WO2017017719A1 - 無停電電源装置 - Google Patents

無停電電源装置 Download PDF

Info

Publication number
WO2017017719A1
WO2017017719A1 PCT/JP2015/071072 JP2015071072W WO2017017719A1 WO 2017017719 A1 WO2017017719 A1 WO 2017017719A1 JP 2015071072 W JP2015071072 W JP 2015071072W WO 2017017719 A1 WO2017017719 A1 WO 2017017719A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
inverter
terminal
power supply
current
Prior art date
Application number
PCT/JP2015/071072
Other languages
English (en)
French (fr)
Inventor
尚哉 柴田
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to CA2991877A priority Critical patent/CA2991877C/en
Priority to PCT/JP2015/071072 priority patent/WO2017017719A1/ja
Priority to JP2017530465A priority patent/JP6431199B2/ja
Priority to US15/746,166 priority patent/US10615636B2/en
Publication of WO2017017719A1 publication Critical patent/WO2017017719A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads

Definitions

  • the present invention relates to an uninterruptible power supply, and in particular, an uninterruptible power supply having a bypass power supply mode for supplying AC power from a bypass AC power supply to a load and an inverter power supply mode for supplying AC power generated by an inverter to the load.
  • an uninterruptible power supply having a bypass power supply mode for supplying AC power from a bypass AC power supply to a load and an inverter power supply mode for supplying AC power generated by an inverter to the load.
  • the uninterruptible power supply includes a converter that converts AC power from a commercial AC power source into DC power, an inverter that converts DC power into AC power, an AC filter that converts the waveform of the output voltage of the inverter into a sine wave, 1 and a second switch.
  • One terminal of the first switch receives AC voltage that has passed through the AC filter
  • one terminal of the second switch receives AC power from the bypass AC power source
  • the other terminals of the first and second switches are both loaded. Connected.
  • the first switch In the bypass power supply mode, the first switch is turned off and the second switch is turned on, and AC power from the bypass AC power supply is supplied to the load via the second switch.
  • the inverter power supply mode the first switch is turned on and the second switch is turned off, and the AC power generated by the inverter is supplied to the load via the AC filter and the first switch.
  • the first and second switches When switching from the bypass power supply mode to the inverter power supply mode, the first and second switches are turned on to supply AC power to the load from both the inverter and the bypass AC power supply, and then the second switch is turned off (Patent Literature). 1 (Japanese Patent Laid-Open No. 2012-120407).
  • a first voltage detector that detects an instantaneous value of the voltage at the load side terminal of the first switch and an instantaneous value of the voltage at the AC filter side terminal of the first switch are detected.
  • a method is conceivable in which a second voltage detector is provided and the inverter is controlled so that the detection value of the second voltage detector matches the detection value of the first voltage detector (see FIG. 4).
  • this method has a problem that the number of voltage detectors increases and the cost increases.
  • the main object of the present invention is to provide a low-cost uninterruptible power supply.
  • An uninterruptible power supply includes a first terminal that receives AC power supplied from a commercial AC power supply, a second terminal that receives AC power supplied from a bypass AC power supply, and a second terminal connected to a load. 3, a converter that converts AC power supplied from a commercial AC power source through the first terminal into DC power, and DC power generated by the converter or DC power of the power storage device is converted into AC power.
  • An inverter an AC filter that converts the waveform of the output voltage of the inverter into a sine wave, a first switch having one terminal receiving the AC voltage that has passed through the AC filter, and the other terminal connected to the third terminal;
  • a second switch connected between the second and third terminals, a first voltage detector for detecting an instantaneous value of the voltage at the third terminal, and an input based on the detection value of the first voltage detector. It is obtained by a controller for controlling the over data.
  • the control device turns off the first switch and turns on the second switch to turn on the inverter according to the first mode in which AC power from the bypass AC power source is supplied to the load and the detection value of the first voltage detector.
  • a third mode in which AC power is supplied from both to the load and the output current of the inverter is increased to the load current, and a fourth mode in which the second switch is turned off and AC power generated by the inverter is supplied to the load Are executed sequentially.
  • the second mode is executed between the first mode and the third mode
  • the inverter is voltage feedforward controlled according to the detection value of the first voltage detector
  • the third mode A counter voltage having a level corresponding to the voltage at the first terminal is generated at one terminal of the first switch. Therefore, when the first switch is turned on in the third mode, it is possible to prevent an inrush current from flowing from the bypass AC power supply to the AC filter via the first switch. Further, since it is not necessary to separately provide a voltage detector for generating a counter voltage, the cost can be reduced.
  • FIG. 1 is a circuit block diagram showing a configuration of an uninterruptible power supply according to an embodiment of the present invention. Although this uninterruptible power supply device receives three-phase AC power and outputs three-phase AC power, only the portion related to the one-phase AC power is shown in FIG. Has been.
  • the uninterruptible power supply device includes an AC input terminal T1, a bypass terminal T2, a battery terminal T3, and an output terminal T4.
  • the AC input terminal T ⁇ b> 1 receives AC power having a commercial frequency supplied from the commercial AC power source 51.
  • the bypass terminal T ⁇ b> 2 receives commercial frequency AC power supplied from the bypass AC power supply 52.
  • the bypass AC power supply 52 may be the same as the commercial AC power supply 51, or may be a private generator, for example.
  • the battery terminal T3 is connected to the battery 53 (power storage device).
  • the battery 53 stores DC power.
  • a capacitor may be connected instead of the battery 53.
  • the output terminal T4 is connected to the load 54.
  • the load 54 is driven by commercial frequency AC power supplied from the uninterruptible power supply.
  • This uninterruptible power supply further includes switches S1 to S3, capacitors C1 to C3, reactors L1 and L2, converter 1, DC bus B1, inverter 2, bidirectional chopper 3, voltage detectors VD1 to VD5, current detector CD1. To CD3 and a control device 4.
  • the one terminal of the switch S1 is connected to the AC input terminal T1, and the other terminal is connected to the input node of the converter 1 via the reactor L1.
  • Capacitor C1 is connected to the other terminal of switch S1.
  • the output node of the converter 1 is connected to the input node of the inverter 2 via the DC bus B1 and connected to the battery terminal T3 via the bidirectional chopper 3.
  • Capacitor C3 is connected to DC bus B1.
  • the output node of the inverter 2 is connected to one terminal of the switch S2 via the reactor L2 and the node N1, and the other terminal of the switch S2 is connected to the output terminal T4 via the node N2.
  • Capacitor C2 is connected to node N1.
  • One terminal of the switch S3 is connected to the bypass terminal T2, and the other terminal is connected to the node N2.
  • the switch S1 is controlled by the control device 4 and is turned on during normal times when AC power is supplied from the commercial AC power supply 51, and is turned off during a power failure when the supply of AC power from the commercial AC power supply 51 is stopped.
  • the capacitor C1 and the reactor L1 constitute an AC filter F1.
  • the AC filter F ⁇ b> 1 is a low-pass filter, passes AC power of commercial frequency supplied from the commercial AC power supply 51, and blocks a switching frequency signal generated in the converter 1.
  • the converter 1 is controlled by the control device 4 and converts AC power from the commercial AC power supply 51 into DC power during normal times when AC power is supplied from the commercial AC power supply 51, and the DC power is connected to the DC bus B1.
  • Capacitor C3 smoothes and stabilizes the DC voltage of DC bus B1.
