WO2017013945A1 - 弾性波装置及びその製造方法 - Google Patents
弾性波装置及びその製造方法 Download PDFInfo
- Publication number
- WO2017013945A1 WO2017013945A1 PCT/JP2016/066248 JP2016066248W WO2017013945A1 WO 2017013945 A1 WO2017013945 A1 WO 2017013945A1 JP 2016066248 W JP2016066248 W JP 2016066248W WO 2017013945 A1 WO2017013945 A1 WO 2017013945A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- piezoelectric substrate
- electrode
- main electrode
- adhesion layer
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 20
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 239000000758 substrate Substances 0.000 claims abstract description 81
- 229910052751 metal Inorganic materials 0.000 claims description 66
- 239000002184 metal Substances 0.000 claims description 66
- 230000015572 biosynthetic process Effects 0.000 claims description 31
- 230000008018 melting Effects 0.000 claims description 21
- 238000002844 melting Methods 0.000 claims description 21
- 238000007740 vapor deposition Methods 0.000 claims description 15
- 238000010030 laminating Methods 0.000 claims description 12
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 claims description 4
- 229910001120 nichrome Inorganic materials 0.000 claims description 4
- 238000000059 patterning Methods 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims 1
- 230000000052 comparative effect Effects 0.000 description 17
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- PSHMSSXLYVAENJ-UHFFFAOYSA-N dilithium;[oxido(oxoboranyloxy)boranyl]oxy-oxoboranyloxyborinate Chemical compound [Li+].[Li+].O=BOB([O-])OB([O-])OB=O PSHMSSXLYVAENJ-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- -1 langasite Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/125—Driving means, e.g. electrodes, coils
- H03H9/13—Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
- H03H9/131—Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials consisting of a multilayered structure
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/08—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/02—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/125—Driving means, e.g. electrodes, coils
- H03H9/13—Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
- H03H9/132—Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials characterized by a particular shape
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/125—Driving means, e.g. electrodes, coils
- H03H9/145—Driving means, e.g. electrodes, coils for networks using surface acoustic waves
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/125—Driving means, e.g. electrodes, coils
- H03H9/145—Driving means, e.g. electrodes, coils for networks using surface acoustic waves
- H03H9/14538—Formation
- H03H9/14541—Multilayer finger or busbar electrode
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/17—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
- H03H9/19—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/06—Forming electrodes or interconnections, e.g. leads or terminals
- H10N30/067—Forming single-layered electrodes of multilayered piezoelectric or electrostrictive parts
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
- H10N30/8542—Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
Definitions
- the present invention relates to an elastic wave device and a manufacturing method thereof.
- Patent Document 1 an example of an acoustic wave device having an IDT electrode is disclosed.
- This acoustic wave device has a piezoelectric substrate, an intermediate layer provided on the piezoelectric substrate, and an electrode film provided on the intermediate layer.
- Patent Document 1 When an elastic wave device as described in Patent Document 1 is manufactured using a lift-off method, a metal film for an intermediate layer and a metal film for an electrode film are deposited on a piezoelectric substrate and a resist pattern.
- a metal having a high melting point was used as the metal for the intermediate layer. Therefore, when the intermediate layer is formed, the resist pattern may be greatly deformed due to radiant heat from the vapor deposition source or heat conduction from the vapor deposition particles. As a result, the side surface of the intermediate layer may be greatly inclined. Therefore, the distortion of the electrode film when the IDT electrode is excited becomes large, and the IMD characteristics may be deteriorated.
- the object of the present invention is to reduce the distortion of the IDT electrode when an elastic wave is excited, regardless of the melting point of the metal for the intermediate layer, and to improve the IMD characteristics.
- a wave device and a manufacturing method thereof are provided.
- the piezoelectric substrate includes a piezoelectric substrate having an electrode formation surface and an IDT electrode provided on the electrode formation surface of the piezoelectric substrate, and the IDT electrode is the electrode formation surface of the piezoelectric substrate.
- a first layer that has an adhesion layer provided thereon and a main electrode layer provided on the adhesion layer, wherein the adhesion layer is in close contact with the piezoelectric substrate; and the main electrode layer
- At least a part of the first and second side surfaces is such that the area of the surface where the second layer is in close contact with the main electrode layer is smaller than the area of the surface in close contact with the substrate. Inclined from the normal direction of the electrode forming surface, respectively, the inclined portions of the first and second side surfaces and the electrode When the angle formed by the normal direction of the surface is the inclination angle of the first and second side surfaces, the inclination angle of the second side surface is greater than the inclination angle of the first side surface.
- An acoustic wave device is provided that is small.
- the main electrode layer has a side surface, and an angle formed by the side surface of the main electrode layer and a normal direction of the electrode formation surface of the piezoelectric substrate. Is the inclination angle of the side surface of the main electrode layer, the inclination angle of the side surface of the main electrode layer is equal to or less than the inclination angle of the second side surface. In this case, the distortion of the main electrode layer when the elastic wave is excited can be further reduced.
- the elastic modulus of the metal constituting the adhesion layer is larger than the elastic modulus of the metal constituting the main electrode layer. In this case, the distortion of the main electrode layer when the elastic wave is excited can be effectively reduced.
