WO2017013945A1 - 弾性波装置及びその製造方法 - Google Patents

弾性波装置及びその製造方法 Download PDF

Info

Publication number
WO2017013945A1
WO2017013945A1 PCT/JP2016/066248 JP2016066248W WO2017013945A1 WO 2017013945 A1 WO2017013945 A1 WO 2017013945A1 JP 2016066248 W JP2016066248 W JP 2016066248W WO 2017013945 A1 WO2017013945 A1 WO 2017013945A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
piezoelectric substrate
electrode
main electrode
adhesion layer
Prior art date
Application number
PCT/JP2016/066248
Other languages
English (en)
French (fr)
Inventor
拓 菊知
智裕 木間
雅 坪川
中川 亮
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to KR1020177032073A priority Critical patent/KR101931506B1/ko
Priority to JP2017529491A priority patent/JP6471802B2/ja
Priority to CN201680026762.6A priority patent/CN107534429B/zh
Priority to DE112016003221.8T priority patent/DE112016003221T5/de
Publication of WO2017013945A1 publication Critical patent/WO2017013945A1/ja
Priority to US15/832,851 priority patent/US10924082B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/131Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials consisting of a multilayered structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/132Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials characterized by a particular shape
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • H03H9/14541Multilayer finger or busbar electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • H10N30/067Forming single-layered electrodes of multilayered piezoelectric or electrostrictive parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates

Definitions

  • the present invention relates to an elastic wave device and a manufacturing method thereof.
  • Patent Document 1 an example of an acoustic wave device having an IDT electrode is disclosed.
  • This acoustic wave device has a piezoelectric substrate, an intermediate layer provided on the piezoelectric substrate, and an electrode film provided on the intermediate layer.
  • Patent Document 1 When an elastic wave device as described in Patent Document 1 is manufactured using a lift-off method, a metal film for an intermediate layer and a metal film for an electrode film are deposited on a piezoelectric substrate and a resist pattern.
  • a metal having a high melting point was used as the metal for the intermediate layer. Therefore, when the intermediate layer is formed, the resist pattern may be greatly deformed due to radiant heat from the vapor deposition source or heat conduction from the vapor deposition particles. As a result, the side surface of the intermediate layer may be greatly inclined. Therefore, the distortion of the electrode film when the IDT electrode is excited becomes large, and the IMD characteristics may be deteriorated.
  • the object of the present invention is to reduce the distortion of the IDT electrode when an elastic wave is excited, regardless of the melting point of the metal for the intermediate layer, and to improve the IMD characteristics.
  • a wave device and a manufacturing method thereof are provided.
  • the piezoelectric substrate includes a piezoelectric substrate having an electrode formation surface and an IDT electrode provided on the electrode formation surface of the piezoelectric substrate, and the IDT electrode is the electrode formation surface of the piezoelectric substrate.
  • a first layer that has an adhesion layer provided thereon and a main electrode layer provided on the adhesion layer, wherein the adhesion layer is in close contact with the piezoelectric substrate; and the main electrode layer
  • At least a part of the first and second side surfaces is such that the area of the surface where the second layer is in close contact with the main electrode layer is smaller than the area of the surface in close contact with the substrate. Inclined from the normal direction of the electrode forming surface, respectively, the inclined portions of the first and second side surfaces and the electrode When the angle formed by the normal direction of the surface is the inclination angle of the first and second side surfaces, the inclination angle of the second side surface is greater than the inclination angle of the first side surface.
  • An acoustic wave device is provided that is small.
  • the main electrode layer has a side surface, and an angle formed by the side surface of the main electrode layer and a normal direction of the electrode formation surface of the piezoelectric substrate. Is the inclination angle of the side surface of the main electrode layer, the inclination angle of the side surface of the main electrode layer is equal to or less than the inclination angle of the second side surface. In this case, the distortion of the main electrode layer when the elastic wave is excited can be further reduced.
  • the elastic modulus of the metal constituting the adhesion layer is larger than the elastic modulus of the metal constituting the main electrode layer. In this case, the distortion of the main electrode layer when the elastic wave is excited can be effectively reduced.
  • the melting point of the metal constituting the adhesion layer is equal to or higher than the melting point of the metal constituting the main electrode layer. In this case, the distortion of the main electrode layer when the elastic wave is excited can be reduced more reliably.
  • the adhesion layer is made of Ti
  • the main electrode layer is made of Al. In this case, the distortion of the main electrode layer when the elastic wave is excited can be further reduced.
  • the piezoelectric substrate includes: a piezoelectric substrate having an electrode formation surface; and an IDT electrode provided on the electrode formation surface of the piezoelectric substrate, wherein the IDT electrode forms the electrode formation of the piezoelectric substrate.
  • An adhesion layer provided on the surface, an intermediate layer provided on the adhesion layer, and a main electrode layer provided on the intermediate layer, wherein the adhesion layer and the intermediate layer are respectively And having at least one of the side surfaces of the adhesion layer such that the area of the surface in close contact with the intermediate layer is smaller than the area of the surface in close contact with the piezoelectric substrate.
  • a part of the surface is inclined from the normal direction of the electrode formation surface, and in the intermediate layer, the area of the surface in contact with the main electrode layer is smaller than the area of the surface in close contact with the adhesion layer.
  • Less of the side surface of the intermediate layer Are partly inclined from the normal direction of the electrode forming surface, the inclined portion of the side surface of the adhesion layer and the inclined portion of the side surface of the intermediate layer, and the method of the electrode forming surface
  • the inclination of the side surface of the intermediate layer is greater than the inclination angle of the side surface of the adhesion layer when the angle formed by the line direction is the inclination angle of the side surface of the adhesion layer and the side surface of the intermediate layer
  • An elastic wave device with a smaller angle is provided. In this case, the distortion of the main electrode layer when the elastic wave is excited can be further reduced.
  • the main electrode layer has a side surface, and an angle formed between the side surface of the main electrode layer and a normal direction of the electrode formation surface is the main electrode.
  • the inclination angle of the side surface of the layer is used, the inclination angle of the side surface of the main electrode layer is equal to or less than the inclination angle of the side surface of the intermediate layer. In this case, the distortion of the main electrode layer when the elastic wave is excited can be further reduced.
  • an elastic modulus of a metal constituting the adhesion layer is equal to or higher than an elastic modulus of a metal constituting the intermediate layer, and the intermediate layer is constituted.
  • the elastic modulus of the metal is larger than the elastic modulus of the metal constituting the main electrode layer. In this case, the distortion of the main electrode layer when the elastic wave is excited can be effectively reduced.
  • the melting point of the metal constituting the adhesion layer is equal to or higher than the melting point of the metal constituting the intermediate layer, and the intermediate layer is constituted.
  • the melting point of the metal is higher than the melting point of the metal constituting the main electrode layer. In this case, the distortion of the main electrode layer when the elastic wave is excited can be reduced more reliably.
  • the adhesion layer is made of any one of NiCr and Ti
  • the intermediate layer is made of Ti
  • the main electrode layer is made of Al. In this case, the distortion of the main electrode layer when the elastic wave is excited can be further reduced.
  • An elastic wave device manufacturing method is an elastic wave device manufacturing method in which an IDT electrode having an adhesion layer and a main electrode layer is provided on a piezoelectric substrate, and a piezoelectric substrate having an electrode forming surface is prepared.
  • a step of laminating a resist layer on the electrode formation surface of the piezoelectric substrate, a step of patterning the resist layer, and a metal film for an adhesion layer on the piezoelectric substrate and the resist layer by vapor deposition An IDT electrode comprising: a step of laminating the resist layer; a step of laminating a metal film for a main electrode layer on the metal film for the adhesion layer by a vapor deposition method; and a step of peeling the resist layer from the piezoelectric substrate.
  • the first layer is on the first side
  • the second layer has a second side surface
  • the adhesion is performed while changing the conditions of the vapor deposition method.
  • the area of the surface where the second layer adheres to the main electrode layer is smaller than the area of the surface where the first layer adheres to the piezoelectric substrate.
  • the first and second side surfaces are inclined from the normal direction of the electrode forming surface, and the angles formed by the first and second side surfaces and the normal direction of the electrode forming surface are respectively.
  • the inclination angle of the second side surface is made smaller than the inclination angle of the first side surface when the inclination angle of the first and second side surfaces is used. In this case, the distortion of the main electrode layer when the elastic wave is excited can be further reduced.
  • the second layer is formed in the step of laminating the metal film for the adhesion layer on the piezoelectric substrate and the resist layer.
  • the film formation rate in the vapor deposition method is made slower than the film formation rate in the vapor deposition method when forming the first layer. In this case, the distortion of the main electrode layer when the elastic wave is excited can be reduced more reliably.
  • an elastic wave device and a method for manufacturing the same, which can reduce the distortion of the IDT electrode when the elastic wave is excited and can improve the IMD characteristics.
  • FIG. 1 is a front sectional view of an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2A is an enlarged front cross-sectional view of the IDT electrode in the first embodiment of the present invention
  • FIG. 2B is an enlarged front view of the IDT electrode in the first embodiment of the present invention.
  • FIG. 3 is an enlarged front sectional view of an IDT electrode in a comparative example.
  • 4A and 4B show the positions along the elastic wave propagation direction of the electrode fingers of the IDT electrode and the surface of the main electrode layer on the piezoelectric substrate side in the first embodiment and the comparative example of the present invention. it is a diagram showing the relationship between S 4 component of distortion in.
  • Figure 5 is a diagram showing the relationship between S 4 component and the third-order harmonic level of distortion.
  • 6 (a) to 6 (c) are partially cutaway front sectional views for explaining a method of manufacturing the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 7A and FIG. 7B are partially cutaway front cross-sectional views for explaining a method for manufacturing an acoustic wave device according to the first embodiment of the present invention.
  • FIG. 8 is a front cross-sectional view of an IDT electrode in the second embodiment of the present invention.
  • FIG. 1 is a front sectional view of an acoustic wave device according to a first embodiment of the present invention.
  • the acoustic wave device 1 has a piezoelectric substrate 3.
  • the piezoelectric substrate 3 is made of LiTaO 3 .
  • the material of the piezoelectric substrate is not particularly limited, and may be made of an appropriate piezoelectric single crystal or piezoelectric ceramic. More specifically, the piezoelectric substrate may be made of, for example, LiNbO 3 , KNbO 3 , quartz, langasite, ZnO, PZT, or lithium tetraborate.
  • the piezoelectric substrate 3 has an electrode forming surface 3a.
  • An IDT electrode 2 is formed on the electrode formation surface 3a.
  • an elastic wave is excited.
  • reflectors 8 are provided on both sides of the IDT electrode 2 in the elastic wave propagation direction. Thereby, a 1-port elastic wave resonator is formed. Note that the reflector may not be provided.
  • FIG. 2 (a) is an enlarged front sectional view of the IDT electrode in the first embodiment.
  • FIG. 2B is a partially cutaway enlarged front sectional view of the IDT electrode in the first embodiment. More specifically, in FIG. 2A and FIG. 2B, one electrode finger among a plurality of electrode fingers included in the IDT electrode is shown enlarged. The same applies to FIG. 3, FIG. 6 (a) to FIG. 6 (c), FIG. 7 (a), FIG. 7 (b) and FIG.
  • the IDT electrode 2 has an adhesion layer 4 provided on the electrode forming surface 3a of the piezoelectric substrate 3.
  • a main electrode layer 6 is provided on the adhesion layer 4.
  • the adhesion layer 4 has higher adhesion to the piezoelectric substrate 3 than the adhesion of the main electrode layer 6 to the piezoelectric substrate 3.
  • the adhesion layer 4 includes a first layer 4 ⁇ / b> A that is in close contact with the piezoelectric substrate 3.
  • the adhesion layer 4 also includes a second layer 4B that is in close contact with the main electrode layer 6.
  • the first layer 4A and the second layer 4B are continuously provided in the normal direction Z of the electrode formation surface 3a.
  • the adhesion layer 4 is made of Ti.
  • the adhesion layer is not particularly limited, but is preferably made of an appropriate metal having high adhesion to the piezoelectric substrate. More specifically, the adhesion layer is preferably made of, for example, Ti, Cr, NiCr, Zr, Ta, W, or Mo.
  • the main electrode layer 6 is an electrode layer dominant in the excitation of elastic waves.
  • the main electrode layer 6 of this embodiment is made of Al.
  • the main electrode layer is preferably made of an appropriate metal having low resistance. More specifically, the main electrode layer is preferably made of, for example, Al, Cu, Au, or Ag. Further, the stress migration resistance may be increased by adding another element to the metal constituting the main electrode layer.
  • the material constituting the main electrode layer an alloy mainly composed of Al and to which Cu is added is preferably used as the material constituting the main electrode layer.
  • the thickness of the adhesion layer 4 is 30 nm, and the thickness of the main electrode layer 6 is 430 nm.
  • the wavelength defined by the distance between the electrode fingers of the IDT electrode 2 is 4.6 ⁇ m.
  • the duty of the IDT electrode 2 is 0.5.
  • the thickness of each layer of the IDT electrode, the wavelength of the IDT electrode, and the duty are not particularly limited.
