     2.00
表2:
Figure PCTCN2015091053-appb-000001
本发明实施例还提供了一种显示装置,其包括上述任意一种有机发光显示面板,可降低像素界定层的关键尺寸偏差,从而改善开口率及显示均匀性;同时金属层与电极并联,还可降低电极阻值,减少显示装置的功耗,而且制作过程简单,不需要额外制作用以降低电极阻值的电机并联线,可降低成本,便于大规模生产。所述显示装置可以 为:OLED面板、电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本发明实施例所述的技术特征,在不冲突的情况下,可任意相互组合使用。
需注意,本发明实施例中虽然以有机发光显示面板发光层的制备过程为例,但本发明的应用应不限于此,本发明可广泛应用于需要降低某一层的关键尺寸偏差并且该层之上可以设计金属层的场景。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (17)

  1. 一种有机发光显示面板,包括:像素界定层,所述像素界定层设置有多个发光材料填充域,其特征在于,还包括:设置在所述像素界定层之上的金属层;
    所述金属层设置有与所述发光材料填充域一一对应的开口。
  2. 根据权利要求1所述的有机发光显示面板,其特征在于,所述开口的宽度大于所述发光材料填充域的开口宽度。
  3. 根据权利要求2所述的有机发光显示面板,其特征在于,
    所述开口的边沿到位于同一侧的所述发光材料填充域的边沿的距离为1~3μm。
  4. 根据权利要求1-3任一项所述的有机发光显示面板,其特征在于,还包括:
    在所述发光材料填充域中填充发光材料,分别在所述发光材料的上方和下方设置与所述发光材料电接触的第二电极和第一电极。
  5. 根据权利要求4所述的有机发光显示面板,其特征在于,
    所述第二电极层叠于所述金属层之上,并与所述金属层并联。
  6. 根据权利要求5所述的有机发光显示面板,其特征在于,所述第二电极为阴极。
  7. 根据权利要求1-3任一项所述的有机发光显示面板,其特征在于,所述金属层采用下述材料中的一种或多种制成:银、铝、铜、镍、铬和铂。
  8. 根据权利要求1-3任一项所述的有机发光显示面板,其特征在于,所述像素界定层采用下述材料中的一种或多种制成:聚酰亚胺、硅氧化物和硅氮化物。
  9. 根据权利要求1-3任一项所述的有机发光显示面板,其特征在于,
    所述金属层的表面具有疏水性。
  10. 一种显示装置,其特征在于,包括:权利要求1-9任一项所述的有机发光显示面板。
  11. 一种有机发光显示面板的制备方法,其特征在于,包括:
    形成第一电极;
    形成像素界定材料层并进行固化;
    形成图案化的金属层,所述金属层形成有与预设的发光材料填充域一一对应的开口;
    通过构图工艺,在所述开口下方的像素界定材料层形成发光材料填充域;
    填充发光材料以及形成第二电极。
  12. 根据权利要求11所述的制备方法,其特征在于,所述开口的宽度大于所述发光材料填充域的开口宽度。
  13. 根据权利要求11或12所述的制备方法,其特征在于,所述形成图案化的金属层,具体为:采用在掩模板的遮挡下进行蒸镀的方法,直接形成图案化的金属层;或者,
    先形成金属材料层,再通过构图工艺形成图案化的金属层。
  14. 根据权利要求11或12所述的制备方法,其特征在于,所述通过构图工艺,在所述开口下方的像素界定材料层形成发光材料填充域,包括:
    涂敷光刻胶并进行曝光、显影;
    进行干刻去除曝光处的像素界定材料,形成发光材料填充域;
    剥离剩余光刻胶。
  15. 根据权利要求14所述的制备方法,其特征在于,
    所述像素界定层采用聚酰亚胺制成;干刻时采用的刻蚀气体主要包括氧气,还包括用于调整刻蚀坡度角的CF4或者SF6,或者CF4与SF6的混合气体。
  16. 根据权利要求11或12所述的制备方法,其特征在于,像素界定材料层采用感光性材料时,所述通过构图工艺在所述开口下方的像素界定材料层形成发光材料填充域,包括:
    涂敷光刻胶并进行曝光;
    剥离剩余光刻胶,并通过灰化处理去除曝光处的像素界定材料,形成发光材料填充域。
  17. 根据权利要求11或12任一项所述的制备方法,其特征在于,在形成第一电极的工序之前,还包括:
    在基板上形成薄膜晶体管的有源层、栅绝缘层、栅金属层和源漏金属层的工序;
    在形成薄膜晶体管的基板上,形成层间绝缘层及过孔的工序。
PCT/CN2015/091053 2015-05-06 2015-09-29 有机发光显示面板及其制备方法、显示装置 WO2016176956A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/122,887 US9991322B2 (en) 2015-05-06 2015-09-29 Organic light emitting display panel and manufacturing method thereof, display device
US15/920,669 US10332946B2 (en) 2015-05-06 2018-03-14 Organic light emitting display panel and manufacturing method thereof, display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510227515.XA CN104952905A (zh) 2015-05-06 2015-05-06 有机发光显示面板及其制备方法、显示装置
CN201510227515.X 2015-05-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/122,887 A-371-Of-International US9991322B2 (en) 2015-05-06 2015-09-29 Organic light emitting display panel and manufacturing method thereof, display device
US15/920,669 Division US10332946B2 (en) 2015-05-06 2018-03-14 Organic light emitting display panel and manufacturing method thereof, display device

