WO2017006907A1 - 固体高分子形燃料電池 - Google Patents

固体高分子形燃料電池 Download PDF

Info

Publication number
WO2017006907A1
WO2017006907A1 PCT/JP2016/069776 JP2016069776W WO2017006907A1 WO 2017006907 A1 WO2017006907 A1 WO 2017006907A1 JP 2016069776 W JP2016069776 W JP 2016069776W WO 2017006907 A1 WO2017006907 A1 WO 2017006907A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
nonwoven fabric
fiber nonwoven
separator
fuel cell
Prior art date
Application number
PCT/JP2016/069776
Other languages
English (en)
French (fr)
Inventor
堀之内綾信
梶原健太郎
下山悟
堀口智之
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP16821376.7A priority Critical patent/EP3322012A4/en
Priority to JP2016545941A priority patent/JPWO2017006907A1/ja
Priority to US15/575,729 priority patent/US20180294487A1/en
Priority to KR1020187002590A priority patent/KR20180026478A/ko
Priority to CA2991121A priority patent/CA2991121A1/en
Priority to CN201680038867.3A priority patent/CN107710480A/zh
Publication of WO2017006907A1 publication Critical patent/WO2017006907A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a polymer electrolyte fuel cell using a carbon fiber nonwoven fabric as a gas diffusion electrode.
  • solid polymer fuel cells in particular, can generate power at a relatively low temperature of about 100 ° C. and have high output density. For this reason, it is used in the power source of automobiles that run on electric motors and in home cogeneration systems.
  • a fuel gas containing hydrogen and an oxidant gas containing oxygen are separated by an electrolyte membrane.
  • the side to which the fuel gas is supplied is called the anode side
  • the side to which the oxidant gas is supplied is called the cathode side.
  • the fuel gas supplied to the flow path of the separator on the anode side diffuses into the gas diffusion electrode in contact with the separator, and is disposed on the other surface of the gas diffusion electrode (the surface opposite to the side in contact with the separator) Separated into electrons and protons in the layer.
  • the electrons are connected to a load (apparatus) outside the fuel cell via carbon particles constituting the catalyst layer and carbon fibers constituting the gas diffusion electrode, so that a direct current can be taken out.
  • the electrons pass through the gas diffusion electrode of the cathode, and protons generated in the anode catalyst layer move to the cathode catalyst layer through the electrolyte membrane.
  • an oxidant gas containing oxygen is supplied to the flow path of the separator on the cathode side, diffuses into the gas diffusion electrode substrate in contact with the separator, and is a cathode catalyst layer disposed on the other surface of the gas diffusion electrode. It produces water together with protons and electrons.
  • the generated water moves from the catalyst layer to the groove of the separator on the cathode side through the gas diffusion electrode substrate, and is discharged out of the fuel cell through the flow path of the separator.
  • Patent Documents 1 to 4 propose techniques for improving the water permeability by forming grooves and through holes in the gas diffusion electrode.
  • the separator has a serial flow path for supplying fuel gas through one continuous flow path without branching, and a parallel flow path with a branch flow path for distributing fuel gas from the central flow path.
  • the present invention provides a polymer electrolyte fuel cell that uses a separator having parallel flow paths and has good water discharge performance under high humidity power generation conditions and can maintain high power generation performance. Is an issue.
  • the present invention for achieving the above object is a polymer electrolyte fuel cell having a gas diffusion electrode based on a carbon fiber nonwoven fabric and a separator having a parallel linear flow path formed therein,
  • the carbon fiber nonwoven fabric has corrugated irregularities in which linear ridges and linear groove portions are alternately repeated, and the light transmittance of the ridge portion and the groove portion is the same, and the gas diffusion electrode and the separator Is a solid polymer in which the unevenness forming surface of the carbon fiber non-woven fabric is opposed to the flow path forming surface of the separator and the extending direction of the flange and the groove is aligned with the extending direction of the flow path of the separator.
  • This is a fuel cell.
  • the polymer electrolyte fuel cell of the present invention uses a separator having parallel flow paths, it has excellent drainage performance even under high humidity conditions, so that it can stably generate power while suppressing flooding. Can do.
  • FIG. 2 is an upright observation image of the carbon fiber nonwoven fabric produced in Example 1.
  • FIG. 2 is an inverted observation image of a carbon fiber nonwoven fabric produced in Example 1.
  • FIG. 2 is an upright observation image of a carbon fiber nonwoven fabric produced in Comparative Example 1.
  • FIG. 2 is an inverted observation image of a carbon fiber nonwoven fabric produced in Comparative Example 1.
  • FIG. 4 is a schematic diagram showing a channel shape of a separator having a multi-parallel channel. It is a schematic diagram which shows the flow-path shape of the separator which has an opposing comb-shaped (Interdigitated) flow path.
  • the carbon fiber nonwoven fabric is obtained by heating and carbonizing a carbon fiber precursor fiber nonwoven fabric in an inert gas atmosphere.
  • the carbon fiber is obtained by heating and carbonizing a carbon fiber precursor fiber in an inert gas atmosphere.
  • Non-woven fabric is obtained by fixing the constituent fibers of a web by methods such as mechanical entanglement, fusion by heating, and adhesion by a binder.
  • the web is a sheet formed by laminating carbon fiber precursor fibers.
  • the carbon fiber precursor fiber will be described later.
  • As the web a dry parallel laid web or a cross laid web, an airlaid web, a wet papermaking web, an extruded spunbond web, a melt blow web, an electrospinning web, or the like can be used. Examples of the carbon fiber nonwoven fabric in which these webs are formed into a sheet include those in which the web is mechanically entangled, heated and fused, and bonded with a binder.
  • the fiber diameter of the carbon fiber should be appropriately determined according to the use of the carbon fiber nonwoven fabric.
  • the fiber diameter of the carbon fiber is preferably 3 to 30 ⁇ m and more preferably 5 to 20 ⁇ m when used as a general gas diffusion electrode.
  • the average pore diameter of the carbon fiber nonwoven fabric is preferably 40 ⁇ m or more, more preferably 45 ⁇ m or more, and further preferably 50 ⁇ m or more.
  • the upper limit of the average pore diameter is not particularly limited.
  • the average pore diameter is preferably 100 ⁇ m or less, and more preferably 80 ⁇ m or less.
  • the average pore diameter is 40 ⁇ m or more, high performance can be obtained by gas diffusion and drainage.
  • the average pore diameter is 100 ⁇ m or less, it is easy to prevent dryout.
  • the average pore diameter of the carbon fiber nonwoven fabric means a value measured by a mercury intrusion method.
  • a carbide is attached as a binder to the contact points between the carbon fibers constituting the carbon fiber nonwoven fabric, the contact area is increased at the contact points between the carbon fibers, and excellent conductivity and thermal conductivity can be obtained.
  • a method for applying such a binder include a method in which a carbon fiber nonwoven fabric after carbonization treatment is impregnated or sprayed with a thermosetting resin and then heat-treated again under an inert atmosphere.
  • a phenol resin, an epoxy resin, a melamine resin, a furan resin, or the like can be used as the thermosetting resin.
  • a method of blending a thermoplastic resin with a carbon fiber precursor nonwoven fabric is also preferably used.
  • corrugated plate-like unevenness On the surface of the carbon fiber non-woven fabric, corrugated plate-like unevenness (hereinafter simply referred to as “corrugated plate-like unevenness” or “unevenness”) in which linear ridges and linear groove portions are alternately formed is formed.
  • corrugated plate-like unevenness includes unevenness having a cross-sectional shape such as a sine wave shape, a rectangular wave shape, a triangular wave shape, and a sawtooth wave shape.
  • the thickness of the carbon fiber nonwoven fabric when the carbon fiber nonwoven fabric is pressurized at 1 MPa in the thickness direction (hereinafter simply referred to as “thickness at the time of pressurization.”)
  • the carbon fiber nonwoven fabric cut to 2.5 cm x 2.5 cm is sandwiched between metal plates with a surface of 3 cm or more x 3 cm or more and a thickness of 1 cm or more, and a pressure of 1 MPa is applied to the carbon fiber nonwoven fabric. And ask for it.
  • the presence of corrugated irregularities can be obtained by, for example, displaying an image taken by changing the focus from the concave / convex forming surface side of the carbon fiber nonwoven fabric with an optical microscope by three-dimensional display by depth synthesis, Judgment can be made by laser scanning from the unevenness forming surface side with a field of view of 500 ⁇ m to 5 mm to capture an image, performing tilt correction using shape analysis software, and changing the color according to the height and displaying.
  • cross section means a cross section of the carbon fiber nonwoven fabric in a direction perpendicular to the extending direction of the linear groove portion and the flange portion unless otherwise specified.
  • Corrugated irregularities may be formed on both sides of the carbon fiber nonwoven fabric.
  • a carbon fiber nonwoven fabric when used as a gas diffusion electrode, it is sufficient that the effect of enhancing the discharge property of water droplets generated on the contact surface with the separator is sufficient, and it is sufficient that unevenness is formed only on one surface. Moreover, it is preferable also on manufacture. Therefore, in this specification, the carbon fiber nonwoven fabric in which unevenness is formed only on one surface is described, and in the description, the surface on which the unevenness is formed is referred to as “unevenness forming surface” or “upper surface”, and the opposite unevenness The surface on which no is formed is referred to as “uneven surface” or “lower surface”.
  • the description will be made assuming that the carbon fiber nonwoven fabric is placed horizontally with the lower surface down.
  • the plane passing through the tip of the uneven ridge formed on the surface opposite to the unevenness forming surface to be observed is considered as the lower surface.
  • FIG. 2 is a schematic view showing a cross section of one embodiment of the carbon fiber nonwoven fabric used in the present invention.
  • the carbon fiber nonwoven fabric shown in FIG. 2 has irregularities having a rectangular wave cross section.
  • Pg is the groove pitch
  • Wg is the width of the groove
  • Wr is the width of the flange
  • H1 is the thickness of the carbon fiber nonwoven fabric
  • H2 is the height of the unevenness (from the bottom of the groove to the tip of the flange). Height).
  • Pg is the groove pitch
  • Wg is the width of the groove
  • Wr the width of the flange
  • H1 the thickness of the carbon fiber nonwoven fabric
  • H2 is the height of the unevenness (from the bottom of the groove to the tip of the flange). Height).
  • a portion existing below the plane M is a groove portion
  • a portion existing above is a collar portion.
  • the width Wg of the ridge is the width of the cut surface of the ridge by the
  • the carbon fiber nonwoven fabric shown in FIG. 2 has a rectangular wavy cross section, and the cross sections of the groove and the ridge are both rectangular. That is, the wall surfaces of the groove part and the collar part are formed substantially perpendicular to the lower surface. The wall surface of the groove part and the collar part may have an inclination from the perpendicular direction of the lower surface. That is, the cross section of the groove part and the collar part may be trapezoidal or may be substantially semicircular (U-shaped).
  • the height of the unevenness (H2) is preferably 20 ⁇ m or more, and more preferably 50 ⁇ m or more.
  • the upper limit of the unevenness height (H2) is not particularly limited as long as the strength as the carbon fiber nonwoven fabric can be maintained.
  • the groove pitch (Pg) is preferably 20 ⁇ m to 2000 ⁇ m. If the groove pitch is 20 ⁇ m or more, it is easy to obtain the effect of reducing the contact area between the carbon fiber nonwoven fabric surface and the water droplets. If the formation pitch of the groove portions is 2000 ⁇ m or less, water droplets do not fall into the groove portions, and the surface of the heel portion is easily moved.
