WO2017018582A1 - Mems 패키지 - Google Patents

Mems 패키지 Download PDF

Info

Publication number
WO2017018582A1
WO2017018582A1 PCT/KR2015/008767 KR2015008767W WO2017018582A1 WO 2017018582 A1 WO2017018582 A1 WO 2017018582A1 KR 2015008767 W KR2015008767 W KR 2015008767W WO 2017018582 A1 WO2017018582 A1 WO 2017018582A1
Authority
WO
WIPO (PCT)
Prior art keywords
mems
circuit
unit
base part
mems structure
Prior art date
Application number
PCT/KR2015/008767
Other languages
English (en)
French (fr)
Inventor
홍태선
한종호
서평보
이종성
김광진
Original Assignee
주식회사 스탠딩에그
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 스탠딩에그 filed Critical 주식회사 스탠딩에그
Publication of WO2017018582A1 publication Critical patent/WO2017018582A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor

Definitions

  • the present invention relates to a MEMS package, and more particularly, an electrical or magnetic component generated from a circuit line part circuit-patterned on a base part is applied to a MEMS structure mounted on the base part to effectively prevent signal noise from occurring.
  • the present invention relates to a MEMS package provided in a structure capable of doing so.
  • MEMS Micro Electronic Mechanical System
  • Micro Machining Micro Machining
  • the MEMS structure is a package including such a MEMS, and a semiconductor die such as a driving driver for driving the MEMS is usually mounted and packaged together in a protective member such as a metal cap and mounted on a substrate of a device to be mounted to implement its function.
  • FIG. 1 is a plan view and side cross-sectional view showing the configuration of a MEMS package 10 in which a conventional MEMS structure 20 is mounted on a substrate 30.
  • the circuit boards such as the signal line 31 and the power line 32 are designed in consideration of only the shortest distance of the wiring, regardless of the arrangement of the MEMS structure 20 to be mounted on the conventional substrate 30.
  • each circuit line is disposed to face the MEMS structure 20 up and down.
  • the induced current formed by the picking noise of the high-speed communication signal transmitted through the signal line 31 or the driving power delivered through the power line 32 may be caused by the MEMS structure 20.
  • the induced current formed by the picking noise of the high-speed communication signal transmitted through the signal line 31 or the driving power delivered through the power line 32 may be caused by the MEMS structure 20.
  • Patent Document 1 Published Patent Publication No. 10-2004-0010923 (2004. 02.05), a chip-scale package of the MEMS device and a manufacturing method thereof
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a shield having a shielding function between a circuit patterned base portion and a MEMS structure mounted on the base portion, thereby providing the circuit. It is an object of the present invention to provide a MEMS package which minimizes signal noise generation of a MEMS sensor due to electric and magnetic influences such as picking noise and induction current formed in a line part.
  • Another object of the present invention is to place the circuit line portion in the pattern area of the circuit pattern circuit pattern in the stack area of the base portion and the non-patterned region by mounting the MEMS structure in the optimal structure so that the circuit line portion and the MEMS structure does not face each other, the circuit line
  • An object of the present invention is to provide a MEMS package which minimizes the electric and magnetic influences formed in the parts to be applied to the MEMS sensor.
  • the base portion 110 is provided with a stack space 111 for mounting parts and circuit patterns on one side;
  • a circuit line part 120 including a signal line 121 and a power line 122 and having a circuit pattern on one side of the base part 110;
  • a MEMS structure 130 mounted on one side of the base 110 to implement a predetermined MEMS function, wherein the stack space 111 of the base 110 is a pattern region for the circuit pattern.
  • the MEMS structure 130 is disposed in the non-patterned region 113 on one side of the base portion 110
  • the pattern 110 may be electrically connected to the base part 110, and the signal line 121 of the circuit line part 120 may not face the MEMS structure 130 vertically on one side of the base part 110.
  • Circuit patterns may be formed in the region 112.
  • the non-patterned region 113 may have an area corresponding to the bottom surface of the MEMS structure 130, and the signal line 121 may be circuit-patterned in proximity to an outer line of the non-patterned region 113. .
  • the base unit 110 disposed between the base unit 110 and the MEMS structure 130 so that the electrical and magnetic components generated from the circuit line unit 120 are not applied to the MEMS sensor 131 of the MEMS structure 130. It may further include a shielding portion 140 for absorbing and blocking.
  • the MEMS structure 130 the MEMS sensor 131 mounted on the upper surface of the shield 140, the ASIC unit 132 disposed in the upper position of the MEMS sensor 131, and the MEMS
  • the first insulating adhesive layer 133 may be disposed between the sensor 131 and the ASIC unit 132 to attach the MEMS sensor 131 and the ASIC unit 132 to each other while being electrically spaced apart from each other.
  • the shielding part 140 may include a shield layer 141 made of a metallic material capable of absorbing and blocking electrical and magnetic components of the circuit line part 120, the shield layer 141, and the MEMS structure 130.
  • a second insulating adhesive layer 142 disposed between the shield layer 141 and the MEMS sensor 131 while electrically spaced apart from each other, and disposed between the shield layer 141 and the base part 110.
  • the layer 141 and the base 110 may be electrically connected to each other while having a third insulating adhesive layer 143 attached to each other.
  • the shield layer 141 may be made of at least one metal material of aluminum (Al), lead (Pb), or copper (Cu).
  • the shield layer 141 may have a voltage level of a floating state or a ground (GND) state.
  • a shielding part 140 that absorbs electric and magnetic components is disposed between the base part 110 having the circuit line part 120 patterned thereon and the MEMS structure 130 mounted on the base part 110.
  • the occurrence of signal noise of the MEMS sensor 131 due to electric and magnetic influences such as picking noise or induction current formed in the circuit line unit 120 may be minimized.
  • the circuit line unit 120 is circuit-patterned in the pattern region 112, and the MEMS structure 130 is mounted in the non-pattern region 113. Since the unit 120 and the MEMS structure 130 are disposed in an optimal structure that does not face each other, the electrical and magnetic influences formed in the circuit line unit 120 may be minimized to the MEMS sensor 131.
  • the non-patterned region 113 on which the MEMS structure 130 is mounted on the base portion 110 has an area corresponding to the bottom surface of the MEMS structure 130, and the circuit line portion 120 has an unpatterned shape. Since the circuit pattern may be proximate to the outer line of the region 113, the space between the non-pattern region 113 and the circuit line unit 120 may be minimized under conditions that can prevent the occurrence of the signal noise. The circuit design of the circuit line unit 120 can be made more free.
  • the MEMS structure 130 is circuit patterned in the non-patterned region 113. Since the electric and magnetic components formed from some of the power lines 122 disposed upside down and up and down may be absorbed, the power line 122 is connected to the non-pattern area 113 for the purpose of circuit design of the circuit line unit 120. Even when patterned, it is possible to prevent the occurrence of signal noise by the circuit line unit 120.
  • FIG. 1 is a plan view and a side cross-sectional view showing the configuration of a MEMS package in which a conventional MEMS structure is mounted on a PCB;
  • Figure 2 is an exploded perspective view showing the configuration of the MEMS package according to an embodiment of the present invention
  • FIG. 3 is a plan view and a side cross-sectional view showing the configuration of a MEMS package according to a preferred embodiment of the present invention
  • Figure 4 is a graph showing the results of each noise measurement by the MEMS package according to the prior art and the MEMS package according to a preferred embodiment of the present invention.
