WO2017010226A1 - 油分離回収器 - Google Patents

油分離回収器 Download PDF

Info

Publication number
WO2017010226A1
WO2017010226A1 PCT/JP2016/068041 JP2016068041W WO2017010226A1 WO 2017010226 A1 WO2017010226 A1 WO 2017010226A1 JP 2016068041 W JP2016068041 W JP 2016068041W WO 2017010226 A1 WO2017010226 A1 WO 2017010226A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
chamber
container body
gas
gas outlet
Prior art date
Application number
PCT/JP2016/068041
Other languages
English (en)
French (fr)
Inventor
圭一郎 泊
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US15/741,988 priority Critical patent/US10626860B2/en
Priority to EP16824206.3A priority patent/EP3301382A4/en
Priority to BR112018000626-2A priority patent/BR112018000626B1/pt
Priority to CN201680038838.7A priority patent/CN107709899B/zh
Publication of WO2017010226A1 publication Critical patent/WO2017010226A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0208Separation of non-miscible liquids by sedimentation
    • B01D17/0214Separation of non-miscible liquids by sedimentation with removal of one of the phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/04Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
    • B01D45/08Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by impingement against baffle separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/003Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions including coalescing means for the separation of liquid
    • B01D46/0031Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions including coalescing means for the separation of liquid with collecting, draining means
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • F25B31/008Cooling of compressor or motor by injecting a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/17Size reduction