  • the groove pitch is the average value of the distances between the center lines of adjacent grooves.
  • the formation pitch of the groove part can be calculated from the number of the groove parts by calculating the width of the uneven part of the carbon fiber nonwoven fabric in the direction orthogonal to the extending direction of the groove part.
  • the groove pitch is more preferably 100 ⁇ m to 1000 ⁇ m. Moreover, when the formation pitch of a groove part is smaller than the formation pitch of the flow path of the separator mentioned later, a movement of a water drop becomes easy and it is preferable.
  • the groove area ratio is preferably 0.9 or less.
  • the groove area ratio is more preferably 0.7 or less.
  • a groove part area ratio is at least 0.1 or more at the point which is easy to acquire the effect of making the contact area of a carbon fiber nonwoven fabric surface and a water droplet small.
  • a carbon fiber non-woven fabric having the same light transmittance in the groove portion and the heel portion is used.
  • the pressure (P) when the liquid is allowed to pass through the pores of the carbon fiber nonwoven fabric can be obtained from the following Young Laplace equation.
  • P ⁇ (2 g L cosq) / r
  • g L is the surface tension of the liquid
  • q is the contact angle on the peripheral surface of the liquid hole
  • r is the hole diameter.
  • the Young Laplace equation indicates that when two holes having different hole diameters are adjacent to each other, the liquid preferentially passes through the hole having the larger hole diameter.
  • the light transmittance of the groove portion and the heel portion of the carbon fiber nonwoven fabric is the same, when the basis weight of the groove portion and the heel portion is the same, or when it becomes equivalent due to the difference in the fiber orientation, it is equivalent according to the difference in the fineness And the like.
  • the density of the groove part becomes relatively high and the density of the flange part becomes relatively low. That is, the average hole diameter of the groove is smaller than the average hole diameter of the flange.
  • the water generated in the catalyst layer preferentially passes through the collar rather than the groove, and is finally discharged preferentially from the collar to the separator side.
  • the carbon fiber non-woven fabric groove portion is arranged so as to be substantially parallel to the linear portion of the linear flow path of the separator, so that water discharged from the collar portion is gas by the wind pressure of the fuel gas. It becomes easy to move the surface of the collar part of the diffusion electrode along the extending direction of the collar part.
  • a water repellent will not be specifically limited if it is a substance which has the effect of increasing the water droplet contact angle of the carbon fiber nonwoven fabric surface. Examples thereof include fluorine resins such as PTFE, FEP, and PVDF, and silicone resins such as PDMS.
  • the carbon fiber non-woven fabric preferably has a water droplet contact angle of 100 ° or more on the unevenness-formed surface by application of a water repellent. Since water repellency is preferably high from the viewpoint of improving drainage in the fuel cell, the water droplet contact angle on the uneven surface is preferably 120 degrees or more, and more preferably 140 degrees or more.
  • a microporous layer further comprising a fluororesin and a carbon material such as carbon black on the lower surface of the carbon fiber non-woven fabric having the irregularities as described above (the surface facing the electrolyte membrane when the membrane electrode composite is formed) It is also preferable to improve the drainage.
  • the fluororesin contained in the microporous layer is preferably 1 to 80% by weight, more preferably 10 to 70% by weight, and further preferably 20 to 60% by weight with respect to the carbon material from the viewpoint of achieving both conductivity and strength. preferable.
  • a single cell of a polymer electrolyte fuel cell includes an electrolyte membrane 1, a catalyst layer 2 arranged on both sides of the electrolyte membrane 1, and an anode side and a cathode arranged on both sides thereof.
  • Side gas diffusion electrode 4 and a pair of separators 5 arranged on both sides thereof.
  • the separator 5 has a parallel linear channel 51 formed therein.
  • a parallel flow path is a flow path having a branch flow path that distributes fuel gas from a central flow path, and means a flow path shape other than a series type that is a single continuous flow path without branching.
  • the straight flow path means a flow path shape in which 80% or more of the total length of the flow path is formed as a straight portion that is substantially continuous from one end to the other end of the separator.
  • parallel linear flow paths parallel type (Parallel) as shown in FIG. 7, multi-parallel type (Multi-parallel) as shown in FIG. 8, or facing as shown in FIG. Examples include interdigitated flow paths. 7 to 9, the flow path portion formed in the vertical direction in each drawing corresponds to the straight portion. In order to obtain the effect of the present invention, it is particularly preferable to use a separator having a parallel type or multi-parallel type channel.
  • the unevenness forming surface of the gas diffusion electrode 4 based on the carbon fiber nonwoven fabric is opposed to the flow path forming surface of the separator 5, and the groove portion 41 and the flange portion 42 of the carbon fiber nonwoven fabric are the linear flow of the separator. It arrange
  • the groove portion of the carbon fiber nonwoven fabric and the straight portion of the separator flow path are arranged so as to be substantially parallel, the direction of the wind pressure of the fuel gas coincides with the extending direction of the groove portion of the carbon fiber nonwoven fabric.
  • the water droplets concentrated on the surface of the buttock are less likely to drop or get caught in the groove and can easily move on the surface of the buttock.
  • the groove portion of the carbon fiber nonwoven fabric is arranged so as to be substantially perpendicular to the straight portion of the separator flow path, the direction of the wind pressure of the fuel gas does not coincide with the extending direction of the groove portion. For this reason, the water droplets on the surface of the buttock drop and get caught in the groove, making it difficult to move.
  • the groove portion and the ridge portion of the carbon fiber nonwoven fabric are substantially parallel to the linear portion of the linear flow path of the separator, and the extending direction of the linear ridge portion or groove portion of the carbon fiber nonwoven fabric and the linear flow path of the separator This means that the angle formed with the direction in which the straight line portion is formed is 30 ° or less.
  • the angle formed by the formation direction of the straight portion of the linear flow path of the separator is preferably 20 ° or less, and more preferably 10 ° or less. Moreover, when the formation pitch of the flow path of a separator is larger than the formation pitch of the groove part of a carbon fiber nonwoven fabric, a movement of a water drop becomes easy and it is preferable.
  • the extending direction of the groove portion or the ridge portion of the carbon fiber nonwoven fabric and the forming direction of the linear portion of the linear flow path of the separator intersect, the movement of water droplets collected on the ridge portion is blocked by the non-flow passage forming portion of the separator. It is done. Therefore, it is preferable to arrange so that the extending direction of the groove portion or the ridge portion of the carbon fiber nonwoven fabric does not intersect with the forming direction of the straight portion of the linear flow path of the separator.
  • the polymer electrolyte fuel cell of the present invention can be produced by the following production method as an example.
  • the carbon fiber nonwoven fabric used for the gas diffusion electrode substrate is obtained by carbonizing the carbon fiber precursor fiber nonwoven fabric.
  • the carbon fiber precursor fiber is a fiber that is carbonized by firing.
  • the carbon fiber precursor fiber is preferably a fiber having a carbonization rate of 15% or more, and more preferably 30% or more.
  • the carbon fiber precursor fiber used in the present invention is not particularly limited.
  • Carbon fiber precursor fibers include infusible polyacrylonitrile (PAN) fiber (PAN flame resistant fiber), infusible pitch fiber, polyvinyl alcohol fiber, cellulose fiber, infusible lignin fiber, infusible Examples thereof include polyacetylene fiber, infusible polyethylene fiber, and polybenzoxazole fiber.
  • the carbon fiber precursor fiber nonwoven fabric is a fabric formed by bonding webs formed of carbon fiber precursor fibers by entanglement, heat fusion, binder adhesion, or the like.
  • As the web a dry parallel laid web or cross laid web, an airlaid web, a wet papermaking web, an extruded spunbond web, a melt blow web, and an electrospinning web can be used.
  • the PAN fiber obtained by the solution spinning method is infusibilized to form a web
  • the nonwoven fabric which entangled the dry web mechanically is especially preferable.
  • a carbide is attached as a binder at the intersection of carbon fibers of the carbon fiber nonwoven fabric in terms of excellent conductivity and thermal conductivity.
  • Such a carbon fiber nonwoven fabric can be produced by adding a carbide precursor to the carbon fiber precursor fiber nonwoven fabric.
  • the method for imparting the carbide precursor is not particularly limited. Examples include a method of impregnating or spraying a carbon fiber precursor fiber nonwoven fabric with a carbide precursor solution, and a method of previously blending a carbon fiber precursor fiber nonwoven fabric with a thermoplastic resin fiber serving as a carbide precursor.
  • thermosetting resin such as a phenol resin, an epoxy resin, a melamine resin, or a furan resin
  • a phenol resin is particularly preferable because of high carbonization yield.
  • the thermosetting resin solution is impregnated, the difference in shrinkage behavior between the carbon fiber precursor fiber and the binder resin occurs in the carbonization step, and thus the smoothness of the carbon fiber nonwoven fabric tends to be lowered. Further, since a migration phenomenon in which the solution moves to the surface of the carbon fiber nonwoven fabric during drying is likely to occur, uniform treatment tends to be difficult.
  • thermoplastic resin fibers are preferably relatively inexpensive polyester fibers, polyamide fibers, and polyacrylonitrile fibers.
  • the blending amount of the binder is preferably 0.5 parts by mass or more with respect to 100 parts by mass of the carbon fiber precursor fiber in order to improve the strength, conductivity, and thermal conductivity of the carbon fiber nonwoven fabric, and 1 part by mass or more. It is more preferable that Moreover, it is preferable that it is 80 mass parts or less for drainage improvement, and it is more preferable that it is 50 mass parts or less.
  • the heating temperature at this time is preferably 160 ° C. to 280 ° C., more preferably 180 ° C. to 260 ° C., from the viewpoint of the form stability of the press formed on the nonwoven fabric structure of carbon fiber precursor fibers.
  • the corrugated irregularities in which linear grooves and ridges are alternately arranged are formed by forming irregularities on the surface at the stage of the carbon fiber precursor fiber nonwoven fabric and then carbonizing. Specifically, it is preferable to form irregularities by a method of pressing a shaping member corresponding to the irregularities to be formed on the surface of the carbon fiber precursor fiber nonwoven fabric, that is, by embossing.
  • the embossing method include a method of continuously pressing with an embossing roll and a flat roll in which a convex shape corresponding to the groove is formed, and a method of batch pressing with a plate and a flat plate having the same convex shape. .
  • the carbon fiber nonwoven fabric in which the groove portion is formed by the method of pressing the shaping member against the surface of the carbon fiber precursor fiber nonwoven fabric has the same light transmittance in the groove portion and the collar portion. Therefore, as described above, water generated by the reaction can be preferentially concentrated on the surface of the buttock. The collected water moves on the surface of the buttock by the wind pressure of the fuel gas, and is easily discharged out of the system.