- the melting point of the metal constituting the adhesion layer is equal to or higher than the melting point of the metal constituting the main electrode layer. In this case, the distortion of the main electrode layer when the elastic wave is excited can be reduced more reliably.
- the adhesion layer is made of Ti
- the main electrode layer is made of Al. In this case, the distortion of the main electrode layer when the elastic wave is excited can be further reduced.
- the piezoelectric substrate includes: a piezoelectric substrate having an electrode formation surface; and an IDT electrode provided on the electrode formation surface of the piezoelectric substrate, wherein the IDT electrode forms the electrode formation of the piezoelectric substrate.
- An adhesion layer provided on the surface, an intermediate layer provided on the adhesion layer, and a main electrode layer provided on the intermediate layer, wherein the adhesion layer and the intermediate layer are respectively And having at least one of the side surfaces of the adhesion layer such that the area of the surface in close contact with the intermediate layer is smaller than the area of the surface in close contact with the piezoelectric substrate.
- a part of the surface is inclined from the normal direction of the electrode formation surface, and in the intermediate layer, the area of the surface in contact with the main electrode layer is smaller than the area of the surface in close contact with the adhesion layer.
- Less of the side surface of the intermediate layer Are partly inclined from the normal direction of the electrode forming surface, the inclined portion of the side surface of the adhesion layer and the inclined portion of the side surface of the intermediate layer, and the method of the electrode forming surface
- the inclination of the side surface of the intermediate layer is greater than the inclination angle of the side surface of the adhesion layer when the angle formed by the line direction is the inclination angle of the side surface of the adhesion layer and the side surface of the intermediate layer
- An elastic wave device with a smaller angle is provided. In this case, the distortion of the main electrode layer when the elastic wave is excited can be further reduced.
- the main electrode layer has a side surface, and an angle formed between the side surface of the main electrode layer and a normal direction of the electrode formation surface is the main electrode.
- the inclination angle of the side surface of the layer is used, the inclination angle of the side surface of the main electrode layer is equal to or less than the inclination angle of the side surface of the intermediate layer. In this case, the distortion of the main electrode layer when the elastic wave is excited can be further reduced.
- an elastic modulus of a metal constituting the adhesion layer is equal to or higher than an elastic modulus of a metal constituting the intermediate layer, and the intermediate layer is constituted.
- the elastic modulus of the metal is larger than the elastic modulus of the metal constituting the main electrode layer. In this case, the distortion of the main electrode layer when the elastic wave is excited can be effectively reduced.
- the melting point of the metal constituting the adhesion layer is equal to or higher than the melting point of the metal constituting the intermediate layer, and the intermediate layer is constituted.
- the melting point of the metal is higher than the melting point of the metal constituting the main electrode layer. In this case, the distortion of the main electrode layer when the elastic wave is excited can be reduced more reliably.
- the adhesion layer is made of any one of NiCr and Ti
- the intermediate layer is made of Ti
- the main electrode layer is made of Al. In this case, the distortion of the main electrode layer when the elastic wave is excited can be further reduced.
- An elastic wave device manufacturing method is an elastic wave device manufacturing method in which an IDT electrode having an adhesion layer and a main electrode layer is provided on a piezoelectric substrate, and a piezoelectric substrate having an electrode forming surface is prepared.
- a step of laminating a resist layer on the electrode formation surface of the piezoelectric substrate, a step of patterning the resist layer, and a metal film for an adhesion layer on the piezoelectric substrate and the resist layer by vapor deposition An IDT electrode comprising: a step of laminating the resist layer; a step of laminating a metal film for a main electrode layer on the metal film for the adhesion layer by a vapor deposition method; and a step of peeling the resist layer from the piezoelectric substrate.
- the first layer is on the first side
- the second layer has a second side surface
- the adhesion is performed while changing the conditions of the vapor deposition method.
- the area of the surface where the second layer adheres to the main electrode layer is smaller than the area of the surface where the first layer adheres to the piezoelectric substrate.
- the first and second side surfaces are inclined from the normal direction of the electrode forming surface, and the angles formed by the first and second side surfaces and the normal direction of the electrode forming surface are respectively.
- the inclination angle of the second side surface is made smaller than the inclination angle of the first side surface when the inclination angle of the first and second side surfaces is used. In this case, the distortion of the main electrode layer when the elastic wave is excited can be further reduced.
- the second layer is formed in the step of laminating the metal film for the adhesion layer on the piezoelectric substrate and the resist layer.
- the film formation rate in the vapor deposition method is made slower than the film formation rate in the vapor deposition method when forming the first layer. In this case, the distortion of the main electrode layer when the elastic wave is excited can be reduced more reliably.
- an elastic wave device and a method for manufacturing the same, which can reduce the distortion of the IDT electrode when the elastic wave is excited and can improve the IMD characteristics.
- FIG. 1 is a front sectional view of an acoustic wave device according to a first embodiment of the present invention.
- FIG. 2A is an enlarged front cross-sectional view of the IDT electrode in the first embodiment of the present invention
- FIG. 2B is an enlarged front view of the IDT electrode in the first embodiment of the present invention.
- FIG. 3 is an enlarged front sectional view of an IDT electrode in a comparative example.