  • MEMS package 100 is an electrical, magnetic between the circuit line 120 is a circuit pattern base portion 110 and the MEMS structure 130 mounted on the base portion 110
  • the shielding unit 140 absorbing the components is disposed, thereby minimizing the occurrence of signal noise of the MEMS sensor 131 due to electric and magnetic effects such as picking noise and induction current formed in the circuit line unit 120.
  • the base unit 110, the circuit line unit 120, the MEMS structure 130, and the shield unit 140 are provided.
  • the base unit 110 is a base substrate that provides a space in which the circuit line unit 120 and the MEMS structure 130 can be disposed. As shown in FIG. 2, a stack space for component mounting and a circuit pattern is shown. 111 is provided on one side.
  • the stack space 111 is divided into a pattern region 112 for a circuit pattern and a non-pattern region 113 for component mounting, and is provided on one side, and the base portion 110 is a PCB itself of a device to be mounted. Or may be a separate PCB that is provided independently of the PCB and electrically connected thereto.
  • the circuit line unit 120 is an electrical wiring line circuit-patterned on the base unit 110, and includes a power line 122 transferring a driving power applied to the base unit 110, and a high speed communication signal.
  • the signal line 121 to be transmitted may be included in the circuit pattern on one side of the base unit 110.
  • the MEMS structure 130 is a microminiature device for sensing or manipulating a minute physical quantity according to a required MEMS function, and is mounted on one side of the base unit 110 to implement a predetermined MEMS function.
  • the MEMS structure 130 may include a MEMS sensor 131 mounted on an upper surface of the shield 140, an ASIC unit 132 disposed at an upper position of the MEMS sensor 131, and the MEMS sensor ( A first insulating adhesive layer 133 is disposed between the 131 and the ASIC unit 132 to attach the MEMS sensor 131 and the ASIC unit 132 to each other while being electrically spaced apart from each other.
  • the MEMS sensor 131 may be any one selected from, for example, a microphone, an acceleration sensor, a pressure sensor, and an equivalent thereof, but is not limited thereto.
  • the ASIC unit 132 is a readout integrated circuit (ROIC).
  • the ASIC unit 132 receives a measurement value output from the MEMS sensor 131 as an input, converts the signal into a digital value, and transmits the signal to a subsequent stage.
  • ROIC readout integrated circuit
  • the MEMS structure 130 is disposed in the non-pattern area 113 on one side of the base part 110 to be electrically connected to the base part 110 to implement a predetermined MEMS function.
  • the MEMS structure 130 may be electrically connected to the base 110 in the form of a flip chip, or may be electrically connected by a wire bonding method. It does not limit the form of the electrical connection of 110.
  • the shielding unit 140 is a shielding member for electrically and magnetically separating the circuit line unit 120 and the MEMS sensor 131 of the MEMS structure 130, and the base unit 110 and the MEMS structure 130. Disposed between and absorbs and blocks electrical and magnetic components generated from the circuit line unit 120 so as not to be applied to the MEMS sensor 131 of the MEMS structure 130.
  • the shield 140 is a shield layer 141 made of a metallic material capable of absorbing and blocking the electrical and magnetic components of the circuit line unit 120, and between the shield layer 141 and the MEMS structure 130.
  • a second insulating adhesive layer 142 disposed between the shield layer 141 and the MEMS sensor 131 and electrically spaced apart from each other, and disposed between the shield layer 141 and the base part 110.
  • a third insulating adhesive layer 143 which are attached to each other while electrically spaced apart from the base 110.
  • the shield layer 141 may be preferably made of aluminum (Al) material, but is not limited thereto.
  • Al aluminum
  • Pb lead
  • Cu copper
  • the shielding part 140 absorbing electric and magnetic components is provided between the circuit part 120 having the circuit patterned base part 110 and the MEMS structure 130 mounted on the base part 110.
  • the shielding part 140 absorbing electric and magnetic components is provided between the circuit part 120 having the circuit patterned base part 110 and the MEMS structure 130 mounted on the base part 110.
  • a power line for the purpose of circuit design of the circuit line unit 120 through the shield layer 141 of the shielding unit 140 disposed in parallel between the base unit 110 and the MEMS structure 130.
  • the power lines 122 such as the GND line are circuit-patterned in the non-patterned region 113, it is possible to prevent signal noise generated by the circuit line unit 120 from occurring.
  • the shield layer 141 has a potential of floating (Vitage Level) in a floating state (floating state) to absorb and minimize the electrical and magnetic components applied from the circuit line unit 120, or to ground (GND) By absorbing the electric and magnetic components applied from the line part 120 and flowing them out through the ground line, the electric and magnetic components are blocked from being transmitted to the MEMS sensor 131.
  • Vitage Level a potential of floating
  • GND ground
  • the MEMS structure 130 is disposed in the non-pattern area 113 of the base portion 110 on one side of the base portion 110 to implement the MEMS function while electrically connected to the base portion 110
  • the signal line 121 of the circuit line part 120 may be a circuit pattern on the pattern region 112 so as not to face the MEMS structure 130 up and down on one side of the base part 110.
  • the circuit line part 120 is circuit-patterned in the pattern area 112 and the MEMS structure 130 is mounted in the non-pattern area 113 in the stack space 111 of the base part 110. Since the line part 120 and the MEMS structure 130 are disposed in an optimal structure that does not face each other, the electric and magnetic influences formed in the circuit line part 120 may be minimized to the MEMS sensor 131. .
  • the shield 140 including the shield layer 141 is formed in an area corresponding to the bottom surface of the MEMS structure 130, so that the shield 140 occupies under a condition capable of preventing the occurrence of signal noise. It is desirable that the space can be minimized by minimizing the space.
  • the wire and each circuit line unit it is preferable that the wires or the circuit line part 120 are provided so as not to face each other by adjusting and patterning the extended angle so that the 120 does not face each other.
  • the mutually opposing means a state in which the wire and the circuit line part 120 are respectively patterned and extended to extend in the same direction facing up and down.
  • the wire and the circuit line part 120 are arranged in a X-shaped positional relationship with relative bottom, so that only a part (dot shape) where the wire and the circuit line part 120 intersect up and down is limited and overlaps. Since the other parts do not face up and down, the overlapping area can be minimized.
  • Figure 4 shows a graph measuring the noise generation from the conventional MEMS package and the MEMS package 100 according to a preferred embodiment of the present invention.
  • FIG. 4 shows (a) a Bosch MEMS package (BMA 150) currently available in the market, (b) no shield 140, and a MEMS package in which a signal line or control line passes under the MEMS structure, ( c) the shield 140, and the MEMS sensor when the signal line or control line does not pass under the MEMS structure, the MEMS package 100 to which the present invention is applied, respectively, above the vibration-free table, It is a result of a measurement.
  • BMA 150 Bosch MEMS package
  • the X axis of FIG. 4 is a time axis
  • the Y axis of FIG. 4 is a measured value (ug / (root Hz)) of the MEMS package. That is, since it is placed on the vibration-free table, the measurement value should be zero (0), but the measurement value as shown in FIG. 4 is due to noise. 4, in the case of (a) and (b), respectively, 577.8 With 825.5 It can be seen that a high level of noise is generated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Micromachines (AREA)
  • Pressure Sensors (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Gyroscopes (AREA)
  • Hall/Mr Elements (AREA)

