WO2017017781A1 - 燃料電池車両の制御装置 - Google Patents

燃料電池車両の制御装置 Download PDF

Info

Publication number
WO2017017781A1
WO2017017781A1 PCT/JP2015/071337 JP2015071337W WO2017017781A1 WO 2017017781 A1 WO2017017781 A1 WO 2017017781A1 JP 2015071337 W JP2015071337 W JP 2015071337W WO 2017017781 A1 WO2017017781 A1 WO 2017017781A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
fuel
power
controller
amount
Prior art date
Application number
PCT/JP2015/071337
Other languages
English (en)
French (fr)
Inventor
大記 田中
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to BR112018001749-3A priority Critical patent/BR112018001749B1/pt
Priority to EP15899614.0A priority patent/EP3331126B1/en
Priority to US15/747,904 priority patent/US10173536B2/en
Priority to PCT/JP2015/071337 priority patent/WO2017017781A1/ja
Priority to CN201580082004.1A priority patent/CN107949499B/zh
Priority to CA2993493A priority patent/CA2993493C/en
Priority to JP2017530514A priority patent/JP6569732B2/ja
Publication of WO2017017781A1 publication Critical patent/WO2017017781A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/72Constructional details of fuel cells specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/16Dynamic electric regenerative braking for vehicles comprising converters between the power source and the motor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04626Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/04932Power, energy, capacity or load of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a control device for a fuel cell vehicle including a power converter that controls the output of the fuel cell, a storage battery that stores the power of the fuel cell, and a load device that is operated by the power of the fuel cell.
  • Patent Document 1 includes a charge detector that detects a charge / discharge current of a storage battery, and reduces the output of the voltage converter when the output of the voltage converter connected to the fuel cell is overcharged for the storage battery. I am letting.
  • Patent Document 1 limits the output of the voltage converter by feedback control based on the detection information of the charge / discharge current generated in the storage battery. For this reason, a delay occurs in the control response, and a transient overcharge may occur in the storage battery.
  • an object of the present invention is to suppress transient overcharge in the storage battery.
  • the present invention includes a load device that operates with the power of the fuel cell, the storage battery, and the fuel cell, and the power that can be generated by the fuel cell is equal to or greater than the sum of the chargeable power of the storage battery and the load device power that is generated in the load device. At this time, the output of the fuel cell is lowered by the power converter.
  • the power that can be generated by the fuel cell is equal to or greater than the sum of the chargeable power of the storage battery and the load device power of the load device, and the power converter converts the output of the fuel cell. It is decreasing. Thereby, before receiving the influence of load apparatus, the transient overcharge of a storage battery can be suppressed.
  • FIG. 1 is an overall configuration diagram of a control apparatus for a fuel cell vehicle according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing a processing procedure of a control method by the vehicle controller.
  • FIG. 3 is a flowchart showing a processing procedure when the fuel cell enters the output reduction operation mode.
  • FIG. 4 is a graph showing the relationship between the sum of the chargeable power of the storage battery and the drive power of the load device, the power that can be generated by the fuel cell, and the output of the fuel cell.
  • FIG. 5 is an overall configuration diagram of the fuel cell system showing Example 1 as a countermeasure against unreacted fuel in the power reduction operation mode.
  • FIG. 6 is a flowchart showing a processing procedure in the first embodiment of FIG. FIG.
  • FIG. 7 is a flowchart showing another processing procedure in the first embodiment of FIG.
  • FIG. 8 is an overall configuration diagram of a fuel cell system showing Example 2 as a countermeasure against unreacted fuel in the power reduction operation mode.
  • FIG. 9 is a flowchart showing a processing procedure in the second embodiment of FIG.
  • FIG. 10 is an overall configuration diagram of a fuel cell system showing Example 3 as a countermeasure against unreacted fuel in the power reduction operation mode.
  • FIG. 11 is a flowchart showing a processing procedure in the third embodiment of FIG.
  • FIG. 12 is an overall configuration diagram of a fuel cell system showing Example 4 as a countermeasure against unreacted fuel in the power reduction operation mode.
  • FIG. 13 is a flowchart showing a processing procedure in the fourth embodiment of FIG.
  • a vehicle such as an automobile, and includes a fuel cell 1 and a storage battery 3 as power sources, and a three-phase AC motor (hereinafter simply referred to as a motor) as a drive source for driving the vehicle. 5) is provided.
  • a motor three-phase AC motor
  • the fuel cell 1 is a solid oxide fuel cell, and is supplied with fuel and air to generate electricity.
  • the electric power generated by the fuel cell 1 is converted by a DC power converter (DC-DC converter) 7.
  • the DC voltage output from the DC power converter 7 and the storage battery 3 is supplied to the motor 5 after being converted into an AC voltage by the inverter 9.
  • the DC power converter 7 constitutes a power converter that controls the output of the fuel cell.
  • a battery controller 11 is connected to the storage battery 3.
  • the battery controller 11 constantly detects the temperature and charge amount (current, voltage) of the storage battery 3 and calculates chargeable power and dischargeable power. For example, the battery controller 11 determines that the rechargeable power is remarkably reduced with respect to the entire capacity when the storage battery 3 is at a low temperature below a certain temperature or is in a state where the amount of charge is large and close to full charge. .
  • a fuel cell controller 13 is connected to the fuel cell 1.
  • the fuel cell controller 13 constantly detects the temperature, voltage, and current of the fuel cell 1 and controls the temperature and power generation amount. For example, the fuel cell controller 13 raises the temperature of the fuel cell 1 by heating the air supplied to the air electrode of the fuel cell 1 at the time of start-up using a start burner, and uses the blower to stop the fuel cell 1 at the time of stop. Force cooling.
  • the fuel cell controller 13 controls the power generation amount and temperature of the fuel cell 1 by adjusting the fuel flow rate that is input to the fuel electrode of the fuel cell 1 and the air flow rate that is input to the air electrode during power generation.
  • a power converter controller 15 is connected to the DC power converter 7.
  • the power converter controller 15 inputs the output (current, voltage) from the fuel cell 1 to the DC power converter 7 to the motor 5 via the inverter 9 and charges the storage battery 3 so that the storage battery 3 is charged. 7 power electronics are controlled.
  • a motor controller 17 is connected to the motor 5 and the inverter 9.
  • the motor controller 17 controls the power electronics of the inverter 9 so that the motor 5 is driven according to the required acceleration / deceleration of the vehicle.
  • control device for the fuel cell vehicle includes a brake 19 for braking the vehicle during traveling, and an auxiliary device 21 such as an air conditioner and a heater.
  • a brake controller 23 is connected to the brake 19. The brake controller 23 controls the brake 19 so as to supplement the deceleration that is insufficient when the regenerative power of the motor 5 is generated when the brake 19 brakes the vehicle.
  • the battery controller 11, fuel cell controller 13, power converter controller 15, motor controller 17 and brake controller 23 described above are connected to a vehicle controller 25 as a controller.
  • the vehicle controller 25 receives various data from the battery controller 11, the fuel cell controller 13, the power converter controller 15, and the motor controller 17, and receives the fuel cell controller 13, the power converter controller 15, and the motor.
  • the controller 17 and the brake controller 23 are controlled.
  • the auxiliary machine 21 constitutes a load device together with the motor 5, and the vehicle controller 25 receives an input of electric power (load) generated when the auxiliary machine 21 is driven from the auxiliary machine 21.
  • the vehicle controller 25 always receives input of the following information.
  • Electric power C that can be generated by the fuel cell 1 calculated by the fuel cell controller 13 based on the temperature of the fuel cell 1
  • Rechargeable power A of the storage battery 3 calculated by the battery controller 11 based on the charge amount and temperature of the storage battery 3
  • Output power (load) of auxiliary machine 21 (5) Required Acceleration / Deceleration Target Value of Vehicle
  • the above (3) and (4) correspond to the drive power B required when the load devices such as the motor 5 and the auxiliary machine 21 are driven.
  • the drive power of the motor 5 when the motor 5 is generating regenerative power has a negative (minus) value.
  • the vehicle controller 25 receives the input of the various information described above, and calculates the target output of the fuel cell 1, the target output of the DC power converter 7, the target output of the motor 5, and the target braking output of the brake 19, respectively. It outputs to each controller 13, 15, 17, 23.
  • the current chargeable power A of the storage battery 3 is calculated based on the temperature and charge amount of the storage battery 3 (step S1), and the load device including the motor 5 and the auxiliary device 21 is currently generated.
  • Driving power (load power) B is calculated (step S2).
  • the driving power of the motor 5 includes regenerative power generated during braking by the brake 19 of the vehicle.