  • the bidirectional chopper 3 is controlled by the control device 4, stores the DC power generated by the converter 1 in the battery 53 during normal times, and supplies the DC power of the battery 53 to the inverter 2 during a power failure.
  • the inverter 2 is controlled by the control device 4 and converts DC power generated by the converter 1 into AC power having a commercial frequency during normal times, and DC power supplied from the battery 53 via the bidirectional chopper 3 during a power failure. Is converted to AC power of commercial frequency.
  • the AC filter F ⁇ b> 2 is a low-pass filter, and allows the commercial frequency AC power generated by the inverter 2 to pass therethrough and blocks the switching frequency signal generated by the inverter 2.
  • the AC filter F2 converts the waveform of the output voltage of the inverter 2 into a sine wave.
  • the switch S2 (first switch) is controlled by the control device 4, and is turned off in the bypass power supply mode and the counter voltage generation mode, and is turned on in the lap power supply mode and the inverter power supply mode.
  • the bypass power supply mode (first mode) is a mode in which AC power from the bypass AC power supply 52 is supplied to the load 54.
  • the inverter power supply mode (fourth mode) is a mode in which AC power generated by the inverter 2 is supplied to the load 54.
  • the lap power supply mode (third mode) is a mode for supplying both the AC power from the bypass AC power supply 52 and the AC power generated by the inverter 2 to the load 54 when switching from the bypass power supply mode to the inverter power supply mode. It is.
  • the counter voltage generation mode (second mode) is a mode in which a counter voltage of a level corresponding to the voltage at the node N2 (that is, the voltage at the output terminal T4) is generated at the node N1 before the switch S2 is turned on in the lap power supply mode. It is.
  • the level of the counter voltage and the voltage of the output terminal T4 are preferably the same, but may be slightly different.
  • the switch S3 (second switch) is controlled by the control device 4, and is turned on in the bypass power supply mode, the counter voltage generation mode, and the lap power supply mode, and is turned off in the inverter power supply mode.
  • the voltage detector VD1 detects an instantaneous value of the AC voltage at the AC input terminal T1 (that is, the AC voltage supplied from the commercial AC power supply 51), and gives a signal indicating the detected value to the control device 4. Based on the output signal of voltage detector VD1, control device 4 determines whether AC power is normally supplied from commercial AC power supply 51 (that is, whether a power failure has occurred).
  • the current detector CD1 detects an instantaneous value of the alternating current flowing through the reactor L1 (that is, the input current of the converter 1), and gives a signal indicating the detected value to the control device 4.
  • the voltage detector VD2 detects an instantaneous value of the DC voltage of the DC bus B1, and gives a signal indicating the detected value to the control device 4.
  • Control device 4 controls converter 1 based on output signals of voltage detectors VD1, VD2 and current detector CD1.
  • the converter 1 supplies DC power to the DC bus B1 (that is, the inverter 2 and the bidirectional chopper 3) so that the DC voltage of the DC bus B1 becomes a predetermined target DC voltage during normal times.
  • the operation of the converter 1 is stopped.
  • the voltage detector VD3 detects the instantaneous value of the DC voltage of the battery terminal T3 (that is, the voltage between the terminals of the battery 53), and gives a signal indicating the detected value to the control device 4.
  • the control device 4 controls the bidirectional chopper 3 based on the output signals of the voltage detectors VD3 and VD4. In other words, the bidirectional chopper 3 supplies DC power to the battery 53 so that the DC voltage of the battery terminal T3 becomes a predetermined target battery voltage in normal times, and the DC voltage of the DC bus B1 is predetermined in power failure. DC power is supplied to the DC bus B1 (that is, the inverter 2) so that the target DC voltage is equal to.
  • the voltage detector VD4 detects an instantaneous value of the AC voltage at the bypass terminal T2 (that is, the AC voltage supplied from the bypass AC power supply 52), and gives a signal indicating the detected value to the control device 4.
  • the voltage detector VD5 detects an instantaneous value of the AC voltage at the node N2 (that is, the AC voltage at the output terminal T4), and gives a signal indicating the detected value to the control device 4.
  • the current detector CD2 detects an instantaneous value of the alternating current flowing through the reactor L2 (that is, the output current of the inverter 2), and gives a signal indicating the detected value to the control device 4.
  • the current detector CD3 detects an instantaneous value of an alternating current (that is, a load current) flowing from the node N2 to the output terminal T4, and gives a signal indicating the detected value to the control device 4.
  • Control device 4 controls inverter 2 based on the output signals of voltage detectors VD4 and VD5 and current detectors CD2 and CD3.
  • the control device 4 in the inverter power supply mode, the control device 4 generates a voltage command value based on a detection value of the voltage detector VD4 (that is, an AC voltage supplied from the bypass AC power supply 52), and the voltage detector receives the voltage command value.
  • the inverter 2 is subjected to voltage feedback control so that the detected value of VD5 (that is, the AC voltage of the output terminal T4) matches, and the inverter 2 is fed current feedforward so as to supply the detected value of the current detector CD3 (that is, load current) Control.
  • control device 4 When switching from the bypass power supply mode to the inverter power supply mode, the control device 4 sequentially executes the counter voltage generation mode and the lap power supply mode.
  • control device 4 In the counter voltage generation mode, control device 4 performs voltage feedforward control of inverter 2 according to the detection value of voltage detector VD5 (that is, the AC voltage output from bypass AC power supply 52 to output terminal T4), and the current detector
  • the inverter 2 is subjected to current feedback control so that the detected value of CD2 (that is, the current flowing from the inverter 2 via the reactor L2 to the capacitor C2) matches the current command value.
  • the voltage at the node N1 (counter voltage) becomes equal to the voltage at the output terminal T4, and when the switch S2 is turned on, inrush current is prevented from flowing from the bypass AC power supply 52 to the capacitor C2 via the switches S3 and S2.
  • the control device 4 turns on the switch S2 to supply AC power to the load 54 from both the inverter 2 and the bypass AC power source 52. Further, the control device 4 performs current feedforward control of the inverter 2 according to the detection value of the current detector CD3, gradually increases the output current of the inverter 2 to supply the load current from the inverter 2, and then turns off the switch S3. To execute the inverter power supply mode.
  • FIG. 2 is a block diagram showing a configuration of a part related to the control of the inverter 2 in the control device 4.
  • FIGS. 3A to 3H are time charts showing the operation of the portion of the control device 4 shown in FIG. 3A to 3H, the bypass power supply mode (time t0 to t1), the counter voltage generation mode (time t1 to t2), the lap power supply mode (time t2 to t3), and the inverter power supply mode (after time t3). ) Are sequentially executed.
  • the control device 4 includes a voltage feedback control unit 10, a filter current feedforward (FF) unit 14, adders 15, 17 and 24, an output current feedforward (FF) unit 16, a current limiter 18, A current feedback control unit 20, a counter voltage command unit 23, and a PWM (pulse width modulation) control unit 25 are included.
  • FF filter current feedforward
  • FF output current feedforward
  • FF current limiter
  • the voltage feedback control unit 10 includes an output voltage command unit 11, a subtractor 12, and a voltage control unit 13.
  • the output voltage command unit 11 generates an output voltage command value VOC based on the detection value of the voltage detector VD4.
  • the output voltage command value VOC changes in a sine wave with the same phase and the same voltage as the AC voltage supplied from the bypass AC power supply 52.
  • the subtracter 12 subtracts the output voltage detection value VO (the detection value of the voltage detector VD5) from the output voltage command value VOC to obtain a deviation between VOC and VO.
