WO2017002703A1 - 音信号生成装置、音信号生成方法、及びコンピュータ読み取り可能な記録媒体 - Google Patents

音信号生成装置、音信号生成方法、及びコンピュータ読み取り可能な記録媒体 Download PDF

Info

Publication number
WO2017002703A1
WO2017002703A1 PCT/JP2016/068668 JP2016068668W WO2017002703A1 WO 2017002703 A1 WO2017002703 A1 WO 2017002703A1 JP 2016068668 W JP2016068668 W JP 2016068668W WO 2017002703 A1 WO2017002703 A1 WO 2017002703A1
Authority
WO
WIPO (PCT)
Prior art keywords
cycle
sound
sound information
information
heartbeat
Prior art date
Application number
PCT/JP2016/068668
Other languages
English (en)
French (fr)
Inventor
山木 清志
森島 守人
石原 淳
川▲原▼ 毅彦
夕輝 植屋
Original Assignee
ヤマハ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ株式会社 filed Critical ヤマハ株式会社
Priority to CN201680038730.8A priority Critical patent/CN107708781B/zh
Publication of WO2017002703A1 publication Critical patent/WO2017002703A1/ja
Priority to US15/852,133 priority patent/US10857323B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • A61M21/02Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis for inducing sleep or relaxation, e.g. by direct nerve stimulation, hypnosis, analgesia
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/36Accompaniment arrangements
    • G10H1/38Chord
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • A61M2021/0005Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus
    • A61M2021/0027Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus by the hearing sense
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • A61M2021/0005Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus
    • A61M2021/0088Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus modulated by a simulated respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3303Using a biosensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3375Acoustical, e.g. ultrasonic, measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/52General characteristics of the apparatus with microprocessors or computers with memories providing a history of measured variating parameters of apparatus or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/04Heartbeat characteristics, e.g. ECG, blood pressure modulation
    • A61M2230/06Heartbeat rate only
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • A61M2230/42Rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/63Motion, e.g. physical activity
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/395Special musical scales, i.e. other than the 12- interval equally tempered scale; Special input devices therefor
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/555Tonality processing, involving the key in which a musical piece or melody is played
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/571Chords; Chord sequences
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2220/00Input/output interfacing specifically adapted for electrophonic musical tools or instruments
    • G10H2220/155User input interfaces for electrophonic musical instruments
    • G10H2220/361Mouth control in general, i.e. breath, mouth, teeth, tongue or lip-controlled input devices or sensors detecting, e.g. lip position, lip vibration, air pressure, air velocity, air flow or air jet angle
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2220/00Input/output interfacing specifically adapted for electrophonic musical tools or instruments
    • G10H2220/155User input interfaces for electrophonic musical instruments
    • G10H2220/371Vital parameter control, i.e. musical instrument control based on body signals, e.g. brainwaves, pulsation, temperature, perspiration; biometric information