  • the first layer 4A of the adhesion layer 4 has a first side face 4Ac.
  • the second layer 4B also has a second side surface 4Bc.
  • the first and second side surfaces 4Ac and 4Bc are inclined from the normal direction Z of the electrode forming surface 3a. More specifically, the area of the surface where the second layer 4B is in close contact with the main electrode layer 6 is smaller than the area of the surface where the first layer 4A is in close contact with the piezoelectric substrate 3.
  • the first and second side surfaces 4Ac and 4Bc are inclined. It should be noted that at least a part of the first and second side surfaces may be inclined from the normal direction of the electrode formation surface.
  • the main electrode layer 6 also has a side surface 6c.
  • the angles formed by the first and second side surfaces 4Ac and 4Bc and the normal direction Z of the electrode forming surface 3a are the inclination angles of the first and second side surfaces 4Ac and 4Bc, respectively. More specifically, as shown in FIG. 2B, the angle formed by the alternate long and short dash line A extending in the normal direction Z of the electrode formation surface and the first side surface 4Ac is equal to the first side surface 4Ac. the inclination angle ⁇ 1. Similarly, the angle formed by the alternate long and short dash line B and the second side surface 4Bc is the inclination angle ⁇ 2 of the second side surface 4Bc.
  • This embodiment is characterized in that the inclined angle theta 1 of the first aspect 4Ac better inclination angle theta 2 of the second aspect 4Bc small.
  • the metal is laminated so that the width of the electrode finger becomes narrower from the electrode formation surface 3a shown in FIG. 2A toward the lamination direction of the IDT electrode 2.
  • the distortion of the main electrode layer 6 in the IDT electrode 2 when the elastic wave is excited can be reduced, and the IMD characteristics can be improved. This will be described below using a comparative example.
  • FIG. 3 is an enlarged front sectional view of an IDT electrode in a comparative example.
  • the adhesion layer 104 of the IDT electrode 102 of the acoustic wave device in the comparative example has first and second layers 104A and 104B.
  • the first and second layers 104A and 104B have first and second side surfaces 104Ac and 104Bc.
  • the elastic wave device in the comparative example has the same configuration as the elastic wave device 1 of the first embodiment.
  • FIG. 4 (a) and 4 (b) show the distortion in the position of the electrode finger of the IDT electrode along the elastic wave propagation direction and the surface of the main electrode layer on the piezoelectric substrate side in the first embodiment and the comparative example. It is a diagram showing the relationship between S 4 components. A solid line shows the result of the first embodiment, and a broken line shows the result of the comparative example.
  • the direction perpendicular to the direction in which the electrode finger extends is defined as the width direction of the electrode finger
  • the position where the value of the horizontal axis in FIGS. 4A and 4B is 0 is the center position in the width direction of the electrode finger. It corresponds to.
  • FIG. 4A shows the magnitude of distortion from the center in the width direction of the electrode finger to one end face.
  • FIG. 4B shows the magnitude of distortion from the center in the width direction of the electrode finger to the end face opposite to the end face shown in FIG.
  • the distortion increases as the distance from the center of the electrode finger to the end surface increases. Further, as shown in FIGS. 4A and 4B, in this embodiment, the distortion can be made smaller than in the comparative example.
  • the distortion is 4.26 ⁇ 10 ⁇ 3 in the comparative example on one end face of the electrode finger, and the distortion is 3. 99 ⁇ 10 ⁇ 3 .
  • the distortion of the present embodiment it is possible to 0.27 ⁇ 10 -3 small S 4 components of the strain than the comparative examples.
  • the distortion of the present embodiment can be effectively made smaller than the distortion of the comparative example. Recognize.
  • the distortion is 4.26 ⁇ 10 ⁇ 3 in the comparative example, and the distortion is 3.99 ⁇ 10 ⁇ 3 in the present embodiment.
  • the distortion of the present embodiment is more effective than the distortion of the comparative example in the range of about 10% of the entire length of the electrode finger in the width direction from the end face shown in FIG. It can be seen that it is made smaller. It can be considered that the distortion can be reduced by the present embodiment according to the following theory.
  • the inclination angle of the second side surface 4Bc is smaller than the inclination angle of the first side surface 4Ac of the adhesion layer 4.
  • the angle formed between the side surface 6c of the main electrode layer 6 and the alternate long and short dash line C along the normal direction Z of the electrode formation surface of the piezoelectric substrate 3 is the main electrode layer. 6 the inclination angle theta 3 sides 6c of.
  • the inclination angle theta 3 sides 6c of the main electrode layer 6 is less than the inclination angle theta 2 of the second aspect 4Bc. Thereby, the distortion of the main electrode layer 6 can be further reduced.
  • a part of the side surface of the main electrode layer may be inclined from the normal line direction of the electrode formation surface, or all of the side surfaces may be inclined. Alternatively, the side surface of the main electrode layer may not have a portion inclined from the normal direction. When the side surface is not inclined from the normal direction, the inclination angle is 0 °.
  • the relationship between distortion and IMD characteristics will be described.
  • the following shows the case of using an SH wave, the relationship between S 4 component and the third-order harmonic level of distortion.
  • the third harmonic is an unnecessary wave, and the lower the level of the third harmonic, the better the IMD characteristics.
  • Figure 5 is a diagram showing the relationship between S 4 component and the third-order harmonic level of distortion.
  • the adhesion layer 4 is located closer to the piezoelectric substrate 3 than the main electrode layer 6.
  • the stress applied near the side surface of the electrode finger of the IDT electrode 2 is distributed to the piezoelectric substrate 3 side with respect to the main electrode layer 6.
  • the adhesion layer 4 of the IDT electrode 2 is made of Ti
  • the main electrode layer 6 is made of Al.
  • the elastic modulus of the metal constituting the adhesion layer 4 is larger than the elastic modulus of the metal constituting the main electrode layer 6.
  • FIGS. 6 (a) to 6 (c) are partially cutaway front cross-sectional views for explaining the method of manufacturing the acoustic wave device according to the first embodiment.
  • FIG. 7A and FIG. 7B are partially cutaway front cross-sectional views for explaining a method for manufacturing the acoustic wave device according to the first embodiment.
  • 7A and 7B show a step after the step shown in FIGS. 6A to 6C.
  • the piezoelectric substrate 3 is prepared.
  • a resist layer 7 is laminated on the piezoelectric substrate 3.
  • the resist layer 7 is patterned. Thereby, a portion where the resist layer 7 is opened and the piezoelectric substrate 3 is exposed is formed.
  • a photolithography technique using a negative photoresist can be used.
  • a metal film for the adhesion layer 4 is laminated on the piezoelectric substrate 3 and the resist layer 7 by vapor deposition. In the portion where the resist layer 7 is opened, the metal film is laminated on the piezoelectric substrate 3 to form the adhesion layer 4.
  • the resist layer 7 is deformed by the radiant heat of the metal film.
  • the direction crossing the portion where the resist layer 7 is open is defined as the width direction W. Due to the above deformation of the resist layer 7, the minimum width W1 of the portion where the resist layer 7 is opened becomes small. As the width W1 is reduced, the width of the portion where the piezoelectric substrate 3 is exposed as viewed from the normal direction Z of the electrode forming surface 3a of the piezoelectric substrate 3 is reduced.
  • the adhesion layer 4 is formed, the above-described deformation of the resist layer 7 proceeds, so that the first and second side surfaces 4Ac and 4Bc of the adhesion layer 4 are inclined.
  • the second layer shown in FIG. 6C is faster than the film formation speed when the first layer 4A shown in FIG. 6B is formed.
  • the film formation speed when forming 4B is slowed down. More specifically, for example, the deposition rate when forming the first layer 4A is 5 ⁇ / s, and the deposition rate when forming the second layer 4B is 0.5 ⁇ / s.
  • the slower the deposition rate the more the heat conduction from the metal film deposited on the resist layer 7 and the radiant heat from the deposition source are suppressed. For this reason, an increase in the temperature of the resist layer 7 is also suppressed.
  • the resist layer 7 is deformed faster as the temperature becomes higher.
  • the deformation speed of the resist layer 7 when the second layer 4B is formed is slower than the deformation speed of the resist layer 7 when the first layer 4A is formed. can do. Therefore, the inclination angle of the second side surface 4Bc of the second layer 4B can be made smaller than the inclination angle of the first side surface 4Ac of the first layer 4A.
  • the movement distance may be controlled. Even in this case, the inclination angle of the second side surface of the second layer can be made smaller than the inclination angle of the first side surface of the first layer.
  • the adhesion layer 4 is made of Ti
  • the main electrode layer 6 is made of Al.
  • the melting point of the metal constituting the main electrode layer 6 is preferably equal to or lower than the melting point of the metal constituting the adhesion layer 4.
  • the temperature at which the resist layer 7 is heated when the main electrode layer 6 is formed can be made equal to or lower than the temperature at which the resist layer 7 is heated when the adhesion layer 4 is formed.
  • the inclination angle of the side surface 6 c of the main electrode layer 6 can be ensured to be equal to or less than the inclination angle of the second side surface 4 Bc of the adhesion layer 4. Therefore, the distortion of the main electrode layer 6 when the elastic wave is excited can be more reliably suppressed.
  • the resist layer 7 shown in FIG. 7A is peeled from the piezoelectric substrate 3.
  • FIG. 8 is a partially cutaway front sectional view of an IDT electrode according to the second embodiment of the present invention.
  • the elastic wave device of the second embodiment is different from the first embodiment in that the IDT electrode 12 includes an intermediate layer 15 provided between the adhesion layer 14 and the main electrode layer 6. Further, the configuration of the adhesion layer 14 is also different from that of the first embodiment. In points other than the above, the elastic wave device of the second embodiment has the same configuration as the elastic wave device 1 of the first embodiment.
  • the adhesion layer 14 has an adhesion to the piezoelectric substrate 3 that is equal to or greater than the adhesion of the intermediate layer 15 to the piezoelectric substrate 3.
  • the adhesion layer 14 has a side surface 14c. Unlike the first embodiment, the inclination angle of the side surface 14c of the adhesion layer 14 is constant.
  • the adhesion layer 14 is made of one of NiCr and Ti.
  • the metal which comprises an adhesion layer is not specifically limited, It is preferable to consist of an appropriate metal with good adhesiveness with a piezoelectric substrate similarly to 1st Embodiment.
  • the intermediate layer 15 is made of Ti.
  • middle layer is not specifically limited.
  • the adhesion layer and the intermediate layer may be made of the same metal.
  • the intermediate layer 15 has a side surface 15c.
  • the angle formed by the side surface 15c and the normal direction Z of the electrode forming surface 3a of the piezoelectric substrate 3 is defined as the inclination angle of the side surface 15c.
  • the inclination angle of the side surface 15 c of the intermediate layer 15 is smaller than the inclination angle of the side surface 14 c of the adhesion layer 14. Therefore, similarly to the first embodiment, the distortion of the main electrode layer 6 when the elastic wave is excited can be reduced. Therefore, IMD characteristics can be improved.
  • the side surface of the adhesion layer is inclined from the normal direction of the electrode forming surface.
  • at least a part of the side surface of the intermediate layer only needs to be inclined from the normal direction of the electrode formation surface.
  • the angle formed by the portion where the side surface of the adhesion layer is inclined and the normal direction is the inclination angle of the side surface of the adhesion layer.
  • the angle formed by the portion where the side surface of the intermediate layer is inclined and the normal line is the inclination angle of the side surface of the intermediate layer.
  • the inclination angle of the side surface 6 c of the main electrode layer 6 is equal to or less than the inclination angle of the side surface 15 c of the intermediate layer 15. Therefore, the distortion of the main electrode layer 6 when the elastic wave is excited can be effectively reduced.
  • the melting point of the metal constituting the adhesion layer 14 is equal to or higher than the melting point of the metal constituting the intermediate layer 15. Therefore, the inclination angle of the side surface 15c of the intermediate layer 15 can be easily made smaller than the inclination angle of the side surface 14c of the adhesion layer 14 by a method similar to the manufacturing method described above.
  • the melting point of the metal constituting the intermediate layer 15 is equal to or higher than the melting point of the metal constituting the main electrode layer 6. Therefore, the inclination angle of the side surface 6c of the main electrode layer 6 can be reliably made equal to or less than the inclination angle of the side surface 15c of the intermediate layer 15.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