Definitions

  • the present invention relates to an oil separator / collector that separates and recovers oil from compressed gas discharged with oil from an oil-cooled compressor.
  • the lubricating oil is injected into the rotor portion to cool the device and seal the compressed gas in the rotor portion. For this reason, the compressed gas discharged from the oil-cooled compressor contains lubricating oil.
  • the oil separator / collector disclosed in Patent Document 1 separates and recovers lubricating oil from compressed gas.
  • the oil separator / collector of Patent Document 1 has a horizontally long container. For this reason, the top surface part of a container can be used as installation space, such as a compressor main body. Therefore, when an oil separation and recovery device having a horizontally long container is used, the oil-cooled compressor can be more compact than an oil separation and recovery device having a vertically long container.
  • the oil level is foamed by the compressed gas flowing into the container being sprayed onto the oil surface of the oil in the container. For this reason, bubbles containing oil droplets or oil are generated in the compressed gas. Furthermore, in a horizontally long container, the distance between the outlet of the compressed gas and the oil surface is short, so that the generated oil droplets and oil bubbles flow out of the container along the gas flow near the outlet. For this reason, the oil separation efficiency of the oil separation / recovery device decreases.
  • An object of the present invention is to provide an oil separation / recovery device capable of improving oil separation efficiency without increasing the manufacturing cost.
  • An oil separation and recovery device is an oil separation and recovery device that separates and recovers the oil from a compressed gas discharged with oil from an oil-cooled compressor, and is horizontally long disposed horizontally
  • a container body having a shape, a gas inflow port for allowing the compressed gas accompanied by the oil to flow into the container body, and an upper part on the other end side in the container body.
  • a gas outlet for allowing the compressed gas from which the oil has been separated to flow out of the container body, and a lower part of the container body, the first chamber on the gas inlet side and the gas outlet side And a partition plate partitioned into a second chamber.
  • FIG. 1 It is a block diagram of the periphery of an oil-cooled compressor. It is an enlarged view of the principal part A of FIG. It is a figure which shows the relationship between height L1, distance L2, and a discharge rate. It is a figure which shows the relationship between the distance L3 and a discharge rate.
  • An oil separator and recovery device is used to separate and recover oil from compressed gas discharged from the oil-cooled compressor with oil. As shown in FIG. 1, which is a configuration diagram around the oil-cooled compressor, the oil separation / recovery device 1 is provided on the downstream side of the oil-cooled compressor 21.
  • a suction passage 22 is connected to the suction port of the oil-cooled compressor 21.
  • the gas to be compressed is introduced into the compressor 21 from the suction flow path 22.
  • the oil-cooled compressor 21 compresses the gas introduced from the suction flow path 22. As a result, the gas is pressurized.
  • the oil-cooled compressor 21 uses oil for cooling and lubrication of equipment and sealing of compressed gas in the rotor portion.
  • An oil supply passage 23 is connected to the upstream side of the rotor portion in the compressor 21. Oil is injected into the oil-cooled compressor 21 from the oil supply passage 23. Thereby, the oil is entrained in the gas before being compressed.
  • the compressed gas (compressed gas) is discharged from the discharge port of the oil-cooled compressor 21 with oil.
  • the gas accompanied by the oil is supplied to the oil separation / recovery device 1 through the discharge passage 24 connected to the discharge port.
  • oil is separated and recovered from the supplied compressed gas by a mass difference.
  • the compressed gas from which the oil has been separated and recovered is discharged from the oil separation and recovery device 1.
  • the compressed gas discharged from the oil separator / collector 1 is supplied to the oil separator 26 through the discharge passage 25.
  • the oil separator 26 includes an oil separation element (filter) 26a, and captures oil remaining in the compressed gas.
  • the compressed gas from which the remaining oil has been separated is sent to the downstream process through the supply flow path 27.
  • the oil recovered in the oil separator / collector 1 is temporarily stored in the oil separator / collector 1.
  • the oil stored in the oil separator / collector 1 is discharged to the oil circulation path 28 from an oil outlet provided in the lower part. This oil is sent to the lubricating oil cooler 29 through the oil circulation path 28.
  • the lubricating oil cooler 29 cools the oil.
  • the oil cooled by the lubricating oil cooler 29 flows through the oil supply passage 23, is filtered by the oil filter 30, is pressurized by the lubricating oil pump 31, and then is supplied again to the rotor portion of the oil-cooled compressor 21. Is done.
  • the oil separator / collector 1 has a horizontally long container body 2 that is made of metal and placed horizontally.
  • the container body 2 is formed of a cylindrical body whose both ends are closed. That is, the container main body 2 has a cylindrical body 2a, a first end wall 2b connected to one end of the body 2a so as to close one end opening of the body 2a, and an opening at the other end of the body 2a. It has the 2nd end wall 2c connected to the other end part of drum section 2a so that it may block up.
  • the 1st end wall 2b and the 2nd end wall 2c may be formed in flat form, in this embodiment, it is formed in the curved shape so that it may bulge outward.
  • the space above the container body 2 can be used as an installation space for the oil-cooled compressor 21 or the like.
  • a gas inlet 3 through which compressed gas with oil flows into the container main body 2 is located at the upper part of one end side (first end wall 2 b side) in the container main body 2.
  • a gas outlet 4 for allowing the compressed gas from which oil has been separated to flow out of the container body 2 is located at the upper part of the other end side (second end wall 2 c side) in the container body 2.
  • the gas inlet 3 is constituted by an opening on the downstream side of the elbow inlet pipe 11.
  • the gas outlet 4 is configured by an opening on the upstream side of the elbow outlet pipe 12.
  • a partition that divides the internal space into a first chamber 6 that is a space on the gas inlet 3 side and a second chamber 7 that is a space on the gas outlet 4 side is provided below the inner space of the container body 2.
  • a plate 5 is provided.
  • the partition plate 5 is fixed to the inner surface of the body 2a in a range from the lower part to the side of the body 2a, and stands upright in the internal space.
  • the oil separated from the compressed gas mainly accumulates in the first chamber 6. Therefore, almost no oil is collected in the second chamber 7.
  • Compressed gas that has flowed into the container body 2 is blown into the first chamber 6.
  • the oil level of the oil accumulated in the first chamber 6 is bubbled, oil droplets are generated from the oil surface, and bubbles containing oil are generated on the oil surface.
  • the partition plate 5 when the partition plate 5 is not provided, the distance between the oil level of the oil accumulated in the container main body 2 and the gas outlet 4 becomes short in the horizontally long container main body 2. For this reason, the generated oil droplets and oil bubbles ride on the flow of the compressed gas near the gas outlet 4 and flow out of the container body 2 from the gas outlet 4. For this reason, the oil separation efficiency of the oil separation and recovery device 1 is lowered.
  • the region on the gas outlet 4 side in the lower part in the container body 2 is formed as the second chamber 7 in which almost no oil is accumulated.
  • the distance between the oil level of the first chamber 6 and the gas outlet 4 is increased. Therefore, the generated oil droplets and oil bubbles can be prevented from being sucked into the gas outlet 4.
  • Part of the generated oil droplets and oil bubbles scatters from the oil surface on the flow of compressed gas.
  • the compressed gas passes above the second chamber 7, swirls along the inner surface of the second end wall 2 c of the container body 2, and flows in the second chamber 7 toward the partition plate 5. Since the oil droplets and the oil bubbles have a large inertial force, the oil droplets and the oil bubbles go straight toward the partition plate 5.
  • oil droplets and oil bubbles can collide with the partition plate 5. Therefore, oil droplets and oil bubbles can be separated from the compressed gas, and oil droplets and oil bubbles riding on the flow of the compressed gas can be collected. Thereby, the generated oil droplets and oil bubbles can be prevented from flowing out of the gas outlet 4 on the flow of the compressed gas. Therefore, oil separation efficiency can be improved without increasing the manufacturing cost.
  • a demister (collecting means) 8 for collecting oil bubbles is provided in the lower part of the second chamber 7.
  • Most of the oil bubbles generated on the oil level in the first chamber 6 cannot exceed the height of the partition plate 5 and disappear after a lapse of a certain time. However, a part of the oil bubbles may pass through the upper end of the partition plate 5 due to an increase in the volume of the oil and flow into the second chamber 7.
  • the oil bubbles that have passed over the partition plate 5 ride on the flow of compressed gas and may flow out of the gas outlet 4. Therefore, a demister 8 is provided below the second chamber 7.
  • the oil bubbles that have passed through the partition plate 5 are collected by the demister 8, whereby the oil bubbles can be prevented from re-scattering.
  • a piping path 10 is connected to the bottom of the second chamber 7.
  • a float valve 9 that opens and closes the piping path 10 is provided at the bottom of the second chamber 7.