- 4A and 4B show the positions along the elastic wave propagation direction of the electrode fingers of the IDT electrode and the surface of the main electrode layer on the piezoelectric substrate side in the first embodiment and the comparative example of the present invention. it is a diagram showing the relationship between S 4 component of distortion in.
- Figure 5 is a diagram showing the relationship between S 4 component and the third-order harmonic level of distortion.
- 6 (a) to 6 (c) are partially cutaway front sectional views for explaining a method of manufacturing the acoustic wave device according to the first embodiment of the present invention.
- FIG. 7A and FIG. 7B are partially cutaway front cross-sectional views for explaining a method for manufacturing an acoustic wave device according to the first embodiment of the present invention.
- FIG. 8 is a front cross-sectional view of an IDT electrode in the second embodiment of the present invention.
- FIG. 1 is a front sectional view of an acoustic wave device according to a first embodiment of the present invention.
- the acoustic wave device 1 has a piezoelectric substrate 3.
- the piezoelectric substrate 3 is made of LiTaO 3 .
- the material of the piezoelectric substrate is not particularly limited, and may be made of an appropriate piezoelectric single crystal or piezoelectric ceramic. More specifically, the piezoelectric substrate may be made of, for example, LiNbO 3 , KNbO 3 , quartz, langasite, ZnO, PZT, or lithium tetraborate.
- the piezoelectric substrate 3 has an electrode forming surface 3a.
- An IDT electrode 2 is formed on the electrode formation surface 3a.
- an elastic wave is excited.
- reflectors 8 are provided on both sides of the IDT electrode 2 in the elastic wave propagation direction. Thereby, a 1-port elastic wave resonator is formed. Note that the reflector may not be provided.
- FIG. 2 (a) is an enlarged front sectional view of the IDT electrode in the first embodiment.
- FIG. 2B is a partially cutaway enlarged front sectional view of the IDT electrode in the first embodiment. More specifically, in FIG. 2A and FIG. 2B, one electrode finger among a plurality of electrode fingers included in the IDT electrode is shown enlarged. The same applies to FIG. 3, FIG. 6 (a) to FIG. 6 (c), FIG. 7 (a), FIG. 7 (b) and FIG.
- the IDT electrode 2 has an adhesion layer 4 provided on the electrode forming surface 3a of the piezoelectric substrate 3.
- a main electrode layer 6 is provided on the adhesion layer 4.
- the adhesion layer 4 has higher adhesion to the piezoelectric substrate 3 than the adhesion of the main electrode layer 6 to the piezoelectric substrate 3.
- the adhesion layer 4 includes a first layer 4 ⁇ / b> A that is in close contact with the piezoelectric substrate 3.
- the adhesion layer 4 also includes a second layer 4B that is in close contact with the main electrode layer 6.
- the first layer 4A and the second layer 4B are continuously provided in the normal direction Z of the electrode formation surface 3a.
- the adhesion layer 4 is made of Ti.
- the adhesion layer is not particularly limited, but is preferably made of an appropriate metal having high adhesion to the piezoelectric substrate. More specifically, the adhesion layer is preferably made of, for example, Ti, Cr, NiCr, Zr, Ta, W, or Mo.
- the main electrode layer 6 is an electrode layer dominant in the excitation of elastic waves.
- the main electrode layer 6 of this embodiment is made of Al.
- the main electrode layer is preferably made of an appropriate metal having low resistance. More specifically, the main electrode layer is preferably made of, for example, Al, Cu, Au, or Ag. Further, the stress migration resistance may be increased by adding another element to the metal constituting the main electrode layer.
- the material constituting the main electrode layer an alloy mainly composed of Al and to which Cu is added is preferably used as the material constituting the main electrode layer.
- the thickness of the adhesion layer 4 is 30 nm, and the thickness of the main electrode layer 6 is 430 nm.
- the wavelength defined by the distance between the electrode fingers of the IDT electrode 2 is 4.6 ⁇ m.
- the duty of the IDT electrode 2 is 0.5.
- the thickness of each layer of the IDT electrode, the wavelength of the IDT electrode, and the duty are not particularly limited.
- the first layer 4A of the adhesion layer 4 has a first side face 4Ac.
- the second layer 4B also has a second side surface 4Bc.
- the first and second side surfaces 4Ac and 4Bc are inclined from the normal direction Z of the electrode forming surface 3a. More specifically, the area of the surface where the second layer 4B is in close contact with the main electrode layer 6 is smaller than the area of the surface where the first layer 4A is in close contact with the piezoelectric substrate 3.
- the first and second side surfaces 4Ac and 4Bc are inclined. It should be noted that at least a part of the first and second side surfaces may be inclined from the normal direction of the electrode formation surface.
- the main electrode layer 6 also has a side surface 6c.
- the angles formed by the first and second side surfaces 4Ac and 4Bc and the normal direction Z of the electrode forming surface 3a are the inclination angles of the first and second side surfaces 4Ac and 4Bc, respectively. More specifically, as shown in FIG. 2B, the angle formed by the alternate long and short dash line A extending in the normal direction Z of the electrode formation surface and the first side surface 4Ac is equal to the first side surface 4Ac. the inclination angle ⁇ 1. Similarly, the angle formed by the alternate long and short dash line B and the second side surface 4Bc is the inclination angle ⁇ 2 of the second side surface 4Bc.