  • the current electric power C that can be generated by the fuel cell 1 is calculated based on the temperature of the fuel cell 1 (step S3).
  • step S4 it is determined whether or not the added value [A + B] of the rechargeable power A of the storage battery 3 and the driving power B of the load device is larger than the [power generating power C + margin] of the fuel cell 1 (step S4).
  • [A + B> C + margin] is determined, there is no possibility that the storage battery 3 will be overcharged even if the power C that can be generated by the fuel cell 1 is generated.
  • D is set to the electric power C that can be generated (step S5).
  • step S6 the fuel cell 1 is in a normal operation mode
  • step S7 the required output power for the DC power converter 7 at this time is F.
  • step S4 when it is determined in step S4 that [A + B> C + margin] is not satisfied, that is, when the electric power C that can be generated is equal to or greater than the sum of the chargeable electric power A and the driving electric power B that is the load equipment electric power, the fuel cell 1 Is set to [A + B] (step S8).
  • the upper limit value D is set to [A + B] that is equal to or lower than the electric power C that can be generated.
  • the required output value F is smaller than the upper limit value D, there is no possibility that the storage battery 3 will be overcharged, so that the fuel cell 1 enters the normal operation mode in step S6 described above.
  • step S10 when it is determined that the required output value F is equal to or higher than the upper limit value D, it is assumed that the storage battery 3 may be overcharged, and the operation state of the fuel cell 1 is shifted to the output reduction mode (step S10). That is, when the required value F of the output power for the DC power converter 7 is equal to or greater than the sum of the chargeable power A of the storage battery 3 and the driving power B of the load device, the output of the fuel cell 1 is reduced. The overcharge of the storage battery 3 is suppressed in advance. By restricting the output of the fuel cell 1, the required value of the output power for the DC power converter 7 becomes the upper limit value D (step S11).
  • step S13 When it is determined that the fuel cell 1 is in a mode of operating with the output reduced, it is determined whether or not the motor 5 is generating regenerative power (step S13).
  • the motor 5 is powered by the power supplied from the inverter 9 and no regenerative power is generated, the amount of fuel supplied to the fuel cell 1 is reduced (step S14).
  • step S15 The operation of reducing the amount of fuel supplied to the fuel cell 1 is performed until the amount of power generated by the fuel cell 1 becomes equal to or lower than the upper limit value D of the required power for the fuel cell 1 described above (step S15).
  • step S13 if it is determined in step S13 that the motor 5 is generating regenerative power, the regenerative power of the motor 5 is calculated (step S16), and the amount of fuel input to the fuel cell 1 is not shown. And so on (step S17).
  • the estimated output of the fuel cell 1 by the injected fuel is calculated (step S18), and the estimated output of the fuel cell 1 is a certain threshold value (a predetermined value, for example, the maximum output of the fuel cell 1). It is judged whether it is larger than (20% of) (step S19).
  • the amount of fuel input to the fuel cell 1 is reduced in step S14 described above, and the power generation amount of the fuel cell 1 is suppressed.
  • the storage battery 3 is prevented from being overcharged.
  • step S20 it is determined whether or not the regenerative power is larger than the estimated output.
  • the regenerative power is reduced, and a filter process is performed so that a response delay occurs with respect to the generation of the regenerative power (step S21). Thereby, the overcharge of the storage battery 3 is suppressed in advance.
  • step S22 When the regenerative electric power is filtered, the vehicle braking request value and the motor regenerative torque are calculated (step S22), and the braking force that is insufficient due to the reduction of the regenerative electric power is instructed to the brake controller 23 so as to be mechanical. Supplemented by the brake 19 (step S23).
  • the power C that can be generated by the fuel cell 1 is equal to or greater than the sum of the chargeable power A of the storage battery 3 and the drive power B of the motor 5 and the auxiliary machine 21, and the DC power
  • the output of the fuel cell 1 is reduced by the converter 7.
  • the load device is at least one of the motor 5 that drives the vehicle and the auxiliary machine 21 that is mounted on the vehicle. For this reason, the output of the fuel cell 1 is reduced by the DC power converter 7 before the influence of the load by the auxiliary machine 21 as well as the motor 5 to suppress the transient overcharge of the storage battery 3. it can.
  • the vehicle controller 25 reduces the fuel supplied to the fuel cell 1 when the output of the fuel cell 1 is reduced by the DC power converter 7.
  • the output of the fuel cell 1 decreases due to a decrease in the supplied fuel, which can contribute to the transient overcharge suppression of the storage battery 3. At that time, the amount of unburned reaction gas is reduced.
  • the vehicle controller 25 when the vehicle controller 25 determines that the motor 5 generates regenerative power, the vehicle controller 25 reduces the amount of regenerative power generated according to the amount of fuel reduction for the fuel cell 1. Since the control of the fuel flow rate with respect to the fuel cell 1 has low responsiveness, the output reduction of the fuel cell 1 by the DC power converter 7 can be performed more quickly by reducing the increase in the amount of regenerative power generated.
  • the present embodiment also includes a brake 19 that brakes the vehicle.
  • a brake 19 that brakes the vehicle.
  • the vehicle controller 25 reduces the amount of regenerative electric power generated by the motor 5
  • the braking force generated by the brake 19 depends on the amount of regenerative electric power reduced. Increase. For this reason, the amount of regenerative electric power generated by the motor 5 can be reduced while the braking force required by the vehicle is secured by the brake 19.
  • FIG. 4 shows the relationship between the sum S (A + B) of the chargeable power A of the storage battery 3 and the drive power B of the load device, the power generation possible power C of the fuel cell 1, and the output P of the fuel cell 1. Yes.
  • the electric power C that can be generated by the input fuel greatly exceeds the output P of the fuel cell 1, and the fuel corresponding to the region indicated by the oblique lines is discharged without being reacted.
  • the countermeasure against this unreacted fuel will be described below.
  • FIG. 5 is an overall configuration diagram of the fuel cell system showing Example 1 as a measure against unreacted fuel.
  • the fuel cell 1 generates electricity by supplying fuel (for example, ethanol) from a fuel pump 27 constituting a fuel supply device and air from a blower 29 as an air supply device.
  • fuel for example, ethanol
  • the fuel pipe 31 that connects the fuel pump 27 and the fuel cell 1 is provided with a heat exchanger 33, a vaporizer 35, and a reformer 37 in that order from the fuel pump 27 side.
  • an air burner 39 that connects the blower 29 and the fuel cell 1 is provided with an activation burner 41 and a heat exchanger 33 that become an activation combustor in order from the blower 29.
  • a combustion catalyst 45 as a fuel device is provided in the exhaust pipe 43 downstream of the fuel cell 1.
  • the combustion catalyst 45 is provided with a catalyst temperature sensor 46 as a combustor temperature detector.
  • the fuel discharged from the fuel pump 27 is heated by exchanging heat with the exhaust discharged from the combustion catalyst 45 by the heat exchanger 33 and is vaporized by the vaporizer 35.
  • the vaporized fuel is decomposed at a high temperature by the reformer 37 and reformed into a composition such as H 2 , CH 4 , and CO, and the reformed fuel is supplied to the fuel electrode of the fuel cell 1.
  • the air discharged from the blower 29 is heated by the combustion heat of the start burner 41 and further heated by exchanging heat with the exhaust discharged from the combustion catalyst 45 by the heat exchanger 33, and then the fuel cell 1. Supplied to the air electrode.
  • the start burner 41 is supplied with fuel from the fuel pump 27 through the pipe 47 and combusts when the fuel cell system is started.
  • the air discharged from the blower 29 is supplied directly to the combustion catalyst 45 through the bypass air pipe 49 so as to forcibly cool the combustion catalyst 45.
  • the air discharged from the blower 29 flows toward the heat exchanger 33 through the pipe 51 without passing through the start burner 41 and is supplied to the fuel cell 1.
  • the bypass air pipe 49 is provided with an open / close valve 53 as an air flow rate regulator, and adjusts the flow rate of the air directly flowing from the bypass air pipe 49 toward the combustion catalyst 45 out of the air discharged from the blower 29. .
  • the capacity of the combustion catalyst 45 is set so as to process unreacted fuel that could not be reacted in the fuel cell 1. For this reason, the fuel to be processed by the combustion catalyst 45 becomes excessive due to the decrease in the output of the fuel cell 1 by the DC power converter 7, and the temperature of the combustion catalyst 45 becomes higher.
  • the temperature of the combustion catalyst 45 is detected by the catalyst temperature sensor 46, and as the temperature rises, the blower 29
  • the combustion catalyst 45 is forcibly air-cooled by increasing the air supply amount. Thereby, the temperature rise of the combustion catalyst 45 is suppressed and deterioration is suppressed.
  • FIG. 6 shows the processing content at this time.
  • the temperature of the combustion catalyst 45 becomes equal to or higher than the threshold (step S71)