  • the float valve 9 has a structure in which when a certain amount of oil accumulates at the bottom of the second chamber 7, the piping path 10 is opened and the oil flows out of the container body 2 through the piping path 10. The oil that has flowed out through the float valve 9 joins the oil circulation path 28 through the piping path 10.
  • Oil droplets and oil bubbles collected by the partition plate 5 and the demister 8 accumulate at the bottom of the second chamber 7. Since the amount increases with time, when a certain amount accumulates, the gas flows again through the flow of compressed gas and flows out from the gas outlet 4. Further, when the oil level of the oil accumulated at the bottom of the second chamber 7 reaches the gas outlet 4, there is a possibility that the oil flows out from the gas outlet 4. Therefore, the float valve 9 provided at the bottom of the second chamber 7 is configured to allow the oil to flow out of the container body 2 when the oil accumulates in the bottom of the second chamber 7 by a predetermined amount or more. Yes. Thereby, it is possible to prevent the oil accumulated at the bottom of the second chamber 7 from flowing out from the gas outlet 4.
  • an elbow inflow pipe 11 is provided in the container main body 2.
  • the elbow inflow pipe 11 is an inflow pipe for allowing the compressed gas that has flowed through the discharge flow path 24 with oil to flow into the container body 2.
  • the elbow inflow pipe 11 is fixed to the container main body 2 so that the compressed gas accompanied by oil flows into the container main body 2 along a direction not facing the oil surface of the first chamber 6.
  • the gas inlet 3 is an opening on the downstream side of the elbow inlet pipe 11.
  • the elbow inflow pipe 11 is bent at the intermediate portion while the gas inflow end is fixed to the body portion 2a.
  • the elbow inflow pipe 11 ejects compressed gas with oil toward the first end wall 2b of the container body 2, but the gas inflow direction is not limited to this.
  • the inflow direction of the compressed gas may not be a direction opposite to the oil surface of the oil accumulated in the first chamber 6, for example, a direction parallel to the oil surface (ie (Horizontal direction).
  • a direction parallel to the oil surface ie (Horizontal direction).
  • it is the structure which flows in compressed gas in directions other than the direction which opposes an oil level, it will not be restricted to the structure in which the elbow inflow pipe 11 of the bent shape is provided as an inflow pipe.
  • the oil level in the first chamber 6 swells violently and the amount of oil droplets and oil bubbles generated increases. As a result, the oil separation efficiency of the oil separation / recovery device 1 is reduced. Therefore, by preventing the compressed gas from being blown directly onto the oil surface of the first chamber 6 by the elbow inflow pipe 11, the oil surface of the first chamber 6 is suppressed and the generation amount of oil droplets and oil bubbles is reduced. Can be reduced.
  • an elbow outflow pipe 12 is provided in the container body 2.
  • the elbow outlet pipe 12 allows the compressed gas in the container body 2 to flow out of the container body 2 from the second end wall 2c side on the gas outlet 4 side (the other end side).
  • the elbow outlet pipe 12 has a first part that penetrates the body 2a of the container body 2 and a second part that is bent from the first part toward the second end wall 2c.
  • the gas outlet 4 is an opening on the upstream side in the second portion of the elbow outlet pipe 12.
  • the elbow outlet pipe 12 By forming the elbow outlet pipe 12 in a bent shape, the gas outlet 4 is disposed at a position away from the partition plate 5.
  • a straight outflow pipe may be provided.
  • FIG. 2 which is an enlarged view of the main part A of FIG. 1, assuming that the body diameter of the container body 2 (inner diameter of the body 2 a) is ⁇ D (mm), the height of the oil surface 6 a of the first chamber 6. Is set to 0.5 ⁇ D or less. And the height L1 (mm) of the partition plate 5 from the lower end of the inner surface of the trunk portion 2a is higher than 0.5 ⁇ D. Further, the second end wall 2c on the gas outlet 4 side in the container body 2 is curved with a depth of 0.3 ⁇ D.
  • the distance from the connecting portion between the body 2a and the second end wall 2c to the most projecting end of the second end wall 2c in the central axis O direction (the cylinder axis direction) of the body 2a is set to 0.3 ⁇ D.
  • the side wall (first end wall 2b) on the gas inlet 3 side in the container body 2 is also set in the same shape.
  • the 1st end wall 2b and the 2nd end wall 2c of the container main body 2 are not limited to the curved shape, A flat shape may be sufficient.
  • the partition plate 5 is disposed at a position of 0 (mm) or more and 0.5 ⁇ D (mm) or less with respect to the origin. That is, a distance L2 (mm) between the surface of the partition plate 5 on the first chamber 6 side and the origin is set to 0 (mm) or more and 0.5 ⁇ D (mm) or less.
  • the distance L2 when the distance L2 is less than 0 mm, the oil level in the first chamber 6 reaches the lower part of the gas outlet 4. For this reason, the distance between the gas outlet 4 and the oil surface is reduced, and the amount of oil scattered on the compressed gas flow increases. If the distance L2 exceeds 0.5 ⁇ D, the distance between the gas outlet 4 and the oil level becomes too long. For this reason, the compressed gas collides with the partition plate 5 on the upstream side, and the turbulence of the compressed gas increases, so that the oil scattered from the oil surface into the compressed gas increases.
  • the height L1 (mm) of the partition plate 5 is higher than the height of the oil surface 6a of the first chamber 6 and is 0.8 ⁇ D (mm) or less.
  • the compressed gas compressed gas near the oil surface where oil is mainly scattered
  • the height L1 of the partition plate 5 is set to 0.8 ⁇ D (mm) or less.
  • the compressed gas can be suitably swung along the inner surface of the container body 2, so that the oil droplets and oil bubbles that go straight by the action of inertial force Can be made to collide with the partition plate 5. Thereby, an oil drop and an oil bubble can be collected suitably.
  • a portion B closest to the first chamber 6 at the inner edge of the opening end of the gas outlet 4 in the direction of the central axis O of the container body 2 is from the side wall (second end wall 2c) of the container body 2 on the gas outlet 4 side. It is arranged at a position separated by 0.7 ⁇ D (mm) or more. That is, in the cylinder axis direction of the trunk portion 2a, the portion B closest to the first chamber 6 at the inner edge of the opening end of the gas outlet 4 and the side wall (second end wall 2c) of the container body 2 on the gas outlet 4 side
  • the distance L3 (mm) is set to 0.7 ⁇ D (mm) or more.
  • the portion B closest to the first chamber 6 at the inner edge of the opening end of the gas outlet 4 is the lowermost portion of the inner edge of the gas outlet 4 in the central axial direction. Accordingly, the compressed gas preferably passes through the second chamber 7 and descends along the inner surface of the second end wall 2c of the container body 2 as shown by an arrow in FIG. To form. Therefore, oil droplets and oil bubbles that go straight by the action of inertial force can collide with the partition plate 5 and be suitably collected, so that the oil separation performance can be further improved.
  • FIG. 2 the thickness of the partition plate 5 was 6 mm, and the oil collection performance was evaluated by varying the height L1 (mm) and the distance L2 (mm) of the partition plate 5 respectively. Moreover, evaluation was performed also on the conditions which made distance L3 (mm) different, and the conditions which do not have the partition plate 5.
  • FIG. Table 15 shows the 15 conditions that were evaluated.
  • the inner diameter ⁇ D of the body 2a of the container body 2 was 254 mm
  • the horizontal length of the first chamber 6 was 2000 mm
  • the inner diameter ⁇ d of the gas inlet 3 and the gas outlet 4 was 60 mm.
  • the height of the oil level in the first chamber 6 was set to 0.5 ⁇ D. This is because the oil level of the first chamber 6 is generally designed to be 0.5 ⁇ D because of the trade-off relationship between the retention time (retention time) of the lubricating oil and the size of the container body 2. It is.
  • compressed gas air having a temperature of 50 ° C., a pressure of 2.0 MPaG, and an average flow velocity in the container body 2 of 0.48 m / s was passed.
  • FIG. 3 is a diagram showing the relationship between the height L1, the distance L2, and the discharge rate.
  • FIG. 4 is a diagram illustrating the relationship between the distance L3 and the discharge rate.
  • the discharge rate of oil droplets that is, the amount of scattered oil is reduced to about 1 ⁇ 2 in all conditions (cases 1 to 15) in which the partition plate 5 is used.
  • the height L1 of the partition plate 5 is set in a range of 0.6 ⁇ D ⁇ L1 ⁇ 0.8 ⁇ D
  • the distance L2 between the origin and the partition plate 5 is set in a range of 0 ⁇ L2 ⁇ 0.5 ⁇ D
  • the distance L3 between the portion B closest to the first chamber 6 at the inner edge of the opening end of the gas outlet 4 and the side wall on the gas outlet 4 side of the container body 2 is set in the range of L3 ⁇ 0.7 ⁇ D. This shows that the discharge rate is further reduced.
  • the lower limit value of the height L1 of the partition plate 5 from the lower end portion of the inner surface of the trunk portion 2a may be a height at which oil does not get over the partition plate 5.
  • the reason why the effect is not good when the distance L2 between the origin and the partition plate 5 is less than 0 is that the oil level in the first chamber 6 reaches the lower part of the gas outlet 4 when the distance L2 is less than 0. Can be considered. In this case, it is considered that the distance between the gas outlet 4 and the oil surface is reduced, and the amount of oil scattered on the compressed gas flow increases. Further, the reason why the effect is not good when the distance L2 exceeds 0.5 ⁇ D is considered that the distance between the gas outlet 4 and the oil surface becomes too long when the distance L2 exceeds 0.5 ⁇ D. In this case, since the compressed gas collides with the partition plate 5 on the upstream side, the turbulence of the compressed gas is increased, and it is considered that the oil scattered from the oil surface into the compressed gas increases.