弾性波が励振されたときのIDT電極の歪みを小さくすることができ、IMD特性を良好にすることができる、弾性波装置を提供する。 弾性波装置1は、電極形成面3aを有する圧電基板3と、電極形成面3a上に設けられているIDT電極2とを備える。IDT電極2は、電極形成面3a上に設けられた密着層4と、密着層4上に設けられた主電極層6とを有する。密着層4は、第1,第2の層4A,4Bを有する。第1,第2の層4A,4Bは第1,第2の側面4Ac,4Bcを有する。第1の層4Aが圧電基板3に密着している面の面積よりも第2の層4Bが主電極層6に密着している面の面積の方が小さくなるように、第1,第2の側面4Ac,4Bcの少なくとも一部と電極形成面3aの法線方向Zとが第1,第2の側面4Ac,4Bcの傾斜角度θ,θをなしている。第1の側面4Acの傾斜角度θよりも第2の側面4Bcの傾斜角度θの方が小さい。

Description

弾性波装置及びその製造方法
 本発明は、弾性波装置及びその製造方法に関する。
 従来、弾性波装置は、携帯電話機などに広く用いられている。例えば、下記の特許文献1では、IDT電極を有する弾性波装置の一例が開示されている。この弾性波装置は、圧電基板と、圧電基板上に設けられた中間層と、中間層上に設けられた電極膜とを有する。
特開2001-217672号公報
 特許文献1に記載のような弾性波装置を、リフトオフ工法を用いて製造する場合、圧電基板上及びレジストパターン上に中間層用の金属膜及び電極膜用の金属膜を蒸着する。上記中間層用の金属には融点が高い金属が用いられていた。そのため、中間層を形成するに際し、蒸着源からの輻射熱や蒸着粒子からの熱伝導によりレジストパターンが大きく変形することがあった。それによって、中間層の側面が大きく傾斜することがあった。そのため、IDT電極が励振されたときの電極膜の歪みが大きくなり、IMD特性が劣化することがあった。
 本発明の目的は、上記中間層用の金属の融点の如何に関わらず、弾性波が励振されたときのIDT電極の歪みを小さくすることができ、IMD特性を良好にすることができる、弾性波装置及びその製造方法を提供することにある。
 本発明のある広い局面では、電極形成面を有する圧電基板と、前記圧電基板の前記電極形成面上に設けられているIDT電極とを備え、前記IDT電極が、前記圧電基板の前記電極形成面上に設けられている密着層と、前記密着層上に設けられている主電極層とを有し、前記密着層が、前記圧電基板に密着している第1の層と、前記主電極層に密着している第2の層とを有し、前記第1の層が第1の側面を有し、前記第2の層が第2の側面を有し、前記第1の層が前記圧電基板に密着している面の面積よりも前記第2の層が前記主電極層に密着している面の面積の方が小さくなるように、前記第1,第2の側面の少なくとも一部がそれぞれ前記電極形成面の法線方向から傾斜しており、前記第1,第2の側面の傾斜している部分と前記電極形成面の法線方向とがなす角度をそれぞれ前記第1,第2の側面の傾斜角度としたときに、前記第1の側面の前記傾斜角度よりも前記第2の側面の前記傾斜角度の方が小さい、弾性波装置が提供される。
 本発明に係る弾性波装置の他の特定の局面では、前記主電極層が側面を有し、前記主電極層の前記側面と、前記圧電基板の前記電極形成面の法線方向とがなす角度を前記主電極層の前記側面の傾斜角度としたときに、前記主電極層の前記側面の前記傾斜角度が前記第2の側面の前記傾斜角度以下である。この場合には、弾性波が励振されたときの主電極層の歪みをより一層小さくすることができる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記密着層を構成している金属の弾性率が前記主電極層を構成している金属の弾性率よりも大きい。この場合には、弾性波が励振されたときの主電極層の歪みを効果的に小さくすることができる。
 本発明に係る弾性波装置の別の特定の局面では、前記密着層を構成している金属の融点が前記主電極層を構成している金属の融点以上である。この場合には、弾性波が励振されたときの主電極層の歪みをより確実に小さくすることができる。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記密着層がTiからなり、前記主電極層がAlからなる。この場合には、弾性波が励振されたときの主電極層の歪みをより一層小さくすることができる。
 本発明の他の広い局面では、電極形成面を有する圧電基板と、前記圧電基板の前記電極形成面上に設けられているIDT電極とを備え、前記IDT電極が、前記圧電基板の前記電極形成面上に設けられている密着層と、前記密着層上に設けられている中間層と、前記中間層上に設けられている主電極層とを有し、前記密着層及び前記中間層がそれぞれ側面を有し、前記密着層において、前記圧電基板に密着している面の面積よりも前記中間層に密着している面の面積の方が小さくなるように、前記密着層の前記側面の少なくとも一部が前記電極形成面の法線方向から傾斜しており、前記中間層において、前記密着層に密着している面の面積よりも前記主電極層に接している面の面積の方が小さくなるように、前記中間層の前記側面の少なくとも一部が前記電極形成面の法線方向から傾斜しており、前記密着層の前記側面の傾斜している部分及び前記中間層の前記側面の傾斜している部分と前記電極形成面の法線方向とがなす角度をそれぞれ前記密着層の前記側面及び前記中間層の前記側面の傾斜角度としたときに、前記密着層の前記側面の前記傾斜角度よりも前記中間層の前記側面の前記傾斜角度の方が小さい、弾性波装置が提供される。この場合には、弾性波が励振されたときの主電極層の歪みをより一層小さくすることができる。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記主電極層が側面を有し、前記主電極層の前記側面と前記電極形成面の法線方向とがなす角度を前記主電極層の前記側面の傾斜角度としたときに、前記主電極層の前記側面の前記傾斜角度が前記中間層の前記側面の前記傾斜角度以下である。この場合には、弾性波が励振されたときの主電極層の歪みをより一層小さくすることができる。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記密着層を構成している金属の弾性率が前記中間層を構成している金属の弾性率以上であり、前記中間層を構成している金属の弾性率が前記主電極層を構成している金属の弾性率よりも大きい。この場合には、弾性波が励振されたときの主電極層の歪みを効果的に小さくすることができる。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記密着層を構成している金属の融点が前記中間層を構成している金属の融点以上であり、前記中間層を構成している金属の融点が前記主電極層を構成している金属の融点以上である。この場合には、弾性波が励振されたときの主電極層の歪みをより確実に小さくすることができる。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記密着層がNiCr及びTiの内のいずれか一方からなり、前記中間層がTiからなり、前記主電極層がAlからなる。この場合には、弾性波が励振されたときの主電極層の歪みをより一層小さくすることができる。
 本発明に係る弾性波装置の製造方法は、密着層及び主電極層を有するIDT電極が圧電基板上に設けられた弾性波装置の製造方法であって、電極形成面を有する圧電基板を用意する工程と、前記圧電基板の前記電極形成面上にレジスト層を積層する工程と、前記レジスト層をパターニングする工程と、前記圧電基板上及び前記レジスト層上に、密着層用の金属膜を蒸着法により積層する工程と、前記密着層用の金属膜上に主電極層用の金属膜を蒸着法により積層する工程と、前記レジスト層を前記圧電基板から剥離する工程とを有する、IDT電極を前記圧電基板の前記電極形成面上に設ける工程とを備え、前記密着層が、前記圧電基板に密着している第1の層と、前記主電極層に密着している第2の層とを有し、前記第1の層が第1の側面を有し、前記第2の層が第2の側面を有し、前記圧電基板上及び前記レジスト層上に前記密着層用の金属膜を積層する工程において、蒸着法の条件を変えながら前記密着層用の金属膜を積層することにより、前記第1の層が前記圧電基板に密着している面の面積よりも前記第2の層が前記主電極層に密着する面の面積の方が小さくなるように、前記第1,第2の側面を前記電極形成面の法線方向から傾斜させ、前記第1,第2の側面と前記電極形成面の法線方向とがなす角度をそれぞれ前記第1,第2の側面の傾斜角度としたときに、前記第1の側面の前記傾斜角度よりも前記第2の側面の前記傾斜角度の方を小さくする。この場合には、弾性波が励振されたときの主電極層の歪みをより一層小さくすることができる。
 本発明に係る弾性波装置の製造方法のある特定の局面では、前記圧電基板上及び前記レジスト層上に前記密着層用の金属膜を積層する工程において、前記第2の層を形成するときの蒸着法における成膜速度を、前記第1の層を形成するときの蒸着法における成膜速度よりも遅くする。この場合には、弾性波が励振されたときの主電極層の歪みをより確実に小さくすることができる。