- This embodiment is characterized in that the inclined angle theta 1 of the first aspect 4Ac better inclination angle theta 2 of the second aspect 4Bc small.
- the metal is laminated so that the width of the electrode finger becomes narrower from the electrode formation surface 3a shown in FIG. 2A toward the lamination direction of the IDT electrode 2.
- the distortion of the main electrode layer 6 in the IDT electrode 2 when the elastic wave is excited can be reduced, and the IMD characteristics can be improved. This will be described below using a comparative example.
- FIG. 3 is an enlarged front sectional view of an IDT electrode in a comparative example.
- the adhesion layer 104 of the IDT electrode 102 of the acoustic wave device in the comparative example has first and second layers 104A and 104B.
- the first and second layers 104A and 104B have first and second side surfaces 104Ac and 104Bc.
- the elastic wave device in the comparative example has the same configuration as the elastic wave device 1 of the first embodiment.
- FIG. 4 (a) and 4 (b) show the distortion in the position of the electrode finger of the IDT electrode along the elastic wave propagation direction and the surface of the main electrode layer on the piezoelectric substrate side in the first embodiment and the comparative example. It is a diagram showing the relationship between S 4 components. A solid line shows the result of the first embodiment, and a broken line shows the result of the comparative example.
- the direction perpendicular to the direction in which the electrode finger extends is defined as the width direction of the electrode finger
- the position where the value of the horizontal axis in FIGS. 4A and 4B is 0 is the center position in the width direction of the electrode finger. It corresponds to.
- FIG. 4A shows the magnitude of distortion from the center in the width direction of the electrode finger to one end face.
- FIG. 4B shows the magnitude of distortion from the center in the width direction of the electrode finger to the end face opposite to the end face shown in FIG.
- the distortion increases as the distance from the center of the electrode finger to the end surface increases. Further, as shown in FIGS. 4A and 4B, in this embodiment, the distortion can be made smaller than in the comparative example.
- the distortion is 4.26 ⁇ 10 ⁇ 3 in the comparative example on one end face of the electrode finger, and the distortion is 3. 99 ⁇ 10 ⁇ 3 .
- the distortion of the present embodiment it is possible to 0.27 ⁇ 10 -3 small S 4 components of the strain than the comparative examples.
- the distortion of the present embodiment can be effectively made smaller than the distortion of the comparative example. Recognize.
- the distortion is 4.26 ⁇ 10 ⁇ 3 in the comparative example, and the distortion is 3.99 ⁇ 10 ⁇ 3 in the present embodiment.
- the distortion of the present embodiment is more effective than the distortion of the comparative example in the range of about 10% of the entire length of the electrode finger in the width direction from the end face shown in FIG. It can be seen that it is made smaller. It can be considered that the distortion can be reduced by the present embodiment according to the following theory.
- the inclination angle of the second side surface 4Bc is smaller than the inclination angle of the first side surface 4Ac of the adhesion layer 4.
- the angle formed between the side surface 6c of the main electrode layer 6 and the alternate long and short dash line C along the normal direction Z of the electrode formation surface of the piezoelectric substrate 3 is the main electrode layer. 6 the inclination angle theta 3 sides 6c of.
- the inclination angle theta 3 sides 6c of the main electrode layer 6 is less than the inclination angle theta 2 of the second aspect 4Bc. Thereby, the distortion of the main electrode layer 6 can be further reduced.
- a part of the side surface of the main electrode layer may be inclined from the normal line direction of the electrode formation surface, or all of the side surfaces may be inclined. Alternatively, the side surface of the main electrode layer may not have a portion inclined from the normal direction. When the side surface is not inclined from the normal direction, the inclination angle is 0 °.
- the relationship between distortion and IMD characteristics will be described.
- the following shows the case of using an SH wave, the relationship between S 4 component and the third-order harmonic level of distortion.
- the third harmonic is an unnecessary wave, and the lower the level of the third harmonic, the better the IMD characteristics.
- Figure 5 is a diagram showing the relationship between S 4 component and the third-order harmonic level of distortion.
- the adhesion layer 4 is located closer to the piezoelectric substrate 3 than the main electrode layer 6.
- the stress applied near the side surface of the electrode finger of the IDT electrode 2 is distributed to the piezoelectric substrate 3 side with respect to the main electrode layer 6.
- the adhesion layer 4 of the IDT electrode 2 is made of Ti
- the main electrode layer 6 is made of Al.
- the elastic modulus of the metal constituting the adhesion layer 4 is larger than the elastic modulus of the metal constituting the main electrode layer 6.
- FIGS. 6 (a) to 6 (c) are partially cutaway front cross-sectional views for explaining the method of manufacturing the acoustic wave device according to the first embodiment.
- FIG. 7A and FIG. 7B are partially cutaway front cross-sectional views for explaining a method for manufacturing the acoustic wave device according to the first embodiment.
- 7A and 7B show a step after the step shown in FIGS. 6A to 6C.
- the piezoelectric substrate 3 is prepared.