  • the pressure condition of the compressed gas is only 2.0 MPaG, but the relationship between the position of the partition plate 5 and the discharge rate does not change even under different pressure conditions. An effect can be obtained.
  • the partition plate 5 allows the lower part of the space in the container body 2 to be on the first chamber 6 side on the gas inlet 3 side and the gas outlet 4 side. And the second chamber 7. Thereby, the oil separated from the compressed gas mainly accumulates in the first chamber 6 and hardly accumulates in the second chamber 7.
  • the compressed gas that has flowed into the container body 2 is blown into the first chamber 6, the oil level of the oil accumulated in the first chamber 6 bubbles, and oil droplets are generated from the oil surface, Bubbles containing oil are generated on the oil surface.
  • the height position of the oil level of the first chamber 6 and the height position of the gas outlet 4 are close to each other. For this reason, the generated oil droplets and oil bubbles ride on the flow of compressed gas near the gas outlet 4 and flow out of the gas outlet 4. As a result, the oil separation efficiency of the oil separation / recovery device 1 is reduced.
  • the region on the gas outlet 4 side in the lower part in the container body 2 is configured as the second chamber 7 in which almost no oil is accumulated, as in the present embodiment, The distance between the oil level and the gas outlet 4 is increased. For this reason, it is possible to prevent the generated oil droplets and oil bubbles from being sucked into the gas outlet 4.
  • the distance L2 between the origin (position B in FIG. 2) and the partition plate 5 is set to 0 (mm) or more and 0.5 ⁇ D (mm) or less.
  • the distance L2 is less than 0 mm, the oil level in the first chamber 6 reaches the lower part of the gas outlet 4, and therefore the distance between the gas outlet 4 and the oil level is reduced. For this reason, the oil scattered on the flow of compressed gas increases.
  • the distance L2 exceeds 0.5 ⁇ D, the distance between the gas outlet 4 and the oil level becomes too long, and the compressed gas collides with the partition plate 5 on the more upstream side. For this reason, the turbulence of the compressed gas increases, and the amount of oil scattered from the oil surface into the compressed gas increases.
  • the height of the partition plate 5 is set to be higher than the height of the oil surface 6a of the oil accumulated in the first chamber 6 and 0.8 ⁇ D (mm) or less.
  • the compressed gas compressed gas near the oil surface where oil is mainly scattered
  • the height L1 of the partition plate 5 is set to 0.8 ⁇ D (mm) or less.
  • the oil droplets and the oil bubbles flow out of the gas outlet 4 on the flow of the compressed gas near the gas outlet 4. It can suppress suitably.
  • the compressed gas can be suitably swung along the side wall of the container body 2. For this reason, the oil droplet and the oil bubble which go straight by the action of the inertial force can collide with the partition plate 5 and can be suitably collected.
  • the portion B closest to the first chamber 6 at the inner edge of the opening end of the gas outlet 4 and the side wall (the first side of the container body 2 on the gas outlet 4 side) The distance L3 between the two end walls 2c) is set to 0.7 ⁇ D (mm) or more.
  • the compressed gas suitably forms a swirl flow that passes above the second chamber 7 and descends along the side wall of the container body 2 toward the partition plate 5 as indicated by an arrow in FIG. Therefore, oil droplets and oil bubbles that travel straight by the action of the inertial force can collide with the partition plate 5 and be collected appropriately. Therefore, the oil separation performance can be further improved.
  • a demister 8 for collecting oil bubbles is provided at the lower part of the second chamber 7.
  • Most of the oil bubbles generated on the oil surface of the first chamber 6 cannot exceed the height of the partition plate 5 and disappear after a lapse of a certain time.
  • a part of the oil bubbles may pass through the upper part of the partition plate 5 and flow into the second chamber 7 due to an increase in volume.
  • the oil bubbles that have passed through the partition plate 5 ride on the flow of the compressed gas and may flow out of the gas outlet 4. Therefore, by providing the demister 8 at the lower portion of the second chamber 7, oil bubbles that have passed through the partition plate 5 can be collected, and re-scattering of the oil bubbles can be prevented.
  • a float valve 9 is provided at the bottom of the second chamber 7.
  • the oil droplets and oil bubbles collected by the partition plate 5 and the demister 8 accumulate at the bottom of the second chamber 7. Since the amount increases with time, when a certain amount accumulates, the gas flows again through the flow of compressed gas and flows out from the gas outlet 4. Further, when the oil level of the oil accumulated at the bottom of the second chamber 7 reaches the gas outlet 4, there is a possibility that the oil flows out from the gas outlet 4. Therefore, a float valve 9 is provided at the bottom of the second chamber 7. As a result, the oil accumulated at the bottom of the second chamber 7 can flow out of the container body 2, and the oil accumulated at the bottom of the second chamber 7 can be prevented from flowing out from the gas outlet 4. .
  • the elbow inflow pipe 11 is provided in the container body 2.
  • the elbow inflow pipe 11 allows the compressed gas accompanied by oil to flow into the container body 2 along a direction not facing the liquid level of the first chamber 6.
  • the oil level in the first chamber 6 swells violently, increasing the amount of oil droplets and oil bubbles generated.
  • the oil separation efficiency of the oil separation / recovery device 1 is reduced. Therefore, by preventing the compressed gas from being directly blown onto the oil in the first chamber 6 by the elbow inflow pipe 11, the oil surface of the first chamber 6 is suppressed and the generation amount of oil droplets and oil bubbles is reduced. Can be reduced.
  • the elbow outlet pipe 12 is provided in the container body 2.
  • the elbow outlet pipe 12 allows the compressed gas in the container body 2 to flow out of the container body 2 from the side wall on the gas outlet 4 side.
  • oil drops and oil bubbles may flow out of the gas outlet 4 on the compressed gas flow. Therefore, by separating the inlet of the gas outlet 4 from the oil surface of the first chamber 6 by the elbow outlet pipe 12, it is possible to reduce the amount of oil droplets and oil bubbles that flow out on the compressed gas flow.
  • the oil separator / collector is located in a horizontally long container main body that is horizontally disposed and an upper portion on one end side in the container main body, and allows the compressed gas accompanied by the oil to flow into the container main body.
  • a partition plate that is divided into a first chamber on the gas inlet side and a second chamber on the gas outlet side.
  • the container body may be a cylindrical body closed at both ends.
  • the body diameter of the container body is ⁇ D (mm)
  • the position of the portion closest to the first chamber at the inner edge of the open end of the gas outlet in the central axis direction of the container body is the origin
  • the partition plate may be disposed at a position of 0 (mm) or more and 0.5 ⁇ D (mm) or less with respect to the origin.
  • the container body may be a cylindrical body closed at both ends.
  • the body diameter of the container body is ⁇ D (mm)
  • the height of the partition plate is higher than the height of the oil surface of the oil accumulated in the first chamber, and 0.8 ⁇ D (mm ) The following may be set.
  • the container body may be a cylindrical body closed at both ends.
  • the body diameter of the container body is ⁇ D (mm)
  • the portion closest to the first chamber at the inner edge of the open end of the gas outlet in the central axis direction of the container body is the container body.
  • the oil separator / collector may be provided with a collecting means for collecting the oil bubbles at a lower portion of the second chamber.
  • the oil separator / collector may be provided with a float valve at the bottom of the second chamber.
  • the oil separator / collector is provided with an elbow inflow pipe in the container body for allowing the compressed gas accompanied by the oil to flow into the container body along a direction not facing the first chamber. May be.
  • the gas inlet may be an opening on the downstream side of the elbow inlet pipe.
  • the oil separator / collector may be provided with an elbow outlet pipe in the container body for allowing the compressed gas in the container body to flow out of the container body from the side wall on the gas outlet side.
  • the gas outlet may be an opening on the upstream side of the elbow outlet pipe.
  • the partition plate divides the lower part of the space in the container body into the first chamber on the gas inlet side and the second chamber on the gas outlet side.
  • the oil separated from the compressed gas is mainly accumulated in the first chamber, and hardly any oil is accumulated in the second chamber.
  • the compressed gas that has flowed into the container body is blown into the first chamber, the oil surface of the oil accumulated in the first chamber bubbles, and oil droplets are generated from the oil surface and contain oil. Bubbles are generated on the oil surface.
  • the height position of the oil level in the first chamber is close to the height position of the gas outlet.
  • the generated oil droplets and oil bubbles ride on the flow of compressed gas near the gas outlet and flow out of the gas outlet.
  • the oil separation efficiency of the oil separation and recovery device is reduced.
  • the region on the gas outlet side in the lower part in the container body is configured as a second chamber in which almost no oil is accumulated as in the above embodiment, the oil level and gas in the first chamber The distance to the outlet becomes far. For this reason, it is possible to prevent the generated oil droplets and oil bubbles from being sucked into the gas outlet. Part of the generated oil droplets and oil bubbles scatters from the oil surface on the flow of compressed gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Compressor (AREA)
  • Separating Particles In Gases By Inertia (AREA)