  • the light transmittance of the groove portion is smaller than the light transmittance of the collar portion.
  • water preferentially passes through the groove portion rather than the collar portion, and finally the water is concentrated in the groove portion.
  • the water droplets are less likely to receive the wind pressure due to the fuel gas than in the case where the water is concentrated in the collar portion, and the discharge is difficult, so that the flooding phenomenon is likely to occur.
  • the carbon fiber precursor fiber nonwoven fabric on which the irregularities are formed is carbonized.
  • the method of carbonization is not particularly limited, and a known method in the carbon fiber material field can be used.
  • Firing in an inert gas atmosphere is preferably used. Firing in an inert gas atmosphere is preferably performed by heating to 800 ° C. or higher while supplying an inert gas such as nitrogen or argon at atmospheric pressure.
  • the temperature of the carbonization treatment is preferably 1500 ° C. or higher and more preferably 1900 ° C. or higher in order to achieve excellent conductivity and thermal conductivity. On the other hand, it is preferable that it is 3000 degrees C or less from a viewpoint of the operating cost of a heating furnace.
  • the carbon fiber precursor fiber nonwoven fabric When the carbon fiber nonwoven fabric is used as a gas diffusion electrode of a polymer electrolyte fuel cell, the carbon fiber precursor fiber nonwoven fabric has a thickness of 30 to 400 ⁇ m and a density of 0.2 to 0.8 g / cm 3 after carbonization. It is preferable to adjust the form and carbonization conditions.
  • the application of the water repellent can be performed by applying these water repellents to the carbon fiber nonwoven fabric by a method such as melt impregnation, printing using a solution or dispersion, transfer, or impregnation.
  • the water droplet contact angle is an average value measured by dropping 10 water droplets of 10 ⁇ L on the uneven surface of the carbon fiber nonwoven fabric in an environment of a temperature of 20 ° C. and a humidity of 60%.
  • the water droplet contact angle can be measured by, for example, an automatic contact angle meter DMs-601 (manufactured by Kyowa Interface Science Co., Ltd.).
  • the microporous layer is made by applying a paste made by adding fluorocarbon resin such as PTFE and carbon material such as carbon black to the surface of the carbon fiber nonwoven fabric by bar coating or die coating, drying, and sintering. By doing so, it can be formed.
  • the catalyst layer is formed on both sides of the polymer electrolyte membrane, and the carbon fiber nonwoven fabric prepared as described above is further arranged on both sides and bonded, or the carbon prepared as described above is formed on both sides of the polymer electrolyte membrane.
  • a membrane electrode assembly having a gas diffusion electrode based on a carbon fiber nonwoven fabric can be obtained by arranging and bonding a fiber nonwoven fabric with a catalyst layer formed thereon. Further, a separator in which parallel linear flow paths are formed on both sides of the membrane electrode assembly, the unevenness forming surface of the carbon fiber nonwoven fabric faces the flow path forming surface of the separator, and the groove portion of the carbon fiber nonwoven fabric is formed.
  • the polymer electrolyte fuel cell can be obtained by arranging the flange portion so as to be substantially parallel to the formation direction of the linear portion of the linear flow path of the separator.
  • the light transmittance of the groove portion and the buttock portion is different, the light transmittance is different between the groove portion and the buttock portion, so that the groove portion is bright and the darkness and darkness of the ridge portion are observed.
  • the average value of the brightness of the inverted observation image is calculated using image processing software, and the average value is used as the average brightness.
  • the lightness here is a numerical value expressed in 256 levels from 0 to 255 in the RGB color model.
  • the brightness of a range obtained by trimming half the width of the groove portion around the center line of the groove portion is measured in the width direction of the groove portion, and an average value thereof is calculated. Brightness.
  • the brightness of the buttocks is also measured in the range of trimming half the width of the buttocks around the center line of the buttocks, and the average value is taken as the brightness of the buttocks.
  • the observation is performed as described above, and the average brightness of the observation visual field is compared with the brightness of each groove and ridge included in the observation visual field. This is performed for 100 grooves and ridges.
  • the light transmittance of the grooves is not equivalent.
  • the light transmittance between the ridge portion and the groove portion is as follows. Suppose they are not equivalent. If none of the above applies, it is determined that the light transmittance of the groove portion and the flange portion is the same.
  • Example 1 After crimping the PAN-based flameproof yarn to a number average fiber length of 76 mm, it was formed into a sheet with a card and a cross layer, and then needle punching with a needle density of 300 / cm 2 was performed to obtain a carbon fiber precursor fiber nonwoven fabric. .
  • a metal plate (groove width 420 ⁇ m, ridge width 420 ⁇ m, groove formation pitch 840 ⁇ m, recess depth 90 ⁇ m, concave and convex shape is rectangular wave shape) on one side of a PAN-based flame resistant nonwoven fabric And pressed for 4 minutes under the conditions of 220 ° C.
  • the carbon fiber nonwoven fabric in which the linear groove part was formed in one surface was obtained by baking at 2400 degreeC for 4 hours in inert atmosphere.
  • the width of the groove, the formation pitch, and the groove area ratio are as shown in Table 1.
  • the obtained carbon fiber non-woven fabric is used for the above 1.
  • the upright observation image and the inverted observation image of the carbon fiber nonwoven fabric produced in Example 1 are shown in FIGS. 3 and 4, respectively.
  • linear grooves extend in the same direction with respect to the major axis direction in the observation visual field range, and five grooves are formed at a pitch of about 800 ⁇ m in the minor axis direction in the observation visual field range. Existed.
  • the inverted observation image of FIG. 4 the groove could not be visually recognized.
  • the carbon fiber nonwoven fabric produced in this manner was impregnated with an aqueous dispersion of PTFE adjusted to a solid content concentration of 3 wt% so that the PTFE solid content was 5 wt%, and dried at 130 ° C. using a hot air dryer.
  • a water repellent was applied by heating at 380 ° C. for 10 minutes, and a water repellent treatment was performed.
  • the water droplet contact angle on the groove forming surface was 140 °, and it was confirmed that a sufficient amount of water repellent material was applied.
  • a microporous layer was applied to the uneven surface of the carbon fiber nonwoven fabric subjected to the water repellent treatment.
  • acetylene black (“Denka Black” (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd.)
  • PTFE resin (“Polyflon” (registered trademark) D-1E manufactured by Daikin Industries, Ltd.)
  • surfactant Nacalai Tesque ( "TRITON” (registered trademark) X-100)
  • a coating solution mixed at a ratio of 6 parts by mass was prepared. Then, the said coating liquid was apply
  • a catalyst layer platinum amount 0.2 mg / cm 2
  • a fluorine-based electrolyte membrane made of Nafion (registered trademark) (manufactured by DuPont) by hot pressing.
  • a coated electrolyte membrane CCM
  • Two gas diffusion electrodes prepared as described above were disposed on both sides of the CCM, and hot pressing was performed again to obtain a membrane electrode assembly (MEA). At this time, the gas diffusion electrode substrate was arranged so that the surface having the microporous layer was in contact with the catalyst layer side.
  • the MEA and the separator in which the parallel-type parallel linear flow paths (width 1000 ⁇ m, pitch 2000 ⁇ m, depth 500 ⁇ m) shown in FIG. 7 are formed are extended from the groove portion and the flange portion of the gas diffusion electrode.
  • a solid polymer fuel cell (single cell) having a power generation area of 5 cm 2 was arranged so that the angle formed by the direction and the formation direction of the straight portion of the linear flow path of the separator was 10 ° or less.
  • Example 2 In Example 1, when the shape of the linear groove was given to one side of the carbon fiber precursor fiber nonwoven fabric with a metal plate, the groove width of the used metal plate was 420 ⁇ m, the width of the ridge was 210 ⁇ m, and the groove pitch was formed.
  • a polymer electrolyte fuel cell (single cell) was produced in the same manner as in Example 1 except that the depth was changed to 630 ⁇ m and the depth of the recess was 90 ⁇ m.
  • Example 3 In Example 1, when the shape of a linear groove was imparted to one side of the carbon fiber precursor fiber nonwoven fabric with a metal plate, the groove width of the metal plate used was 210 ⁇ m, the width of the ridge was 420 ⁇ m, and the groove pitch was formed.
  • a polymer electrolyte fuel cell (single cell) was produced in the same manner as in Example 1 except that the depth was changed to 630 ⁇ m and the depth of the recess was 90 ⁇ m.
  • Example 4 A polymer electrolyte fuel cell was produced in the same manner as in Example 1 except that the microporous layer was not formed on the carbon fiber nonwoven fabric.
  • Example 5 The same as in Example 1 except that the angle formed by the extending direction of the groove and the flange portion of the gas diffusion electrode and the forming direction of the linear portion of the linear flow path of the separator is 10 ° or more and 20 ° or less. Thus, a polymer electrolyte fuel cell was produced.
  • Example 6 The same as in Example 1 except that the angle formed by the extending direction of the groove and the flange portion of the gas diffusion electrode and the forming direction of the linear portion of the linear flow path of the separator is 20 ° or more and 30 ° or less. Thus, a polymer electrolyte fuel cell was produced.
  • FIGS. 5 and 6 An upright observation image and an inverted observation image of the carbon fiber nonwoven fabric produced in Comparative Example 1 are shown in FIGS. 5 and 6, respectively.
  • the inverted observation image of FIG. 6 it can be visually recognized that linear grooves extend in the same direction with respect to the long axis direction in the observation visual field range, and at a pitch of about 650 ⁇ m in the short axis direction in the observation visual field range. It can be seen that there are six grooves.
  • Comparative Example 2 Solid polymer type in the same manner as in Comparative Example 1 except that the angle formed by the extending direction of the groove portion of the carbon fiber nonwoven fabric and the forming direction of the linear portion of the linear flow path of the separator is 80 ° or more. A fuel cell was fabricated.
  • Example 3 The solid polymer type was the same as in Example 1 except that the angle formed between the extending direction of the groove portion of the carbon fiber nonwoven fabric and the forming direction of the linear portion of the linear flow path of the separator was 80 ° or more. A fuel cell was fabricated.
  • Example 4 The solid polymer type was the same as in Example 2 except that the angle formed between the extending direction of the groove portion of the carbon fiber nonwoven fabric and the forming direction of the linear portion of the linear flow path of the separator was 80 ° or more. A fuel cell was fabricated.
  • Example 5 The solid polymer type was the same as in Example 3 except that the angle formed by the extending direction of the groove portion of the carbon fiber nonwoven fabric and the forming direction of the linear portion of the linear flow path of the separator was 80 ° or more. A fuel cell was fabricated.
  • Example 7 Solid as in Example 1 except that the angle formed by the extending direction of the groove portion of the carbon fiber nonwoven fabric and the forming direction of the straight portion of the linear flow path of the parallel separator is 70 ° or more. A polymer fuel cell was produced.
  • Table 1 shows the results of power generation performance evaluation of polymer electrolyte fuel cells using the carbon fiber nonwoven fabric prepared in each of Examples and Comparative Examples and the carbon fiber nonwoven fabric as a gas diffusion electrode substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