 本発明によれば、弾性波が励振されたときのIDT電極の歪みを小さくすることができ、IMD特性を良好にすることができる、弾性波装置及びその製造方法を提供し得る。
図1は、本発明の第1の実施形態に係る弾性波装置の正面断面図である。 図2(a)は、本発明の第1の実施形態におけるIDT電極の拡大正面断面図であり、図2(b)は、本発明の第1の実施形態におけるIDT電極の部分切り欠き拡大正面断面図である。 図3は、比較例におけるIDT電極の拡大正面断面図である。 図4(a)及び図4(b)は、本発明の第1の実施形態及び比較例における、IDT電極の電極指の弾性波伝搬方向に沿う位置と、主電極層の圧電基板側の面における歪みのS成分との関係を示す図である。 図5は、歪みのS成分と3次高調波のレベルとの関係を示す図である。 図6(a)~図6(c)は、本発明の第1の実施形態に係る弾性波装置の製造方法を説明するための部分切り欠き正面断面図である。 図7(a)及び図7(b)は、本発明の第1の実施形態に係る弾性波装置の製造方法を説明するための部分切り欠き正面断面図である。 図8は、本発明の第2の実施形態におけるIDT電極の正面断面図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図1は、本発明の第1の実施形態に係る弾性波装置の正面断面図である。
 弾性波装置1は、圧電基板3を有する。圧電基板3は、LiTaOからなる。なお、圧電基板の材料は特に限定されず、適宜の圧電単結晶や圧電セラミックスからなっていてもよい。より具体的には、圧電基板は、例えば、LiNbO、KNbO、水晶、ランガサイト、ZnO、PZT、あるいは、四ホウ素酸リチウムなどからなっていてもよい。
 圧電基板3は、電極形成面3aを有する。電極形成面3a上には、IDT電極2が形成されている。IDT電極2に交流電圧を印加することにより、弾性波が励振される。本実施形態では、IDT電極2の弾性波伝搬方向における両側には、反射器8が設けられている。それによって、1ポート型の弾性波共振子が構成されている。なお、反射器は設けられていなくともよい。
 図2(a)は、第1の実施形態におけるIDT電極の拡大正面断面図である。図2(b)は、第1の実施形態におけるIDT電極の部分切り欠き拡大正面断面図である。なお、より具体的には、図2(a)及び図2(b)では、IDT電極が有する複数の電極指の内の一本の電極指を拡大して示している。後述する図3、図6(a)~図6(c)、図7(a)及び図7(b)並びに図8も同様である。
 図2(a)に示されているように、IDT電極2は、圧電基板3の電極形成面3a上に設けられている密着層4を有する。密着層4上には、主電極層6が設けられている。密着層4は、圧電基板3に対する密着性が、主電極層6の圧電基板3に対する密着性よりも高い。密着層4は、圧電基板3に密着している第1の層4Aを有する。密着層4は、主電極層6に密着している第2の層4Bも有する。第1の層4Aと第2の層4Bとは、電極形成面3aの法線方向Zにおいて連続して設けられている。
 本実施形態では、密着層4はTiからなる。なお、密着層は、特に限定されないが、圧電基板との密着性が高い適宜の金属からなることが好ましい。より具体的には、密着層は、例えば、Ti、Cr、NiCr、Zr、Ta、WまたはMoなどからなることが望ましい。
 本明細書においては、主電極層6は、弾性波の励振において支配的な電極層である。本実施形態の主電極層6はAlからなる。なお、主電極層は、抵抗が低い適宜の金属からなることが好ましい。より具体的には、主電極層は、例えば、Al、Cu、AuまたはAgなどからなることが望ましい。また、主電極層を構成する金属に別の元素を添加することにより、ストレスマイグレーション耐性を高めてもよい。例えば、主電極層を構成する材料には、Alを主体とし、Cuが添加される合金などが好適に用いられる。
 本実施形態では、密着層4の厚みは30nmであり、主電極層6の厚みは430nmである。IDT電極2の電極指間距離により規定される波長は4.6μmである。IDT電極2のデューティーは0.5である。なお、IDT電極の各層の厚み、IDT電極の波長及びデューティーは特に限定されない。
 密着層4の第1の層4Aは、第1の側面4Acを有する。第2の層4Bも、第2の側面4Bcを有する。第1,第2の側面4Ac,4Bcは、それぞれ電極形成面3aの法線方向Zから傾斜している。より具体的には、第1の層4Aが圧電基板3に密着している面の面積よりも第2の層4Bが主電極層6に密着している面の面積の方が小さくなるように、第1,第2の側面4Ac,4Bcが傾斜している。なお、第1,第2の側面の少なくとも一部が、それぞれ電極形成面の法線方向から傾斜していればよい。また、主電極層6も側面6cを有する。
 ここで、第1,第2の側面4Ac,4Bcと電極形成面3aの法線方向Zとがなす角度をそれぞれ第1,第2の側面4Ac,4Bcの傾斜角度とする。より具体的には、図2(b)に示されているように、電極形成面の法線方向Zに延びる一点鎖線Aと第1の側面4Acとがなす角度が、第1の側面4Acの傾斜角度θである。同様に、一点鎖線Bと第2の側面4Bcとがなす角度が、第2の側面4Bcの傾斜角度θである。なお、第1,第2の側面のそれぞれの一部が電極形成面の法線方向から傾斜している場合は、第1,第2の側面の傾斜している部分と電極形成面の法線方向とがなす角度が、第1,第2の側面の傾斜角度である。
 本実施形態の特徴は、第1の側面4Acの傾斜角度θよりも第2の側面4Bcの傾斜角度θの方が小さいことにある。言い換えると、図2(a)に示した電極形成面3aからIDT電極2の積層方向に向かうにつれて、電極指の幅が細くなるように金属が積層されている。それによって、弾性波が励振されたときのIDT電極2における主電極層6の歪みを小さくすることができ、IMD特性を良好にすることができる。これを、以下において、比較例を用いて説明する。
 図3は、比較例におけるIDT電極の拡大正面断面図である。
 比較例における弾性波装置のIDT電極102の密着層104は、第1,第2の層104A,104Bを有する。第1,第2の層104A,104Bは、第1,第2の側面104Ac,104Bcを有する。比較例の弾性波装置では、第1の側面104Acの傾斜角度と第2の側面104Bcの傾斜角度との差がない。この点を除き、比較例における弾性波装置は、第1の実施形態の弾性波装置1と同様の構成を有する。
 図4(a)及び図4(b)は、第1の実施形態及び比較例における、IDT電極の電極指の弾性波伝搬方向に沿う位置と、主電極層の圧電基板側の面における歪みのS成分との関係を示す図である。実線は第1の実施形態の結果を示し、破線は比較例の結果を示す。電極指が延びる方向に垂直な方向を電極指の幅方向としたとき、図4(a)及び図4(b)における横軸の値が0の位置は、電極指の幅方向の中心の位置に相当する。図4(a)は、電極指の幅方向の中心から一方の端面までの歪みの大きさを示している。図4(b)は、電極指の幅方向の中心から、図4(a)に示す端面とは反対側の端面までの歪みの大きさを示している。
 上述したように、IDT電極に電圧を印加すると、弾性波が励振される。このとき、IDT電極の圧電基板側の面に応力が加わる。それによって、主電極層に歪みが生じる。本実施形態及び比較例においては、電極指の中心から端面に近づくほど、歪みが大きくなっている。また、図4(a)及び図4(b)に示されているように、本実施形態では、比較例よりも、歪みを小さくすることができている。
 より具体的には、図4(a)に示されているように、電極指の一方の端面において、比較例では歪みが4.26×10-3であり、本実施形態では歪みが3.99×10-3である。このように、本実施形態では、比較例よりも歪みのS成分を0.27×10-3小さくすることができている。さらに、幅方向において、電極指の端面から電極指の幅方向の全体の長さの約10%の範囲において、本実施形態の歪みを比較例の歪みよりも効果的に小さくできていることがわかる。
 図4(b)に示す電極指の端面においては、比較例では歪みが4.26×10-3であり、本実施形態では歪みが3.99×10-3である。このように、図4(b)に示す端面においても、本実施形態では、比較例よりも歪みのS成分を0.27×10-3小さくすることができている。さらに、幅方向において、電極指の図4(b)に示す端面から電極指の幅方向の全体の長さの約10%の範囲においても、本実施形態の歪みを比較例の歪みよりも効果的に小さくできていることがわかる。本実施形態により歪みを小さくし得ることについては、以下の理論によると考えられる。
 本実施形態では、図2(a)に示されているように、密着層4の第1の側面4Acの傾斜角度よりも第2の側面4Bcの傾斜角度の方が小さい。それによって、弾性波が励振されたときにIDT電極2の電極指の側面付近に加わる応力が、主電極層6よりも圧電基板3側に分散される。このように、弾性波が励振されたときの、主電極層6の圧電基板3側の面における応力集中が緩和されるため、主電極層6の歪みが小さくなっている。