  • the voltage control unit 13 is activated when the control signal ⁇ VC is set to the “H” level of the activation level, and outputs the current command value IC1 so that the deviation between VOC and VO becomes zero. Voltage control unit 13 is deactivated when control signal ⁇ VC is set to the “L” level of the deactivation level, and sets current command value IC1 to zero.
  • the control signal VC is set to the “L” level in the bypass power supply mode TB and the counter voltage generation mode TC, and is “H” in the lap power supply mode TL and the inverter power supply mode TI.
  • the subtractor 12 and the voltage control unit 13 constitute, for example, a PID (Proportional-Integral-Derivative) control unit.
  • the filter current feedforward unit 14 responds to the fact that the control signal ⁇ 14 is changed from the “L” level of the deactivation level to the “H” level of the activation level.
  • the current command value IC2 is gradually increased from 0 to a predetermined value.
  • the filter current feedforward unit 14 is deactivated when the control signal ⁇ VC is set to the “L” level of the deactivation level, and sets the current command value IC2 to zero.
  • the control signal ⁇ 14 is set to “L” level in the bypass power supply mode TB, and “H” in the counter voltage generation mode TC, the lap power supply mode TL, and the inverter power supply mode TI. To the level.
  • the adder 15 adds the current command value IC1 generated by the voltage control unit 13 and the current command value IC2 generated by the filter current feedforward unit 14.
  • the output current feedforward unit 16 responds to the fact that the control signal ⁇ 16 is changed from the “L” level of the deactivation level to the “H” level of the activation level.
  • the current command value IC3 is gradually increased from 0 to the detection value IO of the current detector CD3.
  • control signal ⁇ 16 is set to “L” level in the bypass power supply mode TB and the counter voltage generation mode TC, and is “H” in the lap power supply mode TL and the inverter power supply mode TI. To the level.
  • the adder 17 adds the current command value IC3 generated by the output current feedforward unit 16 to the output value of the adder 15.
  • the current limiter 18 generates a current command value IC4 by limiting the output value of the adder 17 within a predetermined range.
  • the current feedback control unit 20 includes a subtractor 21 and a current control unit 22.
  • the subtractor 21 subtracts the detected value I2 of the current detector CD2 from the current command value IC4 generated by the current limiter 18 to obtain a deviation between IC4 and I2.
  • the current control unit 22 is activated when the control signal ⁇ CC is set to the “H” level of the activation level, and outputs the voltage command value VC1 so that the deviation between IC4 and I2 becomes zero.
  • Current control unit 22 is deactivated when control signal ⁇ CC is set to the “L” level of the deactivation level, and sets voltage command value VC1 to zero.
  • the control signal ⁇ CC is set to “L” level in the bypass power supply mode TB, and “H” in the counter voltage generation mode TC, the lap power supply mode TL, and the inverter power supply mode TI. To the level.
  • the subtractor 21 and the current control unit 22 constitute, for example, a PID control unit.
  • the counter voltage command unit 23 responds when the control signal ⁇ 23 is changed from the “L” level of the inactivation level to the “H” level of the activation level.
  • Voltage command value VC2 is gradually increased from 0 to detection value IO of voltage detector VD5.
  • the control signal ⁇ 23 is set to “L” level in the bypass power supply mode TB, and “H” in the counter voltage generation mode TC, the lap power supply mode TL, and the inverter power supply mode TI. To the level.
  • the adder 24 adds the voltage command value VC1 generated by the current control unit 22 and the voltage command value VC2 generated by the counter voltage command unit 23.
  • the PWM control unit 25 is activated when the control signal ⁇ INV is the “H” level of the activation level, generates a PWM signal based on the output value of the adder 24, and controls the inverter 2 by the PWM signal. .
  • control signal ⁇ INV is set to “L” level in the bypass power supply mode, and is “H” in the counter voltage generation mode TC, the lap power supply mode TL, and the inverter power supply mode TI. To the level.
  • the mode is shifted from the bypass power supply mode to the inverter power supply mode via the counter voltage generation mode and the lap power supply mode.
  • the control signals ⁇ 23, ⁇ INV, ⁇ 14, and ⁇ CC are set to the activation level “H” level, and the counter voltage command unit 23, PWM control unit 25, filter current feed forward The unit 14 and the current control unit 22 are activated.
  • the voltage command value VC2 is gradually increased by the counter voltage command unit 23, and the current command value IC2 is gradually increased by the filter current feedforward unit 14.
  • the inverter 2 When the voltage command value VC2 and the current command value IC2 are gradually increased, the inverter 2 is soft-started by the PWM control unit 25, and the output voltage and output current of the inverter 2 are gradually increased.
  • the output current of the inverter 2 is detected by the current detector CD2, and the detected value I2 is fed back to the current feedback control unit 20. Therefore, the inverter 2 is current-feedback controlled so that the detected value I2 of the current detector CD2 matches the current command value IC2, and is voltage feedforward controlled according to the voltage command value VC2.
  • the voltages at both terminals of the switch S2 that is, the voltages at the nodes N1 and N2 match.
  • control signals ⁇ 16 and ⁇ VC are set to “H” level to activate output current feedforward unit 16 and voltage control unit 13, and switch S2 is turned on.
  • the voltages at both terminals of the switch S2 match, so that no inrush current flows from the bypass AC power supply 52 to the capacitor C2 of the AC filter F2 even when the switch S2 is turned on.
  • the current command value IC3 is gradually increased by the output current feedforward unit 16.
  • the output current of the inverter 2 is detected by the current detector CD2, and the detected value I2 is fed back to the current feedback control unit 20.
  • the PWM control unit 25 soft-starts the inverter 2, and the output current of the inverter 2 gradually increases.
  • the output current of the inverter 2 increases until all the load current is supplied from the inverter 2.
  • the switch S3 is turned off, and the bypass AC power supply 52 and the load 54 are electrically disconnected.
  • the AC power from the commercial AC power supply 51 is converted into DC power by the converter 1, and the DC power is stored in the battery 53 by the bidirectional chopper 3 and the inverter. 2 is converted into AC power and supplied to the load 54.
  • the inverter 2 is voltage feedback controlled so that the detection value of the current detector VD5 matches the voltage command value, and the inverter 2 supplies the current (load current) of the detection value of the current detector CD3. Current feedforward control is performed.
  • the switches S1 and S2 are turned off, the switch S3 is turned on, and the operation of the converter 1, the inverter 2, and the bidirectional chopper 3 is stopped.
  • AC power is supplied from the bypass AC power source 52 to the load 54 via the switch S3, and the load 54 is operated.
  • FIG. 4 is a circuit block diagram showing a comparative example of the present embodiment, which is compared with FIG. Referring to FIG. 4, this uninterruptible power supply is different from the uninterruptible power supply of FIG. 1 in that voltage detector VD6 is added and control device 4 is replaced with control device 4A.
  • the voltage detector VD6 detects the voltage of the node N1, and outputs a signal indicating the detected value to the control device 4A.
  • control device 4A controls inverter 2 so that the detection value of voltage detector VD6 matches the detection value of voltage detector VD5.
  • the number of voltage detectors is larger than that of the uninterruptible power supply of FIG. 1, and the cost is increased.
  • the counter voltage generation mode is executed between the bypass power supply mode and the lap power supply mode, and the inverter 2 is feedforward controlled according to the detection value of the voltage detector VD5 to generate the counter voltage.
  • the switch S2 is turned on after the voltages at both terminals of the switch S2 are matched. Therefore, inrush current can be prevented from flowing from the bypass AC power supply 52 to the capacitor C2 of the AC filter F2 via the switch S2 when the switch S2 is turned on.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