本発明は、特に湿度が高い発電条件において、且つ、セパレーターとして並列型を用いた場合においても、良好な水の排出性を有し、高い発電性能を発揮することができる、溝付きガス拡散電極基材を用いた固体高分子形燃料電池を提供することを課題とする。 本発明は、炭素繊維不織布を基材とするガス拡散電極と、並列式の直線状流路が形成されたセパレーターとを有する固体高分子形燃料電池であって、当該炭素繊維不織布は、直線状の畝部と直線状の溝部が交互に繰り返される波板状の凹凸を有し、かつ畝部と溝部の光透過性が同等であり、ガス拡散電極とセパレーターとは、炭素繊維不織布の凹凸形成面がセパレーターの流路形成面と対向し、かつ畝部および溝部の延在方向がセパレーターの流路の延在方向と一致するよう配置されてなる固体高分子形燃料電池である。

Description

固体高分子形燃料電池
 本発明は、炭素繊維不織布をガス拡散電極として用いた固体高分子形燃料電池に関する。
 燃料と酸化剤を反応させることで発電する燃料電池システムのうち、特に固体高分子形燃料電池は100℃程度の比較的低温で発電可能であり、かつ出力密度が高い。そのため、電動モーターで走行する自動車の電源や、家庭用のコジェネレーションシステムなどで使用されている。
 通常、固体高分子形燃料電池は水素を含む燃料ガスと酸素を含む酸化剤ガスが電解質膜で分けられている。燃料ガスが供給される側をアノード側、酸化剤ガスが供給される側をカソード側と称する。アノード側のセパレーターの流路に供給された燃料ガスは、セパレーターと接するガス拡散電極内に拡散し、ガス拡散電極のもう一方の面(セパレーターと接する側と反対の面)に配されたアノード触媒層で電子とプロトンに分離される。電子は触媒層のカーボン粒子やガス拡散電極を構成する炭素繊維を介して燃料電池の外部の負荷(装置)と接続されていることで直流電流を取り出せる。この電子は、カソードのガス拡散電極を通して、アノード触媒層で生じたプロトンは、電解質膜を介してカソード触媒層に移動する。また、カソード側のセパレーターの流路には酸素を含む酸化剤ガスが供給され、セパレーターと接するガス拡散電極基材内に拡散し、ガス拡散電極のもう一方の面に配されたカソード触媒層でプロトン、電子とともに水を生成する。生じた水は、触媒層からガス拡散電極基材を介してカソード側のセパレーターの溝へ移動し、セパレーターの流路内を通って燃料電池外へ排出される。
 ここで、反応で生じた水が触媒層やガス拡散電極の空隙を塞ぎ、水素や空気の輸送を妨げてしまうと、高い発電効率を得ることができなくなる。この現象は一般に「フラッディング」と呼ばれる。フラッディングを防止するためには、反応で生じた水を積極的に排出することが必要である。特にセパレーターの流路に達した水を迅速に系外に排出することが重要である。
 セパレーターの流路内の水の排出を促す技術としては、セパレーターの流路と対向して設置されるガス拡散電極に溝等の凹凸を設けることが提案されている。例えば、特許文献1~4には、ガス拡散電極に溝や貫通する孔を形成し、水の通過性を向上させる技術が提案されている。
特表平11-511289号 特開2013-20843号 特開2003-17076号 特開2006-139921号
 セパレーターには、分岐のない1本の連続した流路で燃料ガスを供給する直列式の流路を有するものと、中央流路から燃料ガスを分配する分岐流路を備えた並列式の流路を有するものとがある。直列式の流路を有するセパレーターは、並列式のものと比較して流路内を通過するガスの流速が大きい。そのため、流路内に溜まった水を燃料ガスにより系外に排出することが容易となり、フラッディング現象が起こりにくい。一方、直列式の流路では流路内にガスを流すために高圧が必要となり、システムコストが高くなる。そのため、現在では並列式の流路を有するセパレーターを用いた場合であっても良好な発電を行える燃料電池システムが求められつつある。
 しかしながら、本発明者らの検討によると、並列式の流路を有するセパレーターを用いた場合、湿度が高い条件においては特許文献1~4に記載の技術のみではフラッディング現象が十分に抑制できず、安定した発電が行えないことが分かった。本発明は、並列式の流路を有するセパレーターを用いながらも、湿度が高い発電条件でも水の排出性が良好で、高い発電性能を維持することができる固体高分子形燃料電池を提供することを課題とする。
 前記課題を達成するための本発明は、炭素繊維不織布を基材とするガス拡散電極と、並列式の直線状流路が形成されたセパレーターとを有する固体高分子形燃料電池であって、当該炭素繊維不織布は、直線状の畝部と直線状の溝部が交互に繰り返される波板状の凹凸を有し、かつ畝部と溝部の光透過性が同等であり、当該ガス拡散電極と当該セパレーターとは、炭素繊維不織布の凹凸形成面がセパレーターの流路形成面と対向し、かつ畝部および溝部の延在方向がセパレーターの流路の延在方向と一致するよう配置されてなる固体高分子形燃料電池である。
 本発明の固体高分子形燃料電池は、並列式の流路を有するセパレーターを用いているにも関わらず、高湿度条件下でも排水性に優れるため、フラッディングを抑制しつつ安定した発電を行うことができる。
本発明の固体高分子形燃料電池のセル構成の断面模式図である。 矩形波状の凹凸を有する炭素繊維不織布の断面模式図である。 実施例1で作製した炭素繊維不織布の正立観察像である。 実施例1で作製した炭素繊維不織布の倒立観察像である。 比較例1で作製した炭素繊維不織布の正立観察像である。 比較例1で作製した炭素繊維不織布の倒立観察像である。 パラレル型(Parallel)の流路を有するセパレーターの流路形状を示す模式図である。 マルチパラレル型(Multi-parallel)の流路を有するセパレーターの流路形状を示す模式図である。 対向櫛型(Interdigitated)の流路を有するセパレーターの流路形状を示す模式図である。
 〔炭素繊維不織布〕
 炭素繊維不織布とは、炭素繊維前駆体繊維不織布を不活性ガス雰囲気下で加熱して炭化させたものである。炭素繊維とは、炭素繊維前駆体繊維を不活性ガス雰囲気で加熱して炭化したものである。不織布とは、ウエブの構成繊維を機械的な交絡、加熱による融着、バインダーによる接着といった方法で固定させたものである。また、ウエブとは炭素繊維前駆体繊維を積層してシート状にしたものである。なお、炭素繊維前駆体繊維については後述する。ウエブとしては、乾式のパラレルレイドウエブまたはクロスレイドウエブ、エアレイドウエブ、湿式の抄造ウエブ、押出法のスパンボンドウエブ、メルトブローウエブ、エレクトロスピニングウエブ等を用いることができる。また、これらのウエブをシート状にした炭素繊維不織布としては、ウエブを機械的に交絡させたもの、加熱して融着させたもの、バインダーで接着させたもの等が挙げられる。
 炭素繊維の繊維径が小さいほど、炭素繊維不織布の高い見かけ密度を達成しやすく、導電性や熱伝導が優れる炭素繊維不織布が得られる。一方、炭素繊維不織布の平均孔径が小さくなって、炭素繊維不織布の排水性やガス拡散性は低下する傾向がある。炭素繊維の繊維径は、炭素繊維不織布の用途に応じて適宜決定すべきである。炭素繊維の繊維径は、一般的なガス拡散電極として使用する場合には3~30μmが好ましく、5~20μmがより好ましい。
 炭素繊維不織布の平均孔径は、40μm以上であることが好ましく、45μm以上がより好ましく、50μm以上がさらに好ましい。平均孔径の上限は特に限定されない。平均孔径は、100μm以下が好ましく、80μm以下がより好ましい。平均孔径が40μm以上であれば、ガスの拡散と排水で高い性能が得られる。また、平均孔径が100μm以下であれば、ドライアウトを防止しやすい。なお、本明細書において、炭素繊維不織布の平均孔径とは水銀圧入法により測定される値を意味する。水銀の表面張力σを480dyn/cm、水銀と炭素繊維不織布との接触角を140°として計算した値である。水銀圧入法による測定は、例えば、PoreMaster(登録商標)(Quantachrome社製)などを用いて測定することができる。
 また、炭素繊維不織布を構成する炭素繊維同士の接点にバインダーとして炭化物が付着していると、炭素繊維同士の接点で接触面積が大きくなり、優れた導電性と熱伝導性が得られる。このようなバインダーを付与する方法としては、炭化処理後の炭素繊維不織布に熱硬化性樹脂を含浸またはスプレーし、不活性雰囲気下で再度加熱処理する方法が挙げられる。この場合、熱硬化性樹脂としてはフェノール樹脂、エポキシ樹脂、メラミン樹脂、フラン樹脂等を用いることができる。中でもフェノール樹脂を用いることが特に好ましい。また、後述するように、熱可塑性樹脂を炭素繊維前駆体不織布に混綿しておく方法も好ましく用いられる。
 炭素繊維不織布の表面には、直線状の畝部と直線状の溝部が交互に繰り返される波板状の凹凸(以下、単に「波板状の凹凸」または「凹凸」という場合がある)が形成されている。なお、本明細書において「波板状の凹凸」とは、正弦波状、矩形波状、三角波状、のこぎり波状等の断面形状を有する凹凸を含むものとする。