  • the flow rate of the blower 29 is increased (step S72).
  • the opening / closing valve 53 may not be installed, and when it is installed, the opening degree is constant.
  • the output reduction operation mode although the output of the fuel cell 1 is reduced, the flow rate of air that is an empty refrigerant increases, so that the temperature of the fuel cell 1 is reduced and the operation efficiency is reduced. For this reason, when the temperature of the fuel cell 1 falls below a threshold that causes a decrease in operating efficiency, the opening degree of the on-off valve 53 is increased. Thereby, the air discharged from the blower 29 is increased on the combustion catalyst 45 side and decreased on the fuel cell 1 side.
  • a fuel cell temperature sensor 55 as a fuel cell temperature detector is installed in the fuel cell 1, and the opening degree of the opening / closing valve 53 is adjusted based on the temperature detected by the fuel cell temperature sensor 55. That is, as the temperature detected by the fuel cell temperature sensor 55 decreases, the opening degree of the open / close valve 53 is increased, whereby the amount of air discharged from the blower 29 is reduced by the fuel cell 1 while the combustion catalyst is reduced. Adjust to 45 to increase. At this time, the amount of air discharged from the blower 29 is assumed to be constant.
  • FIG. 7 shows the processing contents at this time, and when the temperature of the fuel cell 1 becomes equal to or lower than the threshold value (step S81), the opening degree of the open / close valve 53 is increased (step S82).
  • the amount of air to the fuel cell 1 is reduced and the temperature drop is suppressed, while the amount of air to the combustion catalyst 45 is increased and the temperature rise is suppressed, and the temperature of both the fuel cell 1 and the combustion catalyst 45 is reduced. Can be kept within the design value (threshold).
  • FIG. 8 is an overall configuration diagram of a fuel cell system showing Example 2 as a measure against unreacted fuel.
  • the basic components of the second embodiment are the same as those of the first embodiment shown in FIG. 5 as the fuel cell system.
  • a first on-off valve 57, a second on-off valve 59, and a circulation blower 61 are provided in place of the bypass air pipe 49 and the on-off valve 53 of the first embodiment.
  • the first on-off valve 57 and the second on-off valve 59 constitute a fuel flow rate regulator.
  • the first opening / closing valve 57 is provided in the exhaust pipe 43 between the fuel cell 1 and the combustion catalyst 45.
  • the second opening / closing valve 59 is provided in the exhaust pipe 43 at a portion for exhausting the exhaust from the combustion catalyst 45 through the heat exchanger 33 to the outside of the system.
  • the circulation blower 61 is provided in a circulation pipe 63 that circulates unreacted fuel discharged from the fuel cell 1 to the vaporizer 35.
  • the circulation pipe 63 connects the vaporizer 35, the reformer 37, and the fuel cell 1, and constitutes a fuel recirculation mechanism together with the circulation blower 61.
  • step S101 when the output of the fuel cell 1 is reduced by the DC power converter 7, a large amount of unreacted fuel is discharged from the fuel cell 1 and burned by the combustion catalyst 45 as described above.
  • step S101 when the temperature of the combustion catalyst 45 detected by the catalyst temperature sensor 46 becomes equal to or higher than the threshold (step S101), the opening degree of the first opening / closing valve 57 or the second opening / closing valve 59 is set.
  • step S102 the circulation amount of the unreacted gas by the circulation blower 61 is increased.
  • the unreacted fuel By reducing the opening degree of the first opening / closing valve 57 or the second opening / closing valve 59, the unreacted fuel more than necessary is prevented from flowing into the combustion catalyst 45 and the temperature of the combustion catalyst 45 is prevented from increasing. Along with this, by increasing the circulation flow rate (fuel flow rate) of the unreacted fuel by the circulation blower 61, the unreacted fuel is supplied again to the fuel cell 1 via the vaporizer 35 and the reformer 37 and used for power generation. can do.
  • Example 2 unreacted fuel discharged from the fuel cell 1 is returned to the fuel cell 1 by the circulation blower 61 in the output reduction operation mode of the fuel cell 1. For this reason, even if a large amount of unreacted fuel is generated from the fuel cell 1, it is possible to effectively use the fuel while suppressing an increase in the temperature of the combustion catalyst 45.
  • the flow rate of the unreacted fuel flowing to the combustion catalyst 45 is reduced by reducing the opening degree of the first opening / closing valve 57 or the second opening / closing valve 59. For this reason, even if a large amount of unreacted fuel is generated from the fuel cell 1, it is possible to effectively use the fuel while more reliably suppressing the temperature rise of the combustion catalyst 45.
  • first opening / closing valve 57 and the second opening / closing valve 59 may be provided.
  • the position immediately after discharge of the unreacted fuel from the fuel cell 1 is a high temperature of about 800 ° C.
  • the second open / close valve 59 downstream of the heat exchanger 33 having a lower temperature is considered in consideration of the operability of the valve. Should be provided.
  • FIG. 10 is an overall configuration diagram of a fuel cell system showing Example 3 as a measure against unreacted fuel.
  • the basic components of the third embodiment are the same as those of the first embodiment shown in FIG. 5 as the fuel cell system.
  • the third embodiment is different from the first embodiment in that a switching valve 65 as a fuel diversion regulator, a fuel adsorber 67, and a purge blower 69 as a fuel feeder are provided.
  • the switching valve 65 is provided in the exhaust pipe 43 between the fuel cell 1 and the combustion catalyst 45.
  • the fuel adsorber 67 is connected to a bypass pipe 71 that connects the switching valve 65 and the combustion catalyst 45, and a purge pipe 73 that is connected to the activation burner 41.
  • the purge blower 69 is provided in a purge pipe 73 located on the opposite side of the fuel adsorber 67 from the start burner 41.
  • the fuel adsorber 67 is configured as a methane adsorber, for example, and is an adsorption filter made of activated carbon or a porous metal complex.
  • step S121 when the temperature of the combustion catalyst 45 detected by the catalyst temperature sensor 46 becomes equal to or higher than the threshold value (step S121), the switching valve 65 so that unreacted fuel flows to the fuel adsorber 67. Are switched (step S122). At that time, the entire amount of unreacted fuel may flow to the fuel adsorber 67 or may flow more to the fuel adsorber 67 than the combustion catalyst 45.
  • the purge blower 69 operates when the fuel cell system is started, and feeds air toward the fuel adsorber 67. Thereby, the fuel adsorbed by the fuel adsorber 67 is released by the air that is sent, and is sent to the start burner 41 as an air heater for combustion. Unreacted fuel is used as a starting fuel by burning in the starting burner 41.
  • Example 3 when the output of the fuel cell 1 is reduced by the DC power converter 7, the amount of unreacted fuel adjusted by the switching valve 65 is increased by the fuel adsorber 67. Thereby, the unreacted fuel flowing into the combustion catalyst 45 is reduced, and the temperature rise of the combustion catalyst 45 can be suppressed.
  • the fuel adsorbed by the fuel adsorber 67 is sent to the start burner 41 by the purge blower 69 and used as the start fuel, so that the fuel is effectively used and contributes to the improvement of fuel consumption. it can.
  • FIG. 12 is an overall configuration diagram of a fuel cell system showing Example 4 as a measure against unreacted fuel.
  • the basic components of the fourth embodiment are the same as those of the first embodiment shown in FIG.
  • the fourth embodiment is different from the third embodiment in that a first pump 75 and a fuel adsorption device 77 are provided instead of the fuel adsorber 67, and a second pump 79 serving as a fuel feeder is provided instead of the purge blower 69.
  • the fuel adsorbing device 77 is composed of a low-pressure tank having an adsorption filter made of activated carbon or a porous metal complex similar to that of the fuel adsorber 67 inside.
  • step S ⁇ b> 141 when the temperature of the combustion catalyst 45 detected by the catalyst temperature sensor 46 becomes equal to or higher than the threshold (step S ⁇ b> 141), the switching valve 65 so that unreacted fuel flows to the fuel adsorbing device 77. Are switched (step S142). At this time, the entire amount of unreacted fuel may flow through the fuel adsorbing device 77 or may flow more through the fuel adsorbing device 77 than the combustion catalyst 45.
  • the unreacted fuel that has flowed into the fuel adsorption device 77 is adsorbed by the internal adsorption filter. Thereby, a part or all of the unreacted fuel discharged from the fuel cell 1 is accommodated and held in the fuel adsorption device 77.
  • the fuel stored and held in the fuel adsorbing device 77 is burned by the combustion catalyst 45 and exhausted. At this time, the second pump 79 is stopped.
  • the second pump 79 operates when the fuel cell system is started, and sends the fuel stored and held in the fuel adsorbing device 77 to the start burner 41. Unreacted fuel is used as a starting fuel by burning in the starting burner 41.
  • the fuel stored and held in the fuel adsorbing device 77 is sent to the start burner 41 by the second pump 79 and used as the start fuel, so that the fuel is effectively used and contributes to the improvement of fuel consumption. Can do.
  • the present invention is applied to a control device for a fuel cell vehicle including a power converter that controls the output of the fuel cell, a storage battery that stores the power of the fuel cell, and a load device that is operated by the power of the fuel cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