- a resist layer 7 is laminated on the piezoelectric substrate 3.
- the resist layer 7 is patterned. Thereby, a portion where the resist layer 7 is opened and the piezoelectric substrate 3 is exposed is formed.
- a photolithography technique using a negative photoresist can be used.
- a metal film for the adhesion layer 4 is laminated on the piezoelectric substrate 3 and the resist layer 7 by vapor deposition. In the portion where the resist layer 7 is opened, the metal film is laminated on the piezoelectric substrate 3 to form the adhesion layer 4.
- the resist layer 7 is deformed by the radiant heat of the metal film.
- the direction crossing the portion where the resist layer 7 is open is defined as the width direction W. Due to the above deformation of the resist layer 7, the minimum width W1 of the portion where the resist layer 7 is opened becomes small. As the width W1 is reduced, the width of the portion where the piezoelectric substrate 3 is exposed as viewed from the normal direction Z of the electrode forming surface 3a of the piezoelectric substrate 3 is reduced.
- the adhesion layer 4 is formed, the above-described deformation of the resist layer 7 proceeds, so that the first and second side surfaces 4Ac and 4Bc of the adhesion layer 4 are inclined.
- the second layer shown in FIG. 6C is faster than the film formation speed when the first layer 4A shown in FIG. 6B is formed.
- the film formation speed when forming 4B is slowed down. More specifically, for example, the deposition rate when forming the first layer 4A is 5 ⁇ / s, and the deposition rate when forming the second layer 4B is 0.5 ⁇ / s.
- the slower the deposition rate the more the heat conduction from the metal film deposited on the resist layer 7 and the radiant heat from the deposition source are suppressed. For this reason, an increase in the temperature of the resist layer 7 is also suppressed.
- the resist layer 7 is deformed faster as the temperature becomes higher.
- the deformation speed of the resist layer 7 when the second layer 4B is formed is slower than the deformation speed of the resist layer 7 when the first layer 4A is formed. can do. Therefore, the inclination angle of the second side surface 4Bc of the second layer 4B can be made smaller than the inclination angle of the first side surface 4Ac of the first layer 4A.
- the movement distance may be controlled. Even in this case, the inclination angle of the second side surface of the second layer can be made smaller than the inclination angle of the first side surface of the first layer.
- the adhesion layer 4 is made of Ti
- the main electrode layer 6 is made of Al.
- the melting point of the metal constituting the main electrode layer 6 is preferably equal to or lower than the melting point of the metal constituting the adhesion layer 4.
- the temperature at which the resist layer 7 is heated when the main electrode layer 6 is formed can be made equal to or lower than the temperature at which the resist layer 7 is heated when the adhesion layer 4 is formed.
- the inclination angle of the side surface 6 c of the main electrode layer 6 can be ensured to be equal to or less than the inclination angle of the second side surface 4 Bc of the adhesion layer 4. Therefore, the distortion of the main electrode layer 6 when the elastic wave is excited can be more reliably suppressed.
- the resist layer 7 shown in FIG. 7A is peeled from the piezoelectric substrate 3.
- FIG. 8 is a partially cutaway front sectional view of an IDT electrode according to the second embodiment of the present invention.
- the elastic wave device of the second embodiment is different from the first embodiment in that the IDT electrode 12 includes an intermediate layer 15 provided between the adhesion layer 14 and the main electrode layer 6. Further, the configuration of the adhesion layer 14 is also different from that of the first embodiment. In points other than the above, the elastic wave device of the second embodiment has the same configuration as the elastic wave device 1 of the first embodiment.
- the adhesion layer 14 has an adhesion to the piezoelectric substrate 3 that is equal to or greater than the adhesion of the intermediate layer 15 to the piezoelectric substrate 3.
- the adhesion layer 14 has a side surface 14c. Unlike the first embodiment, the inclination angle of the side surface 14c of the adhesion layer 14 is constant.
- the adhesion layer 14 is made of one of NiCr and Ti.
- the metal which comprises an adhesion layer is not specifically limited, It is preferable to consist of an appropriate metal with good adhesiveness with a piezoelectric substrate similarly to 1st Embodiment.
- the intermediate layer 15 is made of Ti.
- middle layer is not specifically limited.
- the adhesion layer and the intermediate layer may be made of the same metal.
- the intermediate layer 15 has a side surface 15c.
- the angle formed by the side surface 15c and the normal direction Z of the electrode forming surface 3a of the piezoelectric substrate 3 is defined as the inclination angle of the side surface 15c.
- the inclination angle of the side surface 15 c of the intermediate layer 15 is smaller than the inclination angle of the side surface 14 c of the adhesion layer 14. Therefore, similarly to the first embodiment, the distortion of the main electrode layer 6 when the elastic wave is excited can be reduced. Therefore, IMD characteristics can be improved.
- the side surface of the adhesion layer is inclined from the normal direction of the electrode forming surface.
- at least a part of the side surface of the intermediate layer only needs to be inclined from the normal direction of the electrode formation surface.
- the angle formed by the portion where the side surface of the adhesion layer is inclined and the normal direction is the inclination angle of the side surface of the adhesion layer.
- the angle formed by the portion where the side surface of the intermediate layer is inclined and the normal line is the inclination angle of the side surface of the intermediate layer.