Abstract

본 발명에 따르면, 부품실장 및 회로패턴을 위한 스택공간(111)이 일측면에 마련된 베이스부(110); 신호선(121)과 전원선(122)을 포함하며 상기 베이스부(110)의 일측면에 회로패턴된 회로라인부(120); 및 상기 베이스부(110)의 일측에 실장되어 소정의 MEMS 기능을 구현하는 MEMS 구조물(130)을 포함하고, 상기 베이스부(110)의 스택공간(111)은, 상기 회로패턴을 위한 패턴영역(112)과 부품실장을 위한 비패턴영역(113)으로 구분되어 일측에 마련되고, 상기 MEMS 구조물(130)은, 상기 베이스부(110)의 일측면 상에서 상기 비패턴영역(113) 내에 배치되어 상기 베이스부(110)와 전기적으로 접속하면서 상기 MEMS 기능을 구현하며, 상기 회로라인부(120)의 신호선(121)은 상기 베이스부(110)의 일측면 상에서 상기 MEMS 구조물(130)과 상하로 대향하지 않도록 상기 패턴영역(112)에 회로패턴되는 MEMS 패키지를 개시한다.

Description

MEMS 패키지
본 발명은 MEMS 패키지에 관한 것으로, 보다 상세하게는 베이스부에 회로패턴된 회로라인부로부터 발생된 전기적 또는 자기적 성분이 상기 베이스부에 실장된 MEMS 구조물에 인가되어 시그널 노이즈가 발생되는 것을 효과적으로 방지할 수 있는 구조로 구비된 MEMS 패키지에 관한 것이다.
일반적으로 MEMS(Micro Electronic Mechanical System)는 마이크로 머시닝(Micro Machining) 공정을 통해 제조되어 미세한 물리량을 감지하거나 조작할 수 있는 극초소형 디바이스이다.
또한, MEMS 구조물은 이러한 MEMS를 포함하는 패키지로서, 통상 MEMS를 구동하기 위한 구동 드라이버 등의 반도체 다이가 금속캡 등의 보호부재 내에 함께 실장되어 패키징되며 장착대상 디바이스의 기판에 실장되어 그 기능을 구현한다
여기서, 도 1에는 종래의 MEMS 구조물(20)이 기판(30)상에 실장된 MEMS 패키지(10)의 구성을 나타낸 평면도 및 측단면도가 도시되어 있다. 도 1을 참고하면 종래의 기판(30)에는 실장되는 MEMS 구조물(20)의 배치와 무관하게 신호선(31) 및 전원선(32) 등의 회로라인이 배선의 최단 거리만을 고려하여 회로설계됨으로써, 기판(30)에 실장된 MEMS 구조물(20)의 하부에는 각 회로라인이 MEMS 구조물(20)과 상하로 상호 대향하게 배치되었다.
그러나, 이러한 대치구조로 인해 신호선(31)을 통해 전달되는 고속통신 신호의 피킹노이즈(Peaking Noise)나, 전원선(32)을 통해 절달되는 구동전원에 의해 형성되는 유도전류가 MEMS 구조물(20)에 인가되어 MEMS 구조물(20)이 갖는 전자기적 특성을 왜곡시켜 시그널 노이즈 발생 등의 부작용이 발생되는 문제점이 있었다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 공개특허공보 제10-2004-0010923호(2004. 02.05), MEMS 소자의 칩규모 패키지 및 이의 제조방법
본 발명은 상술한 문제점을 해결하기 위하여 창출된 것으로, 본 발명의 목적은 회로라인부가 회로패턴된 베이스부와 상기 베이스부에 실장된 MEMS 구조물 사이에 차폐기능이 구비된 차폐부가 배치됨으로써, 상기 회로라인부에서 형성되는 피킹노이즈나 유도전류 등의 전기,자기적 영향에 의한 MEMS 센서의 시그널 노이즈 발생을 최소화한 MEMS 패키지를 제공하는 것에 있다.
본 발명의 다른 목적은 베이스부의 스택공간 내에서 패턴영역에는 회로라인부를 회로패턴하고 비패턴영역에는 MEMS 구조물을 실장하여 상기 회로라인부와 MEMS 구조물이 상호 대향하지 않는 최적 구조로 배치됨으로써, 회로라인부에서 형성되는 전기,자기적 영향이 MEMS 센서에 인가되는 것을 최소화한 MEMS 패키지를 제공하는 것에 있다.
상기의 목적을 달성하기 위한 본 발명에 따른 MEMS 패키지는, 부품실장 및 회로패턴을 위한 스택공간(111)이 일측면에 마련된 베이스부(110); 신호선(121)과 전원선(122)을 포함하며 상기 베이스부(110)의 일측면에 회로패턴된 회로라인부(120); 및 상기 베이스부(110)의 일측면에 실장되어 소정의 MEMS 기능을 구현하는 MEMS 구조물(130)를 포함하고, 상기 베이스부(110)의 스택공간(111)은, 상기 회로패턴을 위한 패턴영역(112)과 부품실장을 위한 비패턴영역(113)으로 구분되어 일측에 마련되고, 상기 MEMS 구조물(130)은, 상기 베이스부(110)의 일측면 상에서 상기 비패턴영역(113) 내에 배치되어 상기 베이스부(110)와 전기적으로 접속할 수 있으며, 상기 회로라인부(120)의 신호선(121)은 상기 베이스부(110)의 일측면 상에서 상기 MEMS 구조물(130)과 상하로 대향하지 않도록 상기 패턴영역(112)에 회로패턴될 수 있다.