Abstract

油分離回収器(1)は、横置き配置される横長形状の容器本体(2)を有する。容器本体(2)内の一端側の上部には、油を伴った圧縮ガスを容器本体(2)内に流入させるガス流入口(3)が位置している。容器本体(2)内の他端側の上部には、油が分離された圧縮ガスを容器本体(2)内から流出させるガス流出口(4)が位置している。容器本体(2)内の下部は、仕切り板(5)により、ガス流入口(3)側の第1室(6)と、ガス流出口(4)側の第2室(7)とに区分けされている。

Description

油分離回収器
 本発明は、油冷式圧縮機から油を伴って吐出された圧縮ガスから油を分離して回収する油分離回収器に関する。
 油冷式圧縮機においては、潤滑油をローター部に噴射することにより、機器の冷却とローター部における圧縮ガスのシールとを行っている。このため、油冷式圧縮機から吐出された圧縮ガスには潤滑油が含まれている。
 特許文献1に開示されている油分離回収器は、圧縮ガスから潤滑油を分離回収する。特許文献1の油分離回収器は、横長形状の容器を有する。このため、容器の頂面部を圧縮機本体等の据付スペースとすることができる。よって、横長形状の容器を有する油分離回収器が用いられる場合、油冷式圧縮機は、縦長形状の容器を有する油分離回収器に比べて、コンパクトになり得る。
 しかしながら、横長形状の容器を有する油分離回収器では、容器内に流入した圧縮ガスが容器内の油の油面に吹き付けられることによって油面が泡立つ。このため、圧縮ガス中に油滴や油を含んだ泡が発生する。さらに、横長形状の容器では、圧縮ガスの流出口と油面との距離が近いため、発生した油滴や油泡が流出口付近のガスの流れに乗って容器外に流出する。このため、油分離回収器の油分離効率が低下する。
 そこで、圧縮ガスに含まれる油量を設計基準まで低減させるために、油分離回収器の下流に複数の油分離エレメントを設置することが考えられる。しかし、この場合、製造コストが増加する。
特開2000-234826号公報
 本発明の目的は、製造コストを増加させることなく、油分離効率を向上させることが可能な油分離回収器を提供することである。
 本発明の一局面に従う油分離回収器は、油冷式圧縮機から油を伴って吐出された圧縮ガスから前記油を分離して回収する油分離回収器であって、横置き配置される横長形状の容器本体と、前記容器本体内の一端側の上部に位置し、前記油を伴った前記圧縮ガスを前記容器本体内に流入させるガス流入口と、前記容器本体内の他端側の上部に位置し、前記油が分離された前記圧縮ガスを前記容器本体内から流出させるガス流出口と、前記容器本体内の下部を、前記ガス流入口側の第1室と前記ガス流出口側の第2室とに区分けする仕切り板と、を有することを特徴とする。
油冷式圧縮機の周辺の構成図である。 図1の要部Aの拡大図である。 高さL1および距離L2と吐出率との関係を示す図である。 距離L3と吐出率との関係を示す図である。
 以下、本発明の好適な実施の形態について、図面を参照しつつ説明する。
 (油冷式圧縮機の周辺の構成)
 本発明の一実施形態による油分離回収器は、油冷式圧縮機から油を伴って吐出された圧縮ガスから油を分離して回収するために用いられる。油冷式圧縮機の周辺の構成図である図1に示すように、油分離回収器1は、油冷式圧縮機21の下流側に設けられている。
 油冷式圧縮機21の吸込口には、吸込流路22が接続されている。圧縮されるべきガスは、吸込流路22から圧縮機21内に導入される。油冷式圧縮機21は、吸込流路22から導入されたガスを圧縮する。この結果、ガスは昇圧する。油冷式圧縮機21には、機器の冷却、潤滑およびローター部における圧縮ガスのシールを目的とした油が用いられている。圧縮機21におけるローター部よりも上流側には、油供給流路23が接続されている。油は、油供給流路23から油冷式圧縮機21内に注入される。これにより、油は、圧縮される前のガスに同伴される。圧縮されたガス(圧縮ガス)は、油冷式圧縮機21の吐出口から油を伴って吐出される。この油を伴ったガスは、吐出口に接続された吐出流路24を通って油分離回収器1に供給される。
 油分離回収器1においては、供給された圧縮ガスから質量差によって油が分離回収される。油が分離回収された圧縮ガスは、油分離回収器1から排出される。油分離回収器1から排出された圧縮ガスは、排出流路25を通って油分離器26に供給される。油分離器26は、油分離エレメント(フィルター)26aを備えており、圧縮ガスに残存する油を捕捉する。残存する油が分離された圧縮ガスは、供給流路27を通って下流プロセスに送られる。
 油分離回収器1内で回収された油は、油分離回収器1内で一旦貯留される。油分離回収器1内に貯留された油は、下部に設けられた油流出口から油循環経路28に排出される。この油は、油循環経路28を通って潤滑油クーラー29に送られる。潤滑油クーラー29は、油を冷却する。潤滑油クーラー29で冷却された油は、油供給流路23を流れ、通り油フィルター30でろ過され、潤滑油ポンプ31で昇圧され、その後に、再び油冷式圧縮機21のローター部に供給される。
 (油分離回収器の構成)
 油分離回収器1は、横置き配置される金属製で横長形状の容器本体2を有している。容器本体2は、両端が閉塞された円筒体からなる。すなわち、容器本体2は、円筒状の胴部2aと、胴部2aの一端開口を塞ぐように胴部2aの一端部に接続された第1端壁2bと、胴部2aの他端開口を塞ぐように胴部2aの他端部に接続された第2端壁2cとを有する。第1端壁2b及び第2端壁2cは、平板状に形成されていてもよいが、本実施形態では、外側に向かって膨らむように湾曲した形状に形成されている。容器本体2の上方の空間は、油冷式圧縮機21等の据付スペースとして利用することができる。容器本体2内の一端側(第1端壁2b側)の上部には、油を伴った圧縮ガスを容器本体2内に流入させるガス流入口3が位置している。また、容器本体2内の他端側(第2端壁2c側)の上部には、油が分離された圧縮ガスを容器本体2内から流出させるガス流出口4が位置している。後述するように、ガス流入口3は、エルボ流入管11の下流側の開口によって構成されている。また、ガス流出口4は、エルボ流出管12の上流側の開口によって構成されている。
 また、容器本体2の内部空間の下部には、該内部空間をガス流入口3側の空間である第1室6と、ガス流出口4側の空間である第2室7とに区分けする仕切り板5が設けられている。仕切り板5は、胴部2aの下部から側部に亘る範囲で胴部2aの内面に固定され、内部空間内において直立している。圧縮ガスから分離された油は、主に第1室6に溜まる。したがって、第2室7にはほとんど油は溜まらない。
 容器本体2内に流入した圧縮ガスは、第1室6に吹き付けられる。これにより、第1室6に溜まった油の油面が泡立ち、油面から油滴が発生するとともに、油を含んだ泡が油面に発生する。ここで、仕切り板5が設けられていない場合には、横長形状の容器本体2内においては、容器本体2内に溜まった油の油面とガス流出口4との距離が近くなる。このため、発生した油滴及び油泡が、ガス流出口4付近の圧縮ガスの流れに乗ってガス流出口4から容器本体2の外部に流出する。このため、油分離回収器1の油分離効率が低下する。
 そこで、本実施形態では、容器本体2内の下部におけるガス流出口4側の領域が、油がほとんど溜まらない第2室7として形成されている。これにより、第1室6の油面とガス流出口4との距離が遠くなる。したがって、発生した油滴及び油泡がガス流出口4に吸い込まれるのを防止することができる。発生した油滴や油泡の一部は、圧縮ガスの流れに乗って油面から飛散する。このとき、圧縮ガスは、第2室7の上方を通過して容器本体2の第2端壁2cの内面に沿って旋回し、第2室7内を仕切り板5に向かって流れる。油滴及び油泡は慣性力が大きいため、油滴及び油泡は仕切り板5に向かって直進することになる。このため、油滴及び油泡を仕切り板5に衝突させることができる。したがって、圧縮ガスから油滴及び油泡を分離させることができ、圧縮ガスの流れに乗る油滴及び油泡を捕集することができる。これにより、発生した油滴及び油泡が圧縮ガスの流れに乗ってガス流出口4から流出するのを防止することができる。したがって、製造コストを増加させることなく、油分離効率を向上させることができる。
 第2室7の下部には、油泡を捕集するデミスタ(捕集手段)8が設けられている。第1室6の油面で発生した油泡のほとんどは、仕切り板5の高さを超えられず、一定時間経過後に消滅する。しかし、油泡の一部は、油の嵩が増えることによって仕切り板5の上端を通過し、第2室7内に流入する可能性がある。仕切り板5を乗り越えた油泡は、圧縮ガスの流れに乗りガス流出口4から流出する恐れがある。そこで、第2室7の下部にデミスタ8が設けられている。仕切り板5を通過した油泡がデミスタ8によって捕集されることにより、油泡の再飛散を防止することができる。
 第2室7の底部には、配管経路10が接続されている。また、第2室7の底部には、配管経路10を開閉するフロート弁9が設けられている。フロート弁9は、第2室7の底部に油が一定量溜まった場合に配管経路10を開き、配管経路10を通して容器本体2外に油を流出させる構造となっている。フロート弁9を通過して流出した油は、配管経路10を通って油循環経路28に合流する。
 仕切り板5及びデミスタ8によって捕集された油滴及び油泡は、第2室7の底部に溜まる。その量は時間経過とともに増えていくため、ある程度溜まると再び圧縮ガスの流れに乗ってガス流出口4から流出する。また、第2室7の底部に溜まった油の油面がガス流出口4に到達すると、ガス流出口4から流出する恐れがある。そこで、第2室7の底部に設けられたフロート弁9は、第2室7の底部に所定量以上だけ油が溜まったときに、当該油を容器本体2外に流出させるように構成されている。これにより、第2室7の底部に溜まった油がガス流出口4から流出するのを防止することができる。