燃料電池(1)と、燃料電池(1)の出力を制御する電力変換器(7)と、燃料電池(1)の電力を蓄電する蓄電池(3)と、燃料電池(1)と蓄電池(3)との少なくともいずれか一方の電力によって作動する負荷機器(5)と、を備える。さらに、蓄電池(3)の現在の充電可能電力、負荷機器(5)に現在発生している負荷機器電力及び、燃料電池(1)の現在の発電可能電力を算出し、発電可能電力が、充電可能電力と負荷機器電力との加算値以上のときに、電力変換器(7)により燃料電池(1)の出力を低下させる制御器(25)を備える。

Description

燃料電池車両の制御装置
 本発明は、燃料電池の出力を制御する電力変換器と、燃料電池の電力を蓄電する蓄電池と、燃料電池の電力によって作動する負荷機器とを備える燃料電池車両の制御装置に関する。
 特許文献1の技術は、蓄電池の充放電電流を検出する充電検出器を備え、燃料電池に接続される電圧変換器の出力が、蓄電池にとって過充電となるときに、電圧変換器の出力を低減させている。
特許第5336791号公報
 特許文献1の技術は、蓄電池で発生している充放電電流の検知情報に基づいて、フィードバック制御により電圧変換器の出力を制限している。このため、制御応答に遅れが生じ、蓄電池に過渡的な過充電が発生する恐れがある。
 そこで、本発明は、蓄電池における過渡的な過充電を抑制することを目的としている。
 本発明は、燃料電池と蓄電池と燃料電池の電力によって作動する負荷機器を備え、燃料電池の発電可能電力が、蓄電池の充電可能電力と負荷機器に発生している負荷機器電力との加算値以上のときに、電力変換器により燃料電池の出力を低下させる。
 本発明によれば、燃料電池の発電可能電力が、蓄電池の充電可能電力と負荷機器の負荷機器電力との加算値以上であることを事前に把握して、電力変換器により燃料電池の出力を低下させている。これにより、負荷機器の影響を受ける前に、蓄電池の過渡的な過充電を抑制できる。
図1は、本発明の一実施形態に係わる燃料電池車両の制御装置の全体構成図である。 図2は、車両制御器による制御方法の処理手順を示すフローチャートである。 図3は、燃料電池が出力低下運転モードとなったときの処理手順を示すフローチャートである。 図4は、蓄電池の充電可能電力と負荷機器の駆動電力との加算値と、燃料電池の発電可能電力と、燃料電池の出力との関係を示すグラフである。 図5は、出力低下運転モードでの未反応燃料の対策として実施例1を示す燃料電池システムの全体構成図である。 図6は、図5の実施例1での処理手順を示すフローチャートである。 図7は、図5の実施例1での別の処理手順を示すフローチャートである。 図8は、出力低下運転モードでの未反応燃料の対策として実施例2を示す燃料電池システムの全体構成図である。 図9は、図8の実施例2での処理手順を示すフローチャートである。 図10は、出力低下運転モードでの未反応燃料の対策として実施例3を示す燃料電池システムの全体構成図である。 図11は、図10の実施例3での処理手順を示すフローチャートである。 図12は、出力低下運転モードでの未反応燃料の対策として実施例4を示す燃料電池システムの全体構成図である。 図13は、図12の実施例4での処理手順を示すフローチャートである。
 以下、本発明を実施するための形態について、図面を参照して詳細に説明する。
 図1に示す燃料電池車両の制御装置は、例えば自動車などの車両に適用され、電力源として燃料電池1及び蓄電池3を備え、車両駆動用の駆動源として三相交流モータ(以下、単にモータとする。)5を備えている。
 燃料電池1は、固体酸化物型の燃料電池であり、燃料及び空気が供給されて発電する。燃料電池1が発電した電力は、直流電力変換器(DC-DCコンバータ)7によって電力変換される。直流電力変換器7及び蓄電池3から出力される直流電圧は、インバータ9によって交流電圧に電力変換された後、モータ5に供給される。直流電力変換器7は、燃料電池の出力を制御する電力変換器を構成している。
 蓄電池3には、バッテリ制御器11が接続されている。バッテリ制御器11は、蓄電池3の温度や充電量(電流、電圧)を常時検知し、充電可能電力及び放電可能電力を算出する。例えば、バッテリ制御器11は、蓄電池3が、ある一定温度以下の低温か、あるいは充電量が多く満充電に近い状態のときには、全容量に対して充電可能電力が著しく低下していると判断する。
 燃料電池1には、燃料電池制御器13が接続されている。燃料電池制御器13は、燃料電池1の温度、電圧及び電流を常時検知し、温度や発電量を制御する。例えば、燃料電池制御器13は、起動時に燃料電池1の空気極に供給する空気を起動用バーナを用いて加熱することで燃料電池1を昇温させ、停止時にはブロアを用いて燃料電池1を強制冷却する。
 さらに、燃料電池制御器13は、発電時に燃料電池1の燃料極に投入する燃料流量及び、空気極に投入する空気流量を調整することで、燃料電池1の発電量及び温度を制御する。
 直流電力変換器7には、電力変換器制御器15が接続されている。電力変換器制御器15は、燃料電池1から直流電力変換器7への出力(電流、電圧)を、インバータ9を介してモータ5に入力させ、また蓄電池3に充電させるよう、直流電力変換器7のパワーエレクトロニクスを制御する。
 モータ5及びインバータ9には、モータ制御器17が接続されている。モータ制御器17は、車両の要求加減速度に応じてモータ5が駆動するよう、インバータ9のパワーエレクトロニクスを制御する。
 また、燃料電池車両の制御装置は、走行時の車両に対して制動を行うブレーキ19及び、エアコンやヒータなど補機21を含む。ブレーキ19にはブレーキ制御器23が接続されている。ブレーキ制御器23は、ブレーキ19による車両制動時に、モータ5の回生電力発生時では不足する減速度を補完するようにブレーキ19を制御する。
 上記したバッテリ制御器11、燃料電池制御器13、電力変換器制御器15、モータ制御器17及びブレーキ制御器23は、制御器としての車両制御器25に接続されている。車両制御器25は、バッテリ制御器11、燃料電池制御器13、電力変換器制御器15及びモータ制御器17から各種データの入力を受け、燃料電池制御器13、電力変換器制御器15、モータ制御器17及びブレーキ制御器23を制御する。
 補機21は、モータ5とともに負荷機器を構成しており、車両制御器25は、補機21から、補機21の駆動時に発生する電力(負荷)の入力を受ける。
 車両制御器25は、常時以下の情報の入力を受ける。
(1)燃料電池制御器13が燃料電池1の温度を基に算出する燃料電池1の発電可能電力C
(2)バッテリ制御器11が蓄電池3の充電量及び温度を基に算出する蓄電池3の充電可能電力A
(3)モータ制御器17が算出するモータ5の回生電力を含む出力電力(負荷)
(4)補機21の出力電力(負荷)
(5)車両の要求加減速目標値
 上記(3)、(4)は、モータ5及び補機21等の負荷機器が駆動する際に必要な駆動電力Bに相当する。モータ5が回生電力を発生しているときのモータ5の駆動電力は、負(マイナス)の値となる。
 車両制御器25は、上記した各種情報の入力を受けて、燃料電池1の目標出力、直流電力変換器7の目標出力、モータ5の目標出力及び、ブレーキ19の目標制動出力をそれぞれ演算し、各制御器13,15,17,23に出力する。
 次に、車両制御器25を用いた制御方法の処理手順を図2及び図3のフローチャートに基づき説明する。
 図2に示すように、蓄電池3の温度や充電量に基づいて蓄電池3の現在の充電可能電力Aを演算し(ステップS1)、モータ5及び補機21を含む負荷機器の現在発生している駆動電力(負荷電力)Bを演算する(ステップS2)。駆動電力Bのうちモータ5の駆動電力は、車両のブレーキ19による制動時に発生する回生電力を含む。さらに、燃料電池1の現在の発電可能電力Cを燃料電池1の温度に基づき演算する(ステップS3)。
 次に、蓄電池3の充電可能電力Aと負荷機器の駆動電力Bとの加算値[A+B]が、燃料電池1の[発電可能電力C+マージン]よりも大きいかどうかを判断する(ステップS4)。ここで、[A+B>C+マージン]と判断したときは、燃料電池1の発電可能電力Cを発電しても、蓄電池3が過充電となる恐れがないので、燃料電池1に対する要求電力の上限値Dを発電可能電力Cに設定する(ステップS5)。
 この場合、燃料電池1は通常の運転モードとなり(ステップS6)、このときの直流電力変換器7に対する出力電力の要求値はFとなる(ステップS7)。
 逆にステップS4で、[A+B>C+マージン]ではないと判断したとき、つまり発電可能電力Cが、充電可能電力Aと負荷機器電力である駆動電力Bとの加算値以上のときには、燃料電池1に対する要求電力の上限値Dを[A+B]に設定する(ステップS8)。この場合、燃料電池1の発電可能電力Cが大きく、あるいは上記加算値が小さいことにより蓄電池3が過充電となる恐れがあるので、上限値Dを発電可能電力C以下の[A+B]とする。
 次に、設定した上限値D=A+Bが、燃料電池1に対する要求出力値Fよりも大きいかどうかを判断する(ステップS9)。ここで、要求出力値Fが上限値Dよりも小さいと判断したときは、蓄電池3が過充電となる恐れがないので、前述したステップS6において燃料電池1が通常の運転モードとなる。