또한, 상기 비패턴영역(113)은 상기 MEMS 구조물(130)의 하부면과 대응되는 면적을 가지며, 상기 신호선(121)은 상기 비패턴영역(113)의 외곽라인에 근접되어 회로패턴될 수 있다.
또한, 상기 베이스부(110)와 MEMS 구조물(130) 사이에 배치되어 상기 회로라인부(120)로부터 발생되는 전기,자기적 성분이 상기 MEMS 구조물(130)의 MEMS 센서(131)에 인가되지 않도록 흡수하여 차단하는 차폐부(140);를 더 포함할 수 있다.
여기서, 상기 MEMS 구조물(130)은, 상기 차폐부(140)의 상부면에 장착되는 MEMS 센서(131)와, 상기 MEMS 센서(131)의 상부 위치에 배치되는 ASIC부(132) 및, 상기 MEMS 센서(131)와 ASIC부(132) 사이에 배치되어 MEMS 센서(131)와 ASIC부(132)를 전기적으로 이격시키면서 상호 부착시키는 제1절연접착층(133)을 포함할 수있다.
또한, 상기 차폐부(140)는, 상기 회로라인부(120)의 전기,자기적 성분을 흡수하여 차단 가능한 금속재질로 이루어진 실드층(141)과, 상기 실드층(141)과 MEMS 구조물(130) 사이에 배치되어 실드층(141)과 MEMS 센서(131)를 전기적으로 이격시키면서 상호 부착시키는 제2절연접착층(142) 및, 상기 실드층(141)과 베이스부(110) 사이에 배치되어 실드층(141)과 베이스부(110)를 전기적으로 이격시키면서 상호 부착시키는 제3절연접착층(143)을 포함할 수 있다.
또한, 상기 실드층(141)은, 알루미늄(Al), 납(Pb) 또는 구리(Cu) 중 어느 하나 이상의 금속재질로 이루어질 수 있다.
또한, 상기 실드층(141)은, 전위(Voltage Level)가 플로팅(Floting) 상태이거나 접지(GND) 상태일 수 있다.
본 발명에 따른 MEMS 패키지에 의하면,
첫째, 회로라인부(120)가 회로패턴된 베이스부(110)와 상기 베이스부(110)에 실장된 MEMS 구조물(130) 사이에 전기,자기적 성분을 흡수하는 차폐부(140)가 배치됨으로써, 상기 회로라인부(120)에서 형성되는 피킹 노이즈나 유도전류 등의 전기,자기적 영향에 의한 MEMS 센서(131)의 시그널 노이즈 발생을 최소화할 수 있다.
둘째, 상기 베이스부(110)의 스택공간(111) 내에서 패턴영역(112)에는 회로라인부(120)를 회로패턴하고 비패턴영역(113)에는 MEMS 구조물(130)을 실장하여 상기 회로라인부(120)와 MEMS 구조물(130)이 상호 대향하지 않는 최적 구조로 배치됨으로써, 회로라인부(120)에서 형성되는 전기,자기적 영향이 MEMS 센서(131)에 인가되는 것을 최소화할 수 있다.
셋째, 상기 베이스부(110) 상에서 MEMS 구조물(130)이 실장되는 비패턴영역(113)은 상기 MEMS 구조물(130)의 하부면과 대응되는 면적을 가지며, 상기 회로라인부(120)는 비패턴영역(113)의 외곽라인에 근접되게 회로패턴될 수 있으므로, 상기 시그널 노이즈 발생을 방지할 수 있는 조건하에서 비패턴영역(113)과 회로라인부(120) 간의 간격을 최소화하여 소형화를 도모함과 동시에 회로라인부(120)의 회로설계를 더욱 자유롭게 할 수 있다.
셋째, 상기 베이스부(110)와 MEMS 구조물(130) 사이에 평행하게 배치된 차폐부(140)의 실드층(141)을 통해, 상기 비패턴영역(113)에 회로패턴되면서 MEMS 구조물(130)과 상하로 대향 배치된 일부 전원선(122)으로부터 형성된 전기,자기적 성분을 흡수할 수 있으므로 상기 회로라인부(120)의 회로설계 목적상 전원선(122)이 비패턴영역(113)에 회로패턴되는 경우에도 회로라인부(120)에 의한 시그널 노이즈가 발생되는 것을 방지할 수 있다.
도 1은 종래의 MEMS 구조물이 PCB상에 실장된 MEMS 패키지의 구성을 나타낸 평면도 및 측단면도,
도 2는 본 발명의 바람직한 실시예에 따른 MEMS 패키지의 구성을 나타낸 분리사시도,
도 3은 본 발명의 바람직한 실시예에 따른 MEMS 패키지의 구성을 나타낸 평면도 및 측단면도,
도 4는 종래기술에 따른 MEMS 패키지와 본 발명의 바람직한 실시예에 따른 MEMS 패키지에 의한 각각의 노이즈 측정결과를 나타낸 그래프이다.