 容器本体2内には、エルボ流入管11が設けられている。エルボ流入管11は、油を伴って吐出流路24を流れた圧縮ガスを、容器本体2内に流入させるための流入管である。エルボ流入管11は、油を伴った圧縮ガスを第1室6の油面に対向しない方向に沿って容器本体2内に流入させるように容器本体2に固定されている。上述したように、ガス流入口3は、エルボ流入管11の下流側の開口である。本実施形態において、エルボ流入管11は、ガス流入端が胴部2aに固定されるとともに、中間部で曲がっている。エルボ流入管11は、油を伴った圧縮ガスを容器本体2の第1端壁2bに向かって噴出させるが、ガスの流入方向はこれに限定されない。すなわち、圧縮ガスの流入方向、即ちガス流入口3が開口する方向は、第1室6内に溜まった油の油面に対向する方向でなければよく、例えば、油面に平行な方向(すなわち水平方向)であってもよい。また、油面に対向する方向以外の方向に圧縮ガスを流入させる構成であれば、流入管として、曲がった形状のエルボ流入管11が設けられる構成に限られない。
 容器本体2内に導入された圧縮ガスを第1室6内の液面に直接吹きつけた場合、第1室6の油面が激しく波立ち、油滴及び油泡の発生量が増加する。これにより、油分離回収器1の油分離効率が低下する。そこで、エルボ流入管11によって圧縮ガスが直接第1室6の油面に吹きつけられないようにすることにより、第1室6の油面の波立ちを抑制し、油滴及び油泡の発生量を低減させることができる。
 容器本体2内には、エルボ流出管12が設けられている。エルボ流出管12は、容器本体2内の圧縮ガスをガス流出口4側(他端側)の第2端壁2c側から容器本体2外に流出させるものである。エルボ流出管12は、容器本体2の胴部2aを貫通する第1部位と、第1部位から第2端壁2cに向かって曲がった第2部位とを有する。ガス流出口4は、エルボ流出管12の第2部位における上流側の開口である。エルボ流出管12が曲がった形状に形成されることにより、ガス流出口4が仕切り板5から離れた位置に配置されている。なお、曲がった形状のエルボ流出管12に代え、真っ直ぐな形状の流出管が設けられていてもよい。
 ガス流出口4が第1室6の油面に近い場合、圧縮ガスの流れに乗って油滴及び油泡がガス流出口4から流出する恐れがある。そこで、エルボ流出管12を設けてガス流出口4の入口を第1室6の油面から遠ざけることにより、圧縮ガスの流れに乗って流出する油滴及び油泡の飛散量を低減させることができる。
 図1の要部Aの拡大図である図2に示すように、容器本体2の胴径(胴部2aの内径)をφD(mm)とすると、第1室6の油面6aの高さは、0.5φD以下に設定されている。そして、胴部2a内面の下端からの仕切り板5の高さL1(mm)は、0.5φDよりも高くなっている。また、容器本体2におけるガス流出口4側の第2端壁2cは、0.3φDの深さで湾曲されている。つまり、胴部2aの中心軸O方向(筒軸方向)における、胴部2aと第2端壁2cとの接続部位から第2端壁2cの最突出端までの距離が、0.3φDに設定されている。容器本体2におけるガス流入口3側の側壁(第1端壁2b)についても同様の形状に設定されている。なお、容器本体2の第1端壁2b及び第2端壁2cは、湾曲した形状に限定されず、平坦な形状であってもよい。
 容器本体2の中心軸O方向において、エルボ流出管12の開口(ガス流出口4)の開口端の内縁における第1室6に最も近い部分Bの位置を原点とし、ガス流入口3側を正とする。すなわち、エルボ流出管12の開口(ガス流出口4)の内縁の中心軸方向端部における下端部の位置を原点として、胴部2aの筒軸方向において、原点からガス流入口3に向かう方向を正とする。この場合、仕切り板5は、原点に対して0(mm)以上0.5φD(mm)以下の位置に配置されている。即ち、仕切り板5における第1室6側の面と原点との間の距離L2(mm)は、0(mm)以上0.5φD(mm)以下に設定されている。
 後述するように、距離L2が0mm未満であると、第1室6の油面がガス流出口4の下部まで到達する。このため、ガス流出口4と油面との距離が近くなり、圧縮ガスの流れに乗って飛散する油が増加する。また、距離L2が0.5φDを超えるとガス流出口4と油面との距離が遠くなり過ぎる。このため、圧縮ガスがより上流側で仕切り板5に衝突して圧縮ガスの乱れが大きくなり、油面から圧縮ガス中に飛散する油が増加する。そこで、距離L2を0(mm)以上0.5φD(mm)以下にすることにより、ガス流出口4から油滴及び油泡が流出しにくい圧縮ガスの流れをガス流出口4付近に形成することができる。これにより、油捕集性能をさらに向上させることができる。
 仕切り板5の高さL1(mm)は、第1室6の油面6aの高さよりも高く、かつ0.8φD(mm)以下にされている。後述するように、仕切り板5が高くなりすぎると圧縮ガス(主に油が飛散している油面付近の圧縮ガス)がガス流出口4のより近傍を通過するために、ガス流出口4から飛散する油が増加する。そこで、仕切り板5の高さL1が0.8φD(mm)以下に設定されている。これにより、油滴及び油泡がガス流出口4付近の圧縮ガスの流れに乗ってガス流出口4から流出するのを好適に抑制することができる。また、図2中矢印で示すように、圧縮ガスを容器本体2の内面に沿って好適に旋回させることができるので、慣性力の働きによって直進する油滴及び油泡を、第2室7側から仕切り板5に衝突させることができる。これにより、油滴及び油泡を好適に捕集することができる。
 容器本体2の中心軸O方向において、ガス流出口4の開口端の内縁における第1室6に最も近い部分Bは、容器本体2のガス流出口4側の側壁(第2端壁2c)から0.7φD(mm)以上離れた位置に配置されている。即ち、胴部2aの筒軸方向において、ガス流出口4の開口端の内縁における第1室6に最も近い部分Bと容器本体2のガス流出口4側の側壁(第2端壁2c)との間の距離L3(mm)は0.7φD(mm)以上に設定されている。ここで、ガス流出口4の開口端の内縁における第1室6に最も近い部分Bは、ガス流出口4の内縁における中心軸方向端部の最下部である。これにより、圧縮ガスは、図2中矢印で示すように、第2室7の上方を通り容器本体2の第2端壁2cの内面に沿って下降して仕切り板5に向かう旋回流を好適に形成する。よって、慣性力の働きで直進する油滴及び油泡を仕切り板5に衝突させて好適に捕集することができるので、油分離性能をさらに向上させることができる。
(油捕集性能の評価)
 次に、仕切り板5の条件を異ならせて、油捕集性能をシミュレーションにより評価した結果について説明する。具体的には、図2において、仕切り板5の厚みを6mmとし、仕切り板5の高さL1(mm)、および、距離L2(mm)をそれぞれ異ならせて、油捕集性能を評価した。また、距離L3(mm)を異ならせた条件や、仕切り板5がない条件でも評価を行った。評価を行った15種類の条件を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 ここで、容器本体2の胴部2aの内径φDを254mm、第1室6の水平方向の長さを2000mm、ガス流入口3およびガス流出口4の内径φdを60mmとした。また、第1室6の油面の高さを0.5φDとした。これは、潤滑油の保持時間(リテンションタイム)と容器本体2のサイズとのトレードオフの関係から、第1室6の油面の高さを0.5φDで設計するのが一般的であるからである。そして、圧縮ガスとして、温度が50℃、圧力が2.0MPaG、容器本体2内での平均流速が0.48m/sの空気を流した。
 油捕集性能の評価方法として、第1室6の油面に直径10μmの油滴を一定間隔で配置し、これらの油滴がガス流出口4から流出する確率(吐出率)を上記の15条件で比較する方法を行った。その結果を図3及び図4に示す。図3は、高さL1および距離L2と吐出率との関係を示す図である。図4は、距離L3と吐出率との関係を示す図である。
 図3及び図4に示されるように、仕切り板5が用いられたすべての条件(case1~15)において、油滴の吐出率すなわち油飛散量が1/2程度に低減されていることがわかる。また、仕切り板5の高さL1が0.6φD≦L1≦0.8φDの範囲に設定され、また、原点と仕切り板5との距離L2が0≦L2≦0.5φDの範囲に設定され、また、ガス流出口4の開口端の内縁における第1室6に最も近い部分Bと容器本体2のガス流出口4側の側壁との距離L3がL3≧0.7φDの範囲にそれぞれ設定されることにより、さらに吐出率が低減されていることがわかる。
 なお、胴部2aの内面の下端部からの仕切り板5の高さL1の下限値は、油が仕切り板5を乗り越えない高さであってよい。図3から分かるように、仕切り板5の高さL1が0.8φDよりも0.6φDの方が吐出率の低減効果が大きいことから、L1=0.5φD~0.6φDの範囲においても外挿的に吐出率の低減効果があると考えられるからである。
 仕切り板5の高さL1が0.8φDを超えると効果がよくない理由としては、仕切り板5が高くなりすぎると、圧縮ガス(主に油が飛散している油面付近の圧縮ガス)がガス流出口4のより近傍を通過することが考えられる。これによりガス流出口4から飛散する油が増加すると考えられる。仕切り板5の高さL1が0.8φDよりも0.6φDの方が効果が大きいことの理由も、同様のことが考えられる。
 原点と仕切り板5との距離L2が0未満の場合に効果がよくない理由としては、距離L2が0未満であると、第1室6の油面がガス流出口4の下部まで到達することが考えられる。この場合、ガス流出口4と油面との距離が近くなり、圧縮ガスの流れに乗って飛散する油が増加すると考えられる。また、距離L2が0.5φDを超えると効果がよくない理由としては、距離L2が0.5φDを超えるとガス流出口4と油面との距離が遠くなりすぎることが考えられる。この場合、圧縮ガスがより上流側で仕切り板5に衝突することになるため、圧縮ガスの乱れが大きくなって、油面から圧縮ガス中に飛散する油が増加すると考えられる。
 なお、本評価は圧縮ガスの圧力条件を2.0MPaGのみとしているが、圧力が異なる条件においても仕切り板5の位置と吐出率との関係は変わらないため、いかなる圧力条件においても仕切り板5による効果を得ることができる。
 (効果)