 以下、当該波板状の凹凸の形態について述べる。本明細書においては、炭素繊維そのものによる表面凹凸の影響を排除するため、特に言及した場合を除き、炭素繊維不織布を厚み方向に1MPaで加圧した際の炭素繊維不織布の厚み(以下、単に「加圧時厚み」ということがある。)と同じ厚みになるまで炭素繊維不織布の凹凸形成面をトリミングしたと仮定した場合の形状について描写するものとする。加圧時厚みは、2.5cm×2.5cmにカットした炭素繊維不織布を、表面が3cm以上×3cm以上で厚みが1cm以上の金属板で挟み、炭素繊維不織布に対して1MPaの圧力を付与して求めるものとする。
 波板状の凹凸の存在は、例えば、光学顕微鏡で炭素繊維不織布の凹凸形成面側から焦点を変化させて撮影した画像を深度合成により3次元表示することや、レーザー顕微鏡で、炭素繊維不織布の凹凸形成面側から、500μm~5mmの視野でレーザースキャンして画像を取り込み、形状解析ソフトを用いて傾き補正を行い、高さに応じて色を変えて表示することにより判断することができる。
 また、以下の説明において「断面」とは、特に断らない限り、直線状の溝部および畝部の延在方向に垂直な方向の炭素繊維不織布の断面を意味するものとする。
 波板状の凹凸は、炭素繊維不織布の両面に形成されていてもよい。本発明においては、炭素繊維不織布をガス拡散電極とした場合にセパレーターとの接触面に発生する水滴の排出性を高める効果を発揮できれば足りるため、一方の面のみに凹凸が形成されていれば十分であり、また製造上も好ましい。そのため、本明細書では、一方の面のみに凹凸が形成された炭素繊維不織布について説明し、説明の中では当該凹凸が形成された面を「凹凸形成面」または「上面」、その反対の凹凸が形成されていない面を「凹凸非形成面」または「下面」と呼ぶこととする。また、以下特に断らない限り、炭素繊維不織布の下面を下にして水平に静置した状態を仮定して説明するものとする。凹凸が両面に形成されている場合には、観察対象とする凹凸形成面の反対側の面に形成された凹凸の畝部の先端を通る平面を下面と考えるものとする。
 図2は、本発明で用いる炭素繊維不織布の一形態の断面を示す模式図である。図2に示す炭素繊維不織布は、矩形波状の断面を有する凹凸が形成されている。ここで、図2中Pgは溝部の形成ピッチ、Wgは溝部の幅、Wrは畝部の幅、H1は炭素繊維不織布の厚さ、H2は凹凸の高さ(溝部の底部から畝部の先端までの高さ)である。本明細書においては、波板状の凹凸の高さH2の1/2の点を通る平面Mを想定し、当該平面Mより下に存在する部分を溝部、上に存在する部分を畝部と呼ぶものとする。畝部の幅Wgは、炭素繊維不織布断面における平面Mによる畝部の切断面の幅であり、溝部の幅Wrは平面Mによる溝部の切断面の幅である。
 図2に示す炭素繊維不織布は、矩形波状の断面を有し、溝部および畝部の断面はいずれも矩形状をなしている。すなわち、溝部および畝部の壁面は下面と略垂直に形成されている。溝部および畝部の壁面は、下面の垂線方向から傾斜を有していてもよい。すなわち、溝部および畝部の断面は、台形状をなすものであっても、略半円状(U字状)をなすものであってもよい。
 凹凸の高さ(H2)は20μm以上であることが好ましく、50μm以上であることがより好ましい。凹凸の高さ(H2)の上限は、炭素繊維不織布としての強度を保つことができる限り特に限定されない。
 溝部の形成ピッチ(Pg)は20μm~2000μmとすることが好ましい。溝部の形成ピッチが20μm以上であれば、炭素繊維不織布表面と水滴との接触面積を小さくする効果を得やすい。溝部の形成ピッチが2000μm以下であれば、水滴が溝部へ落ち込むことがなく、畝部表面を移動しやすくなる。ここで、溝部の形成ピッチとは、隣接する溝部の中心線同士の距離の平均値である。溝部の形成ピッチは溝部の延在方向と直交する方向の炭素繊維不織布の凹凸形成部分の幅を溝部の本数から算出することができる。炭素繊維不織布表面の水滴の移動性を向上させる観点から、溝部の形成ピッチは100μm~1000μmとすることがより好ましい。また、溝部の形成ピッチは、後述するセパレーターの流路の形成ピッチよりも小さいと、水滴の移動が容易となり、好ましい。
 また、炭素繊維不織布の凹凸形成面の平面視における、畝部の面積に対する溝部の面積の比(溝部面積比率:Wg/Wr)が小さいほど水滴が溝部に留まることなく畝の表面上を移動して排出されやすくなる。そのため、溝部面積比率は0.9以下であることが好ましい。さらに、溝部面積比率を小さくすることによって、セパレーターとの基材との接触面積が増大し、導電性や熱伝導性が向上する。そのため、溝面積比率は0.7以下であることがより好ましい。また、炭素繊維不織布表面と水滴との接触面積を小さくする効果を得やすい点で、溝部面積比率は少なくとも0.1以上であることが好ましい。
 本発明においては、溝部と畝部の光透過性が同等の炭素繊維不織布を用いる。なお、溝部と畝部の光透過性が同等であることは、後述する実施例の第1項に記載の方法により判断するものとする。
 炭素繊維不織布の孔に液体を通過させるときの圧力(P)は、下記のヤング・ラプラスの式から求めることができる。P = -(2gcosq)/r
ここで、gは液体の表面張力、qは液体の孔の周囲面上の接触角、rは孔径である。ヤング・ラプラスの式は、孔径の異なる二つの孔が隣接して存在している場合、孔径の大きい方の孔を優先的に液体が通過することを示している。
 炭素繊維不織布の溝部と畝部の光透過性が同等である場合としては、溝部と畝部の目付が同等である場合や、繊維配向性の相違によって同等になる場合、繊度の相違によって同等になる場合等が挙げられる。溝部と畝部の光透過性が同等である場合、溝部の密度は相対的に高くなり、畝部の密度は相対的に低くなる。すなわち、溝部の平均孔径は畝部の平均孔径よりも小さい。この場合、ヤング・ラプラスの式を考慮すると、触媒層において発生した水は、溝部よりも畝部を優先的に通過し、最終的に畝部から優先的にセパレーター側に排出される。ここで、後述するように炭素繊維不織布の溝部がセパレーターの直線状流路の直線部と略並行になるよう配置されていることで、畝部から排出された水は、燃料ガスの風圧によりガス拡散電極の畝部の表面を畝部の延在方向に沿って移動することが容易となる。
 ガス拡散電極の撥水性能をさらに高めるためには、さらに炭素繊維不織布に撥水剤を付与することが好ましい。撥水剤は、炭素繊維不織布表面の水滴接触角を増大させる効果を有する物質であれば特に限定されない。PTFE、FEP、PVDF等のフッ素系樹脂、PDMS等のシリコーン樹脂が例示できる。
 炭素繊維不織布は、撥水剤の付与により、凹凸形成面の水滴接触角が100度以上となっていることが好ましい。燃料電池における排水性向上の観点からは撥水性は高い方が好ましいため、凹凸形成面の水滴接触角は120度以上とすることが好ましく、140度以上とすることがより好ましい。
 上記のような凹凸を形成した炭素繊維不織布の下面(膜電極複合体を構成した場合に電解質膜と対向する面)に、さらに、フッ素樹脂と、カーボンブラック等の炭素材料とを含むマイクロポーラス層を設けることも、排水性を向上させる上で好ましい。マイクロポーラス層に含まれるフッ素樹脂は、導電性と強度を両立される観点から、炭素材料に対して1~80重量%が好ましく、10~70重量%がより好ましく、20~60重量%がさらに好ましい。
 固体高分子形燃料電池の単セルは、図1に示されるように、電解質膜1と、電解質膜1の両側に配置された触媒層2と、そのさらに両側に配置された、アノード側およびカソード側のガス拡散電極4と、更にその両側に配置された1対のセパレーター5とを有する。
 本発明の固体高分子形燃料電池では、セパレーター5は、並列式の直線状流路51が形成されたものである。並列式の流路とは、中央流路から燃料ガスを分配する分岐流路を備えた流路であり、分岐のない1本の連続した流路である直列式以外の流路形状を意味する。また、直線状流路とは、流路の全長の80%以上がセパレーターの一端から他端までほぼ連続する直線部として形成されている流路形状を意味する。このような並列式の直線状流路としては、図7で示されるようなパラレル型(Parallel)、図8で示されるようなマルチパラレル型(Multi-parallel)または図9で示されるような対向櫛型(Interdigitated)の流路が挙げられる。図7~図9においては、各図面中縦方向に形成されている流路部分が直線部に当たる。本発明の効果を得るためには、パラレル型またはマルチパラレル型の流路を有するセパレーターを用いることが特に好ましい。
 本発明においては、炭素繊維不織布を基材とするガス拡散電極4の凹凸形成面がセパレーター5の流路形成面と対向し、かつ炭素繊維不織布の溝部41および畝部42がセパレーターの直線状流路の直線部51の形成方向と略並行になるよう配置されている。炭素繊維不織布の溝部とセパレーター流路の直線部とが略並行になるよう配置されている場合、燃料ガスの風圧の方向が炭素繊維不織布の溝部の延在方向と一致する。そのため、畝部表面に集約された水滴は溝部への落ち込みや引っ掛かりを生じることが少なくなり、容易に畝部表面を移動できる。一方、炭素繊維不織布の溝部がセパレーター流路の直線部と略垂直になるよう配置されている場合、燃料ガスの風圧の方向が溝部の延在方向と一致しない。そのため、畝部表面の水滴は溝部への落ち込みや引っ掛かりを生じ、移動しにくくなる。ここで、炭素繊維不織布の溝部および畝部がセパレーターの直線状流路の直線部と略並行とは、炭素繊維不織布の直線状の畝部または溝部の延在方向と、セパレーターの直線状流路の直線部の形成方向とのなす角が30°以下であることを意味する。