이하 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명의 바람직한 실시예에 따른 MEMS 패키지(100)는 회로라인부(120)가 회로패턴된 베이스부(110)와 상기 베이스부(110)에 실장된 MEMS 구조물(130) 사이에 전기,자기적 성분을 흡수하는 차폐부(140)가 배치됨으로써, 상기 회로라인부(120)에서 형성되는 피킹 노이즈나 유도전류 등의 전기,자기적 영향에 의한 MEMS 센서(131)의 시그널 노이즈 발생을 최소화한 MEMS 패키지로서, 도 2 및 도 3에 도시된 바와 같이 베이스부(110), 회로라인부(120), MEMS 구조물(130) 및 차폐부(140)를 포함하여 구비된다.
먼저, 상기 베이스부(110)는 회로라인부(120)와 MEMS 구조물(130)이 배치될 수 있는 공간을 제공하는 베이스 기판으로서, 도 2에 도시된 바와 같이 부품실장 및 회로패턴을 위한 스택공간(111)이 일측면에 마련된다.
여기서, 상기 스택공간(111)은 회로패턴을 위한 패턴영역(112)과 부품실장을 위한 비패턴영역(113)으로 구분되어 일측에 마련되며, 상기 베이스부(110)는 장착대상 디바이스의 PCB 자체이거나 상기 PCB와 독립적으로 마련되어 전기적으로 접속되는 별도의 PCB일 수 있다.
상기 회로라인부(120)는, 상기 베이스부(110) 상에 회로패턴된 전기적 배선라인으로서, 상기 베이스부(110)에 인가된 구동전원을 전달하는 전원선(122) 및, 고속통신 신호를 전달하는 신호선(121)이 포함될 수 있으며 상기 베이스부(110)의 일측면에 회로패턴된다.
상기 MEMS 구조물(130)은 요구되는 MEMS 기능에 따라 미세한 물리량을 감지하거나 조작하기 위한 극초소형 디바이스로서, 상기 베이스부(110)의 일측면상에 실장되어 소정의 MEMS 기능을 구현한다.
여기서, MEMS 구조물(130)은 상기 차폐부(140)의 상부면에 장착되는 MEMS 센서(131)와, 상기 MEMS 센서(131)의 상부 위치에 배치되는 ASIC부(132) 및, 상기 MEMS 센서(131)와 ASIC부(132) 사이에 배치되어 MEMS 센서(131)와 ASIC부(132)를 전기적으로 이격시키면서 상호 부착시키는 제1절연접착층(133)을 포함하여 구비된다.
또한, 상기 MEMS 센서(131)는 일례로 마이크로폰(Microphone), 가속도 센서, 압력 센서 및 그 등가물 중에서 선택된 어느 하나일 수 있으나 본 발명에서는 이를 한정하는 것은 아니다.
또한, ASIC부(132)는 ROIC(Readout Integrated Circuit)로서, MEMS 센서(131)로부터 출력되는 측정값을 입력으로서 받아서, 이 신호를 디지털값으로 변환하여 후단으로 전송하는 구성이다.
더불어, 상기 MEMS 구조물(130)은 상기 베이스부(110)의 일측면 상에서 상기 비패턴영역(113) 내에 배치되어 상기 베이스부(110)와 전기적으로 접속하며 소정의 MEMS 기능을 구현한다.
그리고, 상기 MEMS 구조물(130)은 플립칩(Flip Chip) 형태로 베이스부(110)에 전기적으로 접속되거나, 와이어 본딩 방식에 의해 전기적으로 접속될 수 있으며 본 발명에서 MEMS 구조물(130)과 베이스부(110)의 전기적 접속 형태를 한정하는 것은 아니다.
상기 차폐부(140)는, 회로라인부(120)와 MEMS 구조물(130)의 MEMS 센서(131)를 전기, 자기적으로 이격시키기 위한 차폐부재로서, 상기 베이스부(110)와 MEMS 구조물(130) 사이에 배치되어 상기 회로라인부(120)로부터 발생되는 전기적, 자기적 성분이 상기 MEMS 구조물(130)의 MEMS 센서(131)에 인가되지 않도록 흡수하여 차단한다.
이러한 차폐부(140)는 상기 회로라인부(120)의 전기,자기적 성분을 흡수하여 차단 가능한 금속재질로 이루어진 실드층(141)과, 상기 실드층(141)과 MEMS 구조물(130) 사이에 배치되어 실드층(141)과 MEMS 센서(131)를 전기적으로 이격시키면서 상호 부착시키는 제2절연접착층(142) 및, 상기 실드층(141)과 베이스부(110) 사이에 배치되어 실드층(141)과 베이스부(110)를 전기적으로 이격시키면서 상호 부착시키는 제3절연접착층(143)을 포함하여 구비된다.
여기서, 상기 실드층(141)은 바람직하게는 알루미늄(Al) 재질로 이루어질 수 있으나, 이에 한정되지 않으며 납(Pb) 또는 구리(Cu) 재질과 같이 본 발명이 속하는 기술분야에서 전기적, 자기적 영향을 차폐시킬 수 있는 재질이면 이용 가능하다.
이와 같이, 상기 회로라인부(120)가 회로패턴된 베이스부(110)와 상기 베이스부(110)에 실장된 MEMS 구조물(130) 사이에 전기,자기적 성분을 흡수하는 차폐부(140)가 배치됨으로써, 상기 회로라인부(120)에서 형성되는 피킹 노이즈나 유도전류 등의 전기,자기적 영향에 의한 MEMS 센서(131)의 시그널 노이즈 발생을 최소화할 수 있다.