 以上に述べたように、本実施形態に係る油分離回収器1によると、仕切り板5により、容器本体2内の空間の下部がガス流入口3側の第1室6とガス流出口4側の第2室7とに区分けされる。これにより、圧縮ガスから分離した油は、主に第1室6に溜まり、第2室7にはほとんど溜まらない。ここで、仮に、容器本体2内に流入した圧縮ガスが第1室6に吹き付けられる場合には、第1室6に溜まった油の油面が泡立ち、油面から油滴が発生するとともに、油を含んだ泡が油面に発生してしまう。また、横長形状の容器本体2においては、第1室6の油面の高さ位置とガス流出口4の高さ位置とが近い。このため、発生した油滴及び油泡がガス流出口4付近の圧縮ガスの流れに乗ってガス流出口4から流出してしまう。これにより、油分離回収器1の油分離効率が低下する。これに対し、本実施形態のように、容器本体2内の下部におけるガス流出口4側の領域が、油がほとんど溜まらない第2室7として構成されている場合には、第1室6の油面とガス流出口4との距離が遠くなる。このため、発生した油滴及び油泡がガス流出口4に吸い込まれるのを防止することができる。発生した油滴や油泡の一部は、圧縮ガスの流れに乗って油面から飛散する。一方、圧縮ガスの一部は、第2室7の上方を通過して容器本体2の側壁の内面に沿って旋回し、第2室7内を仕切り板5に向かって流れる。このとき、慣性力の大きな油滴及び油泡は仕切り板5に向かって直進する。このため、油滴及び油泡は、仕切り板5に衝突して、圧縮ガスから分離される。これにより、圧縮ガスの流れに乗る油滴及び油泡を捕集することができる。そして、発生した油滴及び油泡が圧縮ガスの流れに乗ってガス流出口4から流出するのを防止することができるので、製造コストを増加させることなく、油分離効率を向上させることができる。
 また本実施形態では、原点(図2の部分Bの位置)と仕切り板5との距離L2が0(mm)以上0.5φD(mm)以下に設定される。距離L2が0mm未満の場合には、第1室6の油面がガス流出口4の下部まで到達するために、ガス流出口4と油面との距離が近くなる。このため、圧縮ガスの流れに乗って飛散する油が増加する。一方、距離L2が0.5φDを超えると、ガス流出口4と油面との距離が遠くなりすぎ、圧縮ガスがより上流側で仕切り板5に衝突する。このため、圧縮ガスの乱れが大きくなり、油面から圧縮ガス中に飛散する油が増加する。そこで、距離L2を0(mm)以上0.5φD(mm)以下にすることにより、ガス流出口4から油滴及び油泡が流出しにくい圧縮ガスの流れをガス流出口4付近に形成することができる。これにより、油捕集性能をさらに向上させることができる。
 また本実施形態では、仕切り板5の高さが、第1室6に溜まった油の油面6aの高さよりも高く、かつ0.8φD(mm)以下に設定される。仕切り板5が高くなりすぎると、圧縮ガス(主に油が飛散している油面付近の圧縮ガス)がガス流出口4のより近傍を通過する。このため、ガス流出口4から飛散する油が増加する。そこで、仕切り板5の高さL1を0.8φD(mm)以下にすることにより、油滴及び油泡がガス流出口4付近の圧縮ガスの流れに乗ってガス流出口4から流出するのを好適に抑制することができる。また、図2に矢印で示すように、圧縮ガスを容器本体2の側壁に沿って好適に旋回させることができる。このため、慣性力の働きによって直進する油滴及び油泡を仕切り板5に衝突させて好適に捕集することができる。
 また本実施形態では、容器本体2の中心軸O方向において、ガス流出口4の開口端の内縁における第1室6に最も近い部分Bと、容器本体2におけるガス流出口4側の側壁(第2端壁2c)との間の距離L3が、0.7φD(mm)以上に設定される。これにより、圧縮ガスは、図2に矢印で示すように、第2室7の上方を通り容器本体2の側壁に沿って下降して仕切り板5に向かう旋回流を好適に形成する。よって、慣性力の働きによって直進する油滴及び油泡を仕切り板5に衝突させて好適に捕集することができる。したがって、油分離性能をさらに向上させることができる。
 また本実施形態では、第2室7の下部に、油の泡を捕集するデミスタ8が設けられる。第1室6の油面に発生した油泡のほとんどは、仕切り板5の高さを超えられず、一定時間経過後に消滅する。しかし、油泡の一部は、嵩が増えることによって仕切り板5の上部を通過して第2室7に流入する可能性がある。そして、仕切り板5を通過した油泡は、圧縮ガスの流れに乗りガス流出口4から流出する恐れがある。そこで、第2室7の下部にデミスタ8が設けられることにより、仕切り板5を通過した油泡を捕集することができ、油泡の再飛散を防止することができる。
 また本実施形態では、第2室7の底部に、フロート弁9が設けられる。仕切り板5及びデミスタ8によって捕集された油滴及び油泡は、第2室7の底部に溜まる。その量は時間経過とともに増えていくため、ある程度溜まると再び圧縮ガスの流れに乗ってガス流出口4から流出する。また、第2室7の底部に溜まった油の油面がガス流出口4に到達すると、ガス流出口4から流出する恐れがある。そこで、第2室7の底部にフロート弁9が設けられる。これにより、第2室7の底部に溜まった油を容器本体2外に流出させることができ、第2室7の底部に溜まった油がガス流出口4から流出するのを防止することができる。
 また本実施形態では、エルボ流入管11が容器本体2内に設けられる。エルボ流入管11は、油を伴った圧縮ガスを第1室6の液面に対向しない方向に沿って容器本体2内に流入させる。圧縮ガスを直接第1室6内の油に吹きつけた場合、第1室6の油面が激しく波立ち、油滴及び油泡の発生量が増加する。これにより、油分離回収器1の油分離効率が低下する。そこで、エルボ流入管11によって圧縮ガスを直接第1室6内の油に吹きつけないようにすることにより、第1室6の油面の波立ちを抑制し、油滴及び油泡の発生量を低減させることができる。
 また本実施形態では、エルボ流出管12が容器本体2内に設けられる。エルボ流出管12は、容器本体2内の圧縮ガスをガス流出口4側の側壁から容器本体2外に流出させる。ガス流出口4が第1室6の油面に近い場合には、圧縮ガスの流れに乗って油滴及び油泡がガス流出口4から流出する恐れがある。そこで、エルボ流出管12によってガス流出口4の入口を第1室6の油面から遠ざけることにより、圧縮ガスの流れに乗って流出する油滴及び油泡の飛散量を低減させることができる。
 以上、本発明の実施形態を説明したが、具体例を例示したに過ぎず、特に本発明を限定するものではなく、具体的構成などは、適宜設計変更可能である。また、発明の実施の形態に記載された、作用及び効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、本発明の実施の形態に記載されたものに限定されるものではない。
 ここで、前記実施形態について概説する。
 (1)油分離回収器は、横置き配置される横長形状の容器本体と、前記容器本体内の一端側の上部に位置し、前記油を伴った前記圧縮ガスを前記容器本体内に流入させるガス流入口と、前記容器本体内の他端側の上部に位置し、前記油が分離された前記圧縮ガスを前記容器本体内から流出させるガス流出口と、前記容器本体内の下部を、前記ガス流入口側の第1室と前記ガス流出口側の第2室とに区分けする仕切り板と、を有する。
 (2)前記容器本体は、両端が閉塞された円筒体であってもよい。この場合において、前記容器本体の胴径をφD(mm)とし、前記容器本体の中心軸方向において前記ガス流出口の開口端の内縁における前記第1室に最も近い部分の位置を原点とし、前記ガス流入口側を正とすると、前記仕切り板は、前記原点に対して0(mm)以上0.5φD(mm)以下の位置に配置されていてもよい。
 (3)前記容器本体は、両端が閉塞された円筒体であってもよい。この場合において、前記容器本体の胴径をφD(mm)とすると、前記仕切り板の高さが、前記第1室に溜まった前記油の油面の高さよりも高く、かつ0.8φD(mm)以下に設定されていてもよい。
 (4)前記容器本体は、両端が閉塞された円筒体であってもよい。この場合において、前記容器本体の胴径をφD(mm)とすると、前記容器本体の中心軸方向において前記ガス流出口の開口端の内縁における前記第1室に最も近い部分は、前記容器本体における前記ガス流出口側の側壁から0.7φD(mm)以上離れた位置に配置されていてもよい。
 (5)前記油分離回収器には、前記第2室の下部に前記油の泡を捕集する捕集手段が設けられていてもよい。
 (6)前記油分離回収器には、前記第2室の底部にフロート弁が設けられていてもよい。
 (7)前記油分離回収器には、前記油を伴った前記圧縮ガスを前記第1室に対向しない方向に沿って前記容器本体内に流入させるエルボ流入管が前記容器本体内に設けられていてもよい。この場合、前記ガス流入口は、前記エルボ流入管の下流側の開口であってもよい。
 (8)前記油分離回収器には、前記容器本体内の前記圧縮ガスを前記ガス流出口側の側壁側から前記容器本体外に流出させるエルボ流出管が前記容器本体内に設けられていてもよい。この場合、前記ガス流出口は、前記エルボ流出管の上流側の開口であってもよい。
 前記実施形態では、仕切り板により、容器本体内の空間の下部がガス流入口側の第1室とガス流出口側の第2室とに区分けされる。これにより、圧縮ガスから分離した油は、主に第1室に溜まり、第2室にはほとんど油が溜まらない。ここで、仮に、容器本体内に流入した圧縮ガスが第1室に吹き付けられる場合には、第1室に溜まった油の油面が泡立ち、油面から油滴が発生するとともに、油を含んだ泡が油面に発生してしまう。また、横長形状の容器本体においては、第1室の油面の高さ位置とガス流出口の高さ位置とが近い。このため、発生した油滴及び油泡がガス流出口付近の圧縮ガスの流れに乗ってガス流出口から流出してしまう。これにより、油分離回収器の油分離効率が低下する。これに対し、前記実施形態のように、容器本体内の下部におけるガス流出口側の領域が、油がほとんど溜まらない第2室として構成されている場合には、第1室の油面とガス流出口との距離が遠くなる。このため、発生した油滴及び油泡がガス流出口に吸い込まれるのを防止することができる。発生した油滴や油泡の一部は、圧縮ガスの流れに乗って油面から飛散する。一方、圧縮ガスの一部は、第2室の上方を通過して容器本体の側壁の内面に沿って旋回し、第2室内を仕切り板に向かって流れる。このとき、慣性力の大きな油滴及び油泡は仕切り板に向かって直進する。このため、油滴及び油泡は、仕切り板に衝突して、圧縮ガスから分離される。これにより、圧縮ガスの流れに乗る油滴及び油泡を捕集することができる。そして、発生した油滴及び油泡が圧縮ガスの流れに乗ってガス流出口から流出するのを防止することができるので、製造コストを増加させることなく、油分離効率を向上させることができる。