 ここで、セパレーターの直線状流路の直線部の形成方向とのなす角は20°以下であることが好ましく、10°以下であることがより好ましい。また、セパレーターの流路の形成ピッチが炭素繊維不織布の溝部の形成ピッチよりも大きいと、水滴の移動が容易となり、好ましい。
 また、炭素繊維不織布の溝部または畝部の延在方向とセパレーターの直線状流路の直線部分の形成方向が交差すると、畝部に集約された水滴の移動がセパレーターの流路非形成部分により遮られる。そのため、炭素繊維不織布の溝部または畝部の延在方向とセパレーターの直線状流路の直線部分の形成方向とが交差しないように配置することが好ましい。
 <固体高分子形燃料電池の製造方法>
 本発明の固体高分子形燃料電池は、一例として以下の製造方法により製造することができる。
 ガス拡散電極基材に用いる炭素繊維不織布は、炭素繊維前駆体繊維不織布を炭化処理することにより得られる。炭素繊維前駆体繊維とは、焼成により炭素繊維化する繊維である。炭素繊維前駆体繊維は、炭化率が15%以上の繊維であることが好ましく、30%以上の繊維であることがより好ましい。本発明に用いられる炭素繊維前駆体繊維は特に限定されない。炭素繊維前駆体繊維としては不融化したポリアクリロニトリル(PAN)系繊維(PAN系耐炎繊維)、不融化したピッチ系繊維、ポリビニルアルコール系繊維、セルロース系繊維、不融化したリグニン系繊維、不融化したポリアセチレン系繊維、不融化したポリエチレン系繊維、ポリベンゾオキサゾール系繊維などを挙げることがでる。中でも強伸度が高く、加工性の良いPAN系耐炎繊維を用いることが特に好ましい。なお、炭化率は、以下の式から求めることができる。
炭化率(%)=焼成後重量/焼成前重量×100
 炭素繊維前駆体繊維不織布は、炭素繊維前駆体繊維により形成されたウエブを、交絡、加熱融着、バインダー接着等により結合して布帛状としたものである。ウエブとしては、乾式のパラレルレイドウエブまたはクロスレイドウエブ、エアレイドウエブ、湿式の抄造ウエブ、押出法のスパンボンドウエブ、メルトブローウエブ、エレクトロスピニングウエブを用いることができる。溶液紡糸法で得たPAN系繊維を不融化してウエブ化する場合は、均一なシートを得やすいことから、乾式ウエブまたは湿式ウエブを用いることが好ましい。また、工程での形態安定性を得やすいことから、乾式ウエブを機械的に交絡させた不織布が特に好ましい。
 また、前述のように、炭素繊維不織布の炭素繊維同士の交点にバインダーとして炭化物が付着していると導電性と熱伝導性に優れる点で好ましい。このような炭素繊維不織布は、炭素繊維前駆体繊維不織布に炭化物前駆体を付与しておくことで製造することができる。炭化物前駆体を付与せる方法は特に限定されない。炭素繊維前駆体繊維不織布に炭化物前駆体溶液を含浸またはスプレーする方法や、予め炭素繊維前駆体繊維不織布に炭化物前駆体となる熱可塑性樹脂製繊維を混綿しておく方法が挙げられる。
 炭素繊維前駆体繊維不織布に炭化物前駆体溶液を含浸またはスプレーする場合には、フェノール樹脂、エポキシ樹脂、メラミン樹脂、フラン樹脂といった熱硬化性樹脂を用いることができる。中でも炭化収率が高いことからフェノール樹脂が特に好ましい。ただし、熱硬化性樹脂溶液を含浸した場合は、炭化工程で炭素繊維前駆体繊維とバインダー樹脂の収縮の挙動の差異が生じることによって、炭素繊維不織布の平滑性が低下しやすい。また乾燥時に炭素繊維不織布表面に溶液が移動するマイグレーション現象も生じ易いため、均一な処理が難しくなる傾向がある。
 これに対し、予め炭素繊維前駆体繊維不織布にバインダーとなる熱可塑性樹脂製繊維を混綿しておく方法は、炭素繊維前駆体繊維とバインダー樹脂の割合を不織布内で均一にすることができ、炭素繊維前駆体繊維とバインダー樹脂の収縮挙動の差異も生じにくいことから、最も好ましい方法である。このような熱可塑性樹脂製繊維としては、比較的安価なポリエステル繊維、ポリアミド繊維、ポリアクリロニトリル繊維が好ましい。
 バインダーの配合量は、炭素繊維不織布の強度、導電性、熱伝導性の向上のため、炭素繊維前駆体繊維100質量部に対し、0.5質量部以上であることが好ましく、1質量部以上であることがより好ましい。また、排水性向上のため、80質量部以下であることが好ましく、50質量部以下であることがより好ましい。
 続いて、炭素繊維前駆体繊維のプレスを行う。このときの加熱温度は、炭素繊維前駆体繊維の不織布構造体に形成したプレスの形態安定性の点から160℃~280℃が好ましく、180℃~260℃がより好ましい。
 直線状の溝部および畝部が交互に配置された波板状の凹凸は、炭素繊維前駆体繊維不織布の段階で表面に凹凸を形成し、その後炭化することにより形成される。具体的には、形成しようとする凹凸に対応する賦形部材を炭素繊維前駆体繊維不織布の表面に押し付ける方法、すなわちエンボス加工により凹凸を形成することが好ましい。エンボス加工の方法としては、溝部に対応する凸形状が形成されたエンボスロールとフラットロールで連続プレスする方法や、同様の凸形状を形成したプレートとフラットプレートでバッチプレスする方法を挙げることができる。
 このように、賦形部材を前記炭素繊維前駆体繊維不織布の表面に押し付ける方法によって溝部を形成した炭素繊維不織布は、溝部と畝部の光透過性が同等になる。そのため、前述したように反応により発生した水を畝部表面に優先的に集約することができる。集約された水は、燃料ガスの風圧により畝部表面を移動し、容易に系外に排出されるようになる。
 一方、炭素繊維不織布にレーザーや針等で削って加工する方法、ウォータージェットパンチング法などの高圧液体噴射法では、溝部の光透過性が畝部の光透過性より小さくなる。この場合、畝部よりも溝部を優先的に水が通過し、最終的に水が溝部に集約されるようになる。水が溝部に集約される場合、畝部に集約された場合と比べて水滴が燃料ガスによる風圧を受けにくく、排出が難しいため、フラッディング現象が生じやすくなる。
 次いで、凹凸を形成した炭素繊維前駆体繊維不織布を炭化処理する。炭化処理の方法は特に限定されず、炭素繊維材料分野における公知の方法を用いることができる。不活性ガス雰囲気下での焼成が好ましく用いられる。不活性ガス雰囲気下での焼成は、大気圧で、窒素やアルゴンといった不活性ガスを供給しながら、800℃以上に加熱することで行うことが好ましい。炭化処理の温度は、優れた導電性と熱伝導性を達成するためには1500℃以上が好ましく、1900℃以上がより好ましい。一方、加熱炉の運転コストの観点からは、3000℃以下であることが好ましい。炭素繊維不織布を固体高分子形燃料電池のガス拡散電極として用いる場合、炭化処理後に厚みが30~400μm、密度が0.2~0.8g/cmとなるように炭素繊維前駆体繊維不織布の形態や炭化処理条件を調整することが好ましい。
 〔撥水処理〕
 撥水剤の付与は、これらの撥水剤を、溶融含浸、溶液や分散液を用いたプリント、転写、含浸等の方法で炭素繊維不織布に付与することで行うことができる。なお、水滴接触角は、温度20℃、湿度60%の環境で、炭素繊維不織布の凹凸形成面上に10μLの水滴を10点滴下して測定した平均値とする。水滴接触角は、例えば自動接触角計DMs-601(協和界面科学(株)社製)により測定することができる。
 〔マイクロポーラス層〕
 マイクロポーラス層は、PTFE等のフッ素樹脂とカーボンブラック等の炭素材料に界面活性剤と水などを加えたペーストを、バーコートやダイコート方式により炭素繊維不織布の下面に塗布し、乾燥し、焼結することで形成することができる。
 〔固体高分子形燃料電池〕
 高分子電解質膜の両側に触媒層を形成し、さらにその両側に、上記のように作製した炭素繊維不織布を配置して接合するか、高分子電解質膜の両側に、上記のように作製した炭素繊維不織布に触媒層を形成したものを配置して接合することで、炭素繊維不織布を基材とするガス拡散電極を有する膜電極接合体を得ることができる。また、さらに当該膜電極接合体の両側に並列式の直線状流路が形成されたセパレーターを、炭素繊維不織布の凹凸形成面が前記セパレーターの流路形成面と対向し、かつ炭素繊維不織布の溝部および畝部がセパレーターの直線状流路の直線部の形成方向と略並行になるよう配置することで、固体高分子形燃料電池を得ることができる。
 実施例および比較例中のデータは以下の方法で測定した。
 1.溝部と畝部の光透過性の同等性
 下面が光学顕微鏡のステージ上に接するように炭素繊維不織布を置き、光を凹凸形成面から照射し、長方形の観察視野とした状態で溝部および畝部がその長方形の長辺と平行になるように観察視野内にそれぞれ4本~10本含まれた状態で撮影する(正立観察像)。その後、炭素繊維不織布の下面側から下面に対して垂直に光を照射し、凹凸形成面側から同様の視野範囲を撮影する(倒立観察像)。