특히, 상기 베이스부(110)와 MEMS 구조물(130) 사이에 평행하게 배치된 차폐부(140)의 실드층(141)을 통해 상기 회로라인부(120)의 회로설계 목적상 전력라인(Power Line) 및 GND 라인 등의 일부 전원선(122)이 비패턴영역(113)에 회로패턴되는 경우에도 회로라인부(120)에 의한 시그널 노이즈가 발생되는 것을 방지할 수 있다.
또한, 상기 실드층(141)은 전위(Vitage Level)가 플로팅(Floting) 상태로 되어 회로라인부(120)로부터 인가되는 전기,자기적 성분을 흡수하여 최소화하거나, 접지(GND) 상태로 되어 회로라인부(120)로부터 인가된 전기,자기적 성분을 흡수하여 접지라인을 통해 외부로 흘려보냄으로써 전기,자기적 성분이 MEMS 센서(131)로 전해지지 않도록 차단한다.
한편, 상기 MEMS 구조물(130)은 상기 베이스부(110)의 일측면 상에서 베이스부(110)의 비패턴영역(113) 내에 배치되어 상기 베이스부(110)와 전기적으로 접속하면서 상기 MEMS 기능을 구현하며, 상기 회로라인부(120)의 신호선(121)은 베이스부(110)의 일측면 상에서 MEMS 구조물(130)과 상하로 대향하지 않도록 패턴영역(112)에 회로패턴되는 것이 바람직하다.
이와 같이, 상기 베이스부(110)의 스택공간(111) 내에서 패턴영역(112)에는 회로라인부(120)를 회로패턴하고 비패턴영역(113)에는 MEMS 구조물(130)을 실장하여 상기 회로라인부(120)와 MEMS 구조물(130)이 상호 대향하지 않는 최적 구조로 배치됨으로써, 회로라인부(120)에서 형성되는 전기,자기적 영향이 MEMS 센서(131)에 인가되는 것을 최소화할 수 있다.
더불어, 실드층(141)을 포함하는 차폐부(140)는 MEMS 구조물(130)의 하부면과 대응되는 면적으로 형성됨으로써, 상기 시그널 노이즈 발생을 방지할 수 있는 조건하에서 차폐부(140)가 차지하는 공간을 최소화하여 소형화를 도모할 수 있는 것이 바람직하다.
한편, 도시되지 않았으나, 상기 MEMS 구조물(130)이 와이어 본딩 방식에 의해 베이스부(110)에 전기적으로 접속되면서 MEMS 구조물(130)로부터 소정의 와이어가 인출되는 경우, 상기 와이어와 각 회로라인부(120)가 상호 대향하지 않도록 와이어 또는 회로라인부(120)이 연장형성된 각도를 조절하여 패터닝함으로써 상호 대향하지 않도록 구비되는 것이 바람직하다.
여기서, 상기 상호 대향함은 와이어와 회로라인부(120)이 각각 패터닝되어 연장형성되면서 상하로 마주보며 같은 방향으로 연장된 상태를 의미한다. 이러한 구성을 통해 상기 와이어와 회로라인부(120)는 상대저인 위치관계가 X자 형태로 배치됨으로써 와이어와 회로라인부(120)이 상하로 교차되는 일부분(점형태)만 한정적으로 중첩되며 그 이외의 부분들은 상하로 대향하지 않으므로 중첩되는 면적을 최소화할 수 있다.
한편, 도 4에는 종래의 MEMS 패키지와 본 발명의 바람직한 실시예에 따른 MEMS 패키지(100)로부터 발생되는 노이즈 발생정도를 측정한 그래프가 도시되어 있다.
즉, 도 4는 (a) 현재 시판되고 있는 보쉬社의 MEMS 패키지(BMA 150), (b) 차폐부(140)도 없고, 신호라인 또는 제어라인이 MEMS 구조물 하부를 지나가는 경우의 MEMS 패키지, (c) 차폐부(140)도 구비하고, 그리고 신호라인 또는 제어라인이 MEMS 구조물 하부를 지나가지 않는 경우의 MEMS 센서, 본 발명을 적용한 MEMS 패키지(100)를, 무진동 테이블의 상부에, 각각 위치시키고 측정한 결과이다.
여기서, 도 4의 X축은 시간축이며, 도 4의 Y축은 MEMS 패키지의 측정값(ug/(root Hz))이다. 즉, 무진동 테이블 상에 놓여져 있으므로, 원래는 그 측정값이 Zero(0)가 되어야 하나, 노이즈로 인해 도 4와 같은 측정값을 갖게 되는 것이다. 도 4를 참고하면, (a)와 (b)의 경우 각각 577.8
Figure PCTKR2015008767-appb-I000001
와 825.5
Figure PCTKR2015008767-appb-I000002
와 같이 높은 수치의 노이즈가 발생됨을 알수 있다.
이에 반하여 (c)의 경우 베이스부(110)와 MEMS 센서(131) 사이에 배치된 차폐부(140)에 의해, 그리고 회로패턴을 패턴영역(112)에 구성함으로써, 유도전류나 피킹 노이즈가 흡수되어 외부로 방출됨으로써 158.5
Figure PCTKR2015008767-appb-I000003
로 그 수치가 대폭 감소함을 알 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (7)