- the inclination angle of the side surface 6 c of the main electrode layer 6 is equal to or less than the inclination angle of the side surface 15 c of the intermediate layer 15. Therefore, the distortion of the main electrode layer 6 when the elastic wave is excited can be effectively reduced.
- the melting point of the metal constituting the adhesion layer 14 is equal to or higher than the melting point of the metal constituting the intermediate layer 15. Therefore, the inclination angle of the side surface 15c of the intermediate layer 15 can be easily made smaller than the inclination angle of the side surface 14c of the adhesion layer 14 by a method similar to the manufacturing method described above.
- the melting point of the metal constituting the intermediate layer 15 is equal to or higher than the melting point of the metal constituting the main electrode layer 6. Therefore, the inclination angle of the side surface 6c of the main electrode layer 6 can be reliably made equal to or less than the inclination angle of the side surface 15c of the intermediate layer 15.
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
2…IDT電極
3…圧電基板
3a…電極形成面
4…密着層
4A,4B…第1,第2の層
4Ac,4Bc…第1,第2の側面
6…主電極層
6c…側面
7…レジスト層
8…反射器
12…IDT電極
14…密着層
14c…側面
15…中間層
15c…側面
102…IDT電極
104…密着層
104A,104B…第1,第2の層
104Ac,104Bc…第1,第2の側面
Claims (12)
- 電極形成面を有する圧電基板と、
前記圧電基板の前記電極形成面上に設けられているIDT電極と、
を備え、
前記IDT電極が、前記圧電基板の前記電極形成面上に設けられている密着層と、前記密着層上に設けられている主電極層と、を有し、
前記密着層が、前記圧電基板に密着している第1の層と、前記主電極層に密着している第2の層と、を有し、
前記第1の層が第1の側面を有し、前記第2の層が第2の側面を有し、
前記第1の層が前記圧電基板に密着している面の面積よりも前記第2の層が前記主電極層に密着している面の面積の方が小さくなるように、前記第1,第2の側面の少なくとも一部がそれぞれ前記電極形成面の法線方向から傾斜しており、
前記第1,第2の側面の傾斜している部分と前記電極形成面の法線方向とがなす角度をそれぞれ前記第1,第2の側面の傾斜角度としたときに、前記第1の側面の前記傾斜角度よりも前記第2の側面の前記傾斜角度の方が小さい、弾性波装置。 - 前記主電極層が側面を有し、前記主電極層の前記側面と、前記圧電基板の前記電極形成面の法線方向とがなす角度を前記主電極層の前記側面の傾斜角度としたときに、前記主電極層の前記側面の前記傾斜角度が前記第2の側面の前記傾斜角度以下である、請求項1に記載の弾性波装置。
- 前記密着層を構成している金属の弾性率が前記主電極層を構成している金属の弾性率よりも大きい、請求項1または2に記載の弾性波装置。
- 前記密着層を構成している金属の融点が前記主電極層を構成している金属の融点以上である、請求項1~3のいずれか1項に記載の弾性波装置。
- 前記密着層がTiからなり、前記主電極層がAlからなる、請求項1~4のいずれか1項に記載の弾性波装置。
- 電極形成面を有する圧電基板と、
前記圧電基板の前記電極形成面上に設けられているIDT電極と、
を備え、
前記IDT電極が、前記圧電基板の前記電極形成面上に設けられている密着層と、前記密着層上に設けられている中間層と、前記中間層上に設けられている主電極層と、を有し、
前記密着層及び前記中間層がそれぞれ側面を有し、
前記密着層において、前記圧電基板に密着している面の面積よりも前記中間層に密着している面の面積の方が小さくなるように、前記密着層の前記側面の少なくとも一部が前記電極形成面の法線方向から傾斜しており、前記中間層において、前記密着層に密着している面の面積よりも前記主電極層に接している面の面積の方が小さくなるように、前記中間層の前記側面の少なくとも一部が前記電極形成面の法線方向から傾斜しており、
前記密着層の前記側面の傾斜している部分及び前記中間層の前記側面の傾斜している部分と前記電極形成面の法線方向とがなす角度をそれぞれ前記密着層の前記側面及び前記中間層の前記側面の傾斜角度としたときに、前記密着層の前記側面の前記傾斜角度よりも前記中間層の前記側面の前記傾斜角度の方が小さい、弾性波装置。 - 前記主電極層が側面を有し、前記主電極層の前記側面と前記電極形成面の法線方向とがなす角度を前記主電極層の前記側面の傾斜角度としたときに、前記主電極層の前記側面の前記傾斜角度が前記中間層の前記側面の前記傾斜角度以下である、請求項6に記載の弾性波装置。
- 前記密着層を構成している金属の弾性率が前記中間層を構成している金属の弾性率以上であり、前記中間層を構成している金属の弾性率が前記主電極層を構成している金属の弾性率よりも大きい、請求項6または7に記載の弾性波装置。
- 前記密着層を構成している金属の融点が前記中間層を構成している金属の融点以上であり、前記中間層を構成している金属の融点が前記主電極層を構成している金属の融点以上である、請求項6~8のいずれか1項に記載の弾性波装置。
- 前記密着層がNiCr及びTiの内のいずれか一方からなり、前記中間層がTiからなり、前記主電極層がAlからなる、請求項6~9のいずれか1項に記載の弾性波装置。
- 密着層及び主電極層を有するIDT電極が圧電基板上に設けられた弾性波装置の製造方法であって、
電極形成面を有する圧電基板を用意する工程と、
前記圧電基板の前記電極形成面上にレジスト層を積層する工程と、前記レジスト層をパターニングする工程と、前記圧電基板上及び前記レジスト層上に、密着層用の金属膜を蒸着法により積層する工程と、前記密着層用の金属膜上に主電極層用の金属膜を蒸着法により積層する工程と、前記レジスト層を前記圧電基板から剥離する工程と、を有する、IDT電極を前記圧電基板の前記電極形成面上に設ける工程と、
を備え、