 ここで、図2(b)に示されているように、主電極層6の側面6cと圧電基板3の電極形成面の法線方向Zに沿う一点鎖線Cとがなす角度は、主電極層6の側面6cの傾斜角度θである。このとき、本実施形態のように、主電極層6の側面6cの傾斜角度θは第2の側面4Bcの傾斜角度θ以下であることが好ましい。それによって、主電極層6の歪みをより一層小さくすることができる。なお、主電極層の側面は、一部が電極形成面の法線方向から傾斜していてもよく、あるいは、側面の全てが傾斜していてもよい。あるいは、主電極層の側面は、上記法線方向から傾斜している部分を有しなくともよい。側面が上記法線方向から傾斜していない場合、傾斜角度は0°である。
 次に、歪みとIMD特性との関係を説明する。以下に、SH波を用いる場合の、歪みのS成分と3次高調波のレベルとの関係を示す。なお、下記の例においては、3次高調波は不要な波であり、3次高調波のレベルが低いほど、IMD特性が良好である。
 図5は、歪みのS成分と3次高調波のレベルとの関係を示す図である。
 図5に示されているように、歪みのS成分が小さいほど3次高調波のレベルが小さくなっていることがわかる。よって、IDT電極の歪みを小さくすれば、IMD特性を改善し得ることがわかる。
 ところで、図2(a)に示されているように、密着層4は、主電極層6よりも圧電基板3側に位置している。加えて、上述したように、IDT電極2の電極指の側面付近に加わる応力は、主電極層6よりも圧電基板3側に分散される。本実施形態では、IDT電極2の密着層4はTiからなり、主電極層6はAlからなる。このように、密着層4を構成している金属の弾性率が、主電極層6を構成している金属の弾性率よりも大きいことが好ましい。それによって、弾性波が励振されるときに圧電基板3側から主電極層6に加わる応力を小さくすることができる。よって、主電極層6の歪みを効果的に抑制することができる。
 次に、弾性波装置1の製造方法を説明する。
 図6(a)~図6(c)は、第1の実施形態に係る弾性波装置の製造方法を説明するための部分切り欠き正面断面図である。図7(a)及び図7(b)は、第1の実施形態に係る弾性波装置の製造方法を説明するための部分切り欠き正面断面図である。なお、図7(a)及び図7(b)は、図6(a)~図6(c)に示す工程よりも後の工程を示す。
 図6(a)に示すように、圧電基板3を用意する。次に、圧電基板3上にレジスト層7を積層する。次に、レジスト層7をパターニングする。それによって、レジスト層7が開口しており、圧電基板3が露出している部分を形成する。圧電基板3上にパターニングしたレジスト層7を形成するに際しては、例えば、ネガ型フォトレジストを用いたフォトリソグラフィー技術を用いることができる。
 次に、図6(b)及び図6(c)に示すように、圧電基板3上及びレジスト層7上に密着層4用の金属膜を蒸着法により積層する。レジスト層7が開口している部分において上記金属膜が圧電基板3上に積層され、密着層4が形成される。
 ところで、蒸着法により融点が高い金属膜がレジスト層7上に積層されると、金属膜の輻射熱によりレジスト層7が変形する。ここで、レジスト層7が開口している部分を横断する方向を幅方向Wとする。レジスト層7の上記変形により、レジスト層7が開口している部分の最小の幅W1が小さくなる。この幅W1が小さくなるほど、圧電基板3の電極形成面3aの法線方向Zから見たときの、圧電基板3が露出している部分の幅が小さくなる。密着層4の形成に際し、レジスト層7の上記変形が進行するため、密着層4の第1,第2の側面4Ac,4Bcは傾斜する。
 このとき、本実施形態の弾性波装置1の製造においては、図6(b)に示す第1の層4Aを形成するときの成膜速度よりも、図6(c)に示す第2の層4Bを形成するときの成膜速度を遅くする。より具体的には、例えば、第1の層4Aを形成するときの成膜速度を5Å/sとし、第2の層4Bを形成するときの成膜速度を0.5Å/sとする。成膜速度が遅いほど、レジスト層7に蒸着する金属膜からの熱伝導や蒸着源からの輻射熱が抑制される。そのため、レジスト層7の温度の上昇も抑制される。レジスト層7は、高温になるほど、変形する速度が速い。よって、本実施形態では、第1の層4Aを形成しているときのレジスト層7の変形の速度よりも、第2の層4Bを形成しているときのレジスト層7の変形の速度を遅くすることができる。従って、第1の層4Aの第1の側面4Acの傾斜角度よりも第2の層4Bの第2の側面4Bcの傾斜角度の方を小さくすることができる。
 第1の層を形成するときの蒸着法の条件と、第2の層を形成するときの蒸着法の条件とを異ならせることにより、圧電基板に金属粒子が接触してからの、該金属粒子の移動距離を制御してもよい。この場合においても、第1の層の第1の側面の傾斜角度よりも第2の層の第2の側面の傾斜角度の方を小さくすることができる。
 本実施形態の弾性波装置1の製造方法の説明に戻り、次に、図7(a)に示すように、密着層4上に主電極層6用の金属を蒸着法により積層する。なお、本実施形態では、密着層4はTiからなり、主電極層6はAlからなる。このように、主電極層6を構成している金属の融点が、密着層4を構成している金属の融点以下であることが好ましい。それによって、主電極層6を形成するときにレジスト層7が加熱される温度を、密着層4を形成するときにレジスト層7が加熱される温度以下とすることができる。よって、主電極層6の側面6cの傾斜角度を、密着層4の第2の側面4Bcの傾斜角度以下に確実にすることができる。従って、弾性波が励振されたときの主電極層6の歪みをより確実に抑制することができる。
 次に、図7(b)に示すように、図7(a)に示したレジスト層7を圧電基板3から剥離する。
 図8は、本発明の第2の実施形態におけるIDT電極の部分切り欠き正面断面図である。
 第2の実施形態の弾性波装置は、IDT電極12が密着層14と主電極層6との間に設けられている中間層15を有する点で、第1の実施形態と異なる。また、密着層14の構成も、第1の実施形態と異なる。上記以外の点においては、第2の実施形態の弾性波装置は、第1の実施形態の弾性波装置1と同様の構成を有する。
 密着層14は、圧電基板3に対する密着性が、中間層15の圧電基板3に対する密着性以上である。密着層14は、側面14cを有する。密着層14の側面14cの傾斜角度は、第1の実施形態と異なり、一定である。本実施形態では、密着層14は、NiCr及びTiの内のいずれか一方からなる。なお、密着層を構成する金属は特に限定されないが、第1の実施形態と同様に、圧電基板との密着性がよい適宜の金属からなることが好ましい。
 本実施形態では、中間層15は、Tiからなる。なお、中間層を構成する金属は、特に限定されない。密着層と中間層とが同じ金属からなっていてもよい。
 中間層15は側面15cを有する。側面15cと圧電基板3の電極形成面3aの法線方向Zとがなす角度を側面15cの傾斜角度とする。このとき、中間層15の側面15cの傾斜角度は、密着層14の側面14cの傾斜角度よりも小さい。よって、第1の実施形態と同様に、弾性波を励振したときの主電極層6の歪みを小さくすることができる。従って、IMD特性を良好にすることができる。
 なお、密着層の側面の少なくとも一部が電極形成面の法線方向から傾斜していればよい。中間層においても、中間層の側面の少なくとも一部が電極形成面の法線方向から傾斜していればよい。密着層の側面の一部が上記法線方向から傾斜している場合は、密着層の側面が傾斜している部分と上記法線方向とがなす角度が密着層の側面の傾斜角度である。中間層の側面の一部が上記法線方向から傾斜している場合は、中間層の側面が傾斜している部分と上記法線とがなす角度が中間層の側面の傾斜角度である。
 さらに、主電極層6の側面6cの傾斜角度は、中間層15の側面15cの傾斜角度以下である。よって、弾性波を励振したときの主電極層6の歪みを効果的に小さくすることができる。
 密着層14を構成している金属の融点は中間層15を構成している金属の融点以上である。よって、上述した製造方法と同様の方法により、中間層15の側面15cの傾斜角度を密着層14の側面14cの傾斜角度よりも容易に小さくすることができる。中間層15を構成している金属の融点は主電極層6を構成している金属の融点以上である。よって、主電極層6の側面6cの傾斜角度を確実に中間層15の側面15cの傾斜角度以下にすることができる。
 密着層14を構成している金属の弾性率は中間層15を構成している金属の弾性率以上である。中間層15を構成している金属の弾性率は主電極層6を構成している金属の弾性率よりも大きい。よって、第1の実施形態と同様に、弾性波を励振したときの主電極層6の歪みをより一層小さくすることができる。
1…弾性波装置
2…IDT電極
3…圧電基板
3a…電極形成面
4…密着層
4A,4B…第1,第2の層
4Ac,4Bc…第1,第2の側面
6…主電極層
6c…側面
7…レジスト層
8…反射器
12…IDT電極
14…密着層
14c…側面
15…中間層
15c…側面
102…IDT電極
104…密着層
104A,104B…第1,第2の層
104Ac,104Bc…第1,第2の側面