この無停電電源装置では、バイパス給電モードとラップ給電モードの間でカウンタ電圧発生モードを実行し、電圧検出器(VD5)の検出値に従ってインバータ(2)を電圧フィードフォワード制御し、出力端子(T4)の電圧に応じたレベルのカウンタ電圧をスイッチ(S2)の一方端子に発生させる。したがって、カウンタ電圧発生用の電圧検出器を別途設けることなく、スイッチ(S2)をオンしたときにバイパス交流電源(52)からスイッチ(S2)を介して交流フィルタ(F2)に突入電流が流れることを防止できる。

Description

無停電電源装置
 この発明は無停電電源装置に関し、特に、バイパス交流電源からの交流電力を負荷に供給するバイパス給電モードと、インバータによって生成された交流電力を負荷に供給するインバータ給電モードとを有する無停電電源装置に関する。
 無停電電源装置は、商用交流電源からの交流電力を直流電力に変換するコンバータと、直流電力を交流電力に変換するインバータと、インバータの出力電圧の波形を正弦波に変換する交流フィルタと、第1および第2のスイッチとを備える。第1のスイッチの一方端子は交流フィルタを通過した交流電圧を受け、第2のスイッチの一方端子はバイパス交流電源からの交流電力を受け、第1および第2のスイッチの他方端子はともに負荷に接続される。
 バイパス給電モード時には、第1のスイッチがオフされるとともに第2のスイッチがオンされ、バイパス交流電源からの交流電力が第2のスイッチを介して負荷に供給される。インバータ給電モード時には、第1のスイッチがオンされるとともに第2のスイッチがオフされ、インバータによって生成された交流電力が交流フィルタおよび第1のスイッチを介して負荷に供給される。バイパス給電モードからインバータ給電モードに切り換える場合は、第1および第2のスイッチをオンさせてインバータおよびバイパス交流電源の両方から負荷に交流電力を供給させた後に第2のスイッチをオフさせる(特許文献1(特開2012-120407号公報))。
特開2012-120407号公報
 このような無停電電源装置では、バイパス給電モードからインバータ給電モードに移行する場合、第1のスイッチをオンさせる前にインバータを起動させて第1のスイッチの一方端子にカウンタ電圧を発生させる必要がある。これは、第1のスイッチをオンしたときにバイパス交流電源から第1のスイッチを介して交流フィルタのコンデンサに突入電流が流れることを防止するためである。
 カウンタ電圧を発生させる方法としては、第1のスイッチの負荷側端子の電圧の瞬時値を検出する第1の電圧検出器と、第1のスイッチの交流フィルタ側端子の電圧の瞬時値を検出する第2の電圧検出器とを設け、第2の電圧検出器の検出値が第1の電圧検出器の検出値に一致するようにインバータを制御する方法が考えられる(図4参照)。しかし、この方法では、電圧検出器の数が多くなり、コスト高になるという問題がある。
 それゆえに、この発明の主たる目的は、低コストの無停電電源装置を提供することである。
 この発明に係る無停電電源装置は、商用交流電源から供給される交流電力を受ける第1の端子と、バイパス交流電源から供給される交流電力を受ける第2の端子と、負荷に接続される第3の端子と、商用交流電源から第1の端子を介して供給される交流電力を直流電力に変換するコンバータと、コンバータによって生成された直流電力または電力貯蔵装置の直流電力を交流電力に変換するインバータと、インバータの出力電圧の波形を正弦波に変換する交流フィルタと、一方端子が交流フィルタを通過した交流電圧を受け、他方端子が第3の端子に接続された第1のスイッチと、第2および第3の端子間に接続された第2のスイッチと、第3の端子の電圧の瞬時値を検出する第1の電圧検出器と、第1の電圧検出器の検出値に基づいてインバータを制御する制御装置とを備えたものである。制御装置は、第1のスイッチをオフさせるとともに第2のスイッチをオンさせ、バイパス交流電源からの交流電力を負荷に供給する第1のモードと、第1の電圧検出器の検出値に従ってインバータを電圧フィードフォワード制御し、第3の端子の電圧に応じたレベルのカウンタ電圧を第1のスイッチの一方端子に発生させる第2のモードと、第1のスイッチをオンさせてインバータおよびバイパス交流電源の両方から負荷に交流電力を供給させ、インバータの出力電流を負荷電流まで増加させる第3のモードと、第2のスイッチをオフさせ、インバータによって生成される交流電力を負荷に供給する第4のモードとを順次実行する。
 この発明に係る無停電電源装置では、第1のモードと第3のモードの間で第2のモードを実行し、第1の電圧検出器の検出値に従ってインバータを電圧フィードフォワード制御し、第3の端子の電圧に応じたレベルのカウンタ電圧を第1のスイッチの一方端子に発生させる。したがって、第3のモード時に第1のスイッチをオンしたときに、バイパス交流電源から第1のスイッチを介して交流フィルタに突入電流が流れることを防止することができる。さらに、カウンタ電圧発生用の電圧検出器を別途設ける必要がないので、低コスト化を図ることができる。
この発明の一実施の形態による無停電電源装置の構成を示す回路ブロック図である。 図1に示した制御装置のうちのインバータの制御に関連する部分の構成を示すブロック図である。 図1に示した制御装置のうちの図2に示した部分の動作を示すタイムチャートである。 実施の形態の比較例を示す回路ブロック図である。
 図1は、この発明の一実施の形態による無停電電源装置の構成を示す回路ブロック図である。この無停電電源装置は、三相交流電力を受けて三相交流電力を出力するものであるが、図面および説明の簡単化のため、図1では一相の交流電力に関連する部分のみが示されている。
 図1において、この無停電電源装置は、交流入力端子T1、バイパス端子T2、バッテリ端子T3、および出力端子T4を備える。交流入力端子T1は、商用交流電源51から供給される商用周波数の交流電力を受ける。バイパス端子T2は、バイパス交流電源52から供給される商用周波数の交流電力を受ける。バイパス交流電源52は、商用交流電源51と同じであってもよいし、たとえば自家用発電機であっても構わない。
 バッテリ端子T3は、バッテリ53(電力貯蔵装置)に接続される。バッテリ53は、直流電力を蓄える。バッテリ53の代わりにコンデンサが接続されていても構わない。出力端子T4は、負荷54に接続される。負荷54は、無停電電源装置から供給される商用周波数の交流電力によって駆動される。
 この無停電電源装置は、さらに、スイッチS1~S3、コンデンサC1~C3、リアクトルL1,L2、コンバータ1、直流母線B1、インバータ2、双方向チョッパ3、電圧検出器VD1~VD5、電流検出器CD1~CD3、および制御装置4を備える。
 スイッチS1の一方端子は交流入力端子T1に接続され、その他方端子はリアクトルL1を介してコンバータ1の入力ノードに接続される。コンデンサC1は、スイッチS1の他方端子に接続される。コンバータ1の出力ノードは、直流母線B1を介してインバータ2の入力ノードに接続されるとともに、双方向チョッパ3を介してバッテリ端子T3に接続される。コンデンサC3は、直流母線B1に接続される。
 インバータ2の出力ノードはリアクトルL2およびノードN1を介してスイッチS2の一方端子に接続され、スイッチS2の他方端子はノードN2を介して出力端子T4に接続される。コンデンサC2は、ノードN1に接続される。スイッチS3の一方端子はバイパス端子T2に接続され、その他方端子はノードN2に接続される。
 スイッチS1は、制御装置4によって制御され、商用交流電源51から交流電力が供給されている通常時はオンされ、商用交流電源51からの交流電力の供給が停止された停電時はオフされる。
 コンデンサC1およびリアクトルL1は交流フィルタF1を構成する。交流フィルタF1は、ローパスフィルタであり、商用交流電源51から供給される商用周波数の交流電力を通過させ、コンバータ1で発生するスイッチング周波数の信号を遮断する。
 コンバータ1は、制御装置4によって制御され、商用交流電源51から交流電力が供給されている通常時は、商用交流電源51からの交流電力を直流電力に変換し、その直流電力を直流母線B1を介してインバータ2および双方向チョッパ3に与える。商用交流電源51からの交流電力の供給が停止された停電時は、コンバータ1の運転は停止される。コンデンサC3は、直流母線B1の直流電圧を平滑化および安定化させる。
 双方向チョッパ3は、制御装置4によって制御され、通常時はコンバータ1によって生成された直流電力をバッテリ53に蓄え、停電時はバッテリ53の直流電力をインバータ2に供給する。
 インバータ2は、制御装置4によって制御され、通常時はコンバータ1によって生成された直流電力を商用周波数の交流電力に変換し、停電時はバッテリ53から双方向チョッパ3を介して供給される直流電力を商用周波数の交流電力に変換する。