 倒立観察像では、溝部と畝部の光透過性が異なる場合、溝部と畝部とで光の透過率が異なるため、溝部が明るく、畝部が暗い明暗が観察される。
 次に、画像処理ソフトフェアを用いて倒立観察像の明度の平均値を算出し、その平均値を平均明度とする。ここでの明度はRGBカラーモデルにて0~255の256段階で表現した数値である。
 また、倒立観察像中に存在する各溝部において、溝部の幅方向に、溝部の中心線を中心として溝部の幅の半分の長さをトリミングした範囲の明度を測定し、その平均値を溝部の明度とする。
 さらに、畝部も同様に、畝部の中心線を中心として畝部の幅の半分の長さをトリミングした範囲の明度を測定し、その平均値を畝部の明度とする。
 上記のように観察を行い、観察視野の平均明度と、当該観察視野内に含まれる各溝部および畝部の明度を比較する。これを100本の溝部および畝部について行い、平均明度よりも明度が高かった溝部が65本以上存在し、かつ平均明度よりも明度が低かった畝部が65本以上存在した場合、畝部と溝部の光透過性は同等ではないとする。また、同様に、平均明度よりも明度が低かった溝部が65本以上存在し、かつ平均明度よりも明度が高かった畝部が65本以上存在した場合も、畝部と溝部の光透過性は同等ではないとする。そして、それ上記のいずれにも当てはまらない場合は、溝部と畝部の光透過性は同等であると判断する。
 2.発電性能
 各実施例、比較例において作製した固体高分子形燃料電池を用い、セル温度を60℃、水素極と空気極の露点を67.5℃とし、それぞれの極の背圧を100kPaとした。通常試験は、水素ガス流量を0.05L/分、酸素ガス流量を0.2L/分とし、電流密度を0.2mA/cmとした時の電圧値を測定した。
 [実施例1]
 PAN系耐炎糸のけん縮糸を数平均繊維長76mmに切断した後、カード、クロスレヤーでシート化した後、針密度300本/cmのニードルパンチを行って炭素繊維前駆体繊維不織布を得た。片面に直線状の溝の形状を付与した金属プレート(溝の幅420μm、畝の幅420μm、溝部の形成ピッチ840μm、凹部の深さ90μm、凹凸形状は矩形波状)をPAN系耐炎糸不織布の上にマウントし、220℃、1MPaの条件で4分間プレスし、金属プレートの溝形成面をマウントした側の炭素繊維前駆体繊維不織布表面に金属プレートの溝を反映した不織布を得た。次に、不活性雰囲気下、2400℃で4時間焼成することで、一方の面に直線状の溝部が形成された炭素繊維不織布を得た。溝部の幅、形成ピッチ、溝部面積比は表1に記載の通りである。
 得られた炭素繊維不織布を、上記1.に従って正立法で観察すると、基材表面に溝を確認することができ、また、溝部と畝部の光透過性は同等であった。実施例1で作製した炭素繊維不織布の正立観察像および倒立観察像を、それぞれ図3、図4に示す。図3の正立観察像においては、観察視野範囲内の長軸方向に対して直線状の溝が同方向に延びており、観察視野範囲内の短軸方向に約800μmのピッチで5つ溝が存在していた。図4の倒立観察像では、溝を視認することができなかった。
 このように作製した炭素繊維不織布に、固形分濃度3wt%に調整したPTFEの水分散液をPTFE固形分付着量が5wt%になるよう含浸付与し、熱風乾燥機を用いて130℃で乾燥させ、380℃で10分間加熱することで撥水剤を付与し、撥水処理を施した。溝形成面の水滴接触角は140°であり、撥水材が十分な量付与されていることを確認した。
 次いで、この撥水処理を施した炭素繊維不織布の凹凸非形成面にマイクロポーラス層の付与を行った。まず、アセチレンブラック(電気化学工業(株)製“デンカブラック”(登録商標))、PTFE樹脂(ダイキン工業(株)製“ポリフロン”(登録商標)D-1E)、界面活性剤(ナカライテスク(株)製“TRITON”(登録商標)X-100)、精製水を用い、アセチレンブラック/PTFE樹脂/界面活性剤/精製水=7.7質量部/2.5質量部/14質量部/75.6質量部の比で混合した塗液を調製した。その後、当該塗液を炭素繊維不織布の下面にダイコーターにより塗工し、120℃で10分加熱乾燥させた後、380℃で10分間焼結した。
 次いで、Nafion(登録商標)(デュポン社製)からなるフッ素系電解質膜の両面に、白金担持炭素とNafionからなる触媒層(白金量0.2mg/cm)をホットプレスによって接合し、触媒層被覆電解質膜(CCM)を作成した。このCCMの両面に、上記のように作製した2枚のガス拡散電極を配して再びホットプレスを行い、膜電極接合体(MEA)とした。この時、ガス拡散電極基材は、マイクロポーラス層を有する面が触媒層側と接するように配置した。
 このMEAと、図7で示されるパラレル型の並列式の直線状流路(幅1000μm、ピッチ2000μm、深さ500μm、)が形成されたセパレーターとを、ガス拡散電極の溝部および畝部の延在方向とセパレーターの直線状流路の直線部の形成方向とのなす角が10°以下になるように配置して、発電面積5cmの固体高分子形燃料電池(単セル)とした。
 [実施例2]
 実施例1において、炭素繊維前駆体繊維不織布の片面に直線状の溝の形状を金属プレートで付与する際、用いた金属プレートの溝の幅を420μm、畝の幅を210μm、溝部の形成ピッチを630μm、凹部の深さ90μmと変更した以外、実施例1と同様の方法で固体高分子形燃料電池(単セル)を作製した。
 [実施例3]
 実施例1において、炭素繊維前駆体繊維不織布の片面に直線状の溝の形状を金属プレートで付与する際、用いた金属プレートの溝の幅を210μm、畝の幅を420μm、溝部の形成ピッチを630μm、凹部の深さ90μmと変更した以外、実施例1と同様の方法で固体高分子形燃料電池(単セル)を作製した。
 [実施例4]
 炭素繊維不織布にマイクロポーラス層の形成を行わなかった以外は実施例1と同様にして固体高分子形燃料電池を作製した。
 [実施例5]
 ガス拡散電極の溝部および畝部の延在方向とセパレーターの直線状流路の直線部の形成方向とのなす角を10°以上20°以下になるように配置した以外は実施例1と同様にして固体高分子形燃料電池を作製した。
 [実施例6]
 ガス拡散電極の溝部および畝部の延在方向とセパレーターの直線状流路の直線部の形成方向とのなす角を20°以上30°以下になるように配置した以外は実施例1と同様にして固体高分子形燃料電池を作製した。
 [比較例1]
 3次元交絡を有するPAN系前駆体繊維ステープルをカード加工し、ウヱッブを作製し、これを所定の枚数重ね合わせた後、連続的にノズルからの高圧水流を厚さ方向に通過させ、繊維を交絡させ不織布を作製した。この加工時において、ノズル孔のサイズや水流の位置及び間隔を調整し連続加工することにより片面に直線状の溝(溝部の幅500μm、畝部の幅150μm、溝部の形成ピッチ650μm、凹部の深さ50μm)を形成させた炭素繊維前駆体繊維不織布を作製した。次に、不活性雰囲気下、2400℃で4時間焼成することで、一方の面に直線状の溝が形成された炭素繊維不織布を得た。比較例1で作製した炭素繊維不織布の正立観察像および倒立観察像を、それぞれ図5、図6に示す。図6の倒立観察像においては、観察視野範囲内の長軸方向に対して直線状の溝が同方向に延びていることが視認でき、観察視野範囲内の短軸方向に約650μmのピッチで6つ溝が存在しているのが分かる。
 この炭素繊維不織布をガス拡散電極基材として用い、実施例1と同様の方法で固体高分子形燃料電池を作製した。
 [比較例2]
 炭素繊維不織布の溝部の延在方向とセパレーターの直線状流路の直線部分の形成方向とのなす角が80°以上になるように配置したこと以外は比較例1と同様にして固体高分子形燃料電池を作製した。
 [比較例3]
 炭素繊維不織布の溝部の延在方向とセパレーターの直線状流路の直線部分の形成方向とのなす角が80°以上になるように配置した以外は、実施例1と同様にして固体高分子形燃料電池を作製した。
 [比較例4]
 炭素繊維不織布の溝部の延在方向とセパレーターの直線状流路の直線部分の形成方向とのなす角が80°以上になるように配置した以外は、実施例2と同様にして固体高分子形燃料電池を作製した。
 [比較例5]
 炭素繊維不織布の溝部の延在方向とセパレーターの直線状流路の直線部分の形成方向とのなす角が80°以上になるように配置した以外は、実施例3と同様にして固体高分子形燃料電池を作製した。
 [比較例6]
 炭素繊維不織布の溝部の延在方向と並列型のセパレーターの直線状流路の直線部分の形成方向とのなす角が50°以上になるように配置した以外は、実施例1と同様にして固体高分子形燃料電池を作製した。
 [比較例7]
 炭素繊維不織布の溝部の延在方向と並列型のセパレーターの直線状流路の直線部分の形成方向とのなす角が70°以上になるように配置した以外は、実施例1と同様にして固体高分子形燃料電池を作製した。
 各実施例、比較例にて作製した炭素繊維不織布の形態および当該炭素繊維不織布をガス拡散電極基材として用いた固体高分子形燃料電池の発電性能評価の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
1 電解質膜
2 触媒層
3 マイクロポーラス層
4 ガス拡散電極
41 溝部
42 畝部
5 並列型セパレーター
51 直線状流路(直線部)
 