  1. 부품실장 및 회로패턴을 위한 스택공간(111)이 일측면에 마련된 베이스부(110);
    신호선(121)과 전원선(122)을 포함하며 상기 베이스부(110)의 일측면에 회로패턴된 회로라인부(120); 및
    상기 베이스부(110)의 일측에 실장되어 소정의 MEMS 기능을 구현하는 MEMS 구조물(130);을 포함하고,
    상기 베이스부(110)의 스택공간(111)은, 상기 회로패턴을 위한 패턴영역(112)과 부품실장을 위한 비패턴영역(113)으로 구분되어 일측에 마련되고,
    상기 MEMS 구조물(130)은, 상기 베이스부(110)의 일측면 상에서 상기 비패턴영역(113) 내에 배치되어 상기 베이스부(110)와 전기적으로 접속하면서 상기 MEMS 기능을 구현하며,
    상기 회로라인부(120)의 신호선(121)은 상기 베이스부(110)의 일측면 상에서 상기 MEMS 구조물(130)과 상하로 대향하지 않도록 상기 패턴영역(112)에 회로패턴되는 MEMS 패키지.
  2. 제 1 항에 있어서,
    상기 비패턴영역(113)은 상기 MEMS 구조물(130)의 하부면과 대응되는 면적을 가지며,
    상기 신호선(121)은 상기 비패턴영역(113)의 외곽라인에 근접되어 회로패턴된 MEMS 패키지.
  3. 제 2 항에 있어서,
    상기 베이스부(110)와 MEMS 구조물(130) 사이에 배치되어 상기 회로라인부(120)로부터 발생되는 전기적 성분 또는 자기적 성분이 상기 MEMS 구조물(130)의 MEMS 센서(131)에 인가되지 않도록 흡수하여 차단하는 차폐부(140);를 더 포함하는 MEMS 패키지.
  4. 제 3 항에 있어서,
    상기 MEMS 구조물(130)은,
    상기 차폐부(140)의 상부면에 장착되는 MEMS 센서(131)와,
    상기 MEMS 센서(131)의 상부 위치에 배치되는 ASIC부(132) 및,
    상기 MEMS 센서(131)와 ASIC부(132) 사이에 배치되어 MEMS 센서(131)와 ASIC부(132)를 전기적으로 이격시키면서 상호 부착시키는 제1절연접착층(133)을 포함하는 MEMS 패키지.
  5. 제 4 항에 있어서,
    상기 차폐부(140)는,
    상기 회로라인부(120)의 전기적 성분 또는 자기적 성분을 흡수하여 차단 가능한 금속재질로 이루어진 실드층(141)과,
    상기 실드층(141)과 MEMS 구조물(130) 사이에 배치되어 실드층(141)과 MEMS 센서(131)를 전기적으로 이격시키면서 상호 부착시키는 제2절연접착층(142) 및,
    상기 실드층(141)과 베이스부(110) 사이에 배치되어 실드층(141)과 베이스부(110)를 전기적으로 이격시키면서 상호 부착시키는 제3절연접착층(143)을 포함하는 MEMS 패키지.
  6. 제 5 항에 있어서,
    상기 실드층(141)은,
    알루미늄(Al), 납(Pb) 또는 구리(Cu) 중 어느 하나 이상의 금속재질로 이루어진 MEMS 패키지.
  7. 제 5 항에 있어서,
    상기 실드층(141)은,
    전위(Voltage Level)가 플로팅(Floting) 상태이거나 접지(GND) 상태인 MEMS 패키지.
PCT/KR2015/008767 2015-07-24 2015-08-21 Mems 패키지 WO2017018582A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0105006 2015-07-24
KR1020150105006A KR101752056B1 (ko) 2015-07-24 2015-07-24 Mems 패키지