 一方、要求出力値Fが上限値D以上と判断したときは、蓄電池3に過充電の恐れがあるとして、燃料電池1の運転状態を出力低下モードに移行させる(ステップS10)。つまり、直流電力変換器7に対する出力電力の要求値Fが、蓄電池3の充電可能電力Aと負荷機器の駆動電力Bとの加算値以上となったときは、燃料電池1の出力を絞ることで、蓄電池3の過充電を未然に抑える。燃料電池1の出力を絞ることで、直流電力変換器7に対する出力電力の要求値が上限値Dとなる(ステップS11)。
 次に、燃料電池1が出力低下運転モードとなったときの処理手順を図3に基づき説明する。
 燃料電池1を出力低下させて運転するモードと判断された場合には、モータ5が回生電力を発生しているかどうかを判断する(ステップS13)。ここで、モータ5がインバータ9から供給される電力によって力行し、回生電力を発生していない場合には、燃料電池1への燃料供給量を低下させる(ステップS14)。
 燃料電池1への燃料供給量を低下させる作業は、燃料電池1の発電する電力量が、前述した燃料電池1に対する要求電力の上限値D以下となるまで実施する(ステップS15)。
 一方、ステップS13でモータ5が回生電力を発生していると判断した場合には、モータ5の回生電力を演算し(ステップS16)、さらに燃料電池1への投入燃料の量を図示しない流量センサ等によって検出する(ステップS17)。
 燃料流量を検出した後は、投入された燃料による燃料電池1の推定出力を演算し(ステップS18)、燃料電池1の推定出力が、ある一定の閾値(所定値、例えば燃料電池1の最大出力の20%)よりも大きいかどうかを判断する(ステップS19)。
 ここで、推定出力が閾値以下と判断された場合には、前記したステップS14にて燃料電池1への燃料投入量を低減し、燃料電池1の発電量を抑える。燃料電池1の発電量を抑えることで、蓄電池3が過充電となることが抑制される。
 一方、推定出力が閾値を超える場合は、回生電力が推定出力よりも大きいかどうかを判断する(ステップS20)。ここで、回生電力が推定出力より大きい場合には、回生電力を減少させ、かつ、回生電力の生成に関して応答遅れが発生するようフィルタ処理を行う(ステップS21)。これにより、蓄電池3の過充電を未然に抑える。
 回生電力にフィルタ処理を行った場合には、車両制動要求値とモータ回生トルクを演算し(ステップS22)、回生電力減少に伴い不足する制動力を、ブレーキ制御器23へ指令して機械式のブレーキ19で補足する(ステップS23)。
 なお、回生電力にフィルタ処理を行った場合、回生電力が減少するため、その分燃料電池1の発電可能電力の上限値Dは増加する。よって、このときの燃料電池1に対する燃料投入量の低下代は小さくなる。
 本実施形態では、燃料電池1の発電可能電力Cが、蓄電池3の充電可能電力Aとモータ5や補機21の駆動電力Bとの加算値以上であることを事前に把握して、直流電力変換器7により燃料電池1の出力を低下させている。これにより、負荷機器であるモータ5や補機21の影響を受ける前に、蓄電池3の過渡的な過充電を抑制できる。
 また、本実施形態は、負荷機器は、車両を駆動するモータ5と、車両に搭載される補機21との少なくともいずれか一方としている。このため、モータ5に限らず、補機21による負荷の影響を受ける前に、直流電力変換器7により燃料電池1の出力を低下させて、蓄電池3の過渡的な過充電を抑制することができる。
 また、本実施形態は、車両制御器25は、直流電力変換器7により燃料電池1の出力を低下させるに際に、燃料電池1に供給する燃料を減少させる。燃料電池1は、供給される燃料が減少することで出力が低下し、蓄電池3の過渡的な過充電抑制に寄与することができる。その際、未燃の反応ガスの排出量が低減する。
 また、本実施形態は、車両制御器25は、モータ5が回生電力を発生すると判断したときに、燃料電池1に対する燃料低減量に応じて回生電力の発生量を減少させる。燃料電池1に対する燃料流量の制御は応答性が低いため、回生電力の発生量の増加代を低下させることにより、直流電力変換器7による燃料電池1の出力低下をより素早く実施することができる。
 また、本実施形態は、車両を制動するブレーキ19を備え、車両制御器25は、モータ5による回生電力の発生量を減少させるときに、ブレーキ19による制動力を、回生電力の減少量に応じて増大させる。このため、車両の必要とする制動力をブレーキ19により確保しながら、モータ5による回生電力の発生量を減少させることができる。
 図4は、蓄電池3の充電可能電力Aと負荷機器の駆動電力Bとの加算値S(A+B)と、燃料電池1の発電可能電力Cと、燃料電池1の出力Pとの関係を示している。
 図4において、時間tで車両がブレーキ19を操作されて制動されると、回生電力が発生して蓄電池3は充電されることになるから、加算値Sは急激に低下する。加算値Sの低下に追随するように、直流電力変換器7により燃料電池1の出力Pを低下させることで、蓄電池3に対する過充電が抑制される。
 このとき、燃料電池1は、投入された燃料による発電可能電力Cが、燃料電池1の出力Pを大きく上回り、斜線で示す領域に対応する分燃料が未反応のまま排出されることになる。この未反応燃料の対策について、以下に説明する。
 図5は、未反応燃料の対策として実施例1を示す燃料電池システムの全体構成図である。燃料電池1は、燃料供給器を構成する燃料ポンプ27から燃料(例えばエタノール)が、空気供給器としてのブロア29から空気が、それぞれ供給されて発電する。
 燃料ポンプ27と燃料電池1とを接続する燃料配管31には、燃料ポンプ27側から順に、熱交換器33、気化器35、改質器37が設けられている。一方、ブロア29と燃料電池1とを接続する空気配管39には、ブロア29から順に起動用燃焼器となる起動バーナ41、熱交換器33が設けられている。また、燃料電池1の下流の排気管43には、燃料器としての燃焼触媒45が設けられている。燃焼触媒45には、燃焼器温度検出器としての触媒温度センサ46を設置している。
 燃料ポンプ27から吐出された燃料は、熱交換器33で燃焼触媒45から排出された排気と熱交換して昇温し、気化器35で気化する。気化した燃料は、改質器37により高温で分解されてH2,CH4,COなどの組成に改質され、改質燃料が燃料電池1の燃料極に供給される。
 一方、ブロア29から吐出される空気は、起動バーナ41の燃焼熱により昇温され、さらに熱交換器33で燃焼触媒45から排出された排気と熱交換して昇温した後、燃料電池1の空気極に供給される。起動バーナ41は、燃料電池システムの起動時に、燃料ポンプ27から燃料が配管47を通って供給されて燃焼する。
 燃料電池1では、燃料極と空気極との間でイオン伝導することで発電し、反応後のガスは燃焼触媒45で燃焼してCO2,H2Oが排出され、熱交換器33を通って燃料や空気と熱交換する。
 また、ブロア29から吐出される空気は、バイパス空気配管49を経て、燃焼触媒45を強制空冷するべく直接燃焼触媒45に供給される。燃料電池1の起動後は、ブロア29から吐出される空気が、起動バーナ41を通過せずに配管51を通って熱交換器33に向けて流れ、燃料電池1に供給される。バイパス空気配管49には、空気流量調整器としての開閉バルブ53を設置し、ブロア29から吐出される空気のうち、バイパス空気配管49から燃焼触媒45に向けて直接を流れる空気の流量を調整する。
 次に実施例1の作用を説明する。
 燃料電池1の発電中に、前述した出力低下運転モードに移行して、直流電力変換器7が燃料電池1の出力を低下させると、熱交換器33、気化器35、改質器37に既に供給されている燃料は、未反応のまま燃料電池1を通り抜けることになる。
 通常、燃焼触媒45は、燃料電池1で反応しきれなかった未反応燃料を処理するように、容量が設定されている。このため、直流電力変換器7による燃料電池1の出力低下によって、燃焼触媒45で処理する燃料が過剰となり、燃焼触媒45の温度がより高温化する。
 そこで、実施例1では、燃焼触媒45の温度を閾値内に抑えるために、出力低下運転モードでは、燃焼触媒45の温度を触媒温度センサ46により検知し、温度が上昇するに伴ってブロア29による空気供給量を増量して燃焼触媒45を強制空冷する。これにより、燃焼触媒45の温度上昇を抑えて劣化を抑制する。
 図6は、このときの処理内容を示しており、燃焼触媒45の温度が閾値以上となったときに(ステップS71)、ブロア29の流量を増大する(ステップS72)。このとき、開閉バルブ53は設置していなくてもよく、設置している場合には開度は一定とする。
 また、出力低下運転モードでは、燃料電池1は出力が低下しているにも関わらず、空冷媒体である空気の流量が増加するため、燃料電池1の温度が低下して運転効率が低下する。このため、燃料電池1の温度が、運転効率の低下を招くような閾値を下回る場合には、開閉バルブ53の開度を大きくする。これにより、ブロア29から吐出される空気は、燃焼触媒45側で多く、燃料電池1側で少なくなる。
 この場合燃料電池1に、燃料電池温度検出器としての燃料電池温度センサ55を設置し、燃料電池温度センサ55の検知温度に基づいて開閉バルブ53の開度を調整する。すなわち、燃料電池温度センサ55の検知温度の低下に伴って、開閉バルブ53の開度を大きくし、これにより、ブロア29から吐出された空気の量を、燃料電池1で少なくする一方、燃焼触媒45で多くなるよう調整する。このとき、ブロア29からの空気の吐出量が一定とする。