Claims (8)

  1. 炭素繊維不織布を基材とするガス拡散電極と、並列式の直線状流路が形成されたセパレーターとを有する固体高分子形燃料電池であって、
    前記炭素繊維不織布は、直線状の畝部と直線状の溝部が交互に繰り返される波板状の凹凸を有し、かつ前記畝部と前記溝部の光透過性が同等であり、
    前記ガス拡散電極と前記セパレーターとは、前記炭素繊維不織布の凹凸形成面が前記セパレーターの流路形成面と対向し、かつ前記溝部および前記畝部が前記セパレーターの直線状流路の直線部の形成方向と略並行になるよう配置されてなる固体高分子形燃料電池。
  2. 前記セパレーターの流路の形成ピッチが前記炭素繊維不織布の溝部の形成ピッチよりも大きい、請求項1に記載の固体高分子形燃料電池。
  3. 前記炭素繊維不織布の溝部面積比率が0.1~0.9である、請求項1または2に記載の固体高分子形燃料電池。
  4. 前記炭素繊維不織布の溝部の形成ピッチが20μm~2000μmである、請求項1~3のいずれかに記載の固体高分子形燃料電池。
  5. 前記炭素繊維不織布は、撥水剤が付与されたものである、請求項1~4のいずれかに記載の固体高分子形燃料電池。
  6. 前記炭素繊維不織布の凹凸形成面の水滴接触角が100度以上である、請求項1~5のいずれかに記載の固体高分子形燃料電池。
  7. 前記セパレーターの直線状流路の形状が、パラレル型、マルチパラレル型または対向櫛型である、請求項1~6のいずれかに記載の固体高分子形燃料電池。
  8. 前記炭素繊維不織布の溝部または畝部の延在方向と前記セパレーターの直線状流路の直線部分の形成方向が交差しないように配置されてなる、請求項1~7のいずれかに記載の固体高分子形燃料電池。
     
PCT/JP2016/069776 2015-07-09 2016-07-04 固体高分子形燃料電池 WO2017006907A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16821376.7A EP3322012A4 (en) 2015-07-09 2016-07-04 SOLID POLYMER FUEL CELL
JP2016545941A JPWO2017006907A1 (ja) 2015-07-09 2016-07-04 固体高分子形燃料電池
US15/575,729 US20180294487A1 (en) 2015-07-09 2016-07-04 Polymer electrolyte fuel cell
KR1020187002590A KR20180026478A (ko) 2015-07-09 2016-07-04 고체 고분자형 연료 전지
CA2991121A CA2991121A1 (en) 2015-07-09 2016-07-04 Polymer electrolyte fuel cell
CN201680038867.3A CN107710480A (zh) 2015-07-09 2016-07-04 固体高分子型燃料电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-137476 2015-07-09
JP2015137476 2015-07-09

Publications (1)

Publication Number Publication Date
WO2017006907A1 true WO2017006907A1 (ja) 2017-01-12

Family

ID=57685728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069776 WO2017006907A1 (ja) 2015-07-09 2016-07-04 固体高分子形燃料電池

Country Status (8)

Country Link
US (1) US20180294487A1 (ja)
EP (1) EP3322012A4 (ja)
JP (1) JPWO2017006907A1 (ja)
KR (1) KR20180026478A (ja)
CN (1) CN107710480A (ja)
CA (1) CA2991121A1 (ja)
TW (1) TW201711260A (ja)
WO (1) WO2017006907A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021026992A (ja) * 2019-08-08 2021-02-22 日本碍子株式会社 燃料電池用接合体、及び燃料電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021204917A1 (de) * 2021-05-14 2022-11-17 Cellcentric Gmbh & Co. Kg Strömungsfeld und Separatorplatte

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017076A (ja) * 2001-06-27 2003-01-17 Toho Tenax Co Ltd 炭素繊維構造体
JP2003151585A (ja) * 2001-11-12 2003-05-23 Toyota Motor Corp 燃料電池及び拡散層
JP2007073277A (ja) * 2005-09-06 2007-03-22 Toyota Motor Corp 燃料電池
JP2007299657A (ja) * 2006-04-28 2007-11-15 Equos Research Co Ltd 燃料電池の電極
JP2007299656A (ja) * 2006-04-28 2007-11-15 Equos Research Co Ltd 燃料電池の電極
JP2007323975A (ja) * 2006-06-01 2007-12-13 Nissan Motor Co Ltd 燃料電池のガス拡散体
JP2009245869A (ja) * 2008-03-31 2009-10-22 Aisin Seiki Co Ltd 燃料電池用ガス拡散基材の製造方法
JP2010073563A (ja) * 2008-09-19 2010-04-02 Nissan Motor Co Ltd 燃料電池及び燃料電池用ガス拡散層とその製造方法
WO2015098530A1 (ja) * 2013-12-27 2015-07-02 東レ株式会社 炭素繊維不織布、炭素繊維不織布の製造方法および炭素繊維前駆体繊維不織布
WO2016093041A1 (ja) * 2014-12-10 2016-06-16 東レ株式会社 炭素繊維不織布、炭素繊維不織布の製造方法および固体高分子形燃料電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017076A (ja) * 2001-06-27 2003-01-17 Toho Tenax Co Ltd 炭素繊維構造体
JP2003151585A (ja) * 2001-11-12 2003-05-23 Toyota Motor Corp 燃料電池及び拡散層
JP2007073277A (ja) * 2005-09-06 2007-03-22 Toyota Motor Corp 燃料電池
JP2007299657A (ja) * 2006-04-28 2007-11-15 Equos Research Co Ltd 燃料電池の電極
JP2007299656A (ja) * 2006-04-28 2007-11-15 Equos Research Co Ltd 燃料電池の電極
JP2007323975A (ja) * 2006-06-01 2007-12-13 Nissan Motor Co Ltd 燃料電池のガス拡散体
JP2009245869A (ja) * 2008-03-31 2009-10-22 Aisin Seiki Co Ltd 燃料電池用ガス拡散基材の製造方法
JP2010073563A (ja) * 2008-09-19 2010-04-02 Nissan Motor Co Ltd 燃料電池及び燃料電池用ガス拡散層とその製造方法
WO2015098530A1 (ja) * 2013-12-27 2015-07-02 東レ株式会社 炭素繊維不織布、炭素繊維不織布の製造方法および炭素繊維前駆体繊維不織布
WO2016093041A1 (ja) * 2014-12-10 2016-06-16 東レ株式会社 炭素繊維不織布、炭素繊維不織布の製造方法および固体高分子形燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3322012A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021026992A (ja) * 2019-08-08 2021-02-22 日本碍子株式会社 燃料電池用接合体、及び燃料電池

Also Published As

Publication number Publication date
EP3322012A4 (en) 2019-02-13
JPWO2017006907A1 (ja) 2018-04-19
CN107710480A (zh) 2018-02-16
EP3322012A1 (en) 2018-05-16
KR20180026478A (ko) 2018-03-12
US20180294487A1 (en) 2018-10-11
TW201711260A (zh) 2017-03-16
CA2991121A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP6705172B2 (ja) 炭素繊維不織布、炭素繊維不織布の製造方法および固体高分子形燃料電池
TWI641180B (zh) 碳纖維不織布、碳纖維不織布之製造方法及碳纖維前驅物纖維不織布
KR20190028390A (ko) 가스 확산 전극 기재 및 그의 제조 방법 그리고 가스 확산 전극, 막 전극 접합체 및 고체 고분자형 연료 전지
US20180145335A1 (en) Gas diffusion electrode substrate and method for manufacturing same, gas diffusion electrode, membrane electrode assembly, and polymer electrolyte fuel cell
JP6500421B2 (ja) 炭素繊維不織布
WO2017006907A1 (ja) 固体高分子形燃料電池
JP5761441B2 (ja) 炭素繊維不織布
JP2018026343A (ja) ガス拡散電極基材およびその製造方法、ならびに固体高分子形燃料電池
JP2016195105A (ja) ガス拡散電極基材、膜電極複合体および固体高分子形燃料電池ならびにガス拡散電極基材の製造方法
US9163317B2 (en) Diffusion layer for an electrochemical device and method for producing such a diffusion layer
CN117063315A (zh) 电极基材和其制造方法
JP2018084010A (ja) 炭素繊維前駆体繊維不織布、炭素繊維不織布およびガス拡散電極基材の製造方法
JP2015159058A (ja) ガス拡散電極基材およびそれを用いる燃料電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016545941

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821376

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15575729

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2991121

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187002590

Country of ref document: KR

Kind code of ref document: A