Publications (1)

Publication Number Publication Date
WO2017018582A1 true WO2017018582A1 (ko) 2017-02-02

Family

ID=57884594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008767 WO2017018582A1 (ko) 2015-07-24 2015-08-21 Mems 패키지

Country Status (2)

Country Link
KR (1) KR101752056B1 (ko)
WO (1) WO2017018582A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040040793A (ko) * 2002-11-08 2004-05-13 주식회사 대우일렉트로닉스 적외선 어레이 센서 패키지
US20060056215A1 (en) * 2004-08-25 2006-03-16 Ocz Technology Group, Inc. Method for increasing frequency yield of memory chips through on-chip or on-module termination
KR100817070B1 (ko) * 2006-10-30 2008-03-26 삼성전자주식회사 다중 그라운드 쉴딩 반도체 패키지, 그 패키지의 제조방법 및 그 그라운드 쉴딩을 이용한 노이즈 방지방법
US20120211875A1 (en) * 2009-02-25 2012-08-23 Elpida Memory, Inc Semiconductor device with stacked semiconductor chips
KR20150063744A (ko) * 2013-12-02 2015-06-10 삼성전기주식회사 Mems 센서모듈 패키지 및 그 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040010923A (ko) 2002-07-25 2004-02-05 한국과학기술연구원 Mems 소자의 칩규모 패키지 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040040793A (ko) * 2002-11-08 2004-05-13 주식회사 대우일렉트로닉스 적외선 어레이 센서 패키지
US20060056215A1 (en) * 2004-08-25 2006-03-16 Ocz Technology Group, Inc. Method for increasing frequency yield of memory chips through on-chip or on-module termination
KR100817070B1 (ko) * 2006-10-30 2008-03-26 삼성전자주식회사 다중 그라운드 쉴딩 반도체 패키지, 그 패키지의 제조방법 및 그 그라운드 쉴딩을 이용한 노이즈 방지방법
US20120211875A1 (en) * 2009-02-25 2012-08-23 Elpida Memory, Inc Semiconductor device with stacked semiconductor chips
KR20150063744A (ko) * 2013-12-02 2015-06-10 삼성전기주식회사 Mems 센서모듈 패키지 및 그 제조방법

Also Published As

Publication number Publication date
KR20170011774A (ko) 2017-02-02
KR101752056B1 (ko) 2017-06-28

Similar Documents

Publication Publication Date Title
WO2021010769A1 (ko) 안테나와 결합된 전극 구조체 및 이를 포함하는 디스플레이 장치
CN112506371B (zh) 触控基板和触控显示装置
EP3499566A1 (en) Emc protection of a semiconductor component
CN106461474A (zh) 力检测器
KR20140081859A (ko) 웨이러 레벨 적용된 rf 실드
KR102520038B1 (ko) 가스 센서 패키지 및 이를 포함하는 센싱 장치
CN109642810B (zh) 传感器封装件和制造传感器封装件的方法
CN105980865B (zh) 集成的电流传感器系统以及用于制造集成的电流传感器系统的方法
KR20150129939A (ko) 반도체 패키지 및 그 제조 방법
CN110050386A (zh) 天线基板
WO2017018582A1 (ko) Mems 패키지
EP3575262B1 (en) Reducing crosstalk in a mixed-signal multi-chip mems device package
CN109712942A (zh) 半导体封装装置及其制造方法
JP4003335B2 (ja) 半導体力学量センサ及びその製造方法
CN215935100U (zh) 一种麦克风结构、封装结构及电子设备
KR20050010479A (ko) 반도체장치
JP2017220505A (ja) プリント基板
CN211419561U (zh) 多功能传感器
CN108328564B (zh) 半导体封装装置
TW202133699A (zh) 具導電通孔陣列基板之電子裝置
CN111081696A (zh) 半导体封装和制造半导体封装的方法
JP7302330B2 (ja) 複合センサーモジュール
CN219718608U (zh) 伸缩性安装基板
CN211238248U (zh) 半导体封装
WO2018042518A1 (ja) 半導体装置及びプリント基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09.04.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15899728

Country of ref document: EP

Kind code of ref document: A1