 図7は、このときの処理内容を示しており、燃料電池1の温度が閾値以下となったときに(ステップS81)、開閉バルブ53の開度を大きくする(ステップS82)。これにより、燃料電池1への空気量が減少して温度低下が抑制される一方、燃焼触媒45への空気量が増大して温度上昇が抑制され、燃料電池1と燃焼触媒45の両方の温度を設計値(閾値)内に収めることができる。
 以上により、燃料電池1の出力低下運転モードにおいて、燃料電池1から未反応燃料が多量に発生しても、燃焼触媒45の温度上昇及び、燃料電池1の温度低下を抑えつつ、多量の未反応ガスを燃焼触媒45で効率よく燃焼させることができる。
 図8は、未反応燃料の対策として実施例2を示す燃料電池システムの全体構成図である。実施例2は、燃料電池システムとして基本的な構成要素は、図5の実施例1と同様である。実施例2は、実施例1のバイパス空気配管49及び開閉バルブ53に代えて、第1開閉バルブ57、第2開閉バルブ59及び循環ブロア61を設けている。第1開閉バルブ57、第2開閉バルブ59は燃料流量調整器を構成している。
 第1開閉バルブ57は、燃料電池1と燃焼触媒45との間の排気管43に設けている。第2開閉バルブ59は、燃焼触媒45から熱交換器33を経てシステム外部に排気を排出する部分の排気管43に設けている。循環ブロア61は、燃料電池1から排出される未反応燃料を気化器35に循環させる循環配管63に設けている。循環配管63は、気化器35、改質器37、燃料電池1を接続しており、循環ブロア61と共に燃料還流機構を構成している。
 出力低下運転モードで、直流電力変換器7により燃料電池1の出力が低下すると、前述したように燃料電池1からは未反応燃料が多量に排出され、燃焼触媒45で燃焼される。その際、図9に示すように、触媒温度センサ46で検知する燃焼触媒45の温度が閾値以上となったときに(ステップS101)、第1開閉バルブ57または第2開閉バルブ59の開度を絞り、これと同時に循環ブロア61による未反応ガスの循環量を増加させる(ステップS102)。
 第1開閉バルブ57または第2開閉バルブ59の開度を絞ることで、燃焼触媒45に必要以上の未反応燃料が流入するのを抑え、燃焼触媒45の高温化を抑制する。これに伴い、循環ブロア61による未反応燃料の循環流量(燃料環流量)を増加させることによって、未反応燃料を再度気化器35、改質器37を経て燃料電池1に供給し、発電に利用することができる。
 実施例2は、燃料電池1の出力低下運転モードにおいて、燃料電池1から排出される未反応燃料を循環ブロア61により燃料電池1に還流させている。このため、燃料電池1から未反応燃料が多量に発生しても、燃焼触媒45の温度上昇を抑えつつ、燃料を有効利用することができる。
 また、実施例2は、第1開閉バルブ57または第2開閉バルブ59の開度を絞ることによって、燃焼触媒45に流れる未反応燃料の流量を減少させている。このため、燃料電池1から未反応燃料が多量に発生しても、燃焼触媒45の温度上昇をより確実に抑えつつ、燃料を有効利用することができる。
 なお、第1開閉バルブ57、第2開閉バルブ59は、少なくともいずれか一方備えていればよい。しかし、燃料電池1からの未反応燃料の排出直後の位置は800℃程度の高温であることから、バルブの動作性を考慮すると、より低温である熱交換器33の下流の第2開閉バルブ59を設けたほうがよい。
 図10は、未反応燃料の対策として実施例3を示す燃料電池システムの全体構成図である。実施例3は、燃料電池システムとして基本的な構成要素は、図5の実施例1と同様である。実施例3は、実施例1に対し、燃料分流調整器としての切換バルブ65、燃料吸着器67、燃料送給器としてのパージブロア69を設けている。
 切換バルブ65は、燃料電池1と燃焼触媒45との間の排気管43に設けている。燃料吸着器67は、切換バルブ65と燃焼触媒45とを接続するバイパス配管71及び、起動バーナ41に接続されるパージ配管73にそれぞれ接続されている。パージブロア69は、燃料吸着器67の起動バーナ41と反対側に位置するパージ配管73に設けている。燃料吸着器67は、例えばメタン吸着器として構成され、活性炭や多孔性金属錯体から成る吸着フィルタである。
 出力低下運転モードで、直流電力変換器7により燃料電池1の出力が低下すると、前述したように燃料電池1からは未反応燃料が多量に排出され、燃焼触媒45で燃焼される。このとき、図11に示すように、触媒温度センサ46で検知する燃焼触媒45の温度が閾値以上となったときに(ステップS121)、未反応燃料が燃料吸着器67に流れるように切換バルブ65を切り換える(ステップS122)。その際、未反応燃料は、燃料吸着器67に全量流してもよく、燃焼触媒45よりも燃料吸着器67に多く流すようにしてもよい。
 これにより、燃料電池1から排出される未反応燃料の一部または全部が燃料吸着器67に吸着される。燃料吸着器67に吸着された燃料は、離脱してから燃焼触媒45で燃焼処理され排気される。このとき、パージブロア69は停止している。
 パージブロア69は、燃料電池システムの起動時に作動し、燃料吸着器67に向けて空気を送り込む。これにより、燃料吸着器67に吸着された燃料は、送り込まれる空気によって離脱し、空気加熱器としての起動バーナ41に燃焼用として送られる。未反応燃料は、起動バーナ41で燃焼することによって起動用燃料として利用される。
 実施例3は、直流電力変換器7により燃料電池1の出力を低下させる際に、切換バルブ65で調整する未反応燃料の量を、燃料吸着器67で多くなるようしている。これにより、燃焼触媒45に流入する未反応燃料が減少して燃焼触媒45の高温化を抑制できる。
 また、実施例3は、パージブロア69によって、燃料吸着器67に吸着された燃料を起動バーナ41に送り込み、起動用燃料として利用するので、燃料の有効利用がなされて燃費の向上に寄与することができる。
 図12は、未反応燃料の対策として実施例4を示す燃料電池システムの全体構成図である。実施例4は、燃料電池システムとして基本的な構成要素は、図5の実施例1と同様である。実施例4は、実施例3に対し、燃料吸着器67に代えて第1ポンプ75及び燃料吸着装置77を、パージブロア69に代えて燃料送給器としての第2ポンプ79を設けている。
 燃料吸着装置77は、燃料吸着器67と同様な活性炭や多孔性金属錯体から成る吸着フィルタを内部に備える低圧タンクで構成されている。
 出力低下運転モードで、直流電力変換器7により燃料電池1の出力が低下すると、前述したように燃料電池1からは未反応燃料が多量に排出され、燃焼触媒45で燃焼される。このとき、図13に示すように、触媒温度センサ46で検知する燃焼触媒45の温度が閾値以上となったときに(ステップS141)、未反応燃料が燃料吸着装置77に流れるように切換バルブ65を切り換える(ステップS142)。その際、未反応燃料は、燃料吸着装置77に全量流してもよく、燃焼触媒45よりも燃料吸着装置77に多く流すようにしてもよい。
 燃料吸着装置77に流入した未反応燃料は、内部の吸着フィルタに吸着される。これにより、燃料電池1から排出される未反応燃料の一部または全部が燃料吸着装置77に収容保持される。燃料吸着装置77に収容保持された燃料は、燃焼触媒45で燃焼処理され排気される。このとき、第2ポンプ79は停止している。
 第2ポンプ79は、燃料電池システムの起動時に作動し、燃料吸着装置77に収容保持された燃料を起動バーナ41に送り込む。未反応燃料は、起動バーナ41で燃焼することによって起動用燃料として利用される。
 実施例4は、第2ポンプ79によって、燃料吸着装置77に収容保持された燃料を起動バーナ41に送り込み、起動用燃料として利用するので、燃料の有効利用がなされて燃費の向上に寄与することができる。
 以上、本発明の実施形態について説明したが、これらの実施形態は本発明の理解を容易にするために記載された単なる例示に過ぎず、本発明は当該実施形態に限定されるものではない。本発明の技術的範囲は、上記実施形態で開示した具体的な技術事項に限らず、そこから容易に導きうる様々な変形、変更、代替技術なども含むものである。
 本発明は、燃料電池の出力を制御する電力変換器と、燃料電池の電力を蓄電する蓄電池と、燃料電池の電力によって作動する負荷機器とを備える燃料電池車両の制御装置に適用される。
 1 燃料電池
 3 蓄電池
 5 モータ(負荷機器)
 7 直流電力変換器(電力変換器)
 19 ブレーキ
 21 補機(負荷機器)
 25 車両制御器(制御器)
 27 燃料ポンプ(燃料供給器)
 29 ブロア(空気供給器)
 41 起動バーナ(空気加熱器)
 45 燃焼触媒(燃焼器)
 46 触媒温度センサ(燃焼器温度検出器)
 53 開閉バルブ(空気流量調整器)
 55 燃料電池温度センサ(燃料電池温度検出器)
 57 第1開閉バルブ(燃料流量調整器)
 59 第2開閉バルブ(燃料流量調整器)
 61 循環ブロア(燃料還流機構)
 63 循環配管(燃料還流機構)
 65 切換バルブ(燃料分流調整器)
 67 燃料吸着器
 69 パージブロア(燃料送給器)
 77 燃料吸着装置(燃料吸着器)
 79 第2ポンプ(燃料送給器)