 リアクトルL2およびコンデンサC2は交流フィルタF2を構成する。交流フィルタF2は、ローパスフィルタであり、インバータ2によって生成された商用周波数の交流電力を通過させ、インバータ2で発生するスイッチング周波数の信号を遮断する。換言すると、交流フィルタF2は、インバータ2の出力電圧の波形を正弦波に変換する。
 スイッチS2(第1のスイッチ)は、制御装置4によって制御され、バイパス給電モード時およびカウンタ電圧発生モード時にはオフされ、ラップ給電モード時およびインバータ給電モード時にはオンされる。バイパス給電モード(第1のモード)は、バイパス交流電源52からの交流電力を負荷54に供給するモードである。インバータ給電モード(第4のモード)は、インバータ2によって生成された交流電力を負荷54に供給するモードである。
 ラップ給電モード(第3のモード)は、バイパス給電モードからインバータ給電モードに切り換える場合に、バイパス交流電源52からの交流電力とインバータ2によって生成された交流電力との両方を負荷54に供給するモードである。
 カウンタ電圧発生モード(第2のモード)は、ラップ給電モード時にスイッチS2をオンする前に、ノードN2の電圧(すなわち出力端子T4の電圧)に応じたレベルのカウンタ電圧をノードN1に発生させるモードである。カウンタ電圧のレベルと出力端子T4の電圧は一致していることが好ましいが、若干異なっていても構わない。
 スイッチS3(第2のスイッチ)は、制御装置4によって制御され、バイパス給電モード時、カウンタ電圧発生モード時、およびラップ給電モード時ではオンされ、インバータ給電モード時ではオフされる。
 電圧検出器VD1は、交流入力端子T1の交流電圧(すなわち商用交流電源51から供給される交流電圧)の瞬時値を検出し、その検出値を示す信号を制御装置4に与える。制御装置4は、電圧検出器VD1の出力信号に基づいて、商用交流電源51から交流電力が正常に供給されているか否か(すなわち停電が発生したか否か)を判別する。
 電流検出器CD1は、リアクトルL1に流れる交流電流(すなわちコンバータ1の入力電流)の瞬時値を検出し、その検出値を示す信号を制御装置4に与える。電圧検出器VD2は、直流母線B1の直流電圧の瞬時値を検出し、その検出値を示す信号を制御装置4に与える。
 制御装置4は、電圧検出器VD1,VD2および電流検出器CD1の出力信号に基づいて、コンバータ1を制御する。換言すると、コンバータ1は、通常時は、直流母線B1の直流電圧が所定の目標直流電圧になるように直流母線B1(すなわちインバータ2および双方向チョッパ3)に直流電力を供給する。停電時には、コンバータ1の運転は停止される。
 電圧検出器VD3は、バッテリ端子T3の直流電圧(すなわちバッテリ53の端子間電圧)の瞬時値を検出し、その検出値を示す信号を制御装置4に与える。制御装置4は、電圧検出器VD3,VD4の出力信号に基づいて双方向チョッパ3を制御する。換言すると、双方向チョッパ3は、通常時は、バッテリ端子T3の直流電圧が所定の目標バッテリ電圧になるようにバッテリ53に直流電力を供給し、停電時は、直流母線B1の直流電圧が所定の目標直流電圧になるように直流母線B1(すなわちインバータ2)に直流電力を供給する。
 電圧検出器VD4は、バイパス端子T2の交流電圧(すなわちバイパス交流電源52から供給される交流電圧)の瞬時値を検出し、その検出値を示す信号を制御装置4に与える。電圧検出器VD5は、ノードN2の交流電圧(すなわち出力端子T4の交流電圧)の瞬時値を検出し、その検出値を示す信号を制御装置4に与える。
 電流検出器CD2は、リアクトルL2に流れる交流電流(すなわちインバータ2の出力電流)の瞬時値を検出し、その検出値を示す信号を制御装置4に与える。電流検出器CD3は、ノードN2から出力端子T4に流れる交流電流(すなわち負荷電流)の瞬時値を検出し、その検出値を示す信号を制御装置4に与える。制御装置4は、電圧検出器VD4,VD5および電流検出器CD2,CD3の出力信号に基づいてインバータ2を制御する。
 特に、制御装置4は、インバータ給電モード時には、電圧検出器VD4の検出値(すなわちバイパス交流電源52から供給される交流電圧)に基づいて電圧指令値を生成し、その電圧指令値に電圧検出器VD5の検出値(すなわち出力端子T4の交流電圧)が一致するようにインバータ2を電圧フィードバック制御するとともに、電流検出器CD3の検出値(すなわち負荷電流)を供給するようにインバータ2を電流フィードフォワード制御する。
 バイパス給電モードからインバータ給電モードに切り換える場合、制御装置4はカウンタ電圧発生モードおよびラップ給電モードを順次実行する。制御装置4は、カウンタ電圧発生モード時には、電圧検出器VD5の検出値(すなわちバイパス交流電源52から出力端子T4に出力されている交流電圧)に従ってインバータ2を電圧フィードフォワード制御するとともに、電流検出器CD2の検出値(すなわちインバータ2からリアクトルL2を介してコンデンサC2に流れる電流)が電流指令値に一致するようにインバータ2を電流フィードバック制御する。これにより、ノードN1の電圧(カウンタ電圧)が出力端子T4の電圧に等しくなり、スイッチS2をオンした時にバイパス交流電源52からスイッチS3,S2を介してコンデンサC2に突入電流が流れることが防止される。
 制御装置4は、ラップ給電モード時には、スイッチS2をオンさせてインバータ2およびバイパス交流電源52の両方から負荷54に交流電力を供給させる。さらに制御装置4は、電流検出器CD3の検出値に従ってインバータ2を電流フィードフォワード制御し、インバータ2の出力電流を徐々に増大させて負荷電流をインバータ2から供給させた後、スイッチS3をオフさせてインバータ給電モードを実行する。
 図2は、制御装置4のうちのインバータ2の制御に関連する部分の構成を示すブロック図である。図3(a)~(h)は、制御装置4のうちの図2に示した部分の動作を示すタイムチャートである。図3(a)~(h)では、バイパス給電モード(時刻t0~t1)、カウンタ電圧発生モード(時刻t1~t2)、ラップ給電モード(時刻t2~t3)、およびインバータ給電モード(時刻t3以降)が順次実行されている状態が示されている。
 制御装置4は、図2に示すように、電圧フィードバック制御部10、フィルタ電流フィードフォワード(FF)部14、加算器15,17,24、出力電流フィードフォワード(FF)部16、電流リミッタ18、電流フィードバック制御部20、カウンタ電圧指令部23、およびPWM(pulse width modulation)制御部25を含む。
 電圧フィードバック制御部10は、出力電圧指令部11、減算器12、および電圧制御部13を含む。出力電圧指令部11は、電圧検出器VD4の検出値に基づいて出力電圧指令値VOCを生成する。出力電圧指令値VOCは、バイパス交流電源52から供給される交流電圧と同位相、同電圧で正弦波状に変化する。減算器12は、出力電圧指令値VOCから出力電圧検出値VO(電圧検出器VD5の検出値)を減算して、VOCとVOの偏差を求める。
 電圧制御部13は、制御信号φVCが活性化レベルの「H」レベルにされた場合に活性化され、VOCとVOの偏差が0になるように電流指令値IC1を出力する。電圧制御部13は、制御信号φVCが非活性化レベルの「L」レベルにされた場合は非活性化され、電流指令値IC1を0に設定する。
 制御信号VCは、図3(d)に示すように、バイパス給電モード時TBおよびカウンタ電圧発生モード時TCでは「L」レベルにされ、ラップ給電モード時TLおよびインバータ給電モード時TIでは「H」レベルにされる。減算器12および電圧制御部13は、たとえばPID(Proportional-Integral-Derivative)制御部を構成している。
 フィルタ電流フィードフォワード部14は、図3(e)(g)に示すように、制御信号φ14が非活性化レベルの「L」レベルから活性化レベルの「H」レベルにされたことに応じて、電流指令値IC2を0から所定値まで徐々に増大させる。フィルタ電流フィードフォワード部14は、制御信号φVCが非活性化レベルの「L」レベルにされた場合は非活性化され、電流指令値IC2を0に設定する。
 制御信号φ14は、図3(e)に示すように、バイパス給電モード時TBでは「L」レベルにされ、カウンタ電圧発生モード時TC、ラップ給電モード時TL、およびインバータ給電モード時TIでは「H」レベルにされる。加算器15は、電圧制御部13によって生成された電流指令値IC1と、フィルタ電流フィードフォワード部14によって生成された電流指令値IC2とを加算する。
 出力電流フィードフォワード部16は、図3(d)(h)に示すように、制御信号φ16が非活性化レベルの「L」レベルから活性化レベルの「H」レベルにされたことに応じて、電流指令値IC3を0から電流検出器CD3の検出値IOまで徐々に増大させる。