Publications (1)

Publication Number Publication Date
WO2016176956A1 true WO2016176956A1 (zh) 2016-11-10

Family

ID=54167442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091053 WO2016176956A1 (zh) 2015-05-06 2015-09-29 有机发光显示面板及其制备方法、显示装置

Country Status (3)

Country Link
US (2) US9991322B2 (zh)
CN (1) CN104952905A (zh)
WO (1) WO2016176956A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111463248A (zh) * 2020-04-10 2020-07-28 深圳市华星光电半导体显示技术有限公司 一种阵列基板及其制作方法、显示面板
US11114514B2 (en) * 2018-04-11 2021-09-07 Hefei Boe Optoelectronics Technology Co., Ltd. Organic electroluminescent display panel, manufacturing method thereof, and display device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018021994A (ja) * 2016-08-02 2018-02-08 株式会社ジャパンディスプレイ 表示装置およびその製造方法
US20180254430A1 (en) * 2016-10-09 2018-09-06 Boe Technology Group Co., Ltd. Organic light emitting diode display panel, display apparatus having the same, and fabricating method thereof
CN106601778B (zh) * 2016-12-29 2019-12-24 深圳市华星光电技术有限公司 Oled背板及其制作方法
CN108666343B (zh) * 2017-03-31 2019-08-30 京东方科技集团股份有限公司 显示基板和显示面板
US10305039B2 (en) 2017-06-28 2019-05-28 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Material property testing device and manufacturing method for the same
CN107144528B (zh) * 2017-06-28 2019-08-30 武汉华星光电半导体显示技术有限公司 材料性能测试装置及制作方法
CN108766978B (zh) * 2018-05-24 2020-02-21 京东方科技集团股份有限公司 Oled显示基板及其制作方法、显示装置
CN110047890B (zh) * 2019-04-18 2021-04-06 昆山工研院新型平板显示技术中心有限公司 柔性显示面板和柔性显示装置
CN110767735B (zh) * 2019-11-06 2022-06-03 京东方科技集团股份有限公司 一种显示面板的制作方法、显示面板及显示器
CN111863918B (zh) * 2020-07-29 2023-05-02 京东方科技集团股份有限公司 显示背板及其制作方法、显示面板和显示装置
CN116261925A (zh) * 2020-08-21 2023-06-13 应用材料公司 用于高级图案化的金属悬垂部
CN112310332B (zh) * 2020-10-22 2022-05-31 深圳市华星光电半导体显示技术有限公司 Oled显示面板制备方法和oled显示面板
CN112582455B (zh) * 2020-12-09 2022-06-07 武汉华星光电半导体显示技术有限公司 像素定义层开孔设计方法、显示面板制作方法及显示面板
WO2023102056A1 (en) * 2021-12-03 2023-06-08 Applied Materials, Inc. Quasi global cathode contact method for advanced patterning