Claims (11)

  1.  燃料電池と、
     前記燃料電池の出力を制御する電力変換器と、
     前記燃料電池の電力を蓄電する蓄電池と、
     前記燃料電池の電力によって作動する負荷機器と、
     前記蓄電池の現在の充電可能電力、前記負荷機器に現在発生している負荷機器電力及び、前記燃料電池の現在の発電可能電力を算出し、前記発電可能電力が、前記充電可能電力と前記負荷機器電力との加算値以上のときに、前記電力変換器により前記燃料電池の出力を低下させる制御器と、を備えることを特徴とする燃料電池車両の制御装置。
  2.  前記負荷機器は、車両を駆動するモータと、前記車両に搭載される補機との少なくともいずれか一方であることを特徴とする請求項1に記載の燃料電池車両の制御装置。
  3.  前記燃料電池に燃料を供給する燃料供給器を備え、
     前記制御器は、前記電力変換器により前記燃料電池の出力を低下させるに際に、前記燃料供給器による前記燃料電池に供給する燃料を減少させることを特徴とする請求項1または2に記載の燃料電池車両の制御装置。
  4.  前記負荷機器は、車両を駆動するモータを含み、
     前記制御器は、前記モータが回生電力を発生すると判断したときに、前記燃料供給器による燃料低減量に応じて前記回生電力の発生量を減少させることを特徴とする請求項3に記載の燃料電池車両の制御装置。
  5.  車両を制動するブレーキを備え、
     前記制御器は、前記回生電力の発生量を減少させるときに、前記ブレーキによる制動力を、前記回生電力の減少量に応じて増大させることを特徴とする請求項4に記載の燃料電池車両の制御装置。
  6.  前記燃料電池から排出される燃料を燃焼させる燃焼器と、
     前記燃料電池に空気を供給する空気供給器と、
     前記燃焼器の温度を検出する燃焼器温度検出器と、を備え、
     前記制御器は、前記電力変換器により前記燃料電池の出力を低下させる際に、前記燃焼器温度検出器が検出する前記燃焼器の温度上昇に伴って、前記空気供給器による空気供給量を増大させることを特徴とする請求項1ないし5のいずれか1項に記載の燃料電池車両の制御装置。
  7.   前記空気供給器から前記燃焼器に流れる空気の量を調整する空気流量調整器と、
     前記燃料電池の温度を検出する燃料電池温度検出器と、を備え、
     前記制御器は、前記燃料電池温度検出器が検出する前記燃料電池の温度の低下に伴って、前記空気流量調整器による空気の供給量を、前記燃料電池で少なくなる一方前記燃焼器で多くなるよう調整することを特徴とする請求項6に記載の燃料電池車両の制御装置。
  8.  前記燃料電池から排出される燃料を前記燃料電池に還流させる燃料還流機構を備え、
     前記制御器は、前記電力変換器により前記燃料電池の出力を低下させる際に、前記燃料還流機構による前記燃料電池への燃料還流量を増大させることを特徴とする請求項1ないし6のいずれか1項に記載の燃料電池車両の制御装置。
  9.  前記燃料電池から排出される燃料を燃焼させる燃焼器と、
     前記燃料電池から前記燃焼器へ流れる燃料の量を調整する燃料流量調整器と、を備え、
     前記制御器は、前記電力変換器により前記燃料電池の出力を低下させる際に、前記燃料流量調整器による燃料流量を減少させることを特徴とする請求項8に記載の燃料電池車両の制御装置。
  10.  前記燃料電池から排出される燃料を燃焼させる燃焼器と、
     前記燃料電池から排出される燃料を吸着する燃料吸着器と、
     前記燃料電池から排出される燃料を、前記燃焼器に流れる量と前記燃料吸着器に流れる量との間で調整する燃料分流調整器と、を備え、
     前記制御器は、前記電力変換器により前記燃料電池の出力を低下させる際に、前記燃料分流調整器で調整する燃料の量を、前記燃料吸着器で多くなるよう制御することを特徴とする請求項1ないし9のいずれか1項に記載の燃料電池車両の制御装置。
  11.  前記燃料電池に供給する空気を加熱する空気加熱器と、
     前記燃料吸着器に吸着された燃料を前記空気加熱器に燃焼用として送る燃料送給器と、を備えることを特徴とする請求項10に記載の燃料電池車両の制御装置。
PCT/JP2015/071337 2015-07-28 2015-07-28 燃料電池車両の制御装置 WO2017017781A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112018001749-3A BR112018001749B1 (pt) 2015-07-28 2015-07-28 Dispositivo de controle para veículo de célula de combustível
EP15899614.0A EP3331126B1 (en) 2015-07-28 2015-07-28 Control device for fuel-cell vehicle
US15/747,904 US10173536B2 (en) 2015-07-28 2015-07-28 Control device for fuel cell vehicle
PCT/JP2015/071337 WO2017017781A1 (ja) 2015-07-28 2015-07-28 燃料電池車両の制御装置
CN201580082004.1A CN107949499B (zh) 2015-07-28 2015-07-28 燃料电池车辆的控制装置
CA2993493A CA2993493C (en) 2015-07-28 2015-07-28 Control device for fuel cell vehicle
JP2017530514A JP6569732B2 (ja) 2015-07-28 2015-07-28 燃料電池車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/071337 WO2017017781A1 (ja) 2015-07-28 2015-07-28 燃料電池車両の制御装置