 制御信号φ16は、図3(d)に示すように、バイパス給電モード時TBおよびカウンタ電圧発生モード時TCでは「L」レベルにされ、ラップ給電モード時TLおよびインバータ給電モード時TIでは「H」レベルにされる。
 加算器17は、加算器15の出力値に、出力電流フィードフォワード部16によって生成された電流指令値IC3を加算する。電流リミッタ18は、加算器17の出力値を所定範囲内に制限して電流指令値IC4を生成する。
 電流フィードバック制御部20は、減算器21および電流制御部22を含む。減算器21は、電流リミッタ18によって生成された電流指令値IC4から電流検出器CD2の検出値I2を減算して、IC4とI2の偏差を求める。
 電流制御部22は、制御信号φCCが活性化レベルの「H」レベルにされた場合に活性化され、IC4とI2の偏差が0になるように電圧指令値VC1を出力する。電流制御部22は、制御信号φCCが非活性化レベルの「L」レベルにされた場合は非活性化され、電圧指令値VC1を0に設定する。
 制御信号φCCは、図3(e)に示すように、バイパス給電モード時TBでは「L」レベルにされ、カウンタ電圧発生モード時TC、ラップ給電モード時TL、およびインバータ給電モード時TIでは「H」レベルにされる。減算器21および電流制御部22は、たとえばPID制御部を構成している。
 カウンタ電圧指令部23は、図3(b)(f)に示すように、制御信号φ23が非活性化レベルの「L」レベルから活性化レベルの「H」レベルにされたことに応じて、電圧指令値VC2を0から電圧検出器VD5の検出値IOまで徐々に増大させる。
 制御信号φ23は、図3(b)に示すように、バイパス給電モード時TBでは「L」レベルにされ、カウンタ電圧発生モード時TC、ラップ給電モード時TL、およびインバータ給電モード時TIでは「H」レベルにされる。加算器24は、電流制御部22によって生成された電圧指令値VC1と、カウンタ電圧指令部23によって生成された電圧指令値VC2とを加算する。
 PWM制御部25は、制御信号φINVが活性化レベルの「H」レベルである場合に活性化され、加算器24の出力値に基づいてPWM信号を生成し、そのPWM信号によってインバータ2を制御する。
 制御信号φINVは、図3(b)に示すように、バイパス給電モード時では「L」レベルにされ、カウンタ電圧発生モード時TC、ラップ給電モード時TL、およびインバータ給電モード時TIでは「H」レベルにされる。
 次に、図3(a)~(h)を参照して、この無停電電源装置の動作について説明する。バイパス給電モード時TB(時刻t0~t1)では、スイッチS3がオンされるとともにスイッチS2がオフされ、バイパス交流電源52からスイッチS3を介して負荷54に交流電力が供給される。制御信号φ23,φINV,φ16,φVC,φ14,φCCはともに非活性化レベルの「L」レベルにされ、電圧指令値VC2および電流指令値IC2,IC3はともに0に設定されている。
 バイパス給電モードからインバータ給電モードへの移行が指示されると、バイパス給電モードからカウンタ電圧発生モードおよびラップ給電モードを介してインバータ給電モードに移行される。
 カウンタ電圧発生モード時TC(時刻t1~t2)では、制御信号φ23,φINV,φ14,φCCが活性化レベルの「H」レベルにされ、カウンタ電圧指令部23、PWM制御部25、フィルタ電流フィードフォワード部14、および電流制御部22が活性化される。カウンタ電圧指令部23によって電圧指令値VC2が徐々に増大され、フィルタ電流フィードフォワード部14によって電流指令値IC2が徐々に増大される。
 電圧指令値VC2および電流指令値IC2が徐々に増大すると、PWM制御部25によってインバータ2がソフトスタートされ、インバータ2の出力電圧および出力電流が徐々に増大する。インバータ2の出力電流は電流検出器CD2によって検出され、その検出値I2は電流フィードバック制御部20にフィードバックされる。したがって、インバータ2は、電流検出器CD2の検出値I2が電流指令値IC2に一致するように電流フィードバック制御されるとともに、電圧指令値VC2に従って電圧フィードフォワード制御される。これにより、スイッチS2の両端子の電圧(すなわちノードN1,N2の電圧)が一致する。
 ラップ給電モード時TL(時刻t2~t3)では、制御信号φ16,φVCが「H」レベルにされて出力電流フィードフォワード部16および電圧制御部13が活性化されるとともに、スイッチS2がオンされる。カウンタ電圧発生モード時TCにおいてスイッチS2の両端子の電圧が一致しているので、スイッチS2がオンされてもバイパス交流電源52から交流フィルタF2のコンデンサC2に突入電流が流れることはない。
 出力電流フィードフォワード部16によって電流指令値IC3が徐々に増大される。インバータ2の出力電流は電流検出器CD2によって検出され、その検出値I2は電流フィードバック制御部20にフィードバックされる。電流指令値IC3が徐々に増大すると、PWM制御部25によってインバータ2がソフトスタートされ、インバータ2の出力電流が徐々に増大する。インバータ2の出力電流は、負荷電流が全てインバータ2から供給されるまで増大する。
 インバータ給電モード時TI(時刻t3以降)では、スイッチS3がオフされ、バイパス交流電源52と負荷54とが電気的に切り離される。商用交流電源51から交流電力が供給されている通常時は、商用交流電源51からの交流電力がコンバータ1によって直流電力に変換され、その直流電力が双方向チョッパ3によってバッテリ53に蓄えられるとともにインバータ2によって交流電力に変換されて負荷54に供給される。このとき、電流検出器VD5の検出値が電圧指令値に一致するようにインバータ2が電圧フィードバック制御されるとともに、電流検出器CD3の検出値の電流(負荷電流)を供給するようにインバータ2が電流フィードフォワード制御される。
 停電が発生すると、コンバータ1の運転が停止され、スイッチS1がオフされ、バッテリ53の直流電力が双方向チョッパ3を介してインバータ2に供給され、交流電力に変換されて負荷54に供給される。したがって、バッテリ53に直流電力が蓄えられている期間は、負荷54の運転を継続することができる。
 無停電電源装置のメンテナンス時は、スイッチS1,S2がオフされ、スイッチS3がオンされ、コンバータ1、インバータ2、双方向チョッパ3の運転が停止される。バイパス交流電源52からスイッチS3を介して負荷54に交流電力が供給され、負荷54が運転される。
 図4は、本実施の形態の比較例を示す回路ブロック図であって、図1と対比される図である。図4を参照して、この無停電電源装置が図1の無停電電源装置と異なる点は、電圧検出器VD6が追加され、制御装置4が制御装置4Aで置換されている点である。電圧検出器VD6は、ノードN1の電圧を検出し、その検出値を示す信号を制御装置4Aに出力する。制御装置4Aは、カウンタ電圧発生モード時には、電圧検出器VD6の検出値が電圧検出器VD5の検出値に一致するようにインバータ2を制御する。この比較例では、図1の無停電電源装置よりも電圧検出器の数が多くなり、コスト高になってしまう。
 以上のように、この実施の形態では、バイパス給電モードとラップ給電モードの間でカウンタ電圧発生モードを実行し、電圧検出器VD5の検出値に従ってインバータ2をフィードフォワード制御してカウンタ電圧を生成し、スイッチS2の両端子の電圧を一致させた後にスイッチS2をオンする。したがって、スイッチS2をオンしたときにバイパス交流電源52からスイッチS2を介して交流フィルタF2のコンデンサC2に突入電流が流れることを防止することができる。しかも、比較例のようにカウンタ電圧発生用の電圧検出器VD6を別途設ける必要がないので、低コスト化を図ることができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明でなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 T1 交流入力端子、T2 バイパス端子、T3 バッテリ端子、T4 出力端子、S1~S3 スイッチ、C1~C3 コンデンサ、L1,L2 リアクトル、1 コンバータ、B1 直流母線、2 インバータ、3 双方向チョッパ、VD1~VD6 電圧検出器、CD1~CD3 電流検出器、4,4A 制御装置、10 電圧フィードバック制御部、11 出力電圧指令部、12,21 減算器、13 電圧制御部、14 フィルタ電流フィードフォワード部、15,17,24 加算器、16 出力電流フィードフォワード部、18 電流リミッタ、20 電流フィードバック制御部、22 電流制御部、23 カウンタ電圧指令部、25 PWM制御部、51 商用交流電源、52 バイパス交流電源、53 バッテリ、54 負荷。