Claims (12)

  1.  電極形成面を有する圧電基板と、
     前記圧電基板の前記電極形成面上に設けられているIDT電極と、
    を備え、
     前記IDT電極が、前記圧電基板の前記電極形成面上に設けられている密着層と、前記密着層上に設けられている主電極層と、を有し、
     前記密着層が、前記圧電基板に密着している第1の層と、前記主電極層に密着している第2の層と、を有し、
     前記第1の層が第1の側面を有し、前記第2の層が第2の側面を有し、
     前記第1の層が前記圧電基板に密着している面の面積よりも前記第2の層が前記主電極層に密着している面の面積の方が小さくなるように、前記第1,第2の側面の少なくとも一部がそれぞれ前記電極形成面の法線方向から傾斜しており、
     前記第1,第2の側面の傾斜している部分と前記電極形成面の法線方向とがなす角度をそれぞれ前記第1,第2の側面の傾斜角度としたときに、前記第1の側面の前記傾斜角度よりも前記第2の側面の前記傾斜角度の方が小さい、弾性波装置。
  2.  前記主電極層が側面を有し、前記主電極層の前記側面と、前記圧電基板の前記電極形成面の法線方向とがなす角度を前記主電極層の前記側面の傾斜角度としたときに、前記主電極層の前記側面の前記傾斜角度が前記第2の側面の前記傾斜角度以下である、請求項1に記載の弾性波装置。
  3.  前記密着層を構成している金属の弾性率が前記主電極層を構成している金属の弾性率よりも大きい、請求項1または2に記載の弾性波装置。
  4.  前記密着層を構成している金属の融点が前記主電極層を構成している金属の融点以上である、請求項1~3のいずれか1項に記載の弾性波装置。
  5.  前記密着層がTiからなり、前記主電極層がAlからなる、請求項1~4のいずれか1項に記載の弾性波装置。
  6.  電極形成面を有する圧電基板と、
     前記圧電基板の前記電極形成面上に設けられているIDT電極と、
    を備え、
     前記IDT電極が、前記圧電基板の前記電極形成面上に設けられている密着層と、前記密着層上に設けられている中間層と、前記中間層上に設けられている主電極層と、を有し、
     前記密着層及び前記中間層がそれぞれ側面を有し、
     前記密着層において、前記圧電基板に密着している面の面積よりも前記中間層に密着している面の面積の方が小さくなるように、前記密着層の前記側面の少なくとも一部が前記電極形成面の法線方向から傾斜しており、前記中間層において、前記密着層に密着している面の面積よりも前記主電極層に接している面の面積の方が小さくなるように、前記中間層の前記側面の少なくとも一部が前記電極形成面の法線方向から傾斜しており、
     前記密着層の前記側面の傾斜している部分及び前記中間層の前記側面の傾斜している部分と前記電極形成面の法線方向とがなす角度をそれぞれ前記密着層の前記側面及び前記中間層の前記側面の傾斜角度としたときに、前記密着層の前記側面の前記傾斜角度よりも前記中間層の前記側面の前記傾斜角度の方が小さい、弾性波装置。
  7.  前記主電極層が側面を有し、前記主電極層の前記側面と前記電極形成面の法線方向とがなす角度を前記主電極層の前記側面の傾斜角度としたときに、前記主電極層の前記側面の前記傾斜角度が前記中間層の前記側面の前記傾斜角度以下である、請求項6に記載の弾性波装置。
  8.  前記密着層を構成している金属の弾性率が前記中間層を構成している金属の弾性率以上であり、前記中間層を構成している金属の弾性率が前記主電極層を構成している金属の弾性率よりも大きい、請求項6または7に記載の弾性波装置。
  9.  前記密着層を構成している金属の融点が前記中間層を構成している金属の融点以上であり、前記中間層を構成している金属の融点が前記主電極層を構成している金属の融点以上である、請求項6~8のいずれか1項に記載の弾性波装置。
  10.  前記密着層がNiCr及びTiの内のいずれか一方からなり、前記中間層がTiからなり、前記主電極層がAlからなる、請求項6~9のいずれか1項に記載の弾性波装置。
  11.  密着層及び主電極層を有するIDT電極が圧電基板上に設けられた弾性波装置の製造方法であって、
     電極形成面を有する圧電基板を用意する工程と、
     前記圧電基板の前記電極形成面上にレジスト層を積層する工程と、前記レジスト層をパターニングする工程と、前記圧電基板上及び前記レジスト層上に、密着層用の金属膜を蒸着法により積層する工程と、前記密着層用の金属膜上に主電極層用の金属膜を蒸着法により積層する工程と、前記レジスト層を前記圧電基板から剥離する工程と、を有する、IDT電極を前記圧電基板の前記電極形成面上に設ける工程と、
    を備え、
     前記密着層が、前記圧電基板に密着している第1の層と、前記主電極層に密着している第2の層と、を有し、前記第1の層が第1の側面を有し、前記第2の層が第2の側面を有し、
     前記圧電基板上及び前記レジスト層上に前記密着層用の金属膜を積層する工程において、蒸着法の条件を変えながら前記密着層用の金属膜を積層することにより、前記第1の層が前記圧電基板に密着している面の面積よりも前記第2の層が前記主電極層に密着する面の面積の方が小さくなるように、前記第1,第2の側面を前記電極形成面の法線方向から傾斜させ、前記第1,第2の側面と前記電極形成面の法線方向とがなす角度をそれぞれ前記第1,第2の側面の傾斜角度としたときに、前記第1の側面の前記傾斜角度よりも前記第2の側面の前記傾斜角度の方を小さくする、弾性波装置の製造方法。
  12.  前記圧電基板上及び前記レジスト層上に前記密着層用の金属膜を積層する工程において、前記第2の層を形成するときの蒸着法における成膜速度を、前記第1の層を形成するときの蒸着法における成膜速度よりも遅くする、請求項11に記載の弾性波装置の製造方法。
PCT/JP2016/066248 2015-07-17 2016-06-01 弾性波装置及びその製造方法 WO2017013945A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177032073A KR101931506B1 (ko) 2015-07-17 2016-06-01 탄성파 장치 및 그 제조방법
JP2017529491A JP6471802B2 (ja) 2015-07-17 2016-06-01 弾性波装置及びその製造方法
CN201680026762.6A CN107534429B (zh) 2015-07-17 2016-06-01 弹性波装置及其制造方法
DE112016003221.8T DE112016003221T5 (de) 2015-07-17 2016-06-01 Schallwellenvorrichtung und Herstellungsverfahren dafür
US15/832,851 US10924082B2 (en) 2015-07-17 2017-12-06 Acoustic wave device and manufacturing method for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-142768 2015-07-17
JP2015142768 2015-07-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/832,851 Continuation US10924082B2 (en) 2015-07-17 2017-12-06 Acoustic wave device and manufacturing method for same