Publications (1)

Publication Number Publication Date
WO2017017781A1 true WO2017017781A1 (ja) 2017-02-02

Family

ID=57885383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071337 WO2017017781A1 (ja) 2015-07-28 2015-07-28 燃料電池車両の制御装置

Country Status (7)

Country Link
US (1) US10173536B2 (ja)
EP (1) EP3331126B1 (ja)
JP (1) JP6569732B2 (ja)
CN (1) CN107949499B (ja)
BR (1) BR112018001749B1 (ja)
CA (1) CA2993493C (ja)
WO (1) WO2017017781A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110014882A (zh) * 2018-01-29 2019-07-16 驰创科技(天津)有限公司 一种搭载燃料电池的新能源汽车驱动系统
KR20220121928A (ko) * 2021-02-24 2022-09-02 한국자동차연구원 휴대형 다목적 전력공급장치

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015013301B3 (de) * 2015-10-13 2017-02-16 Webasto SE Hochspannungs-Fahrzeugheizung und Verfahren zur Nutzung von Rekuperationsleistung in einem Fahrzeug
KR101866020B1 (ko) * 2016-04-26 2018-06-08 현대자동차주식회사 연료전지 차량의 시동 제어방법
DE102019202276A1 (de) * 2019-02-20 2020-08-20 Vitesco Technologies GmbH Integriertes Borddiagnosesystem und -verfahren für Brennstoffzellen
CN110576755B (zh) * 2019-09-04 2021-11-30 武汉格罗夫氢能汽车有限公司 一种基于辅助能源系统的氢能汽车燃料电池能量管理系统
TWI735046B (zh) * 2019-10-01 2021-08-01 台灣聯合氫能股份有限公司 燃料電池複合動力控制方法及其系統
CN111251910B (zh) * 2019-12-17 2022-04-29 武汉理工大学 一种燃料电池汽车双源混合动力系统的上电启动方法
CN111431167B (zh) * 2020-05-14 2021-12-07 洛阳智能农业装备研究院有限公司 电动拖拉机氢燃料电池和锂电池的供电控制系统及方法
JP2022034394A (ja) * 2020-08-18 2022-03-03 本田技研工業株式会社 給電制御システム、給電制御方法、およびプログラム
CN111942232A (zh) * 2020-08-21 2020-11-17 安徽安凯汽车股份有限公司 一种用于客车氢燃料系统吹扫的延迟下电控制方法
CN113043861A (zh) * 2021-02-03 2021-06-29 上海攀业氢能源科技有限公司 一种混合动力系统及其工作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324853A (ja) * 2002-04-26 2003-11-14 Nissan Motor Co Ltd 燃料電池システム及び燃料電池車両
JP2005057841A (ja) * 2003-08-06 2005-03-03 Toho Gas Co Ltd 発電装置の制御方法及び発電装置
JP2014212655A (ja) * 2013-04-19 2014-11-13 京セラ株式会社 電力制御システム、電力制御装置、電力制御システムの制御方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0937412A (ja) * 1995-07-21 1997-02-07 Railway Technical Res Inst 再生型燃料電池
JP3724365B2 (ja) * 2000-12-04 2005-12-07 日産自動車株式会社 燃料電池システムの制御装置及び方法
DE10393874B8 (de) 2002-12-16 2014-04-17 Toyota Jidosha Kabushiki Kaisha Verfahren zur Bereitstellung elektrischer Leistung für einen Verbraucher, Leistungsversorgungssystem und Steuervorrichtung sowie Verwendung des Leistungsversorgungssystems in einem Brennstoffzellenfahrzeug
JP2007265686A (ja) * 2006-03-27 2007-10-11 Nissan Motor Co Ltd 燃料電池システム及び要求出力生成方法
KR100837939B1 (ko) * 2006-10-11 2008-06-13 현대자동차주식회사 하이브리드 연료전지 버스의 파워 시스템 및 그 제어 방법
KR20080044097A (ko) * 2006-11-15 2008-05-20 현대자동차주식회사 수퍼커패시터를 이용한 연료전지 차량의 회생제동 시스템
JP4761162B2 (ja) * 2007-03-07 2011-08-31 トヨタ自動車株式会社 燃料電池システム
JP2009032513A (ja) * 2007-07-26 2009-02-12 Toyota Motor Corp 燃料電池自動車
JP5336791B2 (ja) * 2007-10-23 2013-11-06 セイコーインスツル株式会社 電源装置
WO2011004488A1 (ja) 2009-07-09 2011-01-13 トヨタ自動車株式会社 燃料電池システムおよびその制御方法
JP6125750B2 (ja) * 2011-12-28 2017-05-10 学校法人幾徳学園 燃料電池発電システムおよびその制御方法
KR101526402B1 (ko) * 2013-10-18 2015-06-05 현대자동차 주식회사 연료 전지 차량의 제어 방법 및 시스템
JP6167864B2 (ja) * 2013-11-11 2017-07-26 トヨタ自動車株式会社 燃料電池システムおよび燃料電池車両、燃料電池システムの制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324853A (ja) * 2002-04-26 2003-11-14 Nissan Motor Co Ltd 燃料電池システム及び燃料電池車両
JP2005057841A (ja) * 2003-08-06 2005-03-03 Toho Gas Co Ltd 発電装置の制御方法及び発電装置
JP2014212655A (ja) * 2013-04-19 2014-11-13 京セラ株式会社 電力制御システム、電力制御装置、電力制御システムの制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3331126A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110014882A (zh) * 2018-01-29 2019-07-16 驰创科技(天津)有限公司 一种搭载燃料电池的新能源汽车驱动系统
KR20220121928A (ko) * 2021-02-24 2022-09-02 한국자동차연구원 휴대형 다목적 전력공급장치
KR102534438B1 (ko) * 2021-02-24 2023-05-31 한국자동차연구원 휴대형 다목적 전력공급장치

Also Published As

Publication number Publication date
US20180215273A1 (en) 2018-08-02
CA2993493A1 (en) 2017-02-02
BR112018001749A2 (ja) 2018-09-11
US10173536B2 (en) 2019-01-08
EP3331126B1 (en) 2019-05-15
CN107949499B (zh) 2019-05-28
EP3331126A4 (en) 2018-06-06
EP3331126A1 (en) 2018-06-06
JP6569732B2 (ja) 2019-09-04
CA2993493C (en) 2019-06-18
JPWO2017017781A1 (ja) 2018-07-05
CN107949499A (zh) 2018-04-20
BR112018001749B1 (pt) 2022-08-23

Similar Documents

Publication Publication Date Title
JP6569732B2 (ja) 燃料電池車両の制御装置
JP4946028B2 (ja) 燃料電池システム及び移動体
CN105609836A (zh) 燃料电池系统及燃料电池系统的运转控制方法
JP2010238530A (ja) 燃料電池システム及びこれを備えた車両
JP2002034171A (ja) 電動車両の電力制御方法
JP2010146749A (ja) 燃料電池システム
JP2008072795A (ja) 移動体
JP2011010508A (ja) 電源システム
JP2007149450A (ja) 燃料電池システム、並びに移動体及びその始動方法
JP3733879B2 (ja) 燃料電池車両の制御装置
EP1953857B1 (en) Fuel cell system
JP6133623B2 (ja) 2電源負荷駆動システム及び燃料電池自動車
JP6104637B2 (ja) 2電源負荷駆動システム及び燃料電池自動車
JP2012250611A (ja) 燃料電池車両用空調装置
JP2021190175A (ja) 燃料電池システム
JP2019170022A (ja) 車両
JP2010146750A (ja) 燃料電池システム
JP6054918B2 (ja) 2電源負荷駆動燃料電池システム及び燃料電池自動車
JP4241593B2 (ja) ハイブリッドシステム
JP6167864B2 (ja) 燃料電池システムおよび燃料電池車両、燃料電池システムの制御方法
WO2013150619A1 (ja) 燃料電池システム
JP2009134954A (ja) 燃料電池電源装置
JP2007151346A (ja) 移動体
JP6485871B2 (ja) 燃料電池システム
JP5294099B2 (ja) 燃料電池システム及び移動体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899614

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017530514

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2993493

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15747904

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018001749

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018001749

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180126