前記密着層が、前記圧電基板に密着している第1の層と、前記主電極層に密着している第2の層と、を有し、前記第1の層が第1の側面を有し、前記第2の層が第2の側面を有し、
前記圧電基板上及び前記レジスト層上に前記密着層用の金属膜を積層する工程において、蒸着法の条件を変えながら前記密着層用の金属膜を積層することにより、前記第1の層が前記圧電基板に密着している面の面積よりも前記第2の層が前記主電極層に密着する面の面積の方が小さくなるように、前記第1,第2の側面を前記電極形成面の法線方向から傾斜させ、前記第1,第2の側面と前記電極形成面の法線方向とがなす角度をそれぞれ前記第1,第2の側面の傾斜角度としたときに、前記第1の側面の前記傾斜角度よりも前記第2の側面の前記傾斜角度の方を小さくする、弾性波装置の製造方法。 - 前記圧電基板上及び前記レジスト層上に前記密着層用の金属膜を積層する工程において、前記第2の層を形成するときの蒸着法における成膜速度を、前記第1の層を形成するときの蒸着法における成膜速度よりも遅くする、請求項11に記載の弾性波装置の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177032073A KR101931506B1 (ko) | 2015-07-17 | 2016-06-01 | 탄성파 장치 및 그 제조방법 |
JP2017529491A JP6471802B2 (ja) | 2015-07-17 | 2016-06-01 | 弾性波装置及びその製造方法 |
CN201680026762.6A CN107534429B (zh) | 2015-07-17 | 2016-06-01 | 弹性波装置及其制造方法 |
DE112016003221.8T DE112016003221T5 (de) | 2015-07-17 | 2016-06-01 | Schallwellenvorrichtung und Herstellungsverfahren dafür |
US15/832,851 US10924082B2 (en) | 2015-07-17 | 2017-12-06 | Acoustic wave device and manufacturing method for same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-142768 | 2015-07-17 | ||
JP2015142768 | 2015-07-17 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/832,851 Continuation US10924082B2 (en) | 2015-07-17 | 2017-12-06 | Acoustic wave device and manufacturing method for same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017013945A1 true WO2017013945A1 (ja) | 2017-01-26 |
Family
ID=57834473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/066248 WO2017013945A1 (ja) | 2015-07-17 | 2016-06-01 | 弾性波装置及びその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10924082B2 (ja) |
JP (1) | JP6471802B2 (ja) |
KR (1) | KR101931506B1 (ja) |
CN (1) | CN107534429B (ja) |
DE (1) | DE112016003221T5 (ja) |
WO (1) | WO2017013945A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019021997A (ja) * | 2017-07-12 | 2019-02-07 | 京セラ株式会社 | 弾性波素子、分波器および通信装置 |
WO2021205987A1 (ja) * | 2020-04-06 | 2021-10-14 | 株式会社村田製作所 | 弾性波装置 |
WO2022044869A1 (ja) * | 2020-08-27 | 2022-03-03 | 株式会社村田製作所 | 弾性波装置 |
WO2022118970A1 (ja) * | 2020-12-04 | 2022-06-09 | 株式会社村田製作所 | 弾性波装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7001013B2 (ja) * | 2018-08-01 | 2022-01-19 | 株式会社村田製作所 | コイル部品、コイル部品の製造方法 |
DE102018132695A1 (de) * | 2018-12-18 | 2020-06-18 | RF360 Europe GmbH | Elektronisches Bauelement |
CN114826185B (zh) * | 2022-05-23 | 2023-03-10 | 河北时硕微芯科技有限公司 | 一种声表面滤波器封装方法及结构 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0522067A (ja) * | 1991-07-15 | 1993-01-29 | Oki Electric Ind Co Ltd | 弾性表面波フイルタ |
WO2003058813A1 (fr) * | 2001-12-28 | 2003-07-17 | Matsushita Electric Industrial Co., Ltd. | Dispositif de traitement des ondes acoustiques de surface, composant electronique utilisant ce dispositif et module composite |
WO2007034832A1 (ja) * | 2005-09-20 | 2007-03-29 | Kyocera Corporation | 弾性表面波素子及び弾性表面波装置 |
JP2014158138A (ja) * | 2013-02-15 | 2014-08-28 | Panasonic Corp | 弾性波装置とそれを用いたアンテナ共用器 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001217672A (ja) | 1999-11-26 | 2001-08-10 | Murata Mfg Co Ltd | 弾性表面波素子およびその製造方法 |
JP4359551B2 (ja) * | 2004-10-08 | 2009-11-04 | アルプス電気株式会社 | 弾性表面波素子の製造方法 |
JP4279271B2 (ja) | 2005-06-01 | 2009-06-17 | アルプス電気株式会社 | 弾性表面波素子及びその製造方法 |
JP2012060420A (ja) * | 2010-09-09 | 2012-03-22 | Seiko Epson Corp | 弾性表面波デバイス、電子機器及びセンサー装置 |