Claims (7)

  1.  商用交流電源から供給される交流電力を受ける第1の端子と、
     バイパス交流電源から供給される交流電力を受ける第2の端子と、
     負荷に接続される第3の端子と、
     商用交流電源から前記第1の端子を介して供給される交流電力を直流電力に変換するコンバータと、
     前記コンバータによって生成された直流電力または電力貯蔵装置の直流電力を交流電力に変換するインバータと、
     前記インバータの出力電圧の波形を正弦波に変換する交流フィルタと、
     一方端子が前記交流フィルタを通過した交流電圧を受け、他方端子が前記第3の端子に接続された第1のスイッチと、
     前記第2および第3の端子間に接続された第2のスイッチと、
     前記第3の端子の電圧の瞬時値を検出する第1の電圧検出器と、
     前記第1の電圧検出器の検出値に基づいて前記インバータを制御する制御装置とを備え、
     前記制御装置は、
     前記第1のスイッチをオフさせるとともに前記第2のスイッチをオンさせ、前記バイパス交流電源からの交流電力を前記負荷に供給する第1のモードと、
     前記第1の電圧検出器の検出値に従って前記インバータを電圧フィードフォワード制御し、前記第3の端子の電圧に応じたレベルのカウンタ電圧を前記第1のスイッチの一方端子に発生させる第2のモードと、
     前記第1のスイッチをオンさせて前記インバータおよび前記バイパス交流電源の両方から前記負荷に交流電力を供給させ、前記インバータの出力電流を負荷電流まで増加させる第3のモードと、
     前記第2のスイッチをオフさせ、前記インバータによって生成される交流電力を前記負荷に供給する第4のモードとを順次実行する、無停電電源装置。
  2.  前記交流フィルタは、
     一方端子が前記インバータの出力電圧を受け、他方端子が前記第1のスイッチの一方端子に接続されたリアクトルと、
     前記第1のスイッチの一方端子に接続されたコンデンサとを含む、請求項1に記載の無停電電源装置。
  3.  さらに、前記インバータの出力電流の瞬時値を検出する電流検出器を備え、
     前記制御装置は、前記第2のモード時には、前記第1の電圧検出器の検出値に従って前記インバータを電圧フィードフォワード制御するとともに、前記電流検出器の検出値が電流指令値に一致するように前記インバータを電流フィードバック制御する、請求項1に記載の無停電電源装置。
  4.  前記制御装置は、前記第2のモード時には、前記カウンタ電圧を前記第1の電圧検出器の検出値まで徐々に増大させる、請求項1に記載の無停電電源装置。
  5.  前記制御装置は、前記第3のモード時には、前記インバータの出力電流を前記負荷電流まで徐々に増大させる、請求項1に記載の無停電電源装置。
  6.  さらに、前記第3の端子に流れる前記負荷電流を検出する電流検出器を備え、
     前記制御装置は、前記第3のモード時および前記第4のモード時には、前記第1の電圧検出器の検出値が電圧指令値に一致するように前記インバータを電圧フィードバック制御するとともに、前記電流検出器の検出値に従って前記インバータを電流フィードフォワード制御する、請求項1に記載の無停電電源装置。
  7.  さらに、前記第2の端子の交流電圧の瞬時値を検出する第2の電圧検出器を備え、
     前記制御装置は、前記第2の電圧検出器の検出値に基づいて前記電圧指令値を生成する、請求項6に記載の無停電電源装置。
PCT/JP2015/071072 2015-07-24 2015-07-24 無停電電源装置 WO2017017719A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2991877A CA2991877C (en) 2015-07-24 2015-07-24 Uninterruptible power supply
PCT/JP2015/071072 WO2017017719A1 (ja) 2015-07-24 2015-07-24 無停電電源装置
JP2017530465A JP6431199B2 (ja) 2015-07-24 2015-07-24 無停電電源装置
US15/746,166 US10615636B2 (en) 2015-07-24 2015-07-24 Uninterruptible power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/071072 WO2017017719A1 (ja) 2015-07-24 2015-07-24 無停電電源装置

Publications (1)

Publication Number Publication Date
WO2017017719A1 true WO2017017719A1 (ja) 2017-02-02

Family

ID=57885499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071072 WO2017017719A1 (ja) 2015-07-24 2015-07-24 無停電電源装置

Country Status (4)