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142277A (ja) * 2003-11-05 2005-06-02 Seiko Epson Corp パターンの形成方法、電気光学装置の製造方法、デバイスの製造方法、電子機器
CN1770243A (zh) * 2004-09-21 2006-05-10 卡西欧计算机株式会社 晶体管阵列基板和显示面板
CN1888978A (zh) * 2006-07-20 2007-01-03 中国科学院长春应用化学研究所 一种采用微转移图案化图形作为掩模板的光刻图案化方法
JP2009070708A (ja) * 2007-09-13 2009-04-02 Casio Comput Co Ltd 表示装置及び表示装置の製造方法
CN103268921A (zh) * 2012-12-31 2013-08-28 上海天马微电子有限公司 制造woled的方法、woled及显示设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW472503B (en) * 2000-04-26 2002-01-11 Ritdisplay Corp Manufacture method of photosensitive polyimide pattern definition layer for organic light-emitting diodes display
JP4252297B2 (ja) * 2002-12-12 2009-04-08 株式会社日立製作所 発光素子およびこの発光素子を用いた表示装置
KR100685404B1 (ko) * 2004-10-11 2007-02-22 삼성에스디아이 주식회사 유기전계발광표시장치 및 그 제조방법
KR20070112954A (ko) * 2006-05-24 2007-11-28 엘지.필립스 엘시디 주식회사 Tft 어레이 기판 및 그 제조방법
WO2011099008A1 (en) * 2010-02-11 2011-08-18 Tactile World Ltd. Gesture based computer interface system and method
ES2514341T3 (es) * 2010-02-19 2014-10-28 Sumitomo Chemical Company, Limited Composición de control de plagas
KR102109009B1 (ko) * 2011-02-25 2020-05-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 발광 장치를 사용한 전자 기기
WO2012153445A1 (ja) * 2011-05-11 2012-11-15 パナソニック株式会社 有機el表示パネルおよび有機el表示装置
KR101903679B1 (ko) * 2012-02-08 2018-10-04 삼성디스플레이 주식회사 유기 발광 표시 장치
JP6560847B2 (ja) * 2014-08-07 2019-08-14 株式会社ジャパンディスプレイ 有機エレクトロルミネセンス表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142277A (ja) * 2003-11-05 2005-06-02 Seiko Epson Corp パターンの形成方法、電気光学装置の製造方法、デバイスの製造方法、電子機器
CN1770243A (zh) * 2004-09-21 2006-05-10 卡西欧计算机株式会社 晶体管阵列基板和显示面板
CN1888978A (zh) * 2006-07-20 2007-01-03 中国科学院长春应用化学研究所 一种采用微转移图案化图形作为掩模板的光刻图案化方法
JP2009070708A (ja) * 2007-09-13 2009-04-02 Casio Comput Co Ltd 表示装置及び表示装置の製造方法
CN103268921A (zh) * 2012-12-31 2013-08-28 上海天马微电子有限公司 制造woled的方法、woled及显示设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114514B2 (en) * 2018-04-11 2021-09-07 Hefei Boe Optoelectronics Technology Co., Ltd. Organic electroluminescent display panel, manufacturing method thereof, and display device
CN111463248A (zh) * 2020-04-10 2020-07-28 深圳市华星光电半导体显示技术有限公司 一种阵列基板及其制作方法、显示面板

Also Published As

Publication number Publication date
US10332946B2 (en) 2019-06-25
CN104952905A (zh) 2015-09-30
US20170077194A1 (en) 2017-03-16
US20180233549A1 (en) 2018-08-16
US9991322B2 (en) 2018-06-05

Similar Documents

Publication Publication Date Title
WO2016176956A1 (zh) 有机发光显示面板及其制备方法、显示装置
JP6219685B2 (ja) 発光ディスプレイバックプレーン、ディスプレイデバイス、及び画素定義層の製造方法
US8530268B2 (en) Organic light-emitting display device and method of manufacturing the same
US9722005B2 (en) Light-emitting device, array substrate, display device and manufacturing method of light-emitting device
CN106449696B (zh) 有机发光显示装置及其制造方法
US9318542B2 (en) Method for fabricating organic light emitting diode display device with improved effective emitting pixels area
US20140147950A1 (en) Method of fabricating organic light emitting diode display device
WO2016176886A1 (zh) 柔性oled及其制作方法
WO2021093687A1 (zh) 显示基板及其制备方法、显示装置
JP2015069854A (ja) 有機el表示装置及び有機el表示装置の製造方法
TWI591829B (zh) 有機發光顯示器裝置及其製造方法
CN110660839B (zh) 一种显示面板及其制备方法
JP6168742B2 (ja) 有機el装置
JP2023518622A (ja) 表示基板及びその製造方法、表示マザーボード並びに表示装置
JP5241966B2 (ja) 半導体装置、tft基板、ならびに半導体装置およびtft基板の製造方法
KR102122401B1 (ko) 유기전계 발광소자 및 이의 제조 방법
WO2020206719A1 (zh) 显示面板及其制备方法
KR101330376B1 (ko) 산화물 박막 트랜지스터 제조방법 및 이를 이용한 유기발광표시장치 제조방법
KR101257928B1 (ko) 박막 트랜지스터 및 그 제조방법
CN110085625B (zh) 顶发射型显示器件及其制作方法
KR20130018007A (ko) 유기발광소자 제조방법
WO2019242384A1 (zh) 显示面板背板结构、其制备方法及顶发射型显示面板
KR20070050763A (ko) 오엘이디 디스플레이 소자의 제조방법
KR20150062692A (ko) 박막 트랜지스터 어레이 기판 및 그 제조 방법
US20200152722A1 (en) Light emitting device and manufacturing method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15122887

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15891207

Country of ref document: EP

Kind code of ref document: A1