US9773964B2 (en) * | 2011-12-27 | 2017-09-26 | Kyocera Corporation | Electronic component |
US9496846B2 (en) * | 2013-02-15 | 2016-11-15 | Skyworks Filter Solutions Japan Co., Ltd. | Acoustic wave device and electronic apparatus including same |
CN110140295B (zh) * | 2017-01-13 | 2023-02-28 | 株式会社村田制作所 | 弹性波装置 |
-
2016
- 2016-06-01 CN CN201680026762.6A patent/CN107534429B/zh active Active
- 2016-06-01 KR KR1020177032073A patent/KR101931506B1/ko active IP Right Grant
- 2016-06-01 JP JP2017529491A patent/JP6471802B2/ja active Active
- 2016-06-01 DE DE112016003221.8T patent/DE112016003221T5/de active Granted
- 2016-06-01 WO PCT/JP2016/066248 patent/WO2017013945A1/ja active Application Filing
-
2017
- 2017-12-06 US US15/832,851 patent/US10924082B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0522067A (ja) * | 1991-07-15 | 1993-01-29 | Oki Electric Ind Co Ltd | 弾性表面波フイルタ |
WO2003058813A1 (fr) * | 2001-12-28 | 2003-07-17 | Matsushita Electric Industrial Co., Ltd. | Dispositif de traitement des ondes acoustiques de surface, composant electronique utilisant ce dispositif et module composite |
WO2007034832A1 (ja) * | 2005-09-20 | 2007-03-29 | Kyocera Corporation | 弾性表面波素子及び弾性表面波装置 |
JP2014158138A (ja) * | 2013-02-15 | 2014-08-28 | Panasonic Corp | 弾性波装置とそれを用いたアンテナ共用器 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019021997A (ja) * | 2017-07-12 | 2019-02-07 | 京セラ株式会社 | 弾性波素子、分波器および通信装置 |
JP6994855B2 (ja) | 2017-07-12 | 2022-01-14 | 京セラ株式会社 | 弾性波素子、分波器および通信装置 |
WO2021205987A1 (ja) * | 2020-04-06 | 2021-10-14 | 株式会社村田製作所 | 弾性波装置 |
WO2022044869A1 (ja) * | 2020-08-27 | 2022-03-03 | 株式会社村田製作所 | 弾性波装置 |
WO2022118970A1 (ja) * | 2020-12-04 | 2022-06-09 | 株式会社村田製作所 | 弾性波装置 |
Also Published As
Publication number | Publication date |
---|---|
CN107534429A (zh) | 2018-01-02 |
KR20170134669A (ko) | 2017-12-06 |
DE112016003221T5 (de) | 2018-04-19 |
KR101931506B1 (ko) | 2018-12-21 |
JPWO2017013945A1 (ja) | 2018-02-08 |
US10924082B2 (en) | 2021-02-16 |
US20180097501A1 (en) | 2018-04-05 |
JP6471802B2 (ja) | 2019-02-20 |
CN107534429B (zh) | 2020-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6471802B2 (ja) | 弾性波装置及びその製造方法 | |
US11616191B2 (en) | Elastic wave device | |
JP5648695B2 (ja) | 弾性波装置及びその製造方法 | |
WO2017013968A1 (ja) | 弾性波装置 | |
JP6481687B2 (ja) | 弾性波装置 | |
US10312883B2 (en) | Elastic wave device | |
JP4760911B2 (ja) | 弾性境界波装置 | |
US20190334499A1 (en) | Elastic wave device | |
US11456716B2 (en) | Elastic wave device and manufacturing method thereof | |
WO2009139108A1 (ja) | 弾性境界波装置 | |
WO2017068828A1 (ja) | 弾性波装置 | |
WO2017187724A1 (ja) | 弾性波装置 | |
WO2020184466A1 (ja) | 弾性波装置 | |
JPWO2015137089A1 (ja) | 弾性波装置 | |
JP5176863B2 (ja) | 弾性波装置 | |
WO2017110586A1 (ja) | 弾性波装置 | |
WO2021241681A1 (ja) | 弾性波装置 | |
WO2018199071A1 (ja) | 弾性波装置の製造方法及び弾性波装置 | |
WO2017212787A1 (ja) | 弾性波装置 | |
WO2018003657A1 (ja) | 弾性波装置 | |
WO2023048256A1 (ja) | 弾性波装置 | |
JP6620813B2 (ja) | 弾性波装置 | |
JP2008125131A (ja) | 表面波装置及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16827509 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017529491 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20177032073 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112016003221 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16827509 Country of ref document: EP Kind code of ref document: A1 |