Claims (8)

  1.  油冷式圧縮機から油を伴って吐出された圧縮ガスから前記油を分離して回収する油分離回収器において、
     横置き配置される横長形状の容器本体と、
     前記容器本体内の一端側の上部に位置し、前記油を伴った前記圧縮ガスを前記容器本体内に流入させるガス流入口と、
     前記容器本体内の他端側の上部に位置し、前記油が分離された前記圧縮ガスを前記容器本体内から流出させるガス流出口と、
     前記容器本体内の下部を、前記ガス流入口側の第1室と、前記ガス流出口側の第2室とに区分けする仕切り板と、
    を有することを特徴とする油分離回収器。
  2.  前記容器本体は、両端が閉塞された円筒体であり、
     前記容器本体の胴径をφD(mm)とし、前記容器本体の中心軸方向において前記ガス流出口の開口端の内縁における前記第1室に最も近い部分の位置を原点とし、前記ガス流入口側を正とすると、前記仕切り板は、前記原点に対して0(mm)以上0.5φD(mm)以下の位置に配置されていることを特徴とする請求項1に記載の油分離回収器。
  3.  前記容器本体は、両端が閉塞された円筒体であり、
     前記容器本体の胴径をφD(mm)とすると、前記仕切り板の高さが、前記第1室に溜まった前記油の油面の高さよりも高く、かつ0.8φD(mm)以下に設定されていることを特徴とする請求項1に記載の油分離回収器。
  4.  前記容器本体は、両端が閉塞された円筒体であり、
     前記容器本体の胴径をφD(mm)とすると、前記容器本体の中心軸方向において前記ガス流出口の開口端の内縁における前記第1室に最も近い部分は、前記容器本体における前記ガス流出口側の側壁から0.7φD(mm)以上離れた位置に配置されていることを特徴とする請求項1に記載の油分離回収器。
  5.  前記第2室の下部に前記油の泡を捕集する捕集手段が設けられていることを特徴とする請求項1~4のいずれか1項に記載の油分離回収器。
  6.  前記第2室の底部にフロート弁が設けられていることを特徴とする請求項1~4のいずれか1項に記載の油分離回収器。
  7.  前記油を伴った前記圧縮ガスを前記第1室に対向しない方向に沿って前記容器本体内に流入させるエルボ流入管が前記容器本体内に設けられており、
     前記ガス流入口は、前記エルボ流入管の下流側の開口であることを特徴とする請求項1~4のいずれか1項に記載の油分離回収器。
  8.  前記容器本体内の前記圧縮ガスを前記ガス流出口側の側壁側から前記容器本体外に流出させるエルボ流出管が前記容器本体内に設けられており、
     前記ガス流出口は、前記エルボ流出管の上流側の開口であることを特徴とする請求項1~4のいずれか1項に記載の油分離回収器。
PCT/JP2016/068041 2015-07-15 2016-06-17 油分離回収器 WO2017010226A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/741,988 US10626860B2 (en) 2015-07-15 2016-06-17 Oil separate and collect device
EP16824206.3A EP3301382A4 (en) 2015-07-15 2016-06-17 OIL SEPARATOR / -KOLLEKTOR
BR112018000626-2A BR112018000626B1 (pt) 2015-07-15 2016-06-17 Dispositivo de separação e coleta de óleo
CN201680038838.7A CN107709899B (zh) 2015-07-15 2016-06-17 油分离回收器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015141102A JP6553435B2 (ja) 2015-07-15 2015-07-15 油分離回収器
JP2015-141102 2015-07-15

Publications (1)

Publication Number Publication Date
WO2017010226A1 true WO2017010226A1 (ja) 2017-01-19

Family

ID=57756974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068041 WO2017010226A1 (ja) 2015-07-15 2016-06-17 油分離回収器

Country Status (6)

Country Link
US (1) US10626860B2 (ja)
EP (1) EP3301382A4 (ja)
JP (1) JP6553435B2 (ja)
CN (1) CN107709899B (ja)
BR (1) BR112018000626B1 (ja)
WO (1) WO2017010226A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111212683A (zh) * 2017-10-18 2020-05-29 株式会社神户制钢所 气液体分离器及油冷式压缩机

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498323Y1 (ja) * 1970-01-21 1974-02-27
JPS4986466U (ja) * 1972-11-16 1974-07-26
JPS5044959U (ja) * 1973-08-24 1975-05-07
JPS52119152U (ja) * 1976-03-08 1977-09-09
JPS6119691U (ja) * 1984-07-10 1986-02-04 株式会社神戸製鋼所 油冷式圧縮機
JPH0763427A (ja) * 1993-08-30 1995-03-10 Kobe Steel Ltd 冷凍装置
JPH11125184A (ja) * 1997-08-21 1999-05-11 Kobe Steel Ltd 油冷式圧縮機の油分離器
US20070028571A1 (en) * 2005-08-04 2007-02-08 Johnson Controls Technology Company Coalescing filter element with drainage mechanism
JP2008019857A (ja) * 2006-07-13 2008-01-31 Sumitomo Heavy Ind Ltd 横置き型バルクオイルセパレータ及びリザーバ
JP2014044006A (ja) * 2012-08-27 2014-03-13 Kobe Steel Ltd 油分離器及び圧縮装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3163312B2 (ja) * 1994-10-06 2001-05-08 三菱電機株式会社 冷凍サイクル用のアキュムレータ並びにその製造方法
US5415776A (en) * 1994-05-02 1995-05-16 Northland Production Testing Ltd. Horizontal separator for treating under-balance drilling fluid
JPH08159581A (ja) * 1994-12-09 1996-06-21 Hitachi Ltd スクリュー冷凍機の油分離器
JP3624110B2 (ja) 1999-02-10 2005-03-02 株式会社神戸製鋼所 油冷式圧縮機の横置き型油分離回収器
US6880360B2 (en) * 2002-10-03 2005-04-19 York International Corporation Compressor systems for use with smokeless lubricant
CN202289617U (zh) * 2011-10-19 2012-07-04 程英浩 一种油分离回收设备
US20130255308A1 (en) * 2012-03-29 2013-10-03 Johnson Controls Technology Company Chiller or heat pump with a falling film evaporator and horizontal oil separator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498323Y1 (ja) * 1970-01-21 1974-02-27
JPS4986466U (ja) * 1972-11-16 1974-07-26
JPS5044959U (ja) * 1973-08-24 1975-05-07
JPS52119152U (ja) * 1976-03-08 1977-09-09
JPS6119691U (ja) * 1984-07-10 1986-02-04 株式会社神戸製鋼所 油冷式圧縮機
JPH0763427A (ja) * 1993-08-30 1995-03-10 Kobe Steel Ltd 冷凍装置
JPH11125184A (ja) * 1997-08-21 1999-05-11 Kobe Steel Ltd 油冷式圧縮機の油分離器
US20070028571A1 (en) * 2005-08-04 2007-02-08 Johnson Controls Technology Company Coalescing filter element with drainage mechanism
JP2008019857A (ja) * 2006-07-13 2008-01-31 Sumitomo Heavy Ind Ltd 横置き型バルクオイルセパレータ及びリザーバ
JP2014044006A (ja) * 2012-08-27 2014-03-13 Kobe Steel Ltd 油分離器及び圧縮装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3301382A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111212683A (zh) * 2017-10-18 2020-05-29 株式会社神户制钢所 气液体分离器及油冷式压缩机

Also Published As

Publication number Publication date
BR112018000626A2 (ja) 2018-09-18
EP3301382A1 (en) 2018-04-04
US20180202425A1 (en) 2018-07-19
CN107709899A (zh) 2018-02-16
US10626860B2 (en) 2020-04-21
BR112018000626B1 (pt) 2023-03-21
JP2017020761A (ja) 2017-01-26
JP6553435B2 (ja) 2019-07-31
CN107709899B (zh) 2020-01-10
EP3301382A4 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
JP5954333B2 (ja) オイルミストセパレータ
CN107192182B (zh) 油分离器、压缩机及空调器
EP2899403B1 (en) Screw compressor and chiller unit provided with same
CN101559408B (zh) 润滑液分离装置
CN104147877B (zh) 一种油气分离器
CN104697255A (zh) 制冷系统中分离润滑油的分离器装置及进行油分离的方法
JP2016098711A (ja) 内燃機関
CN106352622A (zh) 油分离器及采用其的制冷系统
CN107084016A (zh) 一种发动机窜气排出组件
JP4425951B2 (ja) ブローバイガス用オイルセパレータ
WO2017010226A1 (ja) 油分離回収器
WO2016186108A1 (ja) 気液分離装置
CN109139189A (zh) 用于国六发动机的闭式曲轴箱强制通风系统油气分离器
CN102230704A (zh) 离心式油气分离器
CN108465301B (zh) 气体压缩机组合式旋风折流大口径气液复分离装置
CN201377946Y (zh) 迷宫形离心式油气分离器
JP4352228B2 (ja) ブリーザ装置
CN202646013U (zh) 螺杆空压机油气分离器
CN202204221U (zh) 离心式油气分离器
KR20230119719A (ko) 가스 쿨러
CN104019590A (zh) 新型氨制冷气液分离器
CN209083363U (zh) 用于国六发动机的闭式曲轴箱强制通风系统油气分离器
CN208330746U (zh) 空气压缩机
CN107356029B (zh) 冷凝器壳管和制冷设备
JP2016223340A (ja) オイル分離装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824206

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016824206

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15741988

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018000626

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018000626

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180111