Country Link
US (1) US10615636B2 (ja)
JP (1) JP6431199B2 (ja)
CA (1) CA2991877C (ja)
WO (1) WO2017017719A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018170937A (ja) * 2017-03-30 2018-11-01 新電元工業株式会社 電源装置、及び制御装置
JP6533357B1 (ja) * 2018-11-22 2019-06-19 東芝三菱電機産業システム株式会社 無停電電源装置
JP6754015B1 (ja) * 2019-06-25 2020-09-09 東芝三菱電機産業システム株式会社 無停電電源装置
KR20210095800A (ko) * 2020-01-24 2021-08-03 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 무정전 전원 장치
KR20220061224A (ko) * 2020-09-17 2022-05-12 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 무정전 전원 장치
JP7073590B1 (ja) * 2021-01-29 2022-05-23 東芝三菱電機産業システム株式会社 無停電電源装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6406146B2 (ja) * 2015-07-21 2018-10-17 住友電気工業株式会社 電源装置
JP6608405B2 (ja) * 2017-07-19 2019-11-20 矢崎総業株式会社 電圧変換ユニット
JP6958287B2 (ja) * 2017-11-24 2021-11-02 トヨタ自動車株式会社 電力制御システムおよび車両
EP3683924A1 (de) * 2019-01-18 2020-07-22 AEG Power Solutions GmbH Anordnung zur unterbrechungsfreien stromversorgung und verfahren zum betreiben einer derartigen anordnung
US12107512B2 (en) * 2020-10-08 2024-10-01 Tmeic Corporation Power conversion device converting DC power supply into AC power
US11569681B2 (en) * 2020-12-04 2023-01-31 Infineon Technologies Austria Ag Bidirectional battery charge-discharge control

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5775539A (en) * 1980-10-24 1982-05-12 Hitachi Ltd No-break power source
JPH0284029A (ja) * 1988-09-20 1990-03-26 Toshiba Corp インバータの制御方法
JPH03164038A (ja) * 1989-11-20 1991-07-16 Mitsubishi Electric Corp インバータ装置
JPH05236757A (ja) * 1992-02-24 1993-09-10 Sansha Electric Mfg Co Ltd 無停電電源装置
JPH08154347A (ja) * 1994-11-25 1996-06-11 Japan Storage Battery Co Ltd 交流無停電電源装置
US20120306274A1 (en) * 2011-06-03 2012-12-06 Liebert Corporation Ups adaptive output voltage control systems
US20140361624A1 (en) * 2013-06-10 2014-12-11 Active Power, Inc. Apparatus and methods for control of load power quality in uninterruptible power systems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3057332B2 (ja) * 1991-03-06 2000-06-26 株式会社日立製作所 無瞬断電源切替方法および無瞬断無停電電源装置
US7566988B2 (en) * 2005-06-14 2009-07-28 Liebert Corporation Method and apparatus for monitoring UPS power sources
JP5465652B2 (ja) 2010-12-03 2014-04-09 東芝三菱電機産業システム株式会社 無停電電源装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5775539A (en) * 1980-10-24 1982-05-12 Hitachi Ltd No-break power source
JPH0284029A (ja) * 1988-09-20 1990-03-26 Toshiba Corp インバータの制御方法
JPH03164038A (ja) * 1989-11-20 1991-07-16 Mitsubishi Electric Corp インバータ装置
JPH05236757A (ja) * 1992-02-24 1993-09-10 Sansha Electric Mfg Co Ltd 無停電電源装置
JPH08154347A (ja) * 1994-11-25 1996-06-11 Japan Storage Battery Co Ltd 交流無停電電源装置
US20120306274A1 (en) * 2011-06-03 2012-12-06 Liebert Corporation Ups adaptive output voltage control systems
US20140361624A1 (en) * 2013-06-10 2014-12-11 Active Power, Inc. Apparatus and methods for control of load power quality in uninterruptible power systems

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018170937A (ja) * 2017-03-30 2018-11-01 新電元工業株式会社 電源装置、及び制御装置
US11196290B2 (en) 2018-11-22 2021-12-07 Toshiba Mitsubishi-Electric Industrial Systems Corporation Uninterruptible power supply apparatus
KR102531827B1 (ko) * 2018-11-22 2023-05-11 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 무정전 전원 장치
KR20210009379A (ko) 2018-11-22 2021-01-26 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 무정전 전원 장치
JP6533357B1 (ja) * 2018-11-22 2019-06-19 東芝三菱電機産業システム株式会社 無停電電源装置
WO2020105172A1 (ja) * 2018-11-22 2020-05-28 東芝三菱電機産業システム株式会社 無停電電源装置
JP6754015B1 (ja) * 2019-06-25 2020-09-09 東芝三菱電機産業システム株式会社 無停電電源装置
WO2020261366A1 (ja) * 2019-06-25 2020-12-30 東芝三菱電機産業システム株式会社 無停電電源装置
KR20210064368A (ko) 2019-06-25 2021-06-02 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 무정전 전원 장치
CN112970168A (zh) * 2019-06-25 2021-06-15 东芝三菱电机产业系统株式会社 不间断电源装置
CN112970168B (zh) * 2019-06-25 2024-04-26 东芝三菱电机产业系统株式会社 不间断电源装置
KR102572374B1 (ko) 2019-06-25 2023-08-29 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 무정전 전원 장치
US11336114B2 (en) 2019-06-25 2022-05-17 Toshiba Mitsubishi-Electric Industrial Systems Corporation Uninterruptible power supply apparatus
JP7348091B2 (ja) 2020-01-24 2023-09-20 東芝三菱電機産業システム株式会社 無停電電源装置
KR102554512B1 (ko) 2020-01-24 2023-07-11 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 무정전 전원 장치
KR20210095800A (ko) * 2020-01-24 2021-08-03 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 무정전 전원 장치
JP2021118601A (ja) * 2020-01-24 2021-08-10 東芝三菱電機産業システム株式会社 無停電電源装置
KR102690642B1 (ko) 2020-09-17 2024-07-31 가부시키가이샤 티마이크 무정전 전원 장치
KR20220061224A (ko) * 2020-09-17 2022-05-12 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 무정전 전원 장치
WO2022162876A1 (ja) * 2021-01-29 2022-08-04 東芝三菱電機産業システム株式会社 無停電電源装置
JP7073590B1 (ja) * 2021-01-29 2022-05-23 東芝三菱電機産業システム株式会社 無停電電源装置

Also Published As

Publication number Publication date
US20180212460A1 (en) 2018-07-26
CA2991877A1 (en) 2017-02-02
CA2991877C (en) 2020-03-31
JP6431199B2 (ja) 2018-11-28
US10615636B2 (en) 2020-04-07
JPWO2017017719A1 (ja) 2018-05-31

Similar Documents

Publication Publication Date Title
JP6431199B2 (ja) 無停電電源装置
US8018747B2 (en) PWM rectifier
TWI538351B (zh) 不斷電電源裝置
KR102281416B1 (ko) 무정전 전원 장치, 및 무정전 전원 장치의 시험 방법
JP6243552B2 (ja) 無停電電源装置
JP6706390B2 (ja) 電力変換装置
WO2014203116A1 (en) Inverter synchronization
CN111133667B (zh) 电源装置
JP2013110826A (ja) Dcdcコンバータ及びdcdcコンバータの制御方法
WO2017183147A1 (ja) 無停電電源装置
EP2933915B1 (en) Controller for grid tied inverter system
JP2006238621A (ja) 無停電電源装置
JP2000152647A (ja) 系統連系インバータ
TWI734762B (zh) 電源裝置、及電源裝置的控制方法
JP2000333473A (ja) 系統連系インバータ装置
TWI732841B (zh) 電源裝置、及電源裝置之控制方法
JP2009254192A (ja) 無停電電源装置
CN114600337A (zh) 不间断电源装置
JP2013046431A (ja) チョッパ装置
JP2006067728A (ja) 無停電電源装置
JP2003032897A (ja) 太陽光発電装置
JP5332229B2 (ja) 瞬低補償装置
RU2502181C1 (ru) Способ управления параллельно соединенными модулями источника бесперебойного питания
JP2005261053A (ja) 無停電電源装置
JP4493308B2 (ja) 無停電電源装置及び無停電電源システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899553

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2991877

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2017530465

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15746166

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15899553

Country of ref document: EP

Kind code of ref document: A1