Publications (1)

Publication Number Publication Date
WO2017013945A1 true WO2017013945A1 (ja) 2017-01-26

Family

ID=57834473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066248 WO2017013945A1 (ja) 2015-07-17 2016-06-01 弾性波装置及びその製造方法

Country Status (6)

Country Link
US (1) US10924082B2 (ja)
JP (1) JP6471802B2 (ja)
KR (1) KR101931506B1 (ja)
CN (1) CN107534429B (ja)
DE (1) DE112016003221T5 (ja)
WO (1) WO2017013945A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019021997A (ja) * 2017-07-12 2019-02-07 京セラ株式会社 弾性波素子、分波器および通信装置
WO2021205987A1 (ja) * 2020-04-06 2021-10-14 株式会社村田製作所 弾性波装置
WO2022044869A1 (ja) * 2020-08-27 2022-03-03 株式会社村田製作所 弾性波装置
WO2022118970A1 (ja) * 2020-12-04 2022-06-09 株式会社村田製作所 弾性波装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7001013B2 (ja) * 2018-08-01 2022-01-19 株式会社村田製作所 コイル部品、コイル部品の製造方法
DE102018132695A1 (de) * 2018-12-18 2020-06-18 RF360 Europe GmbH Elektronisches Bauelement
CN114826185B (zh) * 2022-05-23 2023-03-10 河北时硕微芯科技有限公司 一种声表面滤波器封装方法及结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0522067A (ja) * 1991-07-15 1993-01-29 Oki Electric Ind Co Ltd 弾性表面波フイルタ
WO2003058813A1 (fr) * 2001-12-28 2003-07-17 Matsushita Electric Industrial Co., Ltd. Dispositif de traitement des ondes acoustiques de surface, composant electronique utilisant ce dispositif et module composite
WO2007034832A1 (ja) * 2005-09-20 2007-03-29 Kyocera Corporation 弾性表面波素子及び弾性表面波装置
JP2014158138A (ja) * 2013-02-15 2014-08-28 Panasonic Corp 弾性波装置とそれを用いたアンテナ共用器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217672A (ja) 1999-11-26 2001-08-10 Murata Mfg Co Ltd 弾性表面波素子およびその製造方法
JP4359551B2 (ja) * 2004-10-08 2009-11-04 アルプス電気株式会社 弾性表面波素子の製造方法
JP4279271B2 (ja) 2005-06-01 2009-06-17 アルプス電気株式会社 弾性表面波素子及びその製造方法
JP2012060420A (ja) * 2010-09-09 2012-03-22 Seiko Epson Corp 弾性表面波デバイス、電子機器及びセンサー装置
US9773964B2 (en) * 2011-12-27 2017-09-26 Kyocera Corporation Electronic component
US9496846B2 (en) * 2013-02-15 2016-11-15 Skyworks Filter Solutions Japan Co., Ltd. Acoustic wave device and electronic apparatus including same
CN110140295B (zh) * 2017-01-13 2023-02-28 株式会社村田制作所 弹性波装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0522067A (ja) * 1991-07-15 1993-01-29 Oki Electric Ind Co Ltd 弾性表面波フイルタ
WO2003058813A1 (fr) * 2001-12-28 2003-07-17 Matsushita Electric Industrial Co., Ltd. Dispositif de traitement des ondes acoustiques de surface, composant electronique utilisant ce dispositif et module composite
WO2007034832A1 (ja) * 2005-09-20 2007-03-29 Kyocera Corporation 弾性表面波素子及び弾性表面波装置
JP2014158138A (ja) * 2013-02-15 2014-08-28 Panasonic Corp 弾性波装置とそれを用いたアンテナ共用器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019021997A (ja) * 2017-07-12 2019-02-07 京セラ株式会社 弾性波素子、分波器および通信装置
JP6994855B2 (ja) 2017-07-12 2022-01-14 京セラ株式会社 弾性波素子、分波器および通信装置
WO2021205987A1 (ja) * 2020-04-06 2021-10-14 株式会社村田製作所 弾性波装置
WO2022044869A1 (ja) * 2020-08-27 2022-03-03 株式会社村田製作所 弾性波装置
WO2022118970A1 (ja) * 2020-12-04 2022-06-09 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
CN107534429A (zh) 2018-01-02
KR20170134669A (ko) 2017-12-06
DE112016003221T5 (de) 2018-04-19
KR101931506B1 (ko) 2018-12-21
JPWO2017013945A1 (ja) 2018-02-08
US10924082B2 (en) 2021-02-16
US20180097501A1 (en) 2018-04-05
JP6471802B2 (ja) 2019-02-20
CN107534429B (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
JP6471802B2 (ja) 弾性波装置及びその製造方法
US11616191B2 (en) Elastic wave device
JP5648695B2 (ja) 弾性波装置及びその製造方法
WO2017013968A1 (ja) 弾性波装置
JP6481687B2 (ja) 弾性波装置
US10312883B2 (en) Elastic wave device
JP4760911B2 (ja) 弾性境界波装置
US20190334499A1 (en) Elastic wave device
US11456716B2 (en) Elastic wave device and manufacturing method thereof
WO2009139108A1 (ja) 弾性境界波装置
WO2017068828A1 (ja) 弾性波装置
WO2017187724A1 (ja) 弾性波装置
WO2020184466A1 (ja) 弾性波装置
JPWO2015137089A1 (ja) 弾性波装置
JP5176863B2 (ja) 弾性波装置
WO2017110586A1 (ja) 弾性波装置
WO2021241681A1 (ja) 弾性波装置
WO2018199071A1 (ja) 弾性波装置の製造方法及び弾性波装置
WO2017212787A1 (ja) 弾性波装置
WO2018003657A1 (ja) 弾性波装置
WO2023048256A1 (ja) 弾性波装置
JP6620813B2 (ja) 弾性波装置
JP2008125131A (ja) 表面波装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017529491

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177032073

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016003221

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827509

Country of ref document: EP

Kind code of ref document: A1