Definitions

  • the present invention relates to a technique for generating a sound signal based on sound information related to sound generation.
  • Patent Document 1 a technique for adjusting at least one of the type, volume, or tempo of the sound to be generated according to the relaxed state of the subject has been proposed (see, for example, Patent Document 2).
  • the present invention has been made in view of such circumstances, and a technique for generating a sound signal so as not to give the subject a feeling of getting tired or putting it on the ear when sleep is improved by the generated sound. Is one of the resolution issues.
  • an aspect of a sound signal generation device includes a sound signal generation unit that generates a sound signal based on at least one of a plurality of sound information, and among the plurality of sound information.
  • a switching cycle determining unit that determines a switching cycle so as to switch from the first sound information to the second sound information at a cycle according to the biological information, and the sound signal generating unit includes the switching signal
  • a sound signal is generated based on the second sound information at the switching period determined by the period determining unit.
  • the sound signal is generated by switching the first sound information to the second sound information in a cycle according to the biological information
  • the sound signal is reproduced unlike the loop reproduction that repeatedly uses the same sound information. Sound variations can be increased.
  • the switching period to new sound information (2nd sound information) can be made into the period according to biometric information, a test subject's sleep etc. can be improved.
  • the cycle according to the biological information does not necessarily match the biological cycle (for example, respiratory cycle or heartbeat cycle) of the subject obtained from the biological information, and is obtained under a certain relationship with the biological information. Any period may be used.
  • the sound signal generation device it is preferable to randomly select the second sound information from the plurality of sound information.
  • sound information since sound information is selected at random, it can be prevented from being predicted by the subject. Therefore, it is not necessary to give the subject a feeling of getting bored or putting it on the ear.
  • the storage capacity of the storage unit is compressed.
  • the sound information is switched at random, so the subject can be stored with a small storage capacity. It is possible to generate a sound signal that does not get bored.
  • the sound that is said to have a relaxing effect and a healing effect has a natural fluctuation component, but it is also possible to produce a fluctuation effect on the whole by playing it randomly.
  • Random is a concept that includes pseudo-randomness.
  • the plurality of sound information includes sound information for a plurality of breathing cycles and sound information for a plurality of heartbeat cycles
  • the sound signal generation unit is configured for the plurality of breathing cycles.
  • a sound signal for a respiratory cycle is generated based on any one of the sound information
  • a sound signal for a heartbeat cycle is generated based on any one of the sound information for the plurality of heartbeat cycles
  • the respiratory cycle is generated by synthesizing the sound signal for the heartbeat and the sound signal for the heartbeat cycle
  • the switching cycle determination unit is configured to select the plurality of signals according to the respiratory cycle of the subject obtained based on the biological information.
  • a switching cycle for the respiratory cycle which is the switching cycle of the sound information for the respiratory cycle, and the switching of the sound information for the plurality of heartbeat cycles according to the heartbeat cycle of the subject obtained based on the biological information
  • the sound information selection unit randomly selects any one of the plurality of breathing cycle sound information as the second sound information, and selects any one of the plurality of heartbeat cycle sound information.
  • the sound information of 2 is preferably selected at random.
  • randomly selecting any one of a plurality of respiratory cycle sound information means selecting from a part of the plurality of respiratory cycle sound information, or all of the plurality of respiratory cycle sound information. Including selecting from. Also, randomly selecting any one of the sound information for the heartbeat cycle is to select from a part of the sound information for the plurality of heartbeat cycles, or to select a plurality of heartbeat cycles. Including selecting from all of the sound information for.
  • the switching cycle determination unit instead of determining the switching cycle for the heartbeat cycle according to the heartbeat cycle, is 1 / N (N is a natural number of 2 or more) of the respiratory cycle. Preferably, it is determined according to the period of 1 / N or the switching period for the respiratory cycle. According to this aspect, the switching cycle of the sound information for the heartbeat cycle can be set to 1 / N of the switching cycle of the subject's breathing cycle or the sound information for the breathing cycle.
  • the time from the start of the generation of the sound signal based on the sound information for the respiratory cycle (first sound information) to the switching to the new sound information (second sound information) is the first time
  • N times the time is the first time.
  • the switching cycle determination unit determines N of the heartbeat cycle (N is a natural number equal to or greater than 2) instead of determining the switching cycle for the respiratory cycle according to the cycle according to the respiratory cycle. It is preferable to determine according to a double cycle or an N-fold cycle for the heartbeat cycle. According to this aspect, the switching cycle of the sound information for the respiratory cycle can be set to N times the switching cycle of the sound information for the heartbeat cycle.
  • the time from the start of the generation of the sound signal based on the sound information for the respiratory cycle (first sound information) to the switching to the new sound information (second sound information) is the first time
  • the time from the start of the generation of the sound information for the cycle (first sound information) to the switching of new sound information (second sound information) is defined as the second time
  • the time is N times the second time. Is the first time.
  • the sound information selection unit is any one of the sound information for the plurality of respiratory cycles according to a simultaneous sounding rule that defines a combination of musical features when simultaneous sounding is allowed. It is preferable to select one of the sound information for the plurality of heartbeat cycles.
  • simultaneous sound generation is controlled in accordance with a simultaneous sound generation rule that defines a combination of musical features that allow simultaneous sound generation, a sound and a heart rate corresponding to sound information for the respiratory cycle that are not musically in harmony with each other It is possible to avoid a situation in which a sound corresponding to the sound information for the period is emitted at the same time. As a result, it is possible to reduce listening to unpleasant musical sounds to the subject, and to improve the sleep of the subject.
  • each of the plurality of sound information includes attribute information indicating a musical feature
  • the sound information selection unit is configured such that the sound signal generation unit outputs the sound signal for the respiratory cycle.
  • the sound information for the respiratory cycle is selected as the second information so that the combination with the musical feature indicated by the attribute information follows the simultaneous pronunciation rule.
  • the sound information for the respiratory cycle is switched from the first sound information to the second sound information, the musical characteristics of the sound information corresponding to the sound signal for the heartbeat cycle being generated, The second sound information is selected so that the musical characteristic of the sound information for the respiratory cycle as the second sound information follows the simultaneous pronunciation rule.
  • the musical characteristics of the sound information corresponding to the sound signal for the respiratory cycle being generated and the second sound after the switching is selected so that the musical feature of the sound information for the heartbeat cycle as information follows the simultaneous pronunciation rule. Therefore, it is possible to reduce the synthesized sound signal from becoming a so-called dissonance or annoying music.
  • the simultaneous pronunciation rule is preferably determined based on at least one of tonality, chord name, chordal and modal type, and scale.
  • the maximum value of the amplitude of the waveform in the second half of the time length of the waveform generated by the sound signal generation unit based on any of the plurality of sound information is the time length of the waveform. It is preferable that it is 50% or less of the maximum value of the amplitude in the whole.
  • the amplitude hardly changes over the entire time length of the waveform, even if the sound information is switched from the first sound information to the second sound information in a cycle corresponding to the biological information, the subject is strongly felt in the cycle corresponding to the biological information. Is difficult.
  • the waveform data representing a plurality of sound information has the maximum amplitude value in the latter half of the waveform being 50% or less of the maximum amplitude value of the entire waveform. It is possible to make the subject feel a period corresponding to the above. Thereby, it becomes easy to induce the subject to sleep.
  • the sound signal generation device described above includes an estimation unit that estimates the body state of the subject based on the biological information, and the body state estimated by the estimation unit.
  • a storage unit that stores history information in association with the sound information selected when the sound information is estimated, the plurality of sound information is divided into a plurality of groups, and the sound information selection unit With reference to the information, one of the plurality of groups is selected according to the state of mind estimated by the estimation unit, and the second sound information is selected from the selected group.
  • the group to which the second sound information is selected is selected according to the history information in which the mind body state and the sound information are stored in association with each other and the mind body state estimated by the estimation unit.
  • the present invention can be conceptualized not only as a sound signal generation device but also as a method of operating the sound signal generation device (that is, a sound signal generation method) or a program that causes a computer to execute the sound signal generation method. Is possible. According to these information providing methods or programs, the same effects as those of the above-described sound signal generating device can be obtained.
  • the program of the present invention can be provided in a form stored in a computer-readable recording medium and installed in the computer.
  • FIG. 1 is a diagram illustrating an overall configuration of a system including a sound signal generation device according to a first embodiment. It is a block diagram which shows the function structure of a sound signal generation apparatus. It is a block diagram which shows the structural example of the sound source of a sound signal generation apparatus. It is explanatory drawing which shows the memory content of the memory
  • FIG. 1 is a diagram illustrating an overall configuration of a system 1 including a sound signal generation device 20 according to the first embodiment.
  • the system 1 includes a sensor 11, a sound signal generation device 20, and speakers 51 and 52.
  • This system 1 is intended to improve sleep, for example, by letting a subject E taking a supine posture on the bed 5 hear or feel the sound emitted from the speakers 51 and 52. .
  • the sensor 11 is made of, for example, a sheet-like piezoelectric element, and is disposed below the mattress of the bed 5.
  • the biological information of the subject E is detected by the sensor 11.
  • the body motion resulting from the biological activity including the breathing and heartbeat of the subject E is detected by the sensor 11, and a detection signal in which the components of the biological activity are superimposed is output from the sensor 11.
  • a configuration in which the detection signal is transmitted to the sound signal generation device 20 by wire is shown, but a configuration in which the detection signal is transmitted wirelessly is also possible.
  • the sound signal generation device 20 can acquire the subject's respiratory cycle BRm, heartbeat cycle HRm, and body movement based on the detection signal (biological information) output from the sensor 11. Furthermore, the sound signal generation device 20 estimates the body state of the subject E based on the detection signal (biological information) output from the sensor 11, and is emitted from the speakers 51 and 52 in association with the body state. Information about sound (details will be described later) can be stored.
  • the sound signal generation device 20 is, for example, a mobile terminal or a personal computer.
  • the speakers 51 and 52 are arranged at positions where the subject E in a supine posture can hear stereo sound, and among these, the speaker 51 is a stereo left (L) sound signal output from the sound signal generating device 20. Is amplified by the built-in amplifier and emitted. Similarly, the speaker 52 amplifies the sound signal of the stereo light (R) output from the sound signal generation device 20 with a built-in amplifier and emits the sound.
  • the speaker 51 and 52 will be described.
  • FIG. 2 is a diagram showing a configuration of functional blocks mainly in the sound signal generation device 20 in the system 1.
  • the sound signal generation device 20 includes an A / D conversion unit 205, a control unit 200, a storage unit 250, an input device 225, and D / A conversion units 261 and 262.
  • the storage unit 250 is, for example, a non-transitory recording medium, and may be a known recording medium such as a magnetic recording medium or a semiconductor recording medium in addition to an optical recording medium (optical disk) such as a CD-ROM. Good.
  • “non-transitory” recording media include all computer-readable recording media except transient propagation signals (transitory, “propagating” signal), and are volatile recording media. Is not excluded.
  • the storage unit 250 stores a program PGM executed by the control unit 200 and various data used by the control unit 200.
  • the storage unit 250 stores a plurality of sound information (sound contents) D and a history table TBLa in which information related to sounds emitted from the speakers 51 and 52 is associated with the estimated mind and body state of the subject E.
  • the program PGM may be provided in the form of distribution via a communication network (not shown) and installed in the storage unit 250.
  • the input device 225 is, for example, a touch panel, and a user (for example, a subject) inputs instructions to the display unit (for example, a liquid crystal display panel) that displays various images under the control of the control unit 200 and the sound signal generation device 20. And an input / output device configured integrally with the input unit. Note that a configuration in which the input device 225 is configured as a device having a plurality of operators provided separately from the display unit may be employed.
  • the control unit 200 is configured by a processing device such as a CPU, for example, and executes the program PGM stored in the storage unit 250, whereby the acquisition unit 210, the biological cycle detection unit 215, the sound information management unit 240, the setting unit 220, It functions as the estimation unit 230 and the sound signal generation unit 245.
  • the sound signal generation unit 245 may be configured by LSI (Large Scale Integration).
  • the plurality of sound information D stored in the storage unit 250 may be any data as long as the sound signal V (VL and VR) can be generated by the sound signal generation unit 245.
  • performance data representing performance information such as notes and pitches
  • parameter data representing parameters for controlling the sound signal generation unit 245, and waveform data are exemplified as examples of the sound information D.
  • FIG. 4 shows an example of a plurality of sound information D stored in the storage unit 250.
  • the storage unit 250 includes sound information BD (BD1, BD2,%) For breathing cycle, sound information HD (HD1, HD2,%) For heartbeat cycle, and sound information AD ( AD1, AD2, etc.) are stored.
  • the sound information BD for the breathing cycle is sound information in which a sound signal is generated at a cycle corresponding to the breathing cycle BRm
  • the sound information HD for the heartbeat cycle is based on the heartbeat cycle HRm.
  • the sound information AD is generated in a cycle
  • the ambient sound information AD is sound information in which a sound signal is generated in a cycle unrelated to either the respiratory cycle BRm or the heartbeat cycle HRm.
  • the A / D conversion unit 205 converts the detection signal from the sensor 11 into a digital signal.
  • the acquisition unit 210 temporarily stores the converted digital signal in the storage unit 250, for example.
  • the biological cycle detection unit 215 detects the biological cycle of the subject E based on the biological information stored in the storage unit 250.
  • the biological cycle detection unit 215 detects the heartbeat cycle HRm and the respiratory cycle BRm as the biological cycle, and supplies it to the sound information management unit 240.
  • the biological cycle detection unit 215 extracts a signal component in the frequency band corresponding to the respiratory component from the detection signal acquired by the acquisition unit 210, and detects the respiratory cycle BRm of the subject E based on the extracted component. .
  • the biological cycle detection unit 215 extracts a signal component in a frequency band corresponding to the heartbeat component from the detection signal, and detects the heartbeat cycle HRm of the subject E based on the extracted component.
  • the estimation unit 230 estimates the mind body state of the subject E based on the biological information accumulated in the storage unit 250 and supplies information indicating the estimated heart body state to the sound information management unit 240.
  • the setting unit 220 is for making various settings.
  • the sound signal generation device 20 can reproduce a large number of musical sounds so as not to bore the subject E.
  • the setting unit 220 sets the tone color of the musical sound according to the input operation of the subject E with respect to the input device 225, and temporarily stores the set content in the storage unit 250 as setting data SDT.
  • the estimation unit 230 estimates the psychosomatic state (sleep stage) of the subject E from the detection result of the sensor 11 over a period from when the subject E enters a resting state to falling asleep and to awakening.
  • the estimation unit 230 determines whether the subject E is, for example, “Awake”, “light sleep”, “light sleep”, or “REM sleep”. presume.
  • “light sleep” and “deep sleep” can also be classified as “non-REM sleep”.
  • a person tends to have a long respiratory cycle BRm and a heartbeat cycle HRm during a period from awakening to deep sleep.
  • the fluctuation of those cycles tends to be small.
  • body movements decrease as sleep becomes deeper.
  • the estimation unit 230 combines the change in the respiratory cycle BRm and the heartbeat cycle HRm, and the number of body movements per unit time based on the detection signal of the sensor 11 and compares it with a plurality of threshold values, so that the psychosomatic state Is estimated.
  • the sound information management unit 240 is a functional element that executes various functions related to processing of the sound information D. Specifically, as shown in FIG. 2, the sound information management unit 240 includes a switching period determination unit 241, a sound information selection unit 242, a switching timing determination unit 243, and a history information generation unit 244. The sound information selection unit 242 determines (selects) which sound information D of the plurality of sound information D stored in the storage unit 250 is to be read and reproduced based on the setting data SDT stored in the storage unit 250. ) And supplies the designated data for designating the selected sound information D to the sound signal generation unit 245.
  • the sound information selection unit 242 based on the setting data SDT stored in the storage unit 250, the sound information BD for breathing cycle, the sound information HD for heartbeat cycle, or the sound information AD for ambient sound Select at least one of
  • the history information generation unit 244 stores the mind body state estimated by the estimation unit 230 and the identifier of the selected sound information D in association with the processing time (for example, the generation time of the sound signal based on the sound information D). Stored in the history table TBLa stored in 250.
  • the switching cycle determination unit 241 determines a cycle in which the first sound information D is switched to the second sound information D for each of the sound information BD for the respiratory cycle and the sound information HD for the heartbeat cycle.
  • the switching cycle determination unit 241 switches the switching cycle so as to switch from the first sound information D to the second sound information D at a cycle (switching cycle) corresponding to the cycle of the living body detected by the biological cycle detection unit 215.
  • the switching cycle determination unit 241 determines a cycle (for example, a predetermined multiple times) corresponding to the cycle of the respiratory cycle BRm detected by the biological cycle detection unit 215 as the switching cycle of the sound information BD for the respiratory cycle.
  • a cycle corresponding to the cycle of the heartbeat cycle HRm (for example, a cycle of a predetermined number of times) is determined as the switching cycle of the sound information HD for the heartbeat cycle.
  • the switching timing determination unit 243 determines whether or not the current time is the switching timing in the switching cycle determined by the switching cycle determination unit 241 for the sound information BD for the respiratory cycle or the sound information HD for the heartbeat cycle. In addition, the switching timing determination unit 243 determines that the current time is a cycle arbitrarily determined as the ambient sound switching cycle (or a cycle according to the switching cycle of the sound information BD for the respiratory cycle, or sound information for the heartbeat cycle. It is determined whether or not it is a switching timing at a cycle according to the HD switching cycle.
  • first sound information D is the sound information D before switching
  • second sound information D is the sound information D of the switching destination. That is, when the sound information D most recently generated from the sound signal V is “first sound information D”, as a result of the sequential selection of the sound information D by the sound information selection unit 242, “first sound information D” is obtained.
  • the sound information D for which the sound signal V is to be generated is “second sound information D”.
  • the “first sound information D” and the “second sound information D” are any two pieces of sound information D in which the generation order of the sound signal V based on these is temporally changed.
  • the sound signal generation unit 245 acquires the sound information D corresponding to the designated data supplied from the sound information selection unit 242 from the storage unit 250 at the switching cycle determined by the switching cycle determination unit 241, and the acquired sound information D Based on the above, a sound signal V is generated to reproduce the musical sound.
  • FIG. 3 shows a detailed configuration of the sound signal generation unit 245.
  • the sound signal generation unit 245 includes first to third sound signal generation units 410 to 430 and mixers 451 and 452.
  • the first sound signal generation unit 410 generates sound signals VBD (VBD_L and VBD_R) based on the respiratory cycle sound information BD in conjunction with the respiratory cycle BRm, and the second sound signal generation unit 420 sets the heart rate cycle HRm.
  • the sound signals VHD (VHD_L and VHD_R) based on the sound information HD for the heartbeat cycle are generated in conjunction with each other, and the third sound signal generation unit 430 is an ambient sound with a cycle that is not linked to either the breathing cycle BRm or the heartbeat cycle HRm.
  • the sound signal VAD based on the sound information AD (VAD_L and VAD_R) is generated.
  • the first to third sound signal generation units 410 to 430 are respectively connected to the switching period determination unit 241 for each of the first to third sound signal generation units 410 to 430.
  • the first to third sound signal generators 410 to 430 generate a sound signal V (VBD, VHD or VAD) based on the acquired second sound information D, respectively, and digitally and stereo two channels.
  • the sound signals VBD (VBD_L and VBD_R), VHD (VHD_L and VHD_R), or VAD (VAD_L and VAD_R) are output in a format.
  • the mixer 451 mixes (synthesizes) the left (L) sound signals VBD_L, VHD_L, and VAD_L output from each of the first to third sound signal generators 410 to 430 to generate an output sound signal VL. Generate.
  • the mixer 452 mixes the light (R) sound signals VBD_R, VHD_R, and VAD_R output from each of the sound signal generators 410 to 430 to generate an output sound signal VR.
  • the D / A conversion unit 261 converts the left (L) sound signal VL mixed by the mixer 451 into an analog signal and outputs the analog signal.
  • the D / A conversion unit 262 outputs the right ( R) sound signal VR is converted to analog and output.
  • the switching cycle determination unit 241 determines the switching cycle so that the first sound information D is switched to the second sound information D at a cycle according to the biological information of the subject E.
  • Each of the first to third sound signal generators 410 to 430 generates a sound signal based on the second sound information D in the switching period determined by the period determining unit 241 (that is, the first sound information D is changed to the first sound information D). 2).
  • the sound information BD for the respiratory cycle stored in the storage unit 250 has a reproduction time of 10 seconds.
  • the breathing period BRm of a person at rest is about 5 to 8 seconds.
  • the reason for setting the reproduction time to 10 seconds is that the sound information BD is reproduced over the entire period of the respiratory cycle BRm when the sound information BD for the respiratory cycle is switched to the new sound information BD in a cycle corresponding to the respiratory cycle BRm. This is because it is preferable.
  • FIG. 5 shows an example of the waveform of the sound signal V generated by the sound signal generation unit 245 based on the sound information BD for the respiratory cycle.
  • the waveform corresponding to the sound information BD for the respiratory cycle has a total reproduction time Ta of, for example, 10 seconds.
  • the difference between the upper peak and the lower peak of the waveform is within 50% in the second half of the playback time. It is supposed to become.
  • the difference between the upper peak and the lower peak of the waveform is preferably within 50% in the period Tb of the last 10% of the reproduction time.
  • the reason why the waveform decays in the latter half is to switch the breathing cycle sound information BD to new sound information BD at a cycle corresponding to the subject's breathing cycle BRm.
  • the sound information HD for the heartbeat cycle is switched to new sound information HD at a cycle corresponding to the heartbeat cycle HRm, similarly to the sound information BD for the respiratory cycle.
  • the sound information HD for the heartbeat cycle may have a waveform that attenuates in the latter half, similarly to the sound information BD for the respiratory cycle.
  • the sound information BD for a plurality of respiratory cycles is managed in groups.
  • the sound information BD1, BD2,... BD10 for the breathing cycle is the first group, and the sound information BD11, BD12,.
  • the first group is composed of sound information BD composed of, for example, piano sounds
  • the second group is composed of sound information BD composed of, for example, harp sounds.
  • the group may be divided by musical instruments such as drums and guitars. Note that each of the plurality of respiratory cycle sound information BD belonging to each group is different from each other.
  • the reproduction time length of each of the sound information HD for a plurality of heartbeat cycles is 1.2 seconds.
  • the sound information HD for a plurality of heartbeat cycles is also managed by being divided into a plurality of groups in the same manner as the sound information BD for a breathing cycle.
  • heart cycle sound information HD1, HD2,... HD10 is the first group
  • heart cycle sound information HD11, HD12 is the first group
  • the first group is composed of sound information HD representing, for example, a bell sound
  • the second group is composed of sound information HD representing, for example, a wind chime sound.
  • the group may be divided by musical instruments such as drums and guitars. Note that each of the sound information HD for a plurality of heartbeat periods belonging to each group is different from each other.
  • the reproduction time length of each of the sound information AD for a plurality of ambient sounds is 100 seconds.
  • the sound information AD for a plurality of ambient sounds is also managed by being divided into groups like the sound information BD for the respiratory cycle.
  • ambient sound information AD1, AD2,... AD10 is the first group
  • ambient sound information AD11, AD12 is the first group
  • the first group is composed of, for example, sound information AD representing a wave sound
  • the second group is composed of, for example, sound information AD representing a murmur sound.
  • the group may be divided by the sound of wind or the sound of hustle and bustle.
  • FIG. 6 is a flowchart showing an example of the operation of the sound signal generation device 20.
  • the biological cycle detection unit 215 detects the heart rate cycle HRm and the respiratory cycle BRm of the subject E based on the detection signal indicating the biological information of the subject E acquired by the acquisition unit 210 (Sa1).
  • the frequency band of the respiratory component superimposed on the detection signal is about 0.1 Hz to 0.25 Hz
  • the frequency band of the heartbeat component superimposed on the detection signal is about 0.9 Hz to 1.2 Hz.
  • the biological cycle detection unit 215 extracts a signal component in a frequency band corresponding to the respiratory component from the detection signal, and detects the respiratory cycle BRm of the subject E based on the extracted component.
  • the biological cycle detection unit 215 extracts a signal component in a frequency band corresponding to the heartbeat component from the detection signal, and detects the heartbeat cycle HRm of the subject E based on the extracted component. Note that the biological cycle detection unit 215 always detects the heartbeat cycle HRm and the respiratory cycle BRm of the subject E even while executing the following processes.
  • the sound information selection unit 242 acquires the setting data SDT set by the setting unit 220 from the storage unit 250 (Sa2), the sound information BD for the respiratory cycle, the sound information HD for the heartbeat cycle, and the sound information for the ambient sound From which group the sound information D is selected for each AD is determined based on the setting data SDT.
  • the setting data SDT includes at least information designating any one of the sound information BD for the respiratory cycle, the sound information HD for the heartbeat cycle, and the sound information AD for the ambient sound.
  • Information indicating the selected favorite tone color, information indicating the type of musical instrument, and the like may be included.
  • the setting data SDT specifies all of the sound information BD for the breathing cycle, the sound information HD for the heartbeat cycle, and the sound information AD for the ambient sound, but at least one of these is set.
  • a configuration specified by the SDT can also be taken.
  • the setting data SDT specifies the sound information BD for the respiratory cycle and the sound information AD for the ambient sound excluding the sound information HD for the heartbeat cycle, and the sound information selection unit 242 performs the sound information BD for the respiratory cycle and the ambient information.
  • a configuration is also possible in which a group to be selected for sound information is determined for each of the sound information AD for sound.
  • the setting data SDT specifies all of the sound information BD for the respiratory cycle, the sound information HD for the heartbeat cycle, and the sound information AD for the ambient sound
  • the sound information BD for the respiratory cycle and the sound information HD for the heartbeat cycle And the ambient sound information AD are mixed and output as a sound signal V from the sound signal generation unit 245.
  • the setting data SDT specifies only the sound information BD for the breathing cycle and the sound information AD for the ambient sound
  • the sound information BD for the breathing cycle and the sound information AD for the ambient sound are mixed to generate the sound signal V.
  • the signal is output from the signal generator 245.
  • the sound information selection unit 242 selects any of a plurality of sound information D included in the group determined as the selection target of the sound information D according to a predetermined rule (randomly in this operation example).
  • a predetermined rule randomly in this operation example.
  • the sound information BD for the same breathing cycle may be continuously selected. Therefore, the first sound information D and the second sound information D before and after switching may be the same.
  • the 1st sound information D and the 2nd sound information D differ, the variation of the sound heard by the test subject E can be increased.
  • the sound information selection unit 242 sets the sound information BD for the breathing cycle, the sound information HD for the heartbeat cycle, and the sound information AD for the ambient sound according to a predetermined rule from each of the determined groups. Select (Sa3).
  • the rule in this example is to select randomly.
  • the term “random” is a concept including so-called pseudo-random. For example, using a pseudo-random signal generated by an M-sequence generator, sound information BD for a respiratory cycle, sound information for a heartbeat cycle The selection of sound information AD for HD and ambient sound may be performed respectively.
  • the sound signal generation unit 245 generates a sound signal V using the randomly selected respiratory cycle sound information BD, heartbeat cycle sound information HD, and ambient sound information AD (Sa4). .
  • the switching timing determination unit 243 determines whether or not the current time is a switching timing in a cycle corresponding to the breathing cycle BRm of the subject E (Sa5). More specifically, the switching timing determination unit 243 determines that the current time is the reproduction start time of the sound information BD for the respiratory cycle that the sound signal generation unit 245 has recently acquired from the storage unit 250 (for example, the sound information BD It is determined whether or not the time corresponding to the respiratory cycle switching period has elapsed since the (acquisition time).
  • the “respiration cycle switching cycle” is a cycle corresponding to the respiratory cycle BRm, and does not necessarily match the detected respiratory cycle BRm, and if there is a certain relationship with the detected respiratory cycle BRm. Good.
  • the respiratory cycle BRm detected by the biological cycle detection unit 215 may be averaged over a predetermined period, and the average value may be multiplied by K (K is an arbitrary value satisfying 1 ⁇ K ⁇ 1.1). In this example, the average value is multiplied by 1.05 to determine the switching cycle of the sound information BD for the respiratory cycle.
  • K is an arbitrary value satisfying 1 ⁇ K ⁇ 1.1
  • the average value is multiplied by 1.05 to determine the switching cycle of the sound information BD for the respiratory cycle.
  • the switching cycle is 5.25 seconds.
  • the switching cycle for the respiratory cycle is determined by the switching cycle determination unit 241 based on the respiratory cycle BRm detected by the biological cycle detection unit 215.
  • the determination of the switching cycle for the respiratory cycle is preferably performed every predetermined period (unit period for obtaining an average value).
  • the switching timing determination unit 243 When the determination condition in step Sa5 is affirmed, the switching timing determination unit 243 generates a timing signal that instructs generation of sound information BD (second sound information BD) for a new respiratory cycle as a sound signal generation unit 245.
  • the timing signal is supplied, the first sound signal generation unit 410 of the sound signal generation unit 245 supplies the sound information BD for the respiratory cycle selected by the sound information selection unit 242 to the second sound.
  • Acquired from the storage unit 250 as information BD and generates a sound signal VBD based on the acquired second sound information BD (Sa6).
  • the selection of the sound information BD by the sound information selection unit 242 is executed every time the generation timing of the sound information BD for the breathing cycle (the switching cycle for the breathing cycle) is reached, and the selected sound information BD is generated along with the timing signal. To the unit 245.
  • step Sa7 determines whether or not it is the switching timing of the cycle according to the heartbeat cycle HRm of the subject E ( Sa7).
  • the switching cycle determination unit 241 determines the switching cycle for the heartbeat cycle based on the heartbeat cycle HRm detected by the biological cycle detection unit 215.
  • the “heartbeat cycle switching cycle” is a cycle corresponding to the heartbeat cycle HRm, and does not necessarily match the detected heartbeat cycle HRm, and has a certain relationship with the detected heartbeat cycle HRm. That's fine.
  • the detected heartbeat period HRm may be averaged over a predetermined period, and the average value may be L times (L is an arbitrary value satisfying 1 ⁇ L ⁇ 1.1). In this example, 1.02 times the average value is determined as the switching cycle of the sound information HD for the heartbeat cycle. In this case, if the average value of the heartbeat period HRm of the subject E is 1 second, the switching period is 1.02 seconds.
  • the heart rate cycle HRm tends to become longer.
  • the switching cycle for the heartbeat cycle is determined by the switching cycle determination unit 241 based on the heartbeat cycle HRm detected by the biological cycle detection unit 215. As in the case of the switching cycle for the respiratory cycle, the determination of the switching cycle for the heartbeat cycle is preferably performed every predetermined period (unit period for obtaining the average value).
  • the switching timing determination unit 243 When the determination condition in step Sa7 is affirmed, the switching timing determination unit 243 outputs a timing signal for instructing generation of the new heart cycle sound information HD (second sound information HD) as the sound signal generation unit 245.
  • the second sound signal generation unit 420 of the sound signal generation unit 245 supplies the sound information HD for the cardiac cycle selected by the sound information selection unit 242 to the second sound.
  • Acquired from the storage unit 250 as information HD and generates a sound signal VHD based on the acquired second sound information HD (Sa8).
  • the selection of the sound information HD by the sound information selection unit 242 is executed every time a new generation timing of the sound information HD for the heartbeat cycle (heartbeat cycle switching cycle) is reached, and the selected second sound information HD is timed. Together with the signal, the sound signal generator 245 is supplied.
  • the switching timing determination unit 243 determines whether it is the switching timing of the ambient sound (Sa9).
  • the switching timing of the ambient sound may be arbitrarily determined. For example, it may be 100 seconds, or the timing at which the reproduction of the sound information AD for one ambient sound ends may be set as the switching timing.
  • the switching timing of the sound information BD for the breathing cycle may be matched with the switching timing of the sound information AD for the ambient sound, or may be mismatched.
  • the ambient sound switching cycle is set in conjunction with a cycle corresponding to the respiratory cycle BRm or the heartbeat cycle HRm, the ambient sound switching cycle is the respiratory cycle BRm or heartbeat cycle HRm detected by the biological cycle detection unit 215. Based on the above, the switching cycle determination unit 241 determines.
  • the switching timing determination unit 243 When the determination condition in step Sa9 is affirmed, the switching timing determination unit 243 outputs a timing signal for instructing generation of new ambient sound information AD (second sound information AD) as a sound signal generation unit 245.
  • the third sound signal generating unit 430 of the sound signal generating unit 245 supplies the ambient sound information AD selected by the sound information selecting unit 242 to the second sound.
  • Acquired from the storage unit 250 as information AD and generates a sound signal VAD based on the acquired second sound information AD (Sa10).
  • the selection of the sound information AD by the sound information selection unit 242 is executed every time when a new generation timing of the sound information AD for ambient sound (ambient sound switching cycle) is reached, and the selected sound information AD is sounded together with the timing signal.
  • the signal is supplied to the signal generator 245.
  • the sound information selection unit 242 randomly selects the sound information AD for ambient sound, so that it is possible to increase the variation of sounds to be heard by the subject E. .
  • step Sa9 determines whether or not the reproduction of the sound information D is ended (Sa11).
  • the control unit 200 determines whether or not the reproduction of the sound information D is ended (Sa11).
  • the control unit 200 performs this implementation.
  • the sound signal generation process according to the embodiment is terminated.
  • the control unit 200 returns the process to step Sa5 and repeats the process from step Sa5 to step Sa10.
  • the biological cycle detection unit 215 constantly detects the heart rate cycle HRm and the respiratory cycle BRm, when the heart cycle HRm and the respiratory cycle BRm change, a switching cycle for switching the sound information BD for the respiratory cycle following this change, The switching cycle for switching the sound information HD for the heartbeat cycle changes. In some cases (that is, when the switching period is set to Q times the heartbeat period HRm or the respiratory period BRm), the switching period of the sound information AD for ambient sound also changes.
  • the sound signal generation apparatus 20 of the present embodiment selects the same sound information D at random rather than repeatedly, it becomes possible to eliminate unnaturalness such as getting tired or getting on the ear.
  • a sound that is said to have a relaxing effect or a healing effect, such as an ⁇ wave easily appearing in an electroencephalogram pattern has a natural fluctuation component. By randomly selecting a plurality of sound information D It is also possible to make the playback sound fluctuate.
  • selection or non-selection setting that is, reproduction for each of the sound information BD for respiratory cycle, the sound information HD for heartbeat cycle, and the sound information AD for ambient sound Setting whether or not to be a target).
  • the switching cycle for switching the sound information BD for the breathing cycle and the switching cycle for switching the sound information HD for the heartbeat cycle are set independently.
  • the sound signal generation device 20 according to the second embodiment has the sound of the first embodiment in that a switching cycle for switching the breathing cycle sound information BD is set in conjunction with the heartbeat cycle HRm of the subject. It differs from the signal generator 20.
  • the sound signal generation device 20 according to the second embodiment is configured in the same manner as the sound signal generation device 20 according to the first embodiment.
  • FIG. 7 shows a flowchart for determining the switching cycle of the sound information BD for the respiratory cycle.
  • the switching cycle determination unit 241 sets the initial value of the coefficient N to “2” (Sb1).
  • the switching cycle determination unit 241 calculates the switching cycle BRs according to the following formula 1 (Sb2).
  • BRs N ⁇ HRm
  • HRm is a heartbeat cycle measured by the biological cycle detector 215.
  • the sound information management unit 240 compares the calculated switching cycle BRs with the respiratory cycle BRm measured by the biological cycle detection unit 215, and determines whether or not the switching cycle BRs exceeds the respiratory cycle BRm (Sb3).
  • the switching cycle determination unit 241 advances the process to Sb4 and increments the coefficient N by “1” (Sb4).
  • the switching cycle determination unit 241 repeats the processing from step Sb2 to step Sb4 until the switching cycle BRs exceeds the breathing cycle BRm.
  • the switching cycle BRs at that time is determined as a cycle for switching the sound information BD for the respiratory cycle (Sb5).
  • the measured respiratory cycle BRm is 5.3 seconds and the measured heartbeat cycle HRm is 1 second.
  • N is a natural number of 2 or more.
  • the switching cycle determination unit 241 determines whether either the measured respiratory cycle BRm or the measured heartbeat cycle HRm has changed (Sb6).
  • the sound information management unit 240 repeats the determination until the determination condition is satisfied. Then, when the determination condition is satisfied, the switching cycle determination unit 241 returns the process to step Sb1.
  • the sound signal generation device 20 can switch the sound information BD for the respiratory cycle to new sound information BD in conjunction with the measured heartbeat cycle HRm.
  • the switching cycle of the sound information BD for the breathing cycle is determined so as to be a natural number times the measured heartbeat cycle HRm, but the natural number times the switching cycle of the sound information HD for the heartbeat cycle is
  • the switching cycle of the sound information BD for the breathing cycle may be determined as follows. In this case, the switching cycle HRs of the sound information HD for the heartbeat cycle may be used instead of the measured heartbeat cycle HRm described above.
  • the switching cycle for the respiratory cycle is a natural number multiple of the switching cycle of the sound information HD for the heartbeat cycle.
  • the switching cycle for switching the sound information BD for the breathing cycle and the switching cycle for switching the sound information HD for the heartbeat cycle are set independently.
  • the sound signal generation device 20 according to the third embodiment sets the switching cycle for switching the heart cycle cycle sound information HD in conjunction with the breathing cycle BRm of the subject. It differs from the signal generator 20.
  • the sound signal generation device 20 according to the third embodiment is configured in the same manner as the sound signal generation device 20 according to the first embodiment.
  • FIG. 8 shows a flowchart for determining the switching cycle of the sound information HD for the heartbeat cycle.
  • the sound information management unit 240 sets the initial value of the coefficient N to “12” (Sc1).
  • the sound information management unit 240 calculates the switching cycle HRs according to Equation 2 shown below (Sc2).
  • HRs BRm / N (Formula 2)
  • BRm is a respiratory cycle measured by the biological cycle detector 215.
  • the switching cycle determination unit 241 compares the calculated switching cycle HRs with the heartbeat cycle HRm measured by the biological cycle detection unit 215, and determines whether the switching cycle HRs exceeds the heartbeat cycle HRm (Sc3).
  • the switching cycle determination unit 241 advances the process to Sc4 and decrements the coefficient N by “1” (Sc4).
  • the switching cycle determination unit 241 repeats the processes from Step Sc2 to Step Sc4 until the switching cycle HRs exceeds the heartbeat cycle HRm.
  • the switching cycle HRs at that time is determined as the cycle for switching the sound information HD for the heartbeat cycle (Sc5).
  • the measured respiratory cycle BRm is 5.4 seconds and the measured heartbeat cycle HRm is 1 second.
  • the switching cycle determination unit 241 determines whether either the measured respiratory cycle BRm or the measured heartbeat cycle HRm has changed (Sc6).
  • the sound information management unit 240 repeats the determination until the determination condition is satisfied.
  • the sound information management unit 240 returns the process to step Sc1.
  • the sound signal generation device 20 can switch the heart cycle sound information HD in conjunction with the measured respiratory cycle BRm.
  • the switching cycle HRs of the heart cycle sound information HD is determined to be 1 / N (N is a natural number of 2 or more) of the measured respiratory cycle BRm.
  • the switching period of the sound information HD for the heartbeat period may be determined to be 1 / N of the switching period BRs of the information BD.
  • the switching cycle BRs of the sound information BD for the respiratory cycle may be used instead of the measured respiratory cycle BRm described above.
  • the switching cycle for the heartbeat cycle is a natural number of the switching cycle of the sound information BD for the respiratory cycle.
  • each of the sound information BD for the respiratory cycle, the sound information HD for the heartbeat cycle, and the sound information AD for the ambient sound is randomly selected from the group designated by the setting unit 220.
  • the sound signal variation is increased by reproducing the sound signal with the sound signal generation unit 245 based on the sound information D selected in step (b).
  • This system 1 is intended to provide a variety of musical sounds to the subject by randomly selecting the sound information D for the purpose of improving the sleep of the subject E.
  • the sound signal generation device 20 of each embodiment described above can simultaneously generate the sound information BD for the respiratory cycle, the sound information HD for the heartbeat cycle, and the sound information AD for the ambient sound unrelated to the biological rhythm. .
  • the sound information D to be reproduced includes information having a so-called musical pitch or chord. For this reason, when the randomly selected sound information D is reproduced at the same time, there is a combination of sounds that are musically dissonant or uncomfortable for the subject E. Therefore, the sound signal generation device 20 according to the fourth embodiment controls the selection of waveform data so that an unpleasant state such as a dissonance does not occur between a plurality of pieces of sound information D that are simultaneously emitted.
  • the sound signal generation device 20 includes a combination of musical features that include attribute information indicating musical features of the sound information D and that allow simultaneous pronunciation (ie, are prohibited).
  • the configuration is the same as that of the sound signal generation device 20 according to the first embodiment, except that the sound information D is selected according to the defined rule.
  • the attribute information may be anything as long as it shows a musical feature.
  • the attribute information of the present embodiment includes tones such as C major and A minor, code names such as C7 and CM7, do and mi.
  • the scales such as D Dorian scale and C Okinawa scale, and the types of musical sounds such as chordal and modal.
  • the chordal form is chordal music, and the modal form is music that eliminates dominant motion and focuses on the scale itself.
  • the chordal shape includes musical features such as tonality and chord name.
  • the pitch names that make up one chord name of the sound information that is played at the same time include all the pitch names that make up the other chord name (that is, if an inclusion relationship is established), But people don't feel uncomfortable.
  • the inclusive relationship is not established as in Dm7 (Refrad) and CM7 (Domitoshi)
  • the sound information selection unit 242 when the musical feature of the sound information D is a chordal shape, the sound information selection unit 242 generates a sound that is simultaneously generated based on the tonality and the chord name so that the person does not feel uncomfortable. Information D is selected.
  • the modal form is a so-called church mode (mode) music classification method, and the names of modes such as C Dorian scale and E-ridian scale represent musical features.
  • C of C Dorian and “E” of E Lydian represent the main sound (tonal center).
  • the modal form in addition to the church scale, it is possible to specify a folk music having a specific scale. For example, there are the Okinawa scale, the Spanish scale, and the gamelan scale (pelog scale), and these can be handled in the same way as the church melody by specifying the main tone (tornal center) and the scale name.
  • the modal form has an expandability that can be applied even when a new musical scale that does not currently exist is created.
  • the sound information management unit 240 extracts attribute information for each of the plurality of sound information D stored in the storage unit 250, generates a control table TBLb, and stores the generated control table TBLb in the storage unit 250.
  • FIG. 9 shows an example of the control table TBLb.
  • the part with “-” indicates invalidity.
  • BD1, BD2, HD3, and HD4 are classified into chordal forms and have code names.
  • the pitch name is invalidated, and the scale specific to the modal form is also invalidated.
  • HD1 and HD2 are classified into modal forms and have a scale. In this case, the pitch name is invalidated, and the tonality and chord name peculiar to the chordal form are invalidated.
  • AD1 and AD2 for ambient sound has a pitch name specified, but is otherwise invalid.
  • AD1 is composed only of “do”, “do” is always pronounced, and AD2 is composed of two sounds “do” and “mi”.
  • all musical features of AD3 are disabled. This is the case, for example, where the sound information is composed of natural sounds such as wave sounds and murmuring sounds.
  • FIG. 10 is a flowchart illustrating an example of an operation according to the fourth embodiment.
  • the operation of the sound signal generation device 20 of the fourth embodiment is different from the operation of the sound signal generation device 20 of the first embodiment shown in FIG. 6 in that the sound information AD for ambient sound is switched (step of FIG. 6). Sa9 and Sa10) are not executed. That is, when the determination condition of step Sa7 is denied and when the process of step Sa8 is completed, the process proceeds to step Sa5.
  • sound information D belonging to a predetermined group is randomly selected and switched.
  • the sound information selection unit 242 is provided with the sound information BD for the respiratory cycle on the condition that it follows a simultaneous pronunciation rule that defines a combination of musical features that allow simultaneous pronunciation.
  • the sound information HD for the heartbeat cycle is randomly selected from the sound information BD belonging to the predetermined group or the sound information HD belonging to the predetermined group.
  • step Sa3 the sound information selection unit 242 randomly selects sound information AD for ambient sound from the set group.
  • the sound information AD1 for ambient sound shown in FIG. 9 is selected.
  • the sound information selection unit 242 refers to the control table TBLb and follows the simultaneous pronunciation rule so that it does not conflict with the pitch name “do” that is the musical feature of the sound information AD1 for ambient sound.
  • the sound information BD and the sound information HD for the heartbeat cycle are selected at random.
  • the sound information BD for the respiratory cycle includes a sound “do” specified by the pitch name of the sound information AD for ambient sound (simultaneous pronunciation rule) and belongs to the specified group. Randomly selected from the period sound information BD.
  • the sound information HD for the heartbeat cycle is selected as follows. (A1) First condition: The sound specified by the pitch name of the sound information AD for ambient sound is included (simultaneous pronunciation rule). Note that when the pitch name is not specified in the ambient sound information AD (for example, wave sound), the first condition is ignored. (A2) Second condition: belonging to a designated group.
  • the sound constituting the code of the information BD includes all the sounds constituting the code of the sound information HD for the heartbeat cycle (that is, included in the sound constituting the code of the sound information BD for the respiratory cycle).
  • the selected sound information BD for the respiratory cycle is BD2 shown in FIG.
  • the chord of the sound information BD2 is CM7
  • the sound to be configured is “Domishi”.
  • a code including all sounds constituting the code of the sound information BD for the respiratory cycle is CM7.
  • codes that include all the sounds that are included in the sound that constitutes the code of the sound information BD for the respiratory cycle are Em (Mission), C (Domiso), and the like.
  • the sound information HD for the heartbeat cycle can be selected having CM7, Em, or C code.
  • the sound information HD for the heartbeat cycle having the tonality of “C major” can be selected. That is, as the sound information HD for the heartbeat cycle, one having “C major” tonality and having CM7, Em, or C code can be selected.
  • (A5) Fifth condition: sound information HD for the heartbeat cycle that satisfies the first condition, the second condition, and the third condition, or the first condition, the second condition, and the fourth condition Randomly selected from sound information HD for the heartbeat cycle that satisfies the conditions.
  • the sound information selection unit 242 refers to the control table TBLb and switches the sound information BD for the respiratory cycle according to the simultaneous pronunciation rule. Do.
  • the sound information BD for the respiratory cycle is selected as follows.
  • the sound information management unit 240 refers to the control table TBLb and switches the heart cycle cycle sound information HD according to the simultaneous pronunciation rule.
  • the sound information HD for the heartbeat cycle in this case is selected as follows (simultaneous pronunciation rule).
  • C1 First condition The sound specified by the pitch name of the sound information AD for ambient sound is included. Note that if the pitch name is not specified in the ambient sound information AD, the first condition is ignored.
  • C2) Second condition belonging to a designated group.
  • (C4) Fourth condition: when the sound information BD for the respiratory cycle being reproduced is in a chordal form, the tonality is the same as the tonality of the sound information BD for the respiratory cycle being reproduced, and the respiratory cycle Having a chord that includes all the sounds that make up the chord of the sound information BD for use, or having a chord that contains all of the sounds that make up the sound that makes up the chord of the sound information BD for the respiratory cycle ).
  • (C5) sound information HD for the heartbeat cycle that satisfies the first condition, the second condition, and the third condition, or the first condition, the second condition, and the fourth condition are satisfied The sound information HD for the heartbeat cycle to be selected is randomly selected.
  • the sound signal generation unit 245 switches the other sound information D while reproducing one sound information D of the sound information BD for the respiratory cycle or the sound information HD for the heartbeat cycle.
  • the other sound information D is selected such that the musical feature indicated by the attribute information of the other sound information D and the musical feature sound indicated by the attribute information of the other sound information D follow the simultaneous pronunciation rule.
  • FIG. 11 is an explanatory diagram showing an example of switching between the sound information BD for the respiratory cycle and the sound information HD for the heartbeat cycle.
  • the tones of the sound information BD for the respiratory cycle and the sound information HD for the heartbeat cycle are both in C major.
  • the sound of the sound information AD for ambient sound is “do”.
  • the sound information BD for the respiratory cycle is switched, and at the times t1, t2, t3, t5, t6, t7, t8, and t10, the sound information HD for the heartbeat cycle is switched. Occurs.
  • BRs is a switching cycle for switching the sound information BD for the respiratory cycle
  • HRs is a switching cycle for switching the sound information HD for the heartbeat cycle.
  • the timing for switching the sound information HD for the heartbeat cycle arrives during the reproduction of the sound information BD for the breathing cycle having the CM7 (Domishi) code.
  • switching is performed to the sound information HD for the heartbeat cycle having a C (Domiso) code. Since all “Domiso” constituting the chord C are included in the “Domiso” constituting the chord CM7, musical features are common. For this reason, a person does not feel harsh when the sound information HD for the heartbeat cycle is switched.
  • the timing for switching the sound information BD for the breathing cycle arrives during the reproduction of the sound information HD for the heartbeat cycle having the C (Domiso) code.
  • switching is made to the sound information BD for the respiratory cycle having the code C6 (Domisora). Since all “Domisos” constituting the chord C are included in “Domisora” constituting the chord C6, musical features are common. For this reason, a person does not feel harsh when the sound information BD for the respiratory cycle is switched.
  • the sound information D for each sound information D, based on the musical feature indicated by the attribute information, according to the simultaneous pronunciation rule that defines the combination of musical features that allow simultaneous pronunciation, the respiratory cycle Since the sound information BD, the sound information HD for the heartbeat cycle, and the sound information AD for the ambient sound are selected, combinations of sound information that make a person feel uncomfortable can be suppressed.
  • the sound signal generation device 20 of the present embodiment it is possible to make the reproduced sound feel natural to a person while switching various sound information D to increase sound variations. By using the generation device 20, the quality of sleep can be improved.
  • attribute information is included in the sound information D, and musical features are grasped based on the attribute information. For this reason, even when new sound information D is downloaded to the sound signal generation device 20 via the Internet, for example, the sound information D can be selected according to the simultaneous pronunciation rule. Therefore, the sound information D stored in the storage unit 250 can be extended.
  • the biological information of the subject E is detected using the sheet-like sensor 11, but the present invention is not limited to this, and any biological information can be detected.
  • a sensor may be used.
  • the electrode of the first sensor may be attached to the forehead of the subject E, and the brain waves ( ⁇ wave, ⁇ wave, ⁇ wave, ⁇ wave, etc.) of the subject E may be detected.
  • a second sensor may be attached to the wrist of the subject E to detect, for example, a radial artery pressure change, that is, a pulse wave. Since the pulse wave is synchronized with the heartbeat, the heartbeat is indirectly detected.
  • a third sensor for detecting acceleration may be provided between the head of the subject E and the pillow, and the body movement of the subject E, specifically, respiration and heartbeat may be detected.
  • the estimation unit 230 is in a resting state with relatively little body movement in estimating the mind and body state, but in a state where the ⁇ wave is dominant in the electroencephalogram pattern of the subject E. Presumed to be “awakening”.
  • the state in which the ⁇ wave appears in the brain wave pattern of the subject E is estimated as “shallow sleep”.
  • a state in which a ⁇ wave appears in the brain wave pattern of the subject E is estimated as “deep sleep”.
  • a ⁇ wave appears in the EEG pattern of subject E, but breathing is shallow and an irregular state is estimated as “REM sleep”.
  • various known methods can be used for this estimation.
  • a plurality of respiratory cycle sound information BD is divided into a plurality of groups and managed, a plurality of heartbeat cycle sound information HD is managed in a plurality of groups, and a plurality of ambient sounds are used.
  • the sound information AD was managed in a plurality of groups. Therefore, the sound information selection unit 242 randomly selects one respiratory cycle sound information BD from a part (that is, one group) of the plurality of respiratory cycle sound information BD stored in the storage unit 250.
  • the sound signal generation unit 245 generates a sound signal V based on the selected sound information BD for the respiratory cycle at a cycle corresponding to the respiratory cycle BRm.
  • the present invention is not limited to this, and the sound information BD for the respiratory cycle stored in the storage unit 250 may be selected.
  • the sound information selection unit 242 is for one heart cycle among a part (ie, one group) of sound information HD for a plurality of heart cycles stored in the storage unit 250.
  • the sound signal HD is randomly selected, and the sound signal generation unit 245 generates the sound signal V based on the selected heart cycle sound information HD at a cycle according to the heart cycle HRm.
  • the present invention is not limited to this, and all sound information HD for the cardiac cycle stored in the storage unit 250 may be selected.
  • the ambient sound information AD is switched to new sound information AD at a predetermined cycle.
  • the present invention is not limited to this, and the fourth embodiment and Similarly, it is not necessary to switch. Further, in the fourth embodiment, switching of the sound information AD for ambient sound is not executed, but the present invention is not limited to this, and when the predetermined period or predetermined condition is satisfied, the ambient sound The sound information AD may be switched to new sound information AD.
  • the history information generation unit 244 stores the mind body state estimated by the estimation unit 230 and the identifier of the selected sound information D in the history table TBLa in association with the processing time. Therefore, by referring to the history table TBLa, it is possible to specify sound information suitable for the subject E, such as which sound information is used and the time from bed entry to sleep falling is short. In this case, a combination of a group of sound information BD for respiratory cycle, a group of sound information HD for heartbeat cycle, and a group of sound information AD for ambient sound can be specified from the identifier of the sound information in the history table TBLa. .
  • the sound information selection unit 242 refers to the history table TBLa, the group that is the target of selection of the sound information BD for the respiratory cycle, the group that is the target of the selection of the sound information HD for the heartbeat cycle, or the ambient sound At least one of the groups to be selected for the sound information AD for use may be automatically switched in accordance with the estimated state of mind.
  • the sound information selection unit 242 displays the history table TBLa.
  • the subject E may be automatically switched to a group that is likely to sleep quickly.
  • the sleep state of the subject E specifically, the estimated psychosomatic state
  • feeding back to the selection of the sound information D the quality of sleep can be greatly improved.
  • the musical information of each sound information is grasped using the attribute information, the combination of sound information that allows or prohibits simultaneous sound generation is specified based on the musical characteristics, and the sound information D Reflected in the selection.
  • the present invention is not limited to this, and any method may be adopted as long as the simultaneous pronunciation rule can be realized.
  • a configuration using attribute information or control table TBLb is not essential.
  • a table in which a data name of each sound information D is associated with a data name that allows simultaneous pronunciation may be prepared in advance, and the sound information D may be selected with reference to the table.
  • the sound information selection unit 242 selects the sound information BD for the breathing cycle and the sound information HD for the heartbeat cycle, respectively, according to the simultaneous sounding rules that define combinations of musical features that allow simultaneous sounding. become.
  • the tonality is fixed in the cordal shape, but the present invention is not limited to this.
  • the code FM7 belongs to C major and F major as shown in FIG. Therefore, while switching between the sound information BD for the respiratory cycle and the sound information HD for the heartbeat cycle is proceeding in C major, the sound information BD3 shown in FIG. Assume that HD5 is selected as the information HD.
  • the sound information BD for breathing cycle or the sound information HD for heartbeat cycle to be selected next may be either C major or F major.
  • the simultaneous pronunciation rule takes into consideration both the tonality and the chord name, but the present invention is not limited to this. For example, if the tonality is the same, simultaneous pronunciation may be allowed. Further, it may be possible to automatically select whether the tonality alone is a condition for allowing simultaneous pronunciation, or whether the tonality and chord name are for allowing simultaneous pronunciation, or the input device 225. A person may be allowed to input using the.
  • the sound signal generation unit 245 acquires the sound information D from the storage unit 250.
  • the sound information D can be acquired as long as the sound information D can be acquired.
  • D may be stored anywhere.
  • the sound signal generation device 20 may include a communication unit capable of communicating with a server connected to a communication network, and the sound information D stored in the server may be acquired via the communication unit.
  • the server may be in the same facility or in a remote place. That is, the sound signal generation unit 245 may acquire the sound information D via a communication network such as the Internet.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Anesthesiology (AREA)
  • Multimedia (AREA)
  • Biomedical Technology (AREA)
  • Psychology (AREA)
  • Pain & Pain Management (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Electrophonic Musical Instruments (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

 音信号生成装置(20)は、被験者の生体情報を取得する取得部(210)と複数の音情報の少なくともいずれかに基づいて音信号を生成する音信号生成部(245)と、複数の音情報のうち第1の音情報から第2の音情報に、生体情報に応じた周期で切り換わるよう、当該切換の周期を決定する切換周期決定部(241)と、を具備し、音信号生成部(245)は、切換周期決定部(241)が決定した切換周期で、第2の音情報に基づいて音信号を生成する。

Description

音信号生成装置、音信号生成方法、及びコンピュータ読み取り可能な記録媒体
 本発明は、音の生成に関する音情報に基づいて音信号を生成する技術に関する。
 近年、体動や、呼吸、心拍などの生体情報を検出するとともに、当該生体情報に応じた音を発生させて、睡眠の改善やリラクゼーション効果を付与する技術が提案されている(例えば特許文献1参照)。また、被験者のリラックス状態に応じて、発生させる音の種類、音量、又はテンポのうち、少なくとも1つを調整する技術も提案されている(例えば特許文献2参照)。
特開平4-269972号公報 特開2004-344284号公報
 ところで、音の発生によって睡眠等を改善する場合に、音が単調であったりすると、飽きる、耳につくなどの理由により却って睡眠等を妨害する、という問題がある。
 本発明は、このような事情に鑑みてなされたものであり、発生させる音によって睡眠等を改善する場合に、飽きる、耳につくなどの感じを被験者に与えないように音信号を生成する技術を提供することを解決課題の一つとする。
 上記課題を解決するために、本発明に係る音信号生成装置の一態様は、複数の音情報の少なくともいずれかに基づいて音信号を生成する音信号生成部と、前記複数の音情報のうち第1の音情報から第2の音情報に、前記生体情報に応じた周期で切り換わるよう、当該切換の周期を決定する切換周期決定部とを具備し、前記音信号生成部は、前記切換周期決定部が決定した前記切換周期で、前記第2の音情報に基づいて音信号を生成する。
 この態様によれば、生体情報に応じた周期で第1の音情報を第2の音情報に切り換えて音信号を生成するので、同じ音情報を繰り返し利用するループ再生とは異なり、再生される音のバリエーションを増加させることができる。また、新たな音情報(第2の音情報)への切換周期を生体情報に応じた周期とすることができるので、被験者の睡眠等を改善することができる。ここで、生体情報に応じた周期とは、生体情報から得られる被験者の生体周期(例えば、呼吸周期や心拍周期)と必ずしも一致しなくてもよく、生体情報と一定の関係の下に得られる周期であればよい。
 上述した音信号生成装置において、前記複数の音情報から前記第2の音情報をランダムに選択することが好ましい。この態様によれば、音情報をランダムに選択するので、被験者に予測されないようにできる。よって、飽きる、耳につくなどの感じを被験者に与えなくて済む。また、仮に被験者を飽きさせないように多数の音情報を記憶部に記憶させると、記憶部の記憶容量を圧迫するが、この態様によれば、ランダムに音情報を切り換えるので、少ない記憶容量で被験者に飽きさせない音信号を生成することが可能となる。くわえて、リラックス効果やいやし効果があるとされる音には自然なゆらぎ成分があるが、ランダムに再生することで、全体にゆらぎ効果をもたらすといったことも可能となる。なお、ランダムとは擬似ランダムを含む概念である。
 上述した音信号生成装置において、前記複数の音情報は、複数の呼吸周期用の音情報と複数の心拍周期用の音情報とを含み、前記音信号生成部は、前記複数の呼吸周期用の音情報のいずれか一つに基づいて呼吸周期用の音信号を生成し、前記複数の心拍周期用の音情報のいずれか一つに基づいて心拍周期用の音信号を生成し、前記呼吸周期用の音信号と前記心拍周期用の音信号とを合成して、前記音信号を生成し、前記切換周期決定部は、前記生体情報に基づいて得られる前記被験者の呼吸周期に応じて前記複数の呼吸周期用の音情報の前記切換周期である呼吸周期用切換周期を決定し、前記生体情報に基づいて得られる前記被験者の心拍周期に応じて前記複数の心拍周期用の音情報の前記切換周期である心拍周期用切換周期を決定し、前記音情報選択部は、前記複数の呼吸周期用の音情報のいずれか一つを前記第2の音情報としてランダムに選択し、前記複数の心拍周期用の音情報のいずれか一つを前記第2の音情報としてランダムに選択することが好ましい。
 この態様によれば、呼吸周期用の音情報と心拍周期用の音情報とを各々ランダムに切り換えるので、音信号に基づいて再生される音のバリエーションをさらに増加させることが可能となる。しかも、切換周期は、被験者の呼吸周期に応じた周期又は心拍周期に応じた周期となるので、被験者の心体状態に連動させた音信号を生成することが可能となる。この結果、睡眠等をより改善することができる。
 なお、複数の呼吸周期用の音情報のいずれか一つをランダムに選択するとは、複数の呼吸周期用の音情報の一部から選択すること、又は、複数の呼吸周期用の音情報の全部から選択することを含む。また、複数の心拍周期用の音情報のいずれか一つの心拍周期用の音情報をランダムに選択するとは、複数の心拍周期用の音情報の一部から選択すること、又は、複数の心拍周期用の音情報の全部から選択することを含む。
 上述した音信号生成装置において、前記切換周期決定部は、前記心拍周期用切換周期を、前記心拍周期に応じて決定する替わりに、前記呼吸周期のN(Nは2以上の自然数)分の1の周期又は前記呼吸周期用切換周期のN分の1の周期に応じて決定することが好ましい。この態様によれば、心拍周期用の音情報の切換周期を被験者の呼吸周期又は呼吸周期用の音情報の切換周期のN分の1とすることができる。このため、呼吸周期用の音情報(第1の音情報)に基づく音信号の生成を開始してから新たな音情報(第2の音情報)への切り換えまでの時間を第1時間、心拍周期用の音情報(第1の音情報)に基づく音信号の生成を開始してから新たな音情報(第2の音情報)への切り換えまでの時間を第2時間としたとき、第2時間のN倍の時間が第1時間となる。この結果、呼吸周期用の音情報に基づいて生成される音信号と心拍周期用の音情報に基づいて生成される音信号とが連動するので、被験者は自然な音を聞くことができる。
 上述した音信号生成装置において、前記切換周期決定部は、前記呼吸周期用切換周期を、前記呼吸周期に応じた周期に応じて決定する替わりに、前記心拍周期のN(Nは2以上の自然数)倍の周期又は前記心拍周期用のN倍の周期に応じて決定する、ことが好ましい。この態様によれば、呼吸周期用の音情報の切換周期を心拍周期用の音情報の切換周期のN倍とすることができる。このため、呼吸周期用の音情報(第1の音情報)に基づく音信号の生成を開始してから新たな音情報(第2の音情報)への切り換えまでの時間を第1時間、心拍周期用の音情報(第1の音情報)の生成を開始してから新たな音情報(第2の音情報)切り換えまでの時間を第2時間としたとき、第2時間のN倍の時間が第1時間となる。この結果、呼吸周期用の音情報に基づいて生成される音信号と心拍周期用の音情報に基づいて生成される音信号とが連動するので、被験者は自然な音を聞くことができる。
 上述した音信号生成装置において、前記音情報選択部は、同時の発音が許容される場合の音楽的特徴の組み合わせを定めた同時発音規則に従って、前記複数の呼吸周期用の音情報のいずれか一つと前記複数の心拍周期用の音情報のいずれか一つとを選択することが好ましい。この態様によれば、同時の発音が許容される音楽的特徴の組み合わせを定めた同時発音規則に従って同時発音を制御するので、互いに音楽的に調和しない呼吸周期用の音情報に対応する音と心拍周期用の音情報に対応する音とが同時に発せられる事態を回避することが可能となる。この結果、被験者に耳障りな楽音を聞かせることを低減でき、被験者の睡眠等を改善することが可能となる。
 上述した音信号生成装置において、前記複数の音情報の各々は、音楽的特徴を示す属性情報を含んでおり、前記音情報選択部は、前記音信号生成部が前記呼吸周期用の音信号を生成中に、前記心拍周期用の音情報を前記第1の音情報から前記第2の音情報に切り換える場合、生成中の前記呼吸周期用の音信号に対応する前記呼吸周期用の音情報に含まれる前記属性情報が示す音楽的特徴と、前記第2の音情報としての前記心拍周期用の音情報に含まれる前記属性情報が示す音楽的特徴との組み合わせが、前記同時発音規則に従うように、前記第2の情報としての前記心拍周期用の音情報を選択し、前記音信号生成部が前記心拍周期用の音信号を生成中に、前記呼吸周期用の音情報を前記第1の音情報から前記第2の音情報に切り換える場合、生成中の心拍周期用の前記音信号に対応する前記心拍周期用の音情報に含まれる前記属性情報が示す音楽的特徴と、前記第2の音情報としての前記呼吸周期用の音情報に含まれる前記属性情報が示す音楽的特徴との組み合わせが、前記同時発音規則に従うように、前記第2の情報としての前記呼吸周期用の音情報を選択することが好ましい。この態様によれば、呼吸周期用の音情報を第1の音情報から第2の音情報に切り換える時に生成中の心拍周期用の音信号に対応する音情報の音楽的特徴と、切り換え後の第2の音情報としての呼吸周期用の音情報の音楽的特徴とが同時発音規則に従うように第2の音情報が選択される。また、心拍周期用の音情報を第1の音情報から第2の音情報に切り換える時に生成中の呼吸周期用の音信号に対応する音情報の音楽的特徴と、切り換え後の第2の音情報としての心拍周期用の音情報の音楽的特徴とが同時発音規則に従うように第2の音情報が選択される。したがって、合成される音信号がいわゆる不協和音や耳障りな楽音になることを低減できる。
 ここで、同時発音規則は、調性、コードネーム、コーダル形とモーダル形の種別、及び音階のうち少なくとも一つに基づいて定められることが好ましい。
 上述した音信号生成装置において、前記複数の音情報のいずれかに基づいて前記音信号生成部が生成した波形の時間長の後半における前記波形の振幅の最大値が、前記波形の前記時間長の全体における前記振幅の最大値の50%以下であることが好ましい。波形の全時間長にわたって振幅が殆ど変化しない場合、生体情報に応じた周期で第1の音情報から第2の音情報に切り換えたとしても、被験者に生体情報に応じた周期を強く感じさせることが困難である。これに対して、上述した態様では、複数の音情報を表わす波形のデータは、それぞれ、当該波形の後半における振幅の最大値が波形全体の振幅の最大値の50パーセント以下であるから、生体情報に応じた周期を被験者に感じさせ易くできる。これにより、被験者を睡眠に誘導することが容易となる。
 本発明の好適な態様において、上述した音信号生成装置は、前記生体情報に基づいて前記被験者の心体状態を推定する推定部と、前記推定部が推定した心体状態に、当該心体状態が推定された際に選択されていた音情報を対応付けた履歴情報を記憶する記憶部とをさらに備え、前記複数の音情報は複数の群に分けられ、前記音情報選択部は、前記履歴情報を参照して、前記推定部が推定した心体状態に応じて前記複数の群のいずれかを選択し、当該選択した群のなかから前記第2の音情報を選択する。以上の構成では、心体状態と音情報とを対応付けて記憶した履歴情報と、前記推定部が推定した心体状態とに応じて、第2の音情報が選択される対象となる群を複数の群から選択するから、推定された心体状態を音情報の選択にフィードバックすることにより、睡眠の質を大幅に改善することが可能である。
 なお、本発明は、音信号生成装置のみならず、当該音信号生成装置の動作方法(すなわち、音信号生成方法)、又は、コンピュータに当該音信号生成方法を実行させるプログラムとしても概念することが可能である。これら情報提供方法又はプログラムによれば、上述の音信号生成装置と同様の効果が奏される。本発明のプログラムは、コンピュータが読取可能な記録媒体に格納された形態で提供されてコンピュータにインストールされ得る。
第1実施形態に係る音信号生成装置を含むシステムの全体構成を示す図である。 音信号生成装置の機能構成を示すブロック図である。 音信号生成装置の音源の構成例を示すブロック図である。 音信号生成装置の記憶部の記憶内容を示す説明図である。 波形データの一例を示す波形図である。 音信号生成装置の動作を示すフローチャートである。 第2実施形態に係る制御部の動作を示すフローチャートである。 第3実施形態に係る制御部の動作を示すフローチャートである。 第4実施形態に係る音信号生成装置の制御部が生成する制御テーブルの一例を示す説明図である。 第4実施形態に係る音信号生成装置の動作を示すフローチャートである。 同実施形態に係る音信号生成装置の波形データの切り換えの例を示す説明図である。
 以下、本発明の実施形態について図面を参照して説明する。
<第1実施形態>
 図1は、第1実施形態に係る音信号生成装置20を含むシステム1の全体的な構成を示す図である。図に示されるように、システム1は、センサ11と音信号生成装置20とスピーカ51及び52とを含んだ構成である。このシステム1は、ベッド5の上で仰向けの姿勢をとっている被験者Eに対し、スピーカ51及び52から発せられる音を聴かせる、もしくは、感じさせることによって例えば睡眠を改善しようとするものである。
 センサ11は、例えば、シート状の圧電素子からなり、ベッド5のマットレスの下部などに配置される。被験者Eがベッド5に横たわると、被験者Eの生体情報がセンサ11によって検出される。被験者Eの呼吸及び心拍を含む生体活動に起因する体動は、センサ11によって検出され、これら生体活動の成分が重畳した検出信号がセンサ11から出力される。図では便宜的に検出信号が有線で音信号生成装置20に伝送される構成を示しているが、無線で伝送される構成でも良い。
 音信号生成装置20では、センサ11から出力される検出信号(生体情報)に基づいて、被験者の呼吸周期BRm、心拍周期HRm、及び体動を取得できるようになっている。さらに、音信号生成装置20は、センサ11から出力される検出信号(生体情報)に基づいて、被験者Eの心体状態を推定するとともに、心体状態と対応付けてスピーカ51及び52から発せられる音に関する情報(詳しくは後述する)を記憶できるようになっている。音信号生成装置20は、例えば携帯端末やパーソナルコンピュータなどである。
 スピーカ51及び52は、仰向けの姿勢にある被験者Eにステレオの音を聴かせる位置に配置され、このうち、スピーカ51は、音信号生成装置20から出力されるステレオのレフト(L)の音信号を内蔵アンプで増幅して放音する。同様に、スピーカ52は、音信号生成装置20から出力されるステレオのライト(R)の音信号を内蔵アンプで増幅して放音する。なお、被験者Eに対しヘッドフォンによって音を聴かせる構成もあり得るが、本実施形態では、スピーカ51及び52を用いる構成で説明する。
 図2は、システム1のうち、主に音信号生成装置20における機能ブロックの構成を示す図である。この図に示されるように、音信号生成装置20は、A/D変換部205と制御部200と記憶部250と入力装置225とD/A変換部261及び262を有する。記憶部250は、例えば非一過性(non-transitory)の記録媒体であり、CD-ROM等の光学式記録媒体(光ディスク)のほか、磁気記録媒体や半導体記録媒体等の公知の記録媒体でもよい。なお、本明細書中において、「非一過性」の記録媒体とは、一過性の伝搬信号(transitory, propagating signal)を除く全てのコンピュータ読み取り可能な記録媒体を含み、揮発性の記録媒体を除外するものではない。記憶部250は、制御部200が実行するプログラムPGMや制御部200が使用する各種のデータを記憶する。例えば複数の音情報(音コンテンツ)Dや、推定した被験者Eの心体状態にスピーカ51及び52から発せられる音に関する情報を対応付けて記憶した履歴テーブルTBLaが記憶部250に記憶される。なお、プログラムPGMは、図示せぬ通信網を介した配信の形態で提供されて記憶部250にインストールされてもよい。
 入力装置225は、例えばタッチパネルであり、制御部200による制御のもと各種の画像を表示する表示部(例えば液晶表示パネル)と、音信号生成装置20に対する指示をユーザ(例えば、被験者)が入力するための入力部とが一体に構成された入出力機器である。なお、表示部とは別個に設けられた複数の操作子を有する機器として入力装置225を構成する構成を採用することも可能である。
 制御部200は、例えばCPU等の処理装置で構成され、記憶部250に記憶されたプログラムPGMを実行することで、取得部210、生体周期検出部215、音情報管理部240、設定部220、推定部230、及び音信号生成部245として機能する。なお、これらの機能の全部又は一部を専用の電子回路によって実現してもよい。例えば、音信号生成部245をLSI(Large Scale Integration)で構成してもよい。記憶部250に記憶される複数の音情報Dは音信号生成部245において音信号V(VL及びVR)を生成できるのであれば、どのようなデータであってもよい。例えば、音符やピッチなどの演奏情報を表わす演奏データ、音信号生成部245を制御するパラメータ等を表わすパラメータデータ、又は波形データが音情報Dの一例として例示される。
 図4に、記憶部250に記憶される複数の音情報Dの一例を示す。同図に示すように、記憶部250は、呼吸周期用の音情報BD(BD1,BD2…)と、心拍周期用の音情報HD(HD1、HD2…)と、アンビエント音用の音情報AD(AD1,AD2…)とを記憶している。後段に詳述するが、呼吸周期用の音情報BDは、呼吸周期BRmに応じた周期で音信号が生成される音情報であり、心拍周期用の音情報HDは、心拍周期HRmに応じた周期で音信号が生成される音情報であり、アンビエント音用の音情報ADは、呼吸周期BRm又は心拍周期HRmのいずれとも無関係の周期で音信号が生成される音情報である。
 A/D変換部205は、センサ11による検出信号をデジタル信号に変換する。取得部210は、変換されたデジタル信号を、例えば、記憶部250に一旦蓄積する。生体周期検出部215は、記憶部250に蓄積された生体情報に基づいて被験者Eの生体の周期を検出する。本実施形態では、生体周期検出部215は、心拍周期HRm及び呼吸周期BRmを生体の周期として検出し、音情報管理部240に供給する。具体的には、生体周期検出部215は、取得部210が取得した検出信号から呼吸成分に対応する周波数帯域の信号成分を抽出し、抽出した成分に基づいて被験者Eの呼吸周期BRmを検出する。また、生体周期検出部215は、検出信号から心拍成分に対応する周波数帯域の信号成分を抽出し、抽出した成分に基づいて被験者Eの心拍周期HRmを検出する。他方、推定部230は、記憶部250に蓄積された生体情報に基づいて被験者Eの心体状態を推定し、推定した心体状態を示す情報を音情報管理部240に供給する。
 設定部220は、各種設定をするためのものである。音信号生成装置20は、被験者Eを飽きさせないように、多数の楽音を再生可能である。設定部220は、入力装置225に対する被験者Eの入力操作に従って、楽音の音色を設定し、設定した内容を設定データSDTとして記憶部250に一旦記憶する。
 本実施形態において推定部230は、センサ11の検出結果から、被験者Eが安静状態に入ってから入眠、そして目覚めに至るまでの期間にわたって、被験者Eの心体状態(睡眠段階)を推定する。推定部230は、被験者Eが、例えば、「覚醒」(Awake)、「浅い眠り」(light sleep)、「深い眠り」(light sleep)、「レム睡眠」(REM sleep)のいずれにあるかを推定する。なお、「浅い眠り」及び「深い眠り」は、「ノンレム睡眠」に分類することもできる。
 一般に人は、覚醒状態から深い眠りに至るまでの間に、呼吸周期BRmや心拍周期HRmが長くなる傾向にある。また、それらの周期の変動が小さくなる傾向がある。加えて、眠りが深くなると体動も減少する。そこで、推定部230は、センサ11の検出信号に基づいて、呼吸周期BRm及び心拍周期HRmの変化、並びに体動の単位時間当たりの回数を組み合わせ、複数の閾値と比較することによって、心体状態を推定する。
 音情報管理部240は、音情報Dの処理に関する各種の機能を実行する機能要素である。具体的には、音情報管理部240は、図2に示されるように、切換周期決定部241と音情報選択部242と切換タイミング判定部243と履歴情報生成部244とを有する。音情報選択部242は、記憶部250に記憶されている複数の音情報Dのうち、どの音情報Dを読み出して再生するかを記憶部250に記憶された設定データSDTに基づいて決定(選択)し、選択した音情報Dを指定する指定データを音信号生成部245に供給する。具体的には、音情報選択部242は、記憶部250に記憶された設定データSDTに基づいて、呼吸周期用の音情報BD、心拍周期用の音情報HD、又はアンビエント音用の音情報ADの少なくともいずれかを選択する。履歴情報生成部244は、推定部230で推定した心体状態及び選択した音情報Dの識別子を、その処理時刻(例えば、当該音情報Dに基づく音信号の生成時刻)と対応付けて記憶部250に格納された履歴テーブルTBLaに記憶する。
 切換周期決定部241は、呼吸周期用の音情報BD及び心拍周期用の音情報HDの各々について、第1の音情報Dが第2の音情報Dに切り換わる周期を決定する。切換周期決定部241は、生体周期検出部215が検出した生体の周期に応じた周期(切換周期)で第1の音情報Dから第2の音情報Dに切り換わるように、当該切換の周期を決定する。具体的には、切換周期決定部241は、生体周期検出部215が検出した呼吸周期BRmの周期に応じた周期(例えば所定数倍の周期)を呼吸周期用の音情報BDの切換周期として決定し、心拍周期HRmの周期に応じた周期(例えば所定数倍の周期)を心拍周期用の音情報HDの切換周期として決定する。
 切換タイミング判定部243は、現在時刻が、呼吸周期用の音情報BD又は心拍周期用の音情報HDについて切換周期決定部241が決定した切換周期での切換タイミングであるか否かを判定する。また、切換タイミング判定部243は、現在時刻が、アンビエント音の切換周期として任意に定められた周期(あるいは、呼吸周期用の音情報BDの切換周期に応じた周期、又は心拍周期用の音情報HDの切換周期に応じた周期)での切換タイミングであるか否かを判定する。
 ここで、「第1の音情報D」は切り換わり前の音情報Dであり、「第2の音情報D」とは切り換わり先の音情報Dである。すなわち、音信号Vが直近に生成された音情報Dを「第1の音情報D」としたとき、音情報選択部242による音情報Dの順次の選択の結果、「第1の音情報D」の次に音信号Vの生成の対象となる音情報Dが「第2の音情報D」である。つまり、「第1の音情報D」及び「第2の音情報D」は、これらに基づく音信号Vの生成順序が時間的に前後する任意の2つの音情報Dである。
 音信号生成部245は、音情報選択部242から供給される指定データに応じた音情報Dを、切換周期決定部241が決定した切換周期で記憶部250から取得し、当該取得した音情報Dに基づいて、音信号Vを生成して楽音を再生する。図3に音信号生成部245の詳細な構成を示す。音信号生成部245は、第1から第3の音信号生成部410~430と、ミキサ451及び452を備える。
 第1の音信号生成部410は呼吸周期BRmに連動させて呼吸周期用の音情報BDに基づく音信号VBD(VBD_L及びVBD_R)を生成し、第2の音信号生成部420は心拍周期HRmに連動させて心拍周期用の音情報HDに基づく音信号VHD(VHD_L及びVHD_R)を生成し、第3の音信号生成部430は呼吸周期BRm及び心拍周期HRmのいずれにも連動しない周期でアンビエント音用の音情報AD(VAD_L及びVAD_R)に基づく音信号VADを生成する。
 具体的には、本実施形態では、第1から第3の音信号生成部410~430は、それぞれ、切換周期決定部241が第1から第3の音信号生成部410~430の各々について個別に決定した切換周期で、音情報選択部242が呼吸周期用の音情報BD、心拍周期用の音情報HD、及びアンビエント音用の音情報ADについて個別に選択した第2の音情報D(BD,HD又はADのいずれか)を記憶部250からそれぞれ取得する。第1から第3の音信号生成部410~430は、それぞれ、取得した第2の各音情報Dに基づいて音信号V(VBD,VHD又はVAD)を生成し、デジタルでステレオの2チャンネルの形式で音信号VBD(VBD_L及びVBD_R)、VHD(VHD_L及びVHD_R)、又はVAD(VAD_L及びVAD_R)として出力する。
 ミキサ451は、第1から第3の音信号生成部410~430のそれぞれから出力されるレフト(L)の音信号VBD_L、VHD_L、及びVAD_Lを混合(合成)して出力用の音信号VLを生成する。同様に、ミキサ452は、各音信号生成部410~430のそれぞれから出力されるライト(R)の音信号VBD_R、VHD_R、及びVAD_Rを混合して出力用の音信号VRを生成する。
 D/A変換部261は、ミキサ451によって混合されたレフト(L)の音信号VLをアナログに変換して出力し、同様に、D/A変換部262は、ミキサ452によって混合されたライト(R)の音信号VRをアナログに変換して出力する。
 この実施形態では、切換周期決定部241は、被験者Eの生体情報に応じた周期で第1の音情報Dが第2の音情報Dに切り換わるように、当該切換の周期を決定し、切換周期決定部241が決定した切換周期で、各第1から第3の音信号生成部410~430が第2の音情報Dに基づく音信号を生成する(すなわち、第1の音情報Dを第2の音情報Dに切り換える)。このことを、「生体の周期に連動させて音情報D(切り換え後の音情報である第2の音情報D)を生成する」又は、「生体の周期に連動させて第1の音情報Dを第2の音情報Dに切り換える」と定義する。
 なお、記憶部250に記憶される呼吸周期用の音情報BDは、10秒の再生時間となっている。一般に安静時における人の呼吸周期BRmは約5秒~8秒程度である。再生時間を10秒としたのは、呼吸周期用の音情報BDを呼吸周期BRmに応じた周期で新たな音情報BDに切り換わるところ、呼吸周期BRmの全期間にわたって音情報BDが再生されることが好ましいからである。心拍周期用の音情報HDについても同様である。すなわち、心拍周期用の音情報HDは、その再生時間が、人の平均的な心拍周期HRmよりも長い時間に設定されている。
 図5に、呼吸周期用の音情報BDに基づいて音信号生成部245で生成した音信号Vの波形の一例を示す。この図に示すように呼吸周期用の音情報BDに対応する波形は、全体の再生時間Taの長さが例えば、10秒である。また、波形の上側ピークの最大値と下側ピークの最小値との差分(振幅)を100%としたとき、再生時間の後半では、波形の上側ピークと下側ピークとの差分が50%以内になるようになっている。特に、再生時間Ta全体を100%としたとき再生時間の最後10%の期間Tbでは、波形の上側ピークと下側ピークとの差分が50%以内となることが好ましい。このように、後半で減衰する波形としたのは、被験者の呼吸周期BRmに応じた周期で呼吸周期用の音情報BDを新たな音情報BDに切り換えるためである。なお、心拍周期用の音情報HDは、呼吸周期用の音情報BDと同様に、心拍周期HRmに応じた周期で新たな音情報HDに切り換えられる。このため、心拍周期用の音情報HDについても、呼吸周期用の音情報BDと同様に、後半で減衰する波形としてもよい。
 説明を図4に戻す。複数の呼吸周期用の音情報BDは、群に分けて管理されている。この例では、呼吸周期用の音情報BD1、BD2、…BD10が第1群であり、呼吸周期用の音情報BD11、BD12、…BD20が、第2群である。第1群は、例えば、ピアノの音からなる音情報BDから構成され、第2群は、例えば、ハープの音からなる音情報BDから構成される。この他にも、太鼓やギターといった楽器で群を分けてもよい。なお、各群に属する複数の呼吸周期用の音情報BD各々は、互いに全て異なっている。
 複数の心拍周期用の音情報HDの各々の再生時間長は、1.2秒である。また、複数の心拍周期用の音情報HDも呼吸周期用の音情報BDと同様に複数の群に分けて管理されている。この例では、心拍周期用の音情報HD1、HD2、…HD10が第1群であり、心拍周期用の音情報HD11、HD12、…HD20が、第2群である。第1群は、例えば、鐘の音を表わす音情報HDで構成されており、第2群は、例えば、風鈴の音を表わす音情報HDで構成されている。この他にも、太鼓やギターといった楽器で群を分けてもよい。なお、各群に属する複数の心拍周期用の音情報HD各々は、互いに全て異なっている。
 次に、複数のアンビエント音用の音情報ADの各々の再生時間長は、100秒である。また、複数のアンビエント音用の音情報ADも呼吸周期用の音情報BDと同様に群に分けて管理されている。この例では、アンビエント音用の音情報AD1、AD2、…AD10が第1群であり、アンビエント音用の音情報AD11、AD12、…AD20が、第2群である。第1群は、例えば、波の音を表わす音情報ADで構成されており、第2群は、例えば、せせらぎの音を表わす音情報ADで構成されている。この他にも、風の音や、雑踏の音で群を分けてもよい。
 次に、システム1の動作について説明する。図6は、音信号生成装置20の動作の一例を示すフローチャートである。まず、生体周期検出部215は、取得部210で取得した被験者Eの生体情報を示す検出信号に基づいて、被験者Eの心拍周期HRm及び呼吸周期BRmを検出する(Sa1)。検出信号に重畳する呼吸成分の周波数帯域は約0.1Hz~0.25Hzであり、検出信号に重畳する心拍成分の周波数帯域は約0.9Hz~1.2Hzである。生体周期検出部215は、検出信号から呼吸成分に対応する周波数帯域の信号成分を抽出し、抽出した成分に基づいて被験者Eの呼吸周期BRmを検出する。また、生体周期検出部215は、検出信号から心拍成分に対応する周波数帯域の信号成分を抽出し、抽出した成分に基づいて被験者Eの心拍周期HRmを検出する。なお、生体周期検出部215は、以下の各処理を実行中にも、被験者Eの心拍周期HRm及び呼吸周期BRmを常時検出している。
 音情報選択部242は、設定部220が設定した設定データSDTを記憶部250から取得すると(Sa2)、呼吸周期用の音情報BD、心拍周期用の音情報HD、及びアンビエント音用の音情報ADの各々についてどの群から音情報Dを選択するかを設定データSDTに基づいて決定する。ここで、設定データSDTは、呼吸周期用の音情報BD、心拍周期用の音情報HD、及びアンビエント音用の音情報ADのいずれかを指定する情報を少なくとも含み、この他に、被験者Eが選択した好みの音色を示す情報や、楽器の種類を示す情報などを含み得る。
 本動作例では、呼吸周期用の音情報BD、心拍周期用の音情報HD、及びアンビエント音用の音情報ADのすべてを設定データSDTが指定すると仮定するが、これらの少なくともいずれかを設定データSDTが指定する構成も取り得る。例えば、心拍周期用の音情報HDを除く呼吸周期用の音情報BD及びアンビエント音用の音情報ADを設定データSDTが指定し、音情報選択部242が、呼吸周期用の音情報BD及びアンビエント音用の音情報ADの各々について音情報の選択対象とする群を決定する構成も可能である。呼吸周期用の音情報BD、心拍周期用の音情報HD、及びアンビエント音用の音情報ADのすべてを設定データSDTが指定する場合、呼吸周期用の音情報BDと心拍周期用の音情報HDとアンビエント音用の音情報ADとが混合されて音信号Vとして音信号生成部245から出力される。呼吸周期用の音情報BD及びアンビエント音用の音情報ADのみを設定データSDTが指定する場合、呼吸周期用の音情報BDとアンビエント音用の音情報ADとが混合されて音信号Vとして音信号生成部245から出力される。
 音情報選択部242は、音情報Dの選択対象として決定した群に含まれる複数の音情報Dのいずれかを所定の規則に従って(本動作例では、ランダムに)選択する。音情報Dをランダムに選択する構成では、同じ呼吸周期用の音情報BDが連続して選択されることもあり得る。よって切換前後の第1の音情報Dと第2の音情報Dとは同一の場合もあり得る。一方で、第1の音情報Dと第2の音情報Dとが異なる場合には、被験者Eに聞かせる音のバリエーションを増加させることができる。
 次に、音情報選択部242は、決定した各群の中から予め定められた規則に従って、呼吸周期用の音情報BD、心拍周期用の音情報HD、及びアンビエント音用の音情報ADをそれぞれ選択する(Sa3)。この例の規則は、ランダムに選択することである。なお、本明細書においてランダムとは、いわゆる擬似ランダムを含む概念であり、例えば、M系列発生器で生成される擬似ランダム信号を用いて、呼吸周期用の音情報BD、心拍周期用の音情報HD、及びアンビエント音用の音情報ADの選択をそれぞれ行ってもよい。
 次に、音信号生成部245は、ランダムに選択した呼吸周期用の音情報BD、心拍周期用の音情報HD、及びアンビエント音用の音情報ADを用いて音信号Vを生成する(Sa4)。
 次に、切換タイミング判定部243は、現在時刻が、被験者Eの呼吸周期BRmに応じた周期での切り換えタイミングであるか否かを判定する(Sa5)。より具体的には、切換タイミング判定部243は、現在時刻が、音信号生成部245が直近に記憶部250から取得した呼吸周期用の音情報BDの再生開始時刻(例えば、当該音情報BDの取得時刻)から呼吸周期用切換周期の時間だけ経過しているか否かを判定する。ここで、「呼吸周期用切換周期」とは呼吸周期BRmに応じた周期であり、必ずしも検出された呼吸周期BRmと一致しなくてもよく、検出された呼吸周期BRmと一定の関係があればよい。例えば、生体周期検出部215が検出した呼吸周期BRmを所定期間で平均し、その平均値をK倍(Kは、1≦K≦1.1を満たす任意の値)してもよい。この例では、平均値を1.05倍して呼吸周期用の音情報BDの切換周期を定める。この場合、被験者Eの呼吸周期BRmの平均値が5秒であるとすれば、切換周期は5.25秒となる。人はリラックスすると、呼吸周期BRmが長くなる傾向がある。このため、測定された呼吸周期BRmより若干長い切換周期とすることによって、速やかに入眠できるように人をリラックスさせることが期待される。呼吸周期用切換周期は、生体周期検出部215が検出した呼吸周期BRmに基づいて切換周期決定部241が決定する。呼吸周期用切換周期の決定は、上記の所定期間(平均値を求める単位期間)ごとに実行するのが好適である。
 ステップSa5の判定条件が肯定される場合には、切換タイミング判定部243は、新たな呼吸周期用の音情報BD(第2の音情報BD)の生成を指示するタイミング信号を音信号生成部245に対して供給し、音信号生成部245の第1の音信号生成部410は、タイミング信号が供給されると、音情報選択部242が選択した呼吸周期用の音情報BDを第2の音情報BDとして記憶部250から取得して、取得した第2の音情報BDに基づいて音信号VBDを生成する(Sa6)。音情報選択部242による音情報BDの選択は、呼吸周期用の音情報BDの生成タイミング(呼吸周期用切換周期)を迎える度に実行され、選択された音情報BDがタイミング信号とともに音信号生成部245に供給される。
 一方、ステップSa5の判定条件が否定された場合又はステップSa6の処理が終了すると、切換タイミング判定部243は、被験者Eの心拍周期HRmに応じた周期の切り換えタイミングであるか否かを判定する(Sa7)。ステップSa7においては、まず、生体周期検出部215が検出した心拍周期HRmに基づいて切換周期決定部241が心拍周期用切換周期を決定する。ここで、「心拍周期用切換周期」とは、心拍周期HRmに応じた周期であり、必ずしも検出された心拍周期HRmと一致しなくてもよく、検出された心拍周期HRmと一定の関係があればよい。例えば、検出された心拍周期HRmを所定期間で平均し、その平均値をL倍(Lは、1≦L≦1.1を満たす任意の値)してもよい。この例では、平均値の1.02倍を心拍周期用の音情報HDの切換周期として定める。この場合、被験者Eの心拍周期HRmの平均値が1秒であるとすれば、切換周期は1.02秒となる。人はリラックスすると、心拍周期HRmが長くなる傾向がある。このように、実際の心拍周期HRmよりも長い切換周期を設定することによって、速やかに入眠できるように被験者Eをリラックスさせることが期待される。心拍周期用切換周期は、生体周期検出部215が検出した心拍周期HRmに基づいて切換周期決定部241が決定する。心拍周期用切換周期の決定は、呼吸周期用切換周期の場合と同様に、所定期間(平均値を求める単位期間)ごとに実行するのが好適である。
 ステップSa7の判定条件が肯定される場合には、切換タイミング判定部243は、新たな心拍周期用の音情報HD(第2の音情報HD)の生成を指示するタイミング信号を音信号生成部245に対して供給し、音信号生成部245の第2の音信号生成部420は、タイミング信号が供給されると、音情報選択部242が選択した心拍周期用の音情報HDを第2の音情報HDとして記憶部250から取得して、取得した第2の音情報HDに基づいて音信号VHDを生成する(Sa8)。音情報選択部242による音情報HDの選択は、新たな心拍周期用の音情報HDの生成タイミング(心拍周期用切換周期)を迎える度に実行され、選択された第2の音情報HDがタイミング信号とともに音信号生成部245に供給される。
 一方、ステップSa7の判定条件が否定された場合又はステップSa8の処理が終了すると、切換タイミング判定部243は、アンビエント音の切り換えタイミングか否かを判定する(Sa9)。アンビエント音の切換タイミングは任意に定めてよい。例えば、100秒であってもよいし、1個のアンビエント音用の音情報ADの再生が終了するタイミングを切り換えタイミングとしてもよい。あるいは、呼吸周期BRm又は心拍周期HRmに応じた周期のQ(Qは2以上の自然数)倍の周期でアンビエント音用の切換タイミングを設定してよい。例えば、Q=10とすれば、呼吸周期用の音情報BDの切換周期の10倍の周期で、アンビエント音用の音情報ADを切り換えることになる。このQ=10の場合、呼吸周期用の音情報BDの切り換えタイミングとアンビエント音用の音情報ADの切り換えタイミングとを一致させてもよいし、不一致としてもよい。呼吸周期BRm又は心拍周期HRmに応じた周期に連動させてアンビエント音用の切換周期を設定する場合、当該アンビエント音用の切換周期は、生体周期検出部215が検出した呼吸周期BRm又は心拍周期HRmに基づいて切換周期決定部241が決定する。
 ステップSa9の判定条件が肯定される場合には、切換タイミング判定部243は、新たなアンビエント音用の音情報AD(第2の音情報AD)の生成を指示するタイミング信号を音信号生成部245に対して供給し、音信号生成部245の第3の音信号生成部430は、タイミング信号が供給されると、音情報選択部242が選択したアンビエント音用の音情報ADを第2の音情報ADとして記憶部250から取得して、取得した第2の音情報ADに基づいて音信号VADを生成する(Sa10)。音情報選択部242による音情報ADの選択は、新たなアンビエント音用の音情報ADの生成タイミング(アンビエント音用切換周期)を迎える度に実行され、選択された音情報ADがタイミング信号とともに音信号生成部245に供給される。音情報BDや音情報HDを選択する際と同様に、音情報選択部242は、ランダムにアンビエント音用の音情報ADを選択するので、被験者Eに聞かせる音のバリエーションを増加させることができる。
 一方、ステップSa9の判定条件が否定された場合又はステップSa10の処理が終了すると、制御部200は、音情報Dの再生を終了するか否かを判定する(Sa11)。制御部200は、再生終了を指示する入力指示が入力装置225を介して入力された場合、又は、予め設定された再生時間を現在時刻が超えている場合には(Sa11:YES)、本実施形態に係る音信号生成処理を終了する。一方、Sa11の判定条件が否定された場合には、制御部200は、処理をステップSa5に戻し、ステップSa5からステップSa10までの処理を繰り返す。なお、生体周期検出部215は、心拍周期HRm及び呼吸周期BRmを常時検出するので、心拍周期HRm及び呼吸周期BRmが変化すると、これに追随して呼吸周期用の音情報BDを切り換える切換周期、及び心拍周期用の音情報HDを切り換える切換周期が変化する。場合によっては(すなわち、心拍周期HRm又は呼吸周期BRmのQ倍を切換周期とする場合には)、アンビエント音用の音情報ADの切換周期も変化する。
 このように第1実施形態によれば、音量や音高などを制御しなくても、呼吸周期BRmや心拍周期HRmに連動した音信号を再生することができる。また、限られた音情報に基づいて、様々な音色の音を再生できる。特に、本実施形態の音信号生成装置20は同じ音情報Dを繰り返し選択するのではなくランダムに選択するので、飽きがきたり耳に付くなどの不自然さを無くすことが可能となる。くわえて、脳波パターンにα波が出やすい等のリラックス効果又はいやし効果があるとされる音には自然なゆらぎ成分があることも周知であり、ランダムに選択することで、複数の音情報Dにわたってその再生音にゆらぎをもたせるといったことも可能となる。さらに、設定部220に対する被験者Eによる設定操作によって、呼吸周期用の音情報BD、心拍周期用の音情報HD、及びアンビエント音用の音情報ADの各々について選択又は非選択の設定(すなわち、再生対象とするかしないかの設定)が可能である。
<第2実施形態>
 上述した第1実施形態に係る音信号生成装置20では、呼吸周期用の音情報BDを切り換える切換周期と、心拍周期用の音情報HDを切り換える切換周期とは、独立して設定されていた。これに対して、第2実施形態に係る音信号生成装置20は、被験者の心拍周期HRmに連動して、呼吸周期用の音情報BDを切り換える切換周期を設定する点で第1実施形態の音信号生成装置20と相違する。なお、その他の点については、第2実施形態に係る音信号生成装置20は、第1実施形態に係る音信号生成装置20と同様に構成されている。
 図7に呼吸周期用の音情報BDの切換周期を決定するためのフローチャートを示す。
 まず、切換周期決定部241は係数Nの初期値を「2」に設定する(Sb1)。次に、切換周期決定部241は、以下に示す式1に従って切換周期BRsを算出する(Sb2)。
 BRs=N・HRm…式1
 HRmは生体周期検出部215が測定した心拍周期である。
 次に、音情報管理部240は、算出した切換周期BRsと生体周期検出部215が測定した呼吸周期BRmとを比較し、切換周期BRsが呼吸周期BRmを超えるか否かを判定する(Sb3)。切換周期BRsが呼吸周期BRm以下である場合には、切換周期決定部241は、処理をSb4に進め係数Nを「1」インクリメントする(Sb4)。
 そして、切換周期決定部241は、切換周期BRsが呼吸周期BRmを超えるまで、ステップSb2からステップSb4までの処理を繰り返す。切換周期BRsが呼吸周期BRmを超えると、その時点の切換周期BRsを、呼吸周期用の音情報BDを切り換える周期として決定する(Sb5)。例えば、測定した呼吸周期BRmが5.3秒であり、測定した心拍周期HRmが1秒であったとする。この場合、N=5では、切換周期BRsが測定された呼吸周期BRmを下回るので、切換周期BRsは決定されない。しかし、N=6になると、切換周期BRs(6秒)が測定された呼吸周期BRm(5.3秒)を上回るので、切換周期BRsは6秒となる。なお、呼吸周期BRmは心拍周期HRmの2倍以上となるのでNは2以上の自然数となる。
 次に、切換周期決定部241は、測定された呼吸周期BRm又は測定された心拍周期HRmのいずれか一方が変化したか否か判定する(Sb6)。音情報管理部240は、判定条件が充足されるまで判定を繰り返す。そして、判定条件が充足されると、切換周期決定部241は処理をステップSb1に戻す。
 このようにして、第2実施形態に係る音信号生成装置20は、呼吸周期用の音情報BDを、測定された心拍周期HRmに連動して新たな音情報BDに切り換えることが可能となる。なお、この例では、測定された心拍周期HRmの自然数倍となるように呼吸周期用の音情報BDの切換周期を決定したが、心拍周期用の音情報HDの切換周期の自然数倍となるように呼吸周期用の音情報BDの切換周期を決定してもよい。
 この場合、上述した説明の測定された心拍周期HRmの替わりに、心拍周期用の音情報HDの切換周期HRsを用いればよい。心拍周期用の切換周期HRsの自然数倍が呼吸周期用の切換周期BRsとなるので、呼吸周期用の切換周期が心拍周期用の音情報HDの切換周期の自然数倍となる。これにより、呼吸周期用の音情報BDの切換タイミングが、心拍周期用の音情報HDの切換タイミングと一致するため、被験者Eは自己の生体周期を意識し易くなり、被験者Eの睡眠等の改善が期待できる。
<第3実施形態>
 上述した第1実施形態に係る音信号生成装置20では、呼吸周期用の音情報BDを切り換える切換周期と、心拍周期用の音情報HDを切り換える切換周期とは、独立して設定されていた。これに対して、第3実施形態に係る音信号生成装置20は、被験者の呼吸周期BRmに連動して、心拍周期用の音情報HDを切り換える切換周期を設定する点で第1実施形態の音信号生成装置20と相違する。なお、その他の点については、第3実施形態に係る音信号生成装置20は、第1実施形態に係る音信号生成装置20と同様に構成されている。
 図8に心拍周期用の音情報HDの切換周期を決定するためのフローチャートを示す。まず、音情報管理部240は係数Nの初期値を「12」に設定する(Sc1)。次に、音情報管理部240は、以下に示す式2に従って切換周期HRsを算出する(Sc2)。
 HRs=BRm/N…式2
 BRmは生体周期検出部215が測定した呼吸周期である。
 次に、切換周期決定部241は、算出した切換周期HRsと生体周期検出部215が測定した心拍周期HRmとを比較し、切換周期HRsが心拍周期HRmを超えるか否かを判定する(Sc3)。切換周期HRsが心拍周期HRm以下である場合には、切換周期決定部241は、処理をSc4に進め係数Nを「1」デクリメントする(Sc4)。
 そして、切換周期決定部241は、切換周期HRsが心拍周期HRmを超えるまで、ステップSc2からステップSc4までの処理を繰り返す。切換周期HRsが心拍周期HRmを超えると、その時点の切換周期HRsを、心拍周期用の音情報HDを切り換える周期として決定する(Sc5)。例えば、測定した呼吸周期BRmが5.4秒であり、測定した心拍周期HRmが1秒であったとする。この場合、N=6では、切換周期HRsが0.9秒となり測定された心拍周期HRmを下回るので、切換周期HRsは決定されない。しかし、N=5になると、切換周期HRs(1.08秒)が測定された心拍周期HRm(1秒)を上回るので、切換周期HRsは1.08秒となる。
 次に、切換周期決定部241は、測定された呼吸周期BRm又は測定された心拍周期HRmのいずれか一方が変化したか否か判定する(Sc6)。音情報管理部240は、判定条件が充足されるまで判定を繰り返す。そして、判定条件が充足されると、音情報管理部240は処理をステップSc1に戻す。
 このようにして、第3実施形態に係る音信号生成装置20は、心拍周期用の音情報HDを、測定された呼吸周期BRmに連動して切り換えることが可能となる。なお、この例では、測定された呼吸周期BRmのN(Nは2以上の自然数)分の1となるように心拍周期用の音情報HDの切換周期HRsを決定したが、呼吸周期用の音情報BDの切換周期BRsのN分の1となるように心拍周期用の音情報HDの切換周期を決定してもよい。
 この場合、上述した説明の測定された呼吸周期BRmの替わりに、呼吸周期用の音情報BDの切換周期BRsを用いればよい。呼吸周期用の切換周期BRsのN分の1が心拍周期用の切換周期HRsとなるので、心拍周期用の切換周期が呼吸周期用の音情報BDの切換周期の自然数分の1となる。これにより、呼吸周期用の音情報BDの切換タイミングが、心拍周期用の音情報HDの切換タイミングと一致するため、被験者Eは自己の生体周期を意識し易くなり、被験者Eの睡眠等の改善が期待できる。
<第4実施形態>
 上述した第1から第3実施形態では、呼吸周期用の音情報BD、心拍周期用の音情報HD、アンビエント音用の音情報ADの各々について、設定部220で指定された群の中からランダムで選択した音情報Dに基づいて音信号生成部245で音信号を再生することによって、音信号のバリエーションを増加させた。このシステム1は、被験者Eの睡眠をより良いものとすることを目的として、音情報Dをランダムに選択することによって被験者に豊富なバリエーションの楽音を提供するものであった。
 ところで、上述した各実施形態の音信号生成装置20は、呼吸周期用の音情報BD、心拍周期用の音情報HD、及び生体リズムに無関係のアンビエント音用の音情報ADを同時に発音可能である。再生の対象となる音情報Dには、いわゆる音楽的な音程や和音などを持ったものがある。このため、ランダムに選ばれた音情報Dを同時再生すると、音楽的に不協和音となったり、あるいは被験者Eにとって不快感を抱くような音の組合せが存在してしまう。
 そこで、第4実施形態に係る音信号生成装置20は、同時に音が発せられる複数の音情報D間で不協和音等の不快な状態が発生しないように波形データの選択を制御する。
 第4実施形態に係る音信号生成装置20は、音情報Dの音楽的特徴を示す属性情報を含んでいる点、同時の発音が許容される(すなわち、禁止される)音楽的特徴の組み合わせを定めた規則に従って音情報Dを選択する点を除いて、第1実施形態に係る音信号生成装置20と同様に構成されている。
 属性情報は音楽的特徴を示すのであれば、どのようなものであってもよいが、本実施形態の属性情報は、ハ長調やイ短調といった調性、C7やCM7といったコードネーム、ドやミといった音名、DドリアンスケールやC沖縄スケールといった音階、コーダル形やモーダル形といった楽音の種別を含んでいる。コーダル形とは和音的な音楽であり、モーダル形とは、ドミナントモーションを廃し、音階そのものに着目した音楽である。コーダル形は、調性とコードネームといった音楽的特徴を含む。
 コーダル形において、人が不快に感じないためには、まず、同時に発音される楽音が同じ調性である必要がある。次に、コードネームを考慮する。例えば、心拍周期用の音情報HDがCM7(ドミソシ)である場合に、呼吸周期用の音情報がDm7(レファラド)であると、不協和音と感じることがある。一方、心拍周期用の音情報HDがAm(ラドミ)であり、呼吸周期用の音情報BDがC6(ドミソラ)である場合には、人は不快に感じない。すなわち、同時に発音される音情報の一方のコードネームを構成する音名に他方のコードネームを構成する音名が全て含まれている場合(すなわち、包含関係が成立する場合)は、同時に発音されても人は不快と感じない。逆に、Dm7(レファラド)とCM7(ドミソシ)のように包含関係が成立しない場合には、人は不快に感ずる。後述するように、音情報選択部242は、音情報Dの音楽的特徴がコーダル形である場合は、調性とコードネームとに基づいて、人が不快と感じないように同時に発音される音情報Dを選択する。
 一方、モーダル形は、いわゆる教会旋法(モード)と呼ばれる音楽の分類法であり、CドリアンスケールやEリディアンスケールなどのモードの名称が音楽的特徴を表している。ここで、Cドリアンの「C」やEリディアンの「E」は主音(トーナルセンター)を表している。さらに、モーダル形では、教会旋法の音階以外にも、民族音楽として特有の音階を持つものを指定することもできる。例えば、沖縄音階、スパニッシュ音階、及びガムラン音階(ペログ音階)があり、これらも、その主音(トーナルセンター)と音階名を指定することで、教会旋法と同様の取扱いができる。なお、モーダル形には、現在存在していない新たな音階を創作された場合にも適用できるという拡張性がある。
 音情報管理部240は、記憶部250に記憶されている複数の音情報Dの各々について属性情報を抽出し、制御テーブルTBLbを生成し、生成した制御テーブルTBLbを記憶部250に格納する。図9に制御テーブルTBLbの一例を示す。ここで、「-」を記載した箇所は無効を示している。例えば、BD1、BD2、HD3、及びHD4はコーダル形に分類されており、コードネームがある。この場合、音名は無効とされ、また、モーダル形に特有の音階も無効とされる。逆に、HD1及びHD2はモーダル形に分類されており、音階がある。この場合、音名は無効とされ、また、コーダル形に特有な調性及びコードネームは無効とされる。次に、アンビエント音用の音情報AD1及びAD2は、音名が指定されているが、それ以外は無効となっている。これらは、AD1は、「ド」のみで構成され、常に「ド」が発音され、AD2は「ド」及び「ミ」の2音からなることを意味する。さらに、AD3は、全ての音楽的特徴が無効とされる。これは、例えば、波の音やせせらぎの音などの自然音で音情報が構成される場合である。
 次に、第4実施形態の音信号生成装置20の動作について説明する。図10は、第4実施形態にかかる動作の一例を示すフローチャートである。第4実施形態の音信号生成装置20の動作が、図6に示す第1実施形態の音信号生成装置20の動作と相違するのは、アンビエント音用の音情報ADの切り換え(図6のステップSa9及びSa10)を実行しない点である。すなわち、ステップSa7の判定条件が否定された場合及びステップSa8の処理が終了した場合、処理がステップSa5に進む点である。
 第1実施形態では、所定の群に属する音情報Dをランダムに選択して切り換えた。これに加えて、第4実施形態では、音情報選択部242は、同時の発音が許容される音楽的特徴の組み合わせを定めた同時発音規則に従うことを条件に、呼吸周期用の音情報BDと心拍周期用の音情報HDとを所定の群に属する音情報BD又は所定の群に属する音情報HDの中からそれぞれランダムに選択する。
 より具体的は、ステップSa3において、音情報選択部242は、アンビエント音用の音情報ADを設定された群の中からランダムで選択する。この例では、図9に示すアンビエント音用の音情報AD1を選択したものとする。次に、音情報選択部242は、制御テーブルTBLbを参照して同時発音規則に従って、アンビエント音用の音情報AD1の音楽的特徴である音名「ド」と矛盾しないように、呼吸周期用の音情報BD及び心拍周期用の音情報HDをランダムに選択する。
 具体的には、呼吸周期用の音情報BDについては、アンビエント音用の音情報ADの音名で指定される音「ド」を含み(同時発音規則)、且つ、指定された群に属する呼吸周期用の音情報BDの中から、ランダムに選択する。心拍周期用の音情報HDは、以下のように選択される。
 (a1)第1の条件:アンビエント音用の音情報ADの音名で指定される音を含むこと(同時発音規則)。
 なお、アンビエント音用の音情報ADで音名が指定されていない場合(例えば、波の音)には、第1の条件は無視される。
 (a2)第2の条件:指定された群に属すること。
 (a3)第3の条件:選択された呼吸周期用の音情報BDがモーダル形である場合、選択された呼吸周期用の音情報BDの音階と同じ音階を有すること(同時発音規則)。
 (a4)第4の条件:選択された呼吸周期用の音情報BDがコーダル形である場合、選択された呼吸周期用の音情報BDの調性と同じ調性であり、且つ、選択された呼吸周期用の音情報BDのコードを構成する音を全て含むコードを有する(すなわち、呼吸周期用の音情報BDのコードを構成する音を包含する)か、又は選択された呼吸周期用の音情報BDのコードを構成する音に、当該心拍周期用の音情報HDのコードを構成する音が全て含まれる(すなわち、呼吸周期用の音情報BDのコードを構成する音に包含される)こと(同時発音規則)。
 例えば、選択された呼吸周期用の音情報BDが図9に示すBD2であったとする。この場合、音情報BD2のコードはCM7であるから構成する音は「ドミソシ」となる。呼吸周期用の音情報BDのコードを構成する音を全て含むコードは、CM7となる。また、呼吸周期用の音情報BDのコードを構成する音に構成する音が全て含まれるコードは、Em(ミソシ)、C(ドミソ)などである。従って、心拍周期用の音情報HDとして、CM7、Em、又はCのコードを有するものを選択し得る。
 また、呼吸周期用の音情報BD2の調性は「ハ長調」であるから、心拍周期用の音情報HDとして「ハ長調」の調性を有するものを選択し得る。すなわち、心拍周期用の音情報HDとして、「ハ長調」の調性を有するものであって、CM7、Em、又はCのコードを有するものを選択し得る。
 (a5)第5の条件:第1の条件、第2の条件、及び第3の条件を充足する心拍周期用の音情報HD、又は、第1の条件、第2の条件、及び第4の条件を充足する心拍周期用の音情報HDの中からランダムで選択されたものであること。
 また、図10に示すステップSa6の呼吸周期用の音情報BDの切り換え処理において、音情報選択部242は、制御テーブルTBLbを参照して同時発音規則に従って、呼吸周期用の音情報BDの切り換えを行う。
 この場合の呼吸周期用の音情報BDは、以下のように選択される。
 (b1)第1の条件:アンビエント音用の音情報ADの音名で指定される音を含むこと(同時発音規則)。
 なお、アンビエント音用の音情報ADで音名が指定されていない場合には、第1の条件は無視される。
 (b2)第2の条件:指定された群に属すること。
 (b3)第3の条件:再生中の心拍周期用の音情報HDがモーダル形である場合、当該心拍周期用の音情報HDの音階と同じ音階を有すること(同時発音規則)。
 (b4)第4の条件:再生中の心拍周期用の音情報HDがコーダル形である場合、再生中の心拍周期用の音情報HDの調性と同じ調性であり、且つ、当該心拍周期用の音情報HDのコードを構成する音を全て含むコードを有するか、又は当該心拍周期用の音情報HDのコードを構成する音に構成する音が全て含まれるコードを有すること(同時発音規則)。
 (b5)第5の条件:第1の条件と第2の条件と第3の条件を充足する呼吸周期用の音情報BD又は、第1の条件と第2の条件と第4の条件を充足する呼吸周期用の音情報BDの中からランダムに選択されたものであること。
 また、図10に示すステップSa8の心拍周期用の音情報HDの切り換え処理において、音情報管理部240は、制御テーブルTBLbを参照して同時発音規則に従って、心拍周期用の音情報HDの切り換えを行う。
 この場合の心拍周期用の音情報HDは、以下のように選択される(同時発音規則)。
 (c1)第1の条件:アンビエント音用の音情報ADの音名で指定される音を含むこと。
 なお、アンビエント音用の音情報ADで音名が指定されていない場合には、第1の条件は無視される。
 (c2)第2の条件:指定された群に属すること。
 (c3)第3の条件:再生中の呼吸周期用の音情報BDがモーダル形である場合、当該呼吸周期用の音情報BDの音階と同じ音階を有すること(同時発音規則)。
 (c4)第4の条件:再生中の呼吸周期用の音情報BDがコーダル形である場合、再生中の呼吸周期用の音情報BDの調性と同じ調性であり、且つ、当該呼吸周期用の音情報BDのコードを構成する音を全て含むコードを有するか、又は当該呼吸周期用の音情報BDのコードを構成する音に構成する音が全て含まれるコードを有すること(同時発音規則)。
 (c5)第5の条件:第1の条件と第2の条件と第3の条件を充足する心拍周期用の音情報HD又は、第1の条件と第2の条件と第4の条件を充足する心拍周期用の音情報HDの中からランダムに選択されたものであること。
 従って、本実施形態の音信号生成部245は、呼吸周期用の音情報BD又は心拍周期用の音情報HDのうち一方の音情報Dを再生中に、他方の音情報Dを切り換える場合、一方の音情報Dの属性情報が示す音楽的特徴と、他方の音情報Dの属性情報が示す音楽的特徴音とが同時発音規則に従うように、他方の音情報Dを選択している。
 次に、音楽的特徴を考慮した呼吸周期用の音情報BD及び心拍周期用の音情報HDの切り換えの具体例について説明する。図11は、呼吸周期用の音情報BD及び心拍周期用の音情報HDの切り換えの一例を示す説明図である。この例において、呼吸周期用の音情報BD及び心拍周期用の音情報HDの調性はいずれもハ長調である。また、図示のように、アンビエント音用の音情報ADの音は「ド」である。
 図に示す時刻t4及びt9において、呼吸周期用の音情報BDに切り換えが発生し、時刻t1、t2、t3、t5、t6、t7、t8、及びt10において、心拍周期用の音情報HDの切り換えが発生する。図に示すBRsは呼吸周期用の音情報BDを切り換える切換周期であり、HRsは心拍周期用の音情報HDを切り換える切換周期である。
 例えば、時刻t1では、CM7(ドミソシ)のコードを有する呼吸周期用の音情報BDの再生中に、心拍周期用の音情報HDの切り換えタイミングが到来する。この例では、C(ドミソ)のコードを有する心拍周期用の音情報HDに切り換えが行われる。コードCを構成する「ドミソ」は全てコードCM7を構成する「ドミソシ」に含まれるので、音楽的特徴が共通している。このため、心拍周期用の音情報HDの切り換えに伴って、人が耳障りに感じることは無い。
 また、時刻t4においては、C(ドミソ)のコードを有する心拍周期用の音情報HDの再生中に、呼吸周期用の音情報BDの切り換えタイミングが到来する。この例では、C6(ドミソラ)のコードを有する呼吸周期用の音情報BDに切り換えが行われる。コードCを構成する「ドミソ」は全てコードC6を構成する「ドミソラ」に含まれるので、音楽的特徴が共通している。このため、呼吸周期用の音情報BDの切り換えに伴って、人が耳障りに感じることは無い。
 このように本実施形態によれば、各音情報Dについて属性情報の示す音楽的特徴に基づいて、同時の発音が許容される音楽的特徴の組み合わせを定めた同時発音規則に従って、呼吸周期用の音情報BDと心拍周期用の音情報HDとアンビエント音用の音情報ADとを選択したので、人が不快に感ずるような音情報の組み合わせを抑制することができる。そして、本実施形態の音信号生成装置20によれば、様々な音情報Dを切り換えて音のバリエーションを増加させつつ、再生された音を人に自然に感じさせることが可能となり、この音信号生成装置20を用いることによって、睡眠の質を向上させることが可能になる。
 くわえて、本実施形態では、音情報Dに属性情報を含ませ、属性情報に基づいて音楽的特徴を把握した。このため、新たな音情報Dを、例えば、インターネットを経由して音信号生成装置20にダウンロードした場合にも、同時発音規則に従って、音情報Dを選択することができる。よって、記憶部250に記憶する音情報Dに拡張性を持たせることができる。
<変形例>
 本発明は、上述した実施形態に限定されるものではなく、例えば次に述べるような各種の応用及び変形が可能である。また、次に述べる応用及び変形の態様は、任意に選択された一又は複数を適宜に組み合わせることもできる。
<変形例1>
 上述した各実施形態では、シート状のセンサ11を用いて、被験者Eの生体情報を検出したが、本発明はこれに限定されるものではなく、生体情報が検出できるのであれば、どのようなセンサを用いてもよい。例えば、被験者Eの額に第1のセンサの電極を取り付け、当該被験者Eの脳波(α波、β波、δ波、θ波など)を検出してもよい。また、被験者Eの手首に第2のセンサを装着し、例えば橈骨動脈の圧力変化、すなわち脈波を検出してもよい。脈波は心拍に同期しているので、間接的に心拍を検出していることにもなる。また、被験者Eの頭部と枕との間に、加速度を検出する第3のセンサを設け、当該被験者Eの体動、具体的には呼吸や心拍などを検出してもよい。
 生体周期検出部215が脳波を検出する場合、推定部230は、心体状態の推定にあたり、比較的体動が少ない安静状態ではあるが、被験者Eの脳波パターンにおいてβ波が優性である状態を「覚醒」と推定する。被験者Eの脳波パターンにおいてθ波が出現している状態を「浅い眠り」と推定する。被験者Eの脳波パターンにおいてδ波が出現している状態を「深い眠り」と推定する。被験者Eの脳波パターンにおいてθ波が出現しているが、呼吸が浅く、不規則な状態を「レム睡眠」と推定する。この推定には、これ以外にも様々な既知の手法を用いることができる。
<変形例2>
 上述した各実施形態では、複数の呼吸周期用の音情報BDを複数の群に分けて管理し、複数の心拍周期用の音情報HDを複数の群に分けて管理し、複数のアンビエント音用の音情報ADを複数の群に分けて管理した。このため、音情報選択部242は、記憶部250に記憶された複数の呼吸周期用の音情報BDの一部(すなわち、一つの群)の中から一つの呼吸周期用の音情報BDをランダムに選択し、音信号生成部245は、呼吸周期BRmに応じた周期で、選択した呼吸周期用の音情報BDに基づく音信号Vを生成した。本発明はこれに限定されるものではなく、記憶部250に記憶されている全ての呼吸周期用の音情報BDを選択の対象としてもよい。同様に、上述した実施形態では、音情報選択部242は、記憶部250に記憶された複数の心拍周期用の音情報HDの一部(すなわち、一つの群)の中から一つの心拍周期用の音情報HDをランダムに選択し、音信号生成部245は、心拍周期HRmに応じた周期で、選択した心拍周期用の音情報HDに基づく音信号Vを生成した。本発明はこれに限定されるものではなく、記憶部250に記憶されている全ての心拍周期用の音情報HDを選択の対象としてもよい。さらに、所定の規則に従って、音情報Dの選択の対象となる群を適宜変更してもよい。
<変形例3>
 上述した第1から第3実施形態では、アンビエント音用の音情報ADを所定の周期で新たな音情報ADに切り換えたが、本発明はこれに限定されるものではなく、第4実施形態と同様に切り換えなくてもよい。また、第4実施形態ではアンビエント音用の音情報ADの切り換えは実行しなかったが本発明はこれに限定されるものではなく、所定の周期あるいは所定の条件が充足されると、アンビエント音用の音情報ADを新たな音情報ADに切り換えてもよい。
<変形例4>
 上述した各実施形態では、履歴情報生成部244は、推定部230で推定される心体状態及び選択した音情報Dの識別子を処理時刻と対応付けて履歴テーブルTBLaに格納した。従って、履歴テーブルTBLaを参照すれば、どの音情報を用いた場合に入床から入眠までの時間が短いなど、被験者Eに好適な音情報を特定することが可能となる。この場合、呼吸周期用の音情報BDの群と心拍周期用の音情報HDの群と、アンビエント音用の音情報ADの群の組み合わせを履歴テーブルTBLaの音情報の識別子から特定することができる。具体的には、「覚醒」から「浅い眠り」に至る過程ではどの群の組み合わせが適切か、「浅い眠り」から「深い眠り」に至る過程ではどの群の組み合わせが適切かといったことを特定することができる。
 そこで、音情報選択部242は、履歴テーブルTBLaを参照して、呼吸周期用の音情報BDの選択の対象となる群、心拍周期用の音情報HDの選択の対象となる群、またはアンビエント音用の音情報ADの選択の対象となる群の少なくともいずれかを、推定された心体状態に応じて自動的に切り換えてもよい。
 また、被験者Eの寝つきが悪い場合、すなわち、入床から入眠までの時間が被験者Eの平均的な時間を上回るなど所定の条件が充足された場合に、音情報選択部242は、履歴テーブルTBLaを参照して、被験者Eが速やかに眠れる可能性の高い群に自動的に切り換えるようにしてもよい。
 このように、被験者Eの睡眠状態(具体的には推定された心体状態)を評価して、音情報Dの選択にフィードバックすることにより、睡眠の質を大幅に改善することができる。
<変形例5>
 上述した第4実施形態では、属性情報を用いて、各音情報の音楽的特徴を把握し、音楽的特徴に基づいて同時発音を許可又は禁止する音情報の組み合わせを特定し、音情報Dの選択に反映させた。本発明はこれに限定されるものではなく、同時発音規則を実現できるのであれば、いかなる方法を採用してもよい。例えば、属性情報や制御テーブルTBLbを用いた構成は必須ではない。具体的には、各音情報Dのデータ名と同時発音が許容されるデータ名とを対応付けたテーブルを予め用意し、当該テーブルを参照して、音情報Dを選択してもよい。この場合、音情報選択部242は、同時の発音が許容される音楽的特徴の組み合わせを定めた同時発音規則に従って、呼吸周期用の音情報BDと心拍周期用の音情報HDとそれぞれ選択することになる。
 また、上述した第4実施形態において、コーダル形では調性が固定であったが、本発明はこれに限定されるものではない。例えば、コードFM7は、図9に示すようにハ長調とヘ長調に属する。このため、ハ長調で呼吸周期用の音情報BDと心拍周期用の音情報HDの切り換えが進行している途中で、呼吸周期用の音情報BDとして図9に示すBD3、心拍周期用の音情報HDとしてHD5を選択したとする。この場合、次に選択する呼吸周期用の音情報BD又は心拍周期用の音情報HDは、ハ長調又はヘ長調のいずれであってもよい。
 また、上述した第4実施形態において、同時発音規則は、調性とコードネームの両方を考慮したものとなっていたが、本発明はこれに限定されるものではない。例えば、調性が同じであれば、同時発音を許容してもよい。また、調性のみを同時の発音を許容する条件とするか、調性とコードネームを同時の発音を許容する条件とするかを、自動的に選択できるようにしてもよいし、入力装置225を用いて人が入力できるようにしてもよい。
<変形例6>
 上述した各実施形態では、音信号生成部245は、記憶部250から音情報Dを取得したが、本発明はこれに限定されるものではなく、音情報Dを取得できるのであれば、音情報Dがどこに格納されていてもよい。例えば、音信号生成装置20が通信網に接続されたサーバーと通信可能な通信部を有し、当該通信部を介してサーバーに格納されている音情報Dを取得してもよい。この場合、サーバーは同じ施設内にあってもよいし、離れた場所にあってもよい。即ち、音信号生成部245は、インターネット等の通信網を介して音情報Dを取得してもよい。
 1…システム、11…センサ、20…音信号生成装置、51,52…スピーカ、200…制御部、210…取得部、220…設定部、225…入力装置、230…推定部、240…音情報管理部、241…切換周期決定部、242…音情報選択部、243…切換タイミング判定部、244…履歴情報生成部、245…音信号生成部、250…記憶部、TBLa…履歴テーブル、TBLb…制御テーブル。
 

Claims (17)

  1.  被験者の生体情報を取得する取得部と、
     複数の音情報の少なくともいずれかに基づいて音信号を生成する音信号生成部と、
     前記複数の音情報のうち第1の音情報から第2の音情報に、前記生体情報に応じた周期で切り換わるよう、当該切換の周期を決定する切換周期決定部と、
     を具備し、
     前記音信号生成部は、前記切換周期決定部が決定した前記切換周期で、前記第2の音情報に基づいて音信号を生成する、
     音信号生成装置。
  2.  前記複数の音情報から前記第2の音情報をランダムに選択する音情報選択部をさらに備える
     請求項1に記載の音信号生成装置。
  3.  前記複数の音情報は、複数の呼吸周期用の音情報と複数の心拍周期用の音情報とを含み、
     前記音信号生成部は、
     前記複数の呼吸周期用の音情報のいずれか一つに基づいて呼吸周期用の音信号を生成し、前記複数の心拍周期用の音情報のいずれか一つに基づいて心拍周期用の音信号を生成し、前記呼吸周期用の音信号と前記心拍周期用の音信号とを合成して、前記音信号を生成し、
     前記切換周期決定部は、
     前記生体情報に基づいて得られる前記被験者の呼吸周期に応じて前記複数の呼吸周期用の音情報の前記切換周期である呼吸周期用切換周期を決定し、前記生体情報に基づいて得られる前記被験者の心拍周期に応じて前記複数の心拍周期用の音情報の前記切換周期である心拍周期用切換周期を決定し、
     前記音情報選択部は、
     前記複数の呼吸周期用の音情報のいずれか一つを前記第2の音情報としてランダムに選択し、前記複数の心拍周期用の音情報のいずれか一つを前記第2の音情報としてランダムに選択する、
     請求項2に記載の音信号生成装置。
  4.  前記切換周期決定部は、前記心拍周期用切換周期を、前記心拍周期に応じて決定する替わりに、前記呼吸周期のN(Nは2以上の自然数)分の1の周期又は前記呼吸周期用切換周期のN分の1の周期に応じて決定する
     請求項3に記載の音信号生成装置。
  5.  前記切換周期決定部は、前記呼吸周期用切換周期を、前記呼吸周期に応じて決定する替わりに、前記心拍周期のN(Nは2以上の自然数)倍の周期又は前記心拍周期用切換周期のN倍の周期に応じて決定する
     請求項3に記載の音信号生成装置。
  6.  前記音情報選択部は、同時の発音が許容される音楽的特徴の組み合わせを定めた同時発音規則に従って、前記複数の呼吸周期用の音情報のいずれか一つと前記複数の心拍周期用の音情報のいずれか一つとを選択する
     請求項3に記載の音信号生成装置。
  7.  前記複数の音情報の各々は、音楽的特徴を示す属性情報を含んでおり、
     前記音情報選択部は、
     前記音信号生成部が前記呼吸周期用の音信号を生成中に、前記心拍周期用の音情報を前記第1の音情報から前記第2の音情報に切り換える場合、生成中の前記呼吸周期用の音信号に対応する前記呼吸周期用の音情報に含まれる前記属性情報が示す音楽的特徴と、前記第2の音情報としての前記心拍周期用の音情報に含まれる前記属性情報が示す音楽的特徴との組み合わせが、前記同時発音規則に従うように、前記第2の情報としての前記心拍周期用の音情報を選択し、
     前記音信号生成部が前記心拍周期用の音信号を生成中に、前記呼吸周期用の音情報を前記第1の音情報から前記第2の音情報に切り換える場合、生成中の心拍周期用の前記音信号に対応する前記心拍周期用の音情報に含まれる前記属性情報が示す音楽的特徴と、前記第2の音情報としての前記呼吸周期用の音情報に含まれる前記属性情報が示す音楽的特徴との組み合わせが、前記同時発音規則に従うように、前記第2の情報としての前記呼吸周期用の音情報を選択する、
     請求項6に記載の音信号生成装置。
  8.  前記複数の音情報のいずれかに基づいて前記音信号生成部が生成した波形の時間長の後半における前記波形の振幅の最大値が、前記波形の前記時間長の全体における前記振幅の最大値の50%以下である
     請求項1又は2に記載の音信号生成装置。
  9.  前記生体情報に基づいて前記被験者の心体状態を推定する推定部と、
     前記推定部が推定した心体状態に、当該心体状態が推定された際に選択されていた音情報を対応付けた履歴情報を記憶する記憶部と
     をさらに備え、
     前記複数の音情報は複数の群に分けられ、
     前記音情報選択部は、
     前記履歴情報を参照して、前記推定部が推定した心体状態に応じて前記複数の群のいずれかを選択し、当該選択した群のなかから前記第2の音情報を選択する
     請求項2に記載の音信号生成装置。
  10.  複数の音情報の少なくともいずれかに基づいて音信号を生成する音信号生成方法であって、
     被験者の生体情報を取得し、
     前記複数の音情報のうち第1の音情報から第2の音情報に、前記生体情報に応じた周期で切り換わるよう、当該切換の周期を決定し、
     決定した前記切換周期で、前記第2の音情報に基づいて音信号を生成する
     音信号生成方法。
  11.  前記複数の音情報から前記第2の音情報をランダムに選択する
     請求項10に記載の音信号生成方法。
  12.  前記複数の音情報は、複数の呼吸周期用の音情報と複数の心拍周期用の音情報とを含み、
     前記音信号は、複数の呼吸周期用の音情報のいずれかに基づいて生成された呼吸周期用の音信号と複数の心拍周期用の音情報のいずれかに基づいて生成された心拍周期用の信号とが合成された信号であり、
     前記生体情報に基づいて得られる前記被験者の呼吸周期に応じて前記複数の呼吸周期用の音情報の前記切換周期である呼吸周期用切換周期を決定し、前記生体情報に基づいて得られる前記被験者の心拍周期に応じて前記複数の心拍周期用の音情報の前記切換周期である心拍周期用切換周期を決定し、
     前記複数の呼吸周期用の音情報のいずれか一つを前記第2の音情報としてランダムに選択し、当該選択された呼吸周期用の音情報に基づいて、前記呼吸周期用切換周期で前記呼吸周期用の音信号を生成する一方、前記複数の心拍周期用の音情報のいずれか一つを前記第2の音情報としてランダムに選択し、当該選択された心拍周期用の音情報に基づいて、前記心拍周期用切換周期で前記心拍周期用の音信号を生成する
     請求項11に記載の音信号生成方法。
  13.  前記切換周期を決定することには、前記心拍周期用切換周期を、前記心拍周期に応じて決定する替わりに、前記呼吸周期のN(Nは2以上の自然数)分の1の周期又は前記呼吸周期用切換周期のN分の1の周期に応じて決定することを含む
     請求項12に記載の音信号生成方法。
  14.  前記切換周期を決定することには、前記呼吸周期用切換周期を、前記呼吸周期に応じて決定する替わりに、前記心拍周期のN(Nは2以上の自然数)倍の周期又は前記心拍周期用切換周期のN倍の周期に応じて決定することを含む
     請求項12に記載の音信号生成方法。
  15.  同時の発音が許容される音楽的特徴の組み合わせを定めた同時発音規則に従って、前記複数の呼吸周期用の音情報のいずれか一つと前記複数の心拍周期用の音情報のいずれか一つとを選択する
     請求項12に記載の音信号生成方法。
  16.  前記複数の音情報の各々は、音楽的特徴を示す属性情報を含んでおり、
     前記呼吸周期用の音信号を生成中に、前記心拍周期用の音情報を前記第1の音情報から前記第2の音情報に切り換える場合、生成中の前記呼吸周期用の音信号に対応する前記呼吸周期用の音情報に含まれる前記属性情報が示す音楽的特徴と、前記第2の音情報としての前記心拍周期用の音情報に含まれる前記属性情報が示す音楽的特徴との組み合わせが、前記同時発音規則に従うように、前記第2の情報としての前記心拍周期用の音情報を選択し、
     前記心拍周期用の音信号を生成中に、前記呼吸周期用の音情報を前記第1の音情報から前記第2の音情報に切り換える場合、生成中の心拍周期用の前記音信号に対応する前記心拍周期用の音情報に含まれる前記属性情報が示す音楽的特徴と、前記第2の音情報としての前記呼吸周期用の音情報に含まれる前記属性情報が示す音楽的特徴との組み合わせが、前記同時発音規則に従うように、前記第2の情報としての前記呼吸周期用の音情報を選択する、
     請求項15に記載の音信号生成方法。
  17.  複数の音情報の少なくともいずれかに基づいて音信号を生成する音信号生成装置のコンピュータに
     被験者の生体情報を取得する処理と、
     前記複数の音情報のうち第1の音情報から第2の音情報に、前記生体情報に応じた周期で切り換わるよう、当該切換の周期を決定する処理と、
     前記切換周期で、前記第2の音情報基づいて音信号を生成する処理と、
     を実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体。
     
PCT/JP2016/068668 2015-06-29 2016-06-23 音信号生成装置、音信号生成方法、及びコンピュータ読み取り可能な記録媒体 WO2017002703A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680038730.8A CN107708781B (zh) 2015-06-29 2016-06-23 音频信号生成装置、音频信号生成方法以及计算机可读存储介质
US15/852,133 US10857323B2 (en) 2015-06-29 2017-12-22 Audio signal generation device, audio signal generation method, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015129795A JP6477298B2 (ja) 2015-06-29 2015-06-29 音源装置
JP2015-129795 2015-06-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/852,133 Continuation US10857323B2 (en) 2015-06-29 2017-12-22 Audio signal generation device, audio signal generation method, and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2017002703A1 true WO2017002703A1 (ja) 2017-01-05

Family

ID=57608099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068668 WO2017002703A1 (ja) 2015-06-29 2016-06-23 音信号生成装置、音信号生成方法、及びコンピュータ読み取り可能な記録媒体

Country Status (4)

Country Link
US (1) US10857323B2 (ja)
JP (1) JP6477298B2 (ja)
CN (1) CN107708781B (ja)
WO (1) WO2017002703A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220027123A1 (en) * 2016-04-04 2022-01-27 Spotify Ab Media content system for enhancing rest

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11928387B2 (en) 2021-05-19 2024-03-12 Apple Inc. Managing target sound playback

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130099A (ja) * 2009-12-16 2011-06-30 Panasonic Electric Works Co Ltd 入眠起床用音環境生成装置
JP2014226361A (ja) * 2013-05-23 2014-12-08 ヤマハ株式会社 音源装置およびプログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2803374B2 (ja) 1991-02-26 1998-09-24 松下電器産業株式会社 刺激呈示装置
US5267942A (en) * 1992-04-20 1993-12-07 Utah State University Foundation Method for influencing physiological processes through physiologically interactive stimuli
JP2004344284A (ja) 2003-05-21 2004-12-09 Aisin Seiki Co Ltd リラクゼーション装置、便座装置、ベッド、浴槽、マッサージチェア
US7255672B2 (en) * 2004-03-18 2007-08-14 Coherence Llc Method of presenting audible and visual cues for synchronizing the breathing cycle with an external timing reference for purposes of synchronizing the heart rate variability cycle with the breathing cycle
KR100791371B1 (ko) * 2005-10-07 2008-01-07 삼성전자주식회사 숙면 및 기상 유도 장치 및 방법
US8628462B2 (en) * 2008-10-07 2014-01-14 Advanced Brain Monitoring, Inc. Systems and methods for optimization of sleep and post-sleep performance
CN102553054B (zh) * 2012-02-13 2013-10-02 浙江大学 呼吸睡眠辅助装置及其方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130099A (ja) * 2009-12-16 2011-06-30 Panasonic Electric Works Co Ltd 入眠起床用音環境生成装置
JP2014226361A (ja) * 2013-05-23 2014-12-08 ヤマハ株式会社 音源装置およびプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220027123A1 (en) * 2016-04-04 2022-01-27 Spotify Ab Media content system for enhancing rest
US11755280B2 (en) * 2016-04-04 2023-09-12 Spotify Ab Media content system for enhancing rest

Also Published As

Publication number Publication date
CN107708781B (zh) 2020-12-08
CN107708781A (zh) 2018-02-16
JP2017012275A (ja) 2017-01-19
US20180117277A1 (en) 2018-05-03
US10857323B2 (en) 2020-12-08
JP6477298B2 (ja) 2019-03-06

Similar Documents

Publication Publication Date Title
US9978358B2 (en) Sound generator device and sound generation method
WO2016136450A1 (ja) 音源制御装置、音源制御方法、およびコンピュータ読み取り可能な記録媒体
JP2017113263A (ja) 音源装置
JP5803720B2 (ja) 電子管楽器、振動制御装置及びプログラム
JP6645115B2 (ja) 再生装置及びプログラム
JP6477300B2 (ja) 音源装置
JP2016066389A (ja) 再生制御装置及びプログラム
JP4702071B2 (ja) 音楽再生制御装置及び音楽再生装置
WO2017002703A1 (ja) 音信号生成装置、音信号生成方法、及びコンピュータ読み取り可能な記録媒体
JP2017121529A (ja) 音源装置およびプログラム
JP5381293B2 (ja) 放音制御装置
WO2021192072A1 (ja) 室内用音環境生成装置、音源装置、室内用音環境生成方法および音源装置の制御方法
WO2017061362A1 (ja) 再生制御装置、再生制御方法、及び記録媒体
JP2010266748A (ja) 音響振動再生装置並びに音響振動再生方法
JPH04269972A (ja) 刺激呈示装置
JP2018068962A (ja) 安眠装置
US20170229113A1 (en) Environmental sound generating apparatus, environmental sound generating system using the apparatus, environmental sound generating program, sound environment forming method and storage medium
US20220370758A1 (en) Method and system for synthesizing beat sound and music
US20080000345A1 (en) Apparatus and method for interactive
WO2024053123A1 (ja) 再生システム、再生方法、および、プログラム
JP2022027381A (ja) 再生制御方法および再生制御システム
JP2017119159A (ja) 音源装置およびプログラム
JP2017119158A (ja) 音源装置およびプログラム
JP2009180957A (ja) 音制御装置およびプログラム
JP2017070342A (ja) コンテンツ再生装置及びそのプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817811

Country of ref document: EP

Kind code of ref document: A1