JP2017119159A - 音源装置およびプログラム - Google Patents

音源装置およびプログラム Download PDF

Info

Publication number
JP2017119159A
JP2017119159A JP2017054278A JP2017054278A JP2017119159A JP 2017119159 A JP2017119159 A JP 2017119159A JP 2017054278 A JP2017054278 A JP 2017054278A JP 2017054278 A JP2017054278 A JP 2017054278A JP 2017119159 A JP2017119159 A JP 2017119159A
Authority
JP
Japan
Prior art keywords
sound source
unit
sound
subject
outputs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017054278A
Other languages
English (en)
Inventor
森島 守人
Morihito Morishima
守人 森島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2017054278A priority Critical patent/JP2017119159A/ja
Publication of JP2017119159A publication Critical patent/JP2017119159A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

【課題】睡眠等を改善する場合に、発生させる音によって飽きるなどの感じを被験者に与えないようにする。
【解決手段】被験者から検出された生体情報を取得する取得部210と、取得された生体情報から、当該被験者の心体状態を推定する推定部230と、推定される心体状態から特定されるモードに応じたパラメータを出力する音源制御部240と、パラメータで指定される第1音信号を出力する第1の音源部と、パラメータで指定され、前記第1音信号とは異なる第2音信号を出力する第2の音源部と、を具備する。
【選択図】図2

Description

本発明は、複数の音源部を制御する音源装置およびプログラムに関する。
近年、体動や、呼吸、心拍などの生体情報を検出するとともに、当該生体情報に応じた音を発生させて、睡眠の改善やリラクゼーション効果を付与する技術が提案されている(例えば特許文献1参照)。また、被験者のリラックス状態に応じて、発生させる音の種類、音量、テンポのうち、少なくとも1つを調整する技術も提案されている(例えば特許文献2参照)。
特開平4−269972号公報 特開2004−344284号公報
ところで、音の発生によって睡眠等を改善する場合に、音が単調であったりすると、飽きる、耳につくなどの理由により却って睡眠等を妨害する、という点が指摘された。本発明は、このような事情に鑑みてなされたものであり、その目的の一つは、発生させる音によって睡眠等を改善する場合に、飽きる、耳につくなどの感じを被験者に与えないようにした音源装置およびプログラムを提供することにある。
上記目的を達成するために、本発明に係る音源装置は、被験者の生体情報を取得する取得部と、それぞれが音信号を出力する複数の音源部と、を有し、前記複数の音源部は、少なくとも第1の音源部および第2の音源部を含み、前記第1の音源部は、前記取得部によって取得された生体情報に応じたテンポで前記音信号を出力し、前記第1の音源部または前記第2の音源部の少なくとも一方は、波形メモリから、音波形を示す波形データを読み出す読出部を備え、前記読出部は、前記波形データの読出開始から読出終了までの区間を所定の規則で、または、ランダムに設定して、当該設定した区間の波形データを読み出し、読み出された波形データに基づいて音信号を出力することを特徴とする。
本発明によれば、第1の音源部から出力される音信号は、生体情報に応じたテンポになっているので、睡眠等の改善が図られる。また、第1の音源部または第2の音源部の少なくとも一方は、波形メモリから読み出された波形データに基づく音信号を出力するが、このときに読み出される波形データは、被験者に予測されないようにほぼランダムとなっているので、飽きる、耳につくなどの感じを被験者に与えないで済む。なお、本発明では、複数の音源部によって異なる音が同時に出力されることがあり、音楽的な意味を持たない場合があるが、被験者の心体状態を変化させる意味がある。
本発明において、前記複数の音源部は、第3の音源部を有し、前記第3の音源部は、前記波形メモリに記憶された波形データを所定の速度で再生した第1信号を出力する第1再生部と、前記波形データを前記所定の速度よりも高速で再生した第2信号を出力する第2再生部と、前記第1信号と前記第2信号とを混合して前記音信号を出力する混合部と、を含む構成としても良い。
この構成において、波形データの所定速度での再生による可聴音と、波形データの高速再生による非可聴音とを混合して発生させるので、ハイパーソニック効果によるヒーリング効果が期待できる。
本発明において、取得された前記被験者の生体情報から当該被験者の心体状態を推定する推定部と、当該推定された心体状態に応じて、前記複数の音源部を制御する音源制御部とを含む態様としても良い。この態様によれば、推定した被験者の心体状態に応じて複数の音源部を制御することができる。
また、本発明において、前記複数の音源部のうち、少なくとも1つは、出力する音信号の振幅またはピッチに揺らぎを与える態様が好ましい。このように振幅またはピッチに揺らぎを与えることで、さらに飽きのこない、耳につかないようにすることができる。なお、このような揺らぎの程度については、取得した生体情報に応じて規定するようにしても良い。
なお、本発明は、音源装置のみならず、コンピュータを当該音源装置として機能させるプログラムとして概念することが可能である。
実施形態に係る音源装置を含むシステムの全体構成を示す図である。 音源装置の機能構成を示すブロック図である。 音源装置の音源制御部における制御テーブルの一例を示す図である。 音源装置の音源部(その1)の構成の一例を示すブロック図である。 同音源部で出力される周波数スペクトルの一例を示す図である。 別の音源部(その2)の構成の一例を示すブロック図である。 同音源部における再生ピッチの変動の一例を示す図である。 別の音源部(その3)の構成の一例を示すブロック図である。 同音源部の読出の一例を示す図である。 同音源部で付与されるエンベロープの一例を示す図である。 さらに別の音源部(その4)の構成の一例を示すブロック図である。 音源装置の動作を示すフローチャートである。 音源装置の具体的な動作を示す図である。
以下、本発明の実施形態について図面を参照して説明する。
図1は、実施形態に係る音源装置20を含むシステム1の全体的な構成を示す図である。図に示されるように、システム1は、センサ11、12、13と音源装置20とスピーカ51、52とを含んだ構成である。このシステム1は、ベッド5の上で仰向けの姿勢をとっている被験者Eに対し、スピーカ51、52から発せられる音を聴かせる、もしくは、感じさせることによって例えば睡眠を改善しようとするものである。
被験者Eの額にはセンサ11の電極が取り付けられ、当該被験者Eの脳波(α波、β波、δ波、θ波など)を検出している。被験者Eの左手首にはセンサ12が装着され、例えば橈骨動脈の圧力変化、すなわち脈波を検出する。脈波は心拍に同期しているので、センサ12は、間接的に心拍を検出していることになる。また、被験者Eの頭部と枕との間には、加速度を検出するセンサ13が設けられて、当該被験者Eの体動、具体的には呼吸や心拍など検出する。センサ11、12、13による検出信号は音源装置20に供給される。
なお、センサ11は、図では被験者Eの額に1箇所のみとなっているが、複数箇所に設けられる場合もある。また、センサ11、12、13の検出信号は、図では便宜的に有線で音源装置20に伝送される構成を示しているが、無線で伝送される構成でも良い。心拍がセンサ11で検出可能な場合には、センサ12を省略しても良い。
音源装置20は、センサ11、12、13による検出信号を処理して、被験者Eの心体状態を推定するとともに、当該推定した心体状態に応じて複数の音源部を制御するものである。音源装置20は、例えば携帯端末やパーソナルコンピュータなどであり、予めインストールされたプログラムをCPUが実行することによって、後述する複数の機能ブロックが構築される。
スピーカ51、52は、仰向けの姿勢にある被験者Eにステレオの音を聴かせる位置に配置され、このうち、スピーカ51は、音源装置20から出力されるステレオのレフト(L)の信号を内蔵アンプで増幅させて放音させる。同様に、スピーカ52は、音源装置20から出力されるステレオのライト(R)の信号を内蔵アンプで増幅させて放音させる。なお、被験者Eに対しヘッドフォンによって音を聴かせる構成もあり得るが、本実施形態では、スピーカ51、52を用いる構成で説明する。
図2は、システム1のうち、主に音源装置20における機能ブロックの構成を示す図である。この図に示されるように、音源装置20は、A/D変換部205、取得部210、設定部220、推定部230、音源制御部240、音源40およびD/A変換器261、262を有し、このうち、A/D変換部205およびD/A変換器261、262を除く機能ブロックが上記プログラムの実行によって構築される。また、本実施形態において音源40は、4つの音源部410、420、430、440を有する。
A/D変換部205は、センサ11、12、13による検出信号をデジタル信号に変換し、取得部210は、変換されたデジタル信号を内部メモリに一端蓄積するとともに、推定部230および音源40のそれぞれに供給する。
一方、設定部220は、各種設定をするためのものであり、具体的には音源装置20によって何の改善を図るのか、という目的を設定する。この目的としては、後述するように様々なものに設定可能であるが、ここでは「睡眠の改善」という目的が設定される、として説明する。また、設定部220では、目的のほか、起床時刻が設定される。
本実施形態において推定部230は、「睡眠の改善」という目的が設定された場合、センサ11、12、13の検出結果から、被験者Eが安静から熟睡、起床に至るまでの心体状態を「興奮」、「覚醒」、「浅い眠り」、「深い眠り」、「レム睡眠」の5段階で推定する。詳細にはスタート直後などのように体動が変化する状態を「興奮」、比較的体動が少ない安静状態ではあるが、β波が優性である状態を「覚醒」、θ波が出現している状態を「浅い眠り」、δ波が出現している状態を「深い眠り」、θ波が出現しているが、呼吸が浅く、不規則な状態を「レム睡眠」である、と推定している。この推定には、これ以外にも様々な既知の手法を用いることができる。なお、「浅い眠り」および「深い眠り」は、「ノンレム睡眠」に分類することもできる。
また、推定部230は、推定した心体状態から制御モードを特定して、当該制御モードの情報を音源制御部240に供給する。本実施形態において制御モードには、「リラックス」、「入眠」、「快眠」、「アンビエント」、「起床」、「MUTE」の6モードが想定されている。なお、推定した心体状態に対して、いかなる制御モードが特定されるかについては後述する。
音源制御部240は、設定部220により設定された目的と推定部230によって特定された制御モードとに対応して、音源40の制御内容である制御パターンを決定する。この決定の際に、音源制御部240は、予め記憶された制御テーブルを参照する。
図3は、制御テーブルの一例を示す図である。この図は、設定された目的が「睡眠の改善」である場合の例であり、制御パターンが制御モード毎に規定されている。詳細には、本実施形態において制御パターンは、ハイパーソニック(Hypersonic)、バイノーラルビート(binaural beat)、自然音および音楽の4種類に分類される。各種類のうち、ハイパーソニックは音源部410によって出力され、また、バイノーラルビートは音源部420によって、自然音は音源部430によって、音楽は音源部440によって、それぞれ出力される。
各制御モードにおいて、「○」は、該当する音源部をアクティブにして用いることを意味し、「×」は、該当する音源部をノンアクティブにして用いないことを意味する。
「○」に付随するパラメータのうち、バイノーラルビートについては、レフトの信号とライトの信号との周波数差の範囲を指定し、自然音および音楽についてのテンポ制御は、被験者Eの心拍数(回/分)よりも、出力する音をどれだけ低いテンポに設定するかを指定する。例えば「−3」であれば、被験者Eの心拍数よりも3だけ低いテンポでの再生を指定し、「2倍」であれば、被験者Eの心拍数の2倍のテンポでの再生を指定する。また、自然音および音楽についての拍子は、再生する音の拍子を指定する。音量については、出力する音の大きさを指定する。
説明を再び図2に戻すと、音源40における4つの音源部410、420、430、440は、音源制御部240によってアクティブに指定されたときに、指定されたパラメータにしたがった音の信号を、デジタルでステレオの2チャンネルで出力する。
ミキサ451は、音源部410、420、430、440のそれぞれから出力されるレフト(L)の信号を混合(加算)し、同様に、ミキサ452は、各音源部のそれぞれから出力されるライト(R)の信号を混合する。
D/A変換器261は、ミキサ451によって混合されたレフト(L)の信号をアナログに変換して出力し、同様に、D/A変換器262は、ミキサ452によって混合されたライト(R)の信号をアナログに変換して出力する。
次に、音源40における4つの音源部410、420、430、440のそれぞれについて説明する。まず、ハイパーソニックの効果を与え、第3の音源部に相当する音源部(その1)410について説明する。
可聴音と高周波の非可聴音とが発生したときに、人は当該可聴音を耳で聴く一方で、当該非可聴音を体表面で感じる。このように聴く、感じることによって体が反応して脳が活性化し、α波が増大し、ストレスが減って、心と体が癒される、というヒーリング効果があると言われている。このような効果を与えるための構成が、音源部410である。
ここで、可聴音から非可聴音までを、周波数が例えば20Hz〜96kHzの範囲にわたって発生させるには、単純には、サンプリング周波数を192kHzで録音したデータを再生することで可能ではある。ただし、膨大な記憶容量が必要となるだけでなく、既存の録音物の最高周波数は24(20)kHz程度までであるので、流用できず、新たに録音し直す必要がある、という問題がある。このような問題を解決するために、本実施形態において音源部410は、次のように構成される。
図4は、音源部410の構成を示すブロック図である。この図に示されるように、音源部410は、波形メモリ411と、第1再生部412と、第2再生部413と、LPF(ローパスフィルタ)414と、1/fフィルタ415と、加算器(混合部)416とを備える。波形メモリ411は、20Hz〜24kHzの周波数帯域で録音されたデータを記憶する。
第1再生部412は、波形メモリ411からデータを1倍速、すなわち録音時のサンプリング周波数にしたがって読み出して出力する。このため、第1再生部412によって読み出されたデータは、D/A変換器261、262でアナログに変換したときに20Hz〜24kHzの周波数帯域を有することになる。
第2再生部413は、波形メモリ411からデータを4倍速で読み出して出力する。このため、4倍速で読み出されたデータは、アナログに変換したときに80Hz〜96kHzの周波数帯域を有することになる。この周波数帯域のうち、おおよそ20kHz以下の成分は不要なので、HPF414によってカットされる。1/fフィルタ415は、20kHz以下がカットされたスペクトル成分が1/fとなるように、振幅を調整する。
加算部416は、第1再生部412によって読み出された1倍速のデータと、振幅調整された4倍速のデータとを加算して出力する。なお、加算されたデータは、図示省略したパンニング回路によってレフト(L)およびライト(R)に振り分けられて、音源部410から出力される。
音源部410によれば、図5に示されるように、20Hz〜24kHzの可聴周波数成分(等倍速再生成分)と、4倍速再生成分のうち、20kH以下の成分がカットされた20〜96kHzの非可聴周波数成分とがミックスされて出力されるので、ハイパーソニックによるヒーリング効果が期待できる。また、音源部410では、既存の20Hz〜24kHでの録音物を流用できるほか、波形メモリ411の記憶容量を抑えることができる。
なお、既存の録音物を高周波の非可聴帯域にまで拡張させるには、歪みを利用したり、変換テーブルを用いたりする手法が考えられる。また、録音物ではなく、FM音源などのシンセサイザ音源によって非可聴帯域とともに可聴帯域の信号を生成しても良い。
次に、バイノーラルビートを出力する音源部(その2)420について説明する。
脳波は、1〜40Hz程度の低い周波数成分を有する。このような周波数は、人の耳では直接的にはほとんど聴こえないが、両耳の一方に例えば100Hz、他方に110Hzの周波数差を持たせたステレオサウンドを与えると、この差である10Hzが脳内で認識されて、脳波が当該周波数差に同調しようとする。この周波数差を与えるのがバイノーラルビートであり、周波数差を例えばα波の周波数にすると、脳波が当該周波数差に近づくといわれているので、リラックス状態になることが期待できる。
図6は、音源部420の構成を示すブロック図である。この図に示されるように、音源部420は、波形メモリ421と、発振器(OSC)451と、L再生部471と、R再生部472と、クロストークキャンセラ475とを備える。
波形メモリ421は、周波数差を与える前の基礎信号となる波形データを記憶する。発振器451には、音源制御部240から、目標となる周波数差を示すパラメータが供給される。発振器451は、当該パラメータで示される周波数差に応じた波形の正弦波を発振する。
L再生部471は、波形メモリ421から波形データを、発振器451による正弦波の信号レベルに応じたピッチで再生する一方、R再生部472は、当該正弦波を反転した信号レベルに応じたピッチで波形データを読み出して再生する。
図7は、発振器451による正弦波と、L再生部471およびR再生部472によるピッチ変化との関係を示す図である。
この図において(a)は、発振器451による正弦波であり、振幅中心V(+)が基準レベルVcよりも正側にdだけオフセットされている。L再生部471は、基準レベルVcと当該正弦波のレベルとの差の分だけ、波形データの再生ピッチを進める。(b)は、発振器451による正弦波を、基準レベルVcを中心にレベルを反転した波形であり、その振幅中心V(-)が基準レベルVcよりも負側にdだけオフセットされている。R再生部472は、基準レベルVcと当該反転正弦波のレベルとの差の分だけ、波形データの再生ピッチを遅らせる。
ここで、バイノーラルビートにおける周波数差は、正弦波と反転正弦波との差が最大となるタイミングP1では最大となり、正弦波と反転正弦波との差が最小となるタイミングP2で最小となる。したがって、タイミングP1における正弦波と反転正弦波との信号レベルの差が、音源制御部240で指定された周波数範囲の最大値になるように、かつ、タイミングP2における正弦波と反転正弦波との差が、当該周波数範囲の最小値になるように、発振器451が正弦波を発振する構成にすれば良い。
なお、波形メモリ421から波形データを読み出すのではなく、単一周波数、例えば100Hzのトーン信号を出力するとともに、このトーン信号の周波数を正弦波のレベルに応じた分だけ上げる一方、反転正弦波のレベルに応じた分だけ下げる構成でも良い。また、当該正弦波の周波数は適宜設定されても良いし、正弦波に限られず、例えば三角波であっても良い。L再生部471またはR再生部472の一方の読出ピッチを固定とし、他方の読出ピッチを2倍振幅の正弦波の信号レベルに応じて変動させても良い。
ところで、本実施形態では、上述したようにスピーカ51、52によって発せられた音によって被験者Eの睡眠状態を改善する構成となっている。この構成では、被験者Eにおける左の耳には、スピーカ51から発せられたレフト(L)の音のみならず、スピーカ52から発せられたライト(R)の音も到達する、という一種のクロストークが発生する。同様なことは、被験者Eにおける右の耳についても言える。このままでは、バイノーラルビートにおいて、被験者Eの左右の耳から異なる周波数の音を正しく聴かせることができない。
そこで、本実施形態では、スピーカ51、52を用いる場合のためにクロストークキャンセラ475が設けられる。詳細には、クロストークキャンセラ475は、被験者Eが図1に示されるようにベッド5で仰向けの姿勢をとったときに、被験者Eの左耳に到達する音のうち、スピーカ52から発せられたライト(R)の音を相殺させる成分を、L再生部471から読み出された波形データに加算する。同様に、クロストークキャンセラ475は、右耳に到達する音のうち、スピーカ51から発せられたレフト(L)の音を相殺させる成分を、R再生部472から読み出された波形データに加算する。
したがって、音源部420によれば、スピーカ51、52を用いる場合であっても、左耳には、スピーカ51から発せられたレフト(L)の音が、右耳には、スピーカ52から発せられたライト(R)の音が、それぞれ分離されて到達するので、脳内で周波数差を認識させることができる。
なお、被験者Eがヘッドフォン(図示省略)を装着する場合には、L再生部471によって読み出された波形データと、R再生部472によって読み出された波形データとを、図6において※で示されるように、クロストークキャンセラ475をバイパスさせて出力すれば良い。
続いて、自然音を出力し、第1の音源部に相当する音源部(その3)430について説明する。図8は、音源部430の構成を示すブロック図である。この図に示されるように、音源部430は、波形メモリ431と、読出部432と、乗算器437、439と、エンベロープ出力部438とを備える。波形メモリ431は、例えば風の音や、波の音、川のせせらぎなどの波形データを記憶する。読出部432は、設定した読出区間の波形データを読み出す。乗算器437は、読み出された波形データに、音源制御部240から供給された音量に相当する係数を乗算して出力する。
音源部430において、単純に波形データを繰り返して読み出す構成では、波形メモリ431の記憶容量が有限であることから、単調な再生になりがちである。このため、長い期間にわたって被験者Eが聴くことにより、飽きてしまう、不自然さが耳につく、などのように被験者Eに深い眠りに誘う方向とは逆方向の心体状態に導いてしまう。
そこで、本実施形態では、読出部432は、次のように波形データを読み出す構成となっている。すなわち、読出部432は、第1に、読出開始から読出終了までの読出区間を複数に分けて、波形データを読み出す。このときに、当該読出区間の位置および時間長をランダムに設定する。読出部432は、第2に、読出区間同士の繋ぎ目が重複するように読み出すとともに、ある読出区間の終了時にフェードアウト、次の読出区間の開始時にフェードインさせる。読出部432は、第3に、読出区間ごとに読み出した波形データに異なる係数を内部で乗算して出力する。読出部432は、第4に、再生ピッチが1/fで揺らぐように波形データを読み出す。
図9は、ランダムに設定された区間から読み出される波形データ、再生ピッチ、振幅との関係を示す図である。この図において、例えば12〜14sと記載されている部分は、波形データの12〜14sの区間から読み出され、再生ピッチが波形データの+5%で振幅が波形データの振幅に対して0dbであることを表している。
フェードイン・フェードアウトにより、読出区間同士の繋ぎ目における不自然さが軽減され、また、音量および再生ピッチが揺らぐので、単純な繰り返し再生と比較して、飽きる、不自然さが耳につく、などの感じを被験者Eに与えてしまうことが抑えられる。
なお、読出部432は、ランダムに限られず、たとえ規則的な読み出しであっても良い。規則的であっても、規則パターンの周期が長ければ、被験者Eに規則性を感じさせないで済むからである。
また、音源部430において再生する音は、風の音や、波の音、川のせせらぎなどに限られず、音楽などであっても良い。音楽などの録音物を再生する場合に、波形メモリ431に録音した波形データを記憶する一方、当該波形データを心拍数に応じたテンポで再生すると、当該音を聴いた人が睡眠に入りやすいと考えられる。このため、音源部430において読出部432は、被験者Eの心拍数よりも、音源制御部240で指定された値だけ低いテンポで再生する。
なお、音源部430で再生される音には、音楽などを含む場合があるので、厳密な意味での自然音ではないが、音源部440と区別する意味で自然音を再生する、という表現を用いる。
音源部430は、心拍を被験者Eに感じさせるために、読み出した波形データの振幅を、心拍に応じたエンベロープで制御することが可能な構成となっている。詳細には、エンベロープ出力部438は、図10において実線で示されるように、センサ12によって検出される脈拍、または、センサ13によって検出される心拍に応じたエンベロープ波形を出力する。このとき、エンベロープ出力部438は、検出された心拍数(脈拍数)よりも、音源制御部240における制御テーブルで指定された値のテンポで、エンベロープ波形を出力する。乗算器439は、乗算器437によって係数が乗算された波形データに、エンベロープ波形を乗算して出力する。
このように波形データの振幅が心拍に応じたエンベロープで制御されると、波形データが持つ音楽性が失われるものの、被験者Eが自己の心拍を感じやすくなるので、睡眠に入りやすくなると考えられる。
なお、音源部430は、読み出した波形データの振幅を、心拍ではなく呼吸に応じたエンベロープで制御する構成でも良い。詳細には、エンベロープ出力部438は、図10において破線で示されるように、被験者Eの呼吸に応じたエンベロープ波形を出力する。もしくは、呼吸は心拍(脈拍)と同調して変化すると言われており、睡眠時には、例えば図で示されるように心拍の4回に対して1度の割合で発生する傾向がある。これを利用し、エンベロープ出力部438は、心拍に応じたエンベロープ波形に対して周波数が1/4のエンベロープ波形を出力する。この構成によれば、波形データの振幅が呼吸に応じて制御されるので、被験者Eが自己の呼吸を感じて、睡眠に入りやすくなると考えられる。
音源部430によれば、被験者Eが飽きてしまう、不自然さが耳につくなどの感じを与えないで済むだけでなく、心拍または呼吸に応じたテンポで音を再生することができるので、睡眠に入りやすくさせることができる、と考えられる。
なお、音源部430においては、波形データの読み出し以外の構成でも可能である。例えば乱数発生器で得られる信号(ホワイトノイズ)を用いても良い。ただし、強度が周波数に対してフラットなので、当該信号をフィルタで濾波して、高域側に1/fスペクトルの特性を持たせても良い。さらに、1/fで振幅変調して、低域側でも1/fスペクトルの特性を持たせても良い。
また、例えばMIDI(Musical Instrument Digital Interface)データを再生する構成や、FM音源等のシンセサイザ音源を用いる構成でも良い。このような構成においても、心拍や呼吸のテンポで音を再生しつつ、振幅やテンポ、音色を1/fで揺らぎを与える構成が好ましい。MIDIデータは、波形データと比較してデータ量が少ないので、多くの曲を格納して、ランダムに選択することできる。このため、同じ音ばかりで飽きてしまうことがないという効果が容易に得られることになる。また、FM音源は、音色を微妙に変化させることが容易であるので、さらに飽きにくい音を生成することができる。
次に、音楽を出力し、第2の音源部に相当する音源部(その4)440について説明する。図11は、音源部440の構成を示すブロック図である。この図に示されるように、音源部440は、波形メモリ441と、読出部442と、乗算器447とを備える。波形メモリ441は、音楽の波形データを記憶し、読出部442は、センサ12、13で検出される心拍数よりも、音源制御部240で指定された値だけ低いテンポで、かつ、指定された拍子で再生する。乗算器447は、読み出された波形データに、音源制御部240から供給された音量に相当する係数を乗算して出力する。
なお、音源部440において読出部442は、テンポが1/fで揺らぐように波形データを読み出しても良いし、音量が1/fで揺らぐように、読み出した波形データに係数を内部で乗算して出力しても良い。また、音源部440の読出部442を、音源部430の読出部432と同様に、読出開始から読出終了までの読出区間を複数に分けるとともに、当該読出区間の位置および時間長をランダムに設定して、波形データを読み出す構成としても良い。
この音源部440によれば、心拍に応じたテンポ等で音楽を再生することによって、睡眠に入りやすいようにリラックス状態に移行させることができるし、逆にアップテンポで音楽を再生することによって、リラックス状態とは逆の覚醒状態に移行させることができる、と考えられる。また、再生テンポや、音量などが揺らぐので、飽きない、不快にならない音を出力することができる。
なお、音源部430における乗算器439の出力および音源部440における乗算器447の出力については、読み出しから、レフト(L)およびライト(R)について2チャンネル分処理する構成としても良いし、図示省略したパンニング回路によってレフト(L)およびライト(R)に振り分ける構成であっても良い。
次に、本実施形態に係る音源装置20の処理動作について説明する。図12は、音源装置20の動作を示すフローチャートである。
音源装置20において設定部220に目的として「睡眠の改善」が設定されると、推定部230は、現時点が制御タイミングであるか否かを判別する(ステップSa11)。本実施形態において以降の動作を所定の時間間隔で繰り返し実行する。この間隔が例えば5分間であれば、推定部230は前回の実行時から5分間経過したか否かを判別する。当該判別結果が「No」であれば、処理手順がステップSa11に戻る。このため、前回の実行時から所定の時間が経過するまで、以降の処理が実行されることはない。
やがて、前回の実行時から所定の時間が経過して、当該判別結果が「Yes」になると、推定部230は、取得部210からセンサ11、12、13の検出信号を取得する(ステップSa12)。取得する検出信号は、例えば前回の実行時から今回実行時までの期間にわたって内部メモリに蓄積した分であっても良いし、直近の1分間の分であっても良い。次に、推定部230は、取得した検出信号を処理/解析して被験者Eの心体状態が5状態のいずれであるかを推定する(ステップSa13)。
そして、推定部230は、次のステップSa14、Sa16、Sa19、Sa21、Sa23によって、推定した心体状態に応じて処理を分岐させる。詳細には、推定部230は、第1に、推定した心体状態が「興奮」であれば(ステップSa14の判別結果が「Yes」であれば)、推定部230は、音源制御部240の制御モードを「リラックス」に設定する(ステップSa15)。
制御モードが「リラックス」に設定されると、音源制御部240は、図3に示される制御テーブルを参照して、「リラックス」に対応する制御パターンで音源40を制御する。詳細には、音源制御部240は、音源部410、420、440をアクティブとし、音源部430をノンアクティブとする。これにより、ハイパーソニック、バイノーラルビートおよび音楽の合成音がスピーカ51、52から出力される。
これらのうち、ハイパーソニックによって、被験者Eをリラックス状態に移行することが期待できる。また、バイノーラルビートでは、制御テーブルにしたがってレフト(L)とライト(R)との周波数差が7〜14Hzで変化するように制御される。このように制御されたバイノーラルビートを聴いた被験者Eは、当該周波数差を脳内で認識する。7〜14Hzという周波数差は脳波におけるα波とほぼ同じなので、被験者Eがリラックス状態に移行することが期待できる。
一方、音楽は、被験者Eからセンサ12、13で検出された心拍数よりも「3」だけ低いテンポ(周波数でいえば0.05Hz)で音楽が再生される。例えば、心拍数が1分間あたり60回であれば、テンポはそれよりも「3」だけ低い「57」に設定されて音楽が再生される。また、このとき再生する音楽は4拍子で再生され、音量は「中」に設定される。したがって、再生された音楽のテンポに心拍数が近づくように導かれるので、リラックスした状態に移行することが期待できる。
なお、心拍に対して呼吸の周期が変化するので(あるいは逆に、呼吸に同期して心拍の周期が変化するので)、呼吸のリズムになるように再生する音楽を例えば4拍子に設定すると、よりリラックスした状態に移行することが期待できる。
このようなハイパーソニック、バイノーラルビートおよび音楽の合成音を聞いた被験者Eは、やがて心体状態が「興奮」から1段落ち着いた状態である「覚醒」に移行する、と考えられる。なお、ステップSa15の後、処理手順は、ステップSa11に戻る。
一方、推定した心体状態が「興奮」でなく、「覚醒」であれば(ステップSa16の判別結果が「Yes」であれば)、推定部230は、第2に、直前に推定していた心体状態が「興奮」であったか否かを判別する(ステップSa17)。
本実施形態では、推定した心体状態が「覚醒」に至る場合としては、「興奮」から移行する場合と、後述するように「レム睡眠」から移行する場合との2通りを想定し、各場合のそれぞれに対して制御モードを異ならせている。このため、ステップSa17では、どちらの場合であるのかを判別するようにしている。
心体状態が「興奮」から「覚醒」に移行した場合でなく(ステップSa17の判別結果が「No」であれば)、「レム睡眠」から移行した場合であれば、推定部230は、音源制御部240の制御モードを「MUTE」に設定する(ステップSa26)。この「MUTE」は、図3に示されるように、音源部410、420、430、440をすべてノンアクティブにする制御モードであるので、スピーカ51、52から発せられていた音が停止する。この後、音源装置20の動作が終了する。
一方、心体状態が「興奮」から「覚醒」に移行した場合であれば(ステップSa17の判別結果が「Yes」であれば)、推定部230は、音源制御部240の制御モードを「入眠」に設定する(ステップSa18)。
制御モードが「入眠」に設定されると、音源制御部240は、制御テーブルを参照して、「入眠」に対応する制御パターンで音源40を制御する。詳細には、音源制御部240は、音源部410、420、430をアクティブとし、音源部440をノンアクティブとする。これにより、ハイパーソニック、バイノーラルビートおよび自然音の合成音がスピーカ51、52から出力される。
これらのち、ハイパーソニックは「リラックス」の制御モードと同様である。
また、バイノーラルビートは、制御テーブルにしたがってレフト(L)とライト(R)との周波数差が4〜7Hzで変化するように制御される。この周波数差は脳波におけるθ波とほぼ同じなので、より深い眠りへ移行することが期待できる。
一方、「リラックス」から「入眠」に制御モードが変わると、音楽から自然音に切り替わる。このときの自然音は、被験者Eの心拍数よりも「3」だけ低いテンポで再生される。例えば、制御モードが「リラックス」に設定されていたときよりもさらに心拍数が低下して57回であれば、テンポはそれよりも「3」だけ低い「54」で再生される。また、このときの音は4拍子で再生され、音量は睡眠への移行に支障しないように「小」に設定される。
このようなハイパーソニック、バイノーラルビートおよび自然音の合成音を聞いた被験者Eは、やがて心体状態が「覚醒」から、睡眠初期の状態である「浅い眠り」に移行する、と考えられる。なお、ステップSa18の後、処理手順は、ステップSa11に戻る。
ところで、心体状態が「興奮」、「覚醒」でなく、「浅い眠り」であれば(ステップSa19の判別結果が「Yes」であれば)、推定部230は、第3に、音源制御部240の制御モードを「快眠」に設定する(ステップSa20)。
制御モードが「快眠」に設定されると、音源制御部240は、制御テーブルを参照して「快眠」に対応する制御パターンで音源40を制御する結果、音源部410、430をアクティブとし、音源部420、440をノンアクティブとなる。これにより、ハイパーソニックおよび自然音の合成音がスピーカ51、52から出力される。
これらのうち、ハイパーソニックは、制御モードの「リラックス」および「入眠」と同様である。
一方、自然音は、被験者Eの心拍数よりも「2」だけ低いテンポで再生される。例えば、制御モードが「入眠」に設定されていたときよりもさらに心拍数が低下して56回であれば、テンポはそれよりも「2」だけ低い「54」で再生される。
被験者Eは、すでに眠りに落ちた状態にあると考えられるが、このようなハイパーソニックおよび自然音の合成音を聴くことによって、「浅い眠り」から、より深い睡眠状態である「深い眠り」に移行する、と考えられる。なお、ステップSa20の後、処理手順は、ステップSa11に戻る。
心体状態が「興奮」、「覚醒」、「浅い眠り」でなく、「深い眠り」であれば(ステップSa21の判別結果が「Yes」であれば)、推定部230は、第4に、音源制御部240の制御モードを「アンビエント」に設定する(ステップSa22)。
制御モードが「アンビエント」に設定されると、音源制御部240は、制御テーブルを参照して「アンビエント」に対応する制御パターンで音源40を制御する結果、音源部410をアクティブとし、音源部420、430、440をノンアクティブとする。これにより、ハイパーソニックのみがスピーカ51、52から出力される。すでに、被験者Eは、深い眠りに落ちた状態にあると考えられるので、この状態を維持するには、ハイパーソニックのみで十分である、という考えに基づく。なお、ステップSa22の後、処理手順は、ステップSa11に戻る。
心体状態が「興奮」、「覚醒」、「浅い眠り」、「深い眠り」のいずれでなく、「レム睡眠」であれば(ステップSa23の判別結果が「Yes」であれば)、推定部230は、第5に、現在時刻が設定部220により設定された起床時刻に至っているのか否かを判別する(ステップSa24)。
起床時間前であれば(ステップSa24の判別結果が「No」であれば)、音源制御部240は、制御モードを再び「入眠」に設定する(ステップSa18)。一方、起床時間に至っていれば(ステップSa24の判別結果が「Yes」であれば)、音源制御部240は、制御モードを「起床」に設定する(ステップSa25)。
制御モードが「起床」に設定されると、音源制御部240は、制御テーブルを参照して「起床」に対応する制御パターンで音源40を制御する結果、音源部440のみをアクティブとする。このため、音楽がスピーカ51、52から比較的大音量で出力される。また、このときの音楽は、テンポが心拍の2倍で拍子が2拍子で再生される。したがって、被験者Eは、レム睡眠から爽快に目覚めることになる。なお、ステップSa25の後、処理手順は、ステップSa11に戻る。
一方、心体状態が「興奮」、「覚醒」、「浅い眠り」、「深い眠り」、「レム睡眠」のいずれでもない場合(ステップSa23の判別結果が「No」である場合)、本実施形態において想定していない状態にある、と考えられる。このため、例えばエラー表示などの処理を実行し(ステップSa26)、処理手順をステップSa11に戻す。なお、処理手順をステップSa11に戻すのではなく、音源装置20の動作を強制終了させても良い。
続いて、音源装置20の具体的な動作について図13を参照して説明する。
この図において、△は、上述したフローチャートにおいてステップSa11の判別結果が「Yes」となる制御タイミングを示している。
まず、被験者Eは、時刻t0で音源装置20を始動させるとともに、ベッド5の上で仰向けとなる。当所、被験者Eは活動状態であるので、推定部230によって、心体状態が「興奮」であると推定される(ステップSa14の判別結果が「Yes」)。このため、制御モードが「リラックス」に設定されるので(ステップSa15)、ハイパーソニックの効果が与えられるとともに、周波数差が7〜14Hzで変化するバイノーラルビートと、被験者Eで検出された心拍数よりも若干低いテンポで再生される音楽とによって、当該被験者Eの心体状態は、「興奮」から、落ち着いた状態である「覚醒」に移行する。具体的には、センサ出力の移動平均である心拍数や呼吸などの生体状態(実線)は、当該生体状態よりも低めの目標値(破線)に徐々に近づく。
やがて、時刻t1において、推定部230によって心体状態が「覚醒」であると推定される(ステップSa16の判別結果が「Yes」)。このため、制御モードが「入眠」に設定されるので(ステップSa18)、ハイパーソニックの効果と、周波数差が4〜7Hzで1段低く変化するバイノーラルビートとともに、検出された心拍数よりもさらに低いテンポで再生される自然音によって、当該被験者Eは眠りに陥る。このとき、生体状態は、引き続き目標値に徐々に近づきながら低下する。
時刻t2において、推定部230によって心体状態が「浅い眠り」であると推定される(ステップSa19の判別結果が「Yes」)。このため、制御モードが「快眠」に設定されるので(ステップSa20)、ハイパーソニックの効果と、さらに低いテンポで再生される自然音とによって、当該被験者Eは深い眠りに陥る。このとき、生体状態はほぼ最低目標値に接近している。
制御モードの「快眠」にしたがった設定によって、やがて時刻t3において心体状態が「深い眠り」であると推定される(ステップSa21の判別結果が「Yes」)。このため、制御モードが「アンビエント」に設定されるので(ステップSa22)、ハイパーソニックの効果のみが与えられる。
ところで、ヒトは、眠っているときに、ノンレム睡眠とレム睡眠とを1〜2時間程度の周期で交互に繰り返すことが知られている。このため、ハイパーソニックの効果によってノンレム睡眠が継続されないので、被験者Eはやがてレム睡眠に移行する。このため、生体状態が上昇傾向になる。
起床時刻前の時刻t4において心体状態が「レム睡眠」にあると推定されたとき(ステップSa23)、制御モードが再び「入眠」に設定されるので(ステップSa18)、ハイパーソニックの効果と、バイノーラルビートと、心拍数よりもさらに低いテンポで再生される自然音とによって、当該被験者Eの生体状態が、再び目標値に向かって低下することになる。
こうして、被験者Eは、ノンレム睡眠とレム睡眠とを交互に繰り返す一方、音源装置20は、ノンレム睡眠のうち、「浅い眠り」であればハイパーソニックと自然音とを再生することによって睡眠が深くなるように被験者Eを誘導し、「深い眠り」であれば、ハイパーソニックによってその眠りが継続するように、リラックスを図り、レム睡眠であれば、ハイパーソニックとバイノーラルビートと自然音とを再生することによって再び眠りへと誘う。
なお、図13においては、ノンレム睡眠とレム睡眠との繰り返しは省略している。
一方、被験者Eが「レム睡眠」であるときに、起床時刻に至ると(ステップSa24の判別結果が「Yes」になると)、音楽は、テンポが心拍の2倍で拍子が2拍子で比較的大音量で再生される。これにより、被験者Eを爽快に目覚めさせることができる。
なお、被験者Eが目覚めると、時刻t5において心体状態が「覚醒」であると推定される(ステップSa16の判別結果が「Yes」、ステップSa17の判別結果が「No」)。このため、制御モードが「MUTE」に設定されるので(ステップSa26)、再生音が停止することになる。
このように本実施形態によれば、睡眠の改善を図る場合に音源部430による自然音および音源部440による音楽は、生体情報である心拍数に応じたテンポで再生されるので、リラックスした状態に移行しながら入眠させることができる。このうち、自然音については、波形メモリ431から波形データの読出区間がランダムに設定されるので、波形メモリ431に要する記憶容量を少なく抑えた上で、飽きる、耳につくなどの感じを被験者Eに与えないで済む。
また、制御モードが「リラックス」、「入眠」、「快眠」に設定されたときに、音源部410、420、430、440のうちの複数がアクティブにされるとともに、アクティブにされた音源部の出力が合成される。このため、単純に音楽などを単体で聴かせるよりも、飽きのこない、耳につかないなどの効果を与えることができる。
音源部410は、既存の録音物を流用でき、さらに、波形メモリ411の記憶容量を抑えた上で、ハイパーソニックによるヒーリング効果を被験者Eに与えることができる。
本発明は、上述した実施形態に限定されるものではなく、例えば次に述べるような各種の応用・変形が可能である。また、次に述べる応用・変形の態様は、任意に選択された一または複数を適宜に組み合わせることもできる。
実施形態では、設定部220で設定される目的を「睡眠の改善」としたが、これ以外であっても良い。例えば「眠気防止」、「リラックス」などあっても良い。「眠気防止」であれば、推定された心体状態に対して「睡眠の改善」とは逆方向に導けば良いし、「リラックス」であれば、上記実施形態において推定した心体状態を「興奮」、「覚醒」に限定して考えれば良い。
実施形態では、センサ11、12、13によって被験者Eの脳波、脈波(心拍)、体動(呼吸)を生体情報として検出したが、これ以外にも、体温や、血圧などを検出して、心体状態を推定しても良い。また、被験者Eの生体情報に限られず、周辺環境、例えば温度、湿度、騒音などを検出して、これらを総合的に勘案して被験者Eの心体状態を推定しても良い。各音源部が出力に与える揺らぎの程度については、心拍、呼吸などの生体情報に応じて決定しても良い。
また、実施形態では、センサ11、12、13によって被験者Eの生体情報を検出して、睡眠状態(心体状態)を推定し、当該推定した睡眠状態に応じて音源部410、420、430、440を制御したが、次のように構成しても良い。
例えば、予め被験者Eの睡眠時の脳波、脈波、呼吸等を検出して睡眠状態を推定するとともに、簡易センサ(例えば体動を検出する加速度センサ)でも同時に検出することで、睡眠状態と簡易センサの検出結果を対応付けて記憶しておく。そして、実際に「睡眠の改善」をする場合に、被験者Eに簡易センサだけを装着して、当該簡易センサで検出して得られた検出結果に基づいて、記憶されている睡眠状態の対応付けから睡眠状態を推定し、その推定された睡眠状態に応じて音源部410、420、430、440を制御しても良い。この際に、睡眠状態と簡易センサの検出結果の対応付けについては、被験者Eではなく、多くの被験者の平均的な検出結果を用いても良い。
11、12、13…センサ、20…音源装置、40…音源、51、52…スピーカ、410、420、430、440…音源部、412…第1再生部、413…第2再生部、416…混合部。

Claims (7)

  1. 被験者から検出された生体情報を取得する取得部と、
    前記取得部により取得された生体情報から、当該被験者の心体状態を推定する推定部と、
    前記推定される心体状態から特定されるモードに応じたパラメータを出力する音源制御部と、
    前記パラメータで指定される第1音信号を出力する第1の音源部と、
    前記パラメータで指定され、前記第1音信号とは異なる第2音信号を出力する第2の音源部と、
    を具備することを特徴とする音源装置。
  2. 前記音源制御部は、
    前記推定される心体状態に基づいて、前記第1の音源部および前記第2の音源部の各々をアクティブまたはノンアクティブに設定する
    ことを特徴とする請求項1に記載の音源装置。
  3. 前記第1の音源部および前記第2の音源部のひとつは、可聴周波数成分よりも高周波数の非可聴周波数成分を少なくとも含む音を出力する
    ことを特徴とする請求項1または2に記載の音源装置。
  4. 前記第1の音源部および前記第2の音源部のひとつは、バイノーラルビートを出力する
    ことを特徴とする請求項1または2に記載の音源装置。
  5. 前記第1の音源部および前記第2の音源部のひとつは、自然音を出力する
    ことを特徴とする請求項1または2に記載の音源装置。
  6. 前記第1の音源部および前記第2の音源部のひとつは、音楽を出力する
    ことを特徴とする請求項1または2に記載の音源装置。
  7. コンピュータを、
    被験者から検出された生体情報を取得する取得部、
    前記取得部により取得された生体情報から、当該被験者の心体状態を推定する推定部、
    前記推定される心体状態から特定されるモードに応じたパラメータを出力する音源制御部、
    前記パラメータで指定される第1音信号を出力する第1の音源部、および、
    前記パラメータで指定され、前記第1音信号とは異なる第2音信号を出力する第2の音源部、
    として機能させることを特徴とするプログラム。
JP2017054278A 2017-03-21 2017-03-21 音源装置およびプログラム Pending JP2017119159A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017054278A JP2017119159A (ja) 2017-03-21 2017-03-21 音源装置およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017054278A JP2017119159A (ja) 2017-03-21 2017-03-21 音源装置およびプログラム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013108820A Division JP6368073B2 (ja) 2013-05-23 2013-05-23 音源装置およびプログラム

Publications (1)

Publication Number Publication Date
JP2017119159A true JP2017119159A (ja) 2017-07-06

Family

ID=59271265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017054278A Pending JP2017119159A (ja) 2017-03-21 2017-03-21 音源装置およびプログラム

Country Status (1)

Country Link
JP (1) JP2017119159A (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098138A (ja) * 2005-10-07 2007-04-19 Samsung Electronics Co Ltd 熟睡及び覚醒誘導装置、方法並びにプログラム
JP2009195450A (ja) * 2008-02-21 2009-09-03 Panasonic Electric Works Co Ltd 入眠促進装置
WO2012175704A1 (en) * 2011-06-22 2012-12-27 Cambridge Learning Technology Limited Device for inducing and maintaining sleep.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098138A (ja) * 2005-10-07 2007-04-19 Samsung Electronics Co Ltd 熟睡及び覚醒誘導装置、方法並びにプログラム
JP2009195450A (ja) * 2008-02-21 2009-09-03 Panasonic Electric Works Co Ltd 入眠促進装置
WO2012175704A1 (en) * 2011-06-22 2012-12-27 Cambridge Learning Technology Limited Device for inducing and maintaining sleep.

Similar Documents

Publication Publication Date Title
JP6368073B2 (ja) 音源装置およびプログラム
JP6230993B2 (ja) 睡眠を誘う及び維持するデバイス
WO2016121755A1 (ja) 睡眠誘導装置、制御方法、およびコンピュータ読み取り可能な記録媒体
KR101590046B1 (ko) 바이노럴 비트를 이용한 뇌파 유도 오디오 장치 및 방법
JP2017113263A (ja) 音源装置
JP2017121529A (ja) 音源装置およびプログラム
WO2016136450A1 (ja) 音源制御装置、音源制御方法、およびコンピュータ読み取り可能な記録媒体
EP1886707A1 (en) Sleep enhancing device
JP6645115B2 (ja) 再生装置及びプログラム
KR100338280B1 (ko) 태교장치
US20180110461A1 (en) Audio signal processing device, audio signal processing method, and storage medium
JP2017070571A (ja) 音源装置
WO2017086295A1 (ja) 身体制御装置
JP2001224690A (ja) 安眠装置及びこれを用いて作成した記録媒体
JP2017119159A (ja) 音源装置およびプログラム
JP2017119158A (ja) 音源装置およびプログラム
JP6477298B2 (ja) 音源装置
JP2018068962A (ja) 安眠装置
WO2014083375A1 (en) Entrainment device
JP2005334163A (ja) 脳波誘導装置
JP2009207750A (ja) 入眠し易い寝具
JP2017070342A (ja) コンテンツ再生装置及びそのプログラム
JP2006349772A (ja) 音楽